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Key Points: 16 

 Low cloud phase feedback is less negative in response to orbital forcing when cloud 17 

phase is observationally constrained by satellite data 18 

 Shortwave cloud and net water vapor feedbacks are identified as mechanisms which 19 

amplify orbitally driven changes in insolation  20 

 Improving cloud phase representation in models is important for understanding the 21 

climate system response to forcing in past climates 22 
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Abstract  24 

The mechanisms which amplify orbitally driven changes in insolation and drive the glacial 25 

cycles of the past 2.6 million years, the Pleistocene, are poorly understood. Previous studies 26 

indicate that cloud phase feedbacks oppose ice sheet initiation when orbital configuration 27 

supports ice sheet growth.  Cloud phase was observationally constrained in a recent study and 28 

provides evidence for a weaker negative cloud feedback in response to carbon dioxide doubling. 29 

We observationally constrain cloud phase in the Community Earth System Model and explore 30 

how changes in orbital configuration impact the climate response. Constraining cloud phase 31 

weakens the negative high latitude cloud phase feedback and unmasks positive water vapor and 32 

cloud feedbacks (amount and optical depth) that extend cooling to lower latitudes. Snowfall 33 

accumulation and ablation metrics also support ice sheet expansion as seen in proxy records. 34 

This indicates that well known cloud and water vapor feedbacks are the mechanisms amplifying 35 

orbital climate forcing.  36 

 37 

Plain Language Summary  38 

The recent ice ages represent large transitions in climate that are forced by small changes in solar 39 

radiation, driven by variations in the Earth’s orbit. This study aims to identify plausible 40 

mechanisms that can amplify this small solar signal and lead to the development of large ice 41 

sheets, thereby improving our understanding of the climate system.  Cloud phase (the proportion 42 

of liquid to ice) is poorly represented in climate models and previous work has shown that this 43 

can lead to an underestimation of the climate response to carbon dioxide forcing. This study 44 

explores the climate response to orbital forcing when cloud phase is observationally constrained 45 

by satellite. Previous modeling studies have found that when high latitude solar radiation is 46 
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reduced due to orbital variations, clouds thin, allowing more absorption of solar radiation which 47 

effectively opposes the orbital cooling that encourages ice sheet growth. We find that when 48 

cloud phase is constrained, this opposing cloud thinning is reduced and cooling extends to lower 49 

latitudes via cloud and water vapor feedbacks. Our work indicates that well understood climate 50 

processes are the mechanisms that amplify orbital climate forcing, and reiterate the importance in 51 

properly simulating cloud phase in climate models.  52 

 53 

1. Introduction 54 

The Earth has experienced dramatic shifts in climate from glacial to interglacial states 55 

during the Pleistocene (the past 2.6 million years). These changes are paced by changes in orbital 56 

configuration (Hays et al., 1976) but there is no satisfactory theory to fully explain how changes 57 

in orbit (eccentricity, obliquity and precession) drive ice sheet growth and decay. Obliquity 58 

refers to the angle of the Earth’s axis with respect to the orbital plane with a periodicity of 41 59 

kyr, eccentricity is the shape of the Earth’s orbit from nearly circular to elliptical with a 60 

periodicity of 100 kyr, while precession, with a periodicity of 26 kyr is the ‘wobble’ of the Earth 61 

on its axis analogous to the wobble of a spinning top.  Milutin Milanković, whose orbital theory 62 

is the leading theory, postulated that changes in Earth’s orbit affecting summertime insolation 63 

were important in determining global ice volume, and that changes in orbit that led to cooler 64 

summers would increase snow and ice preservation (Milanković, 1941).  65 

Sedimentary archives from deep sea, bottom dwelling foraminifera, record strong 66 

obliquity and precession forcing over the Cenozoic era (past 65 My) with the obliquity signal 67 

dominating these records (Lisiecki & Raymo, 2005; Raymo et al., 2006; Zachos et al., 2001; 68 

Westerhold et al., 2020). These proxies show that Pleistocene glacial climates initially varied 69 
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with a periodicity of around 40 kyr switching to 100 kyr around 1 million years ago. The 70 

precession signal is modulated by eccentricity, and is weaker in the early Pleistocene and 71 

stronger in late Pleistocene records (Huybers, 2011; Liautaud et al., 2020). Numerous hypotheses 72 

have been proposed to explain the weak precession signal in the early Pleistocene proxies, e.g. 73 

interhemispheric cancellation of ice-volume changes ( Raymo et al., 2006), summer duration and 74 

intensity being anti-phased (Huybers, 2006) and meridional insolation gradients (Raymo & 75 

Nisancioglu, 2003). A recent study using statistical methods argues that precession has a stronger 76 

contribution than previously recognized in the early Pleistocene and increases through this epoch 77 

(Liautaud et al., 2020).   78 

Whilst precession controls the intensity of summer insolation (Huybers, 2006) glaciers 79 

are sensitive to insolation integrated over the duration of the summer of which obliquity is a 80 

primary control. Our study focuses on the role of obliquity in driving the glacial climates because 81 

this is the dominant signal recorded in proxies, particularly in the early Pleistocene (Zachos et 82 

al., 2001). When Earth’s obliquity is low, summers are cooler and winters are warmer, with the 83 

cool summers thought to favour the preservation of ice and glacial conditions. Changes in 84 

obliquity affect the annual mean meridional gradient in insolation with larger changes in the high 85 

latitudes than in the low latitudes. For the range of high and low obliquity values used in this 86 

work (see methods) and previous studies (Erb et al., 2013; Mantsis et al., 2011) a reduction in the 87 

obliquity from 24.480° to 22.079° leads to a reduction in high latitude insolation of up to  88 

50 Wm
-2

 over the summer (see Figure 1). Whilst these changes in insolation are large, they are 89 

not sufficient to completely drive the glacial cycles of the Pleistocene  (Rind et al., 1989; 90 

Saltzman et al., 1984; Lisiecki, 2010; Huybers, 2011; Erb et al., 2013; Mantsis et al., 2011). 91 
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The relationship among the different orbital frequencies, as well as CO2 and dust which 92 

covary with the Pleistocene glacial cycles is complex (Martínez-Garcia et al., 2011; Petit et al., 93 

1990; Sigman & Boyle, 2000). General Circulation Models (GCMs)  which have incorporated 94 

orbital changes and additional climate forcings such as CO2 (Barnola et al., 1987), dust (Lambert 95 

et al., 2008), vegetation (Tabor et al., 2015), topography or coupled ice sheet models (Abe-Ouchi 96 

et al., 2013) and including regolith, as previously hypothesized and tested (Clark & Pollard, 97 

1998; Tabor & Poulsen, 2016) have had modest success in both simulating glacial inception and 98 

/ or glacial melt as well as the sawtooth shape and periodicity of the glacial cycles.  99 

Transient simulations run over several glacial cycles using Earth system Models of 100 

Intermediate Complexity (EMICs) have had considerably more success in simulating glacial-101 

interglacial climates.  Ganopolski & Brovkin, (2017) were able to simulate the temporal 102 

dynamics of CO2 and global ice volume over the past 4 glacial cycles using orbital variability as 103 

the only external forcing. The timing of glacial terminations was well simulated, but changes in 104 

CO2 concentration lagged, and the amplitude of simulated changes were smaller than that 105 

indicated in the proxy record. In a later study using the same model Willeit et al., (2019) found 106 

that including  regolith removal allowed them to better simulate Pleistocene climate variability, 107 

and increase the amplitude of the simulated variations. Whilst the results of these studies are 108 

impressive, EMICs have coarse resolution and many simplifications – particularly in the 109 

atmosphere compared to GCMs and Earth System Models (ESMs).  The physical mechanisms, 110 

and climate feedbacks that can contribute to orbitally driven ice sheet growth and decay are still 111 

poorly understood and simulated in GCMs.  112 

Our study is inspired by the findings of Erb et al. (2013) who quantified the role of 113 

radiative feedbacks to changes in obliquity. They found that a negative low cloud feedback, due 114 
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to a reduction in low cloud amount and cloud water content, impeded ice sheet initiation by 115 

opposing glaciation at times when orbital forcing would otherwise support it. A negative low 116 

cloud feedback has also been identified in other studies (Birch et al., 2017; Jochum et al., 2012) 117 

and highlights additional complications to understanding the orbit-climate relationship. Jochum 118 

et al., (2012) ran simulations using insolation from the last glacial inception (115 kya) and also 119 

found a reduction in low cloud amount, resulting in a negative shortwave (SW) cloud feedback. 120 

They calculated that the initial (orbital) forcing of 1.9 W m
2
 above 60°N was amplified by the 121 

snow-ice-albedo feedback by 6.7 Wm
-2

 and was damped by a negative SW cloud feedback of 3.1 122 

Wm
-2

, due to a reduction in low cloud.  Birch et al., (2017) used a high-resolution cloud 123 

resolving model to examine the role of clouds in glacial inception and their results confirmed 124 

those of Jochum et al (2012).  125 

Clouds are one of the most challenging and uncertain aspects of the climate system 126 

(Boucher et al., 2013) and new research suggests that the negative feedback associated with 127 

cloud phase changes in existing models may be too strong (Tan et al., 2016). Cloud phase is 128 

poorly represented in global climate models, which have tended to underestimate the 129 

supercooled liquid fraction (SLF) in mixed phase clouds (MPCs) (Cesana et al., 2015; Komurcu 130 

et al., 2014). MPCs are common in the mid and high latitudes (Morrison et al., 2012; Shupe, 131 

2011; Zhang et al., 2010) but are difficult to model for several reasons: there is a paucity of 132 

observational data (Illingworth et al., 2007; Morrison et al., 2012) and general difficulties in 133 

representing MPC microphysics (Komurcu et al., 2014; Lohmann & Hoose, 2009), in particular 134 

the conversion from liquid to ice known as the Wegner-Bergeron-Findeisen (WBF) process 135 

(Storelvmo et al., 2008; Tan & Storelvmo, 2016).  136 
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The cloud phase feedback can be explained as so: in response to warming the liquid-ice 137 

phase transition isotherm moves to higher altitudes such that, for a given altitude, the SLF is 138 

enhanced relative to the initial state. For a given amount of cloud water, supercooled liquid 139 

droplets are more reflective to SW radiation than cloud ice due to their smaller size and larger 140 

population (Murray et al., 2012; Pruppacher & Klett, 1978). The transition from ice to liquid 141 

therefore produces a negative feedback as supported by both models (Mitchell et al., 1989) and 142 

satellite observations (Tan et al., 2019). When SLFs are initially underestimated, this negative 143 

feedback is too strong and masks other cloud processes that generally yield positive feedbacks 144 

(Tan et al., 2016).  145 

Using observationally constrained cloud phase, Tan et al., (2016) found that the liquid-to-146 

ice transition isotherm moved upward, where there are fewer and thinner clouds, and poleward 147 

where incoming solar radiation is reduced. Subsequently the phase transition response to 148 

radiative perturbation is weakened and equilibrium climate sensitivity (ECS) increased. Climate 149 

sensitivity in the latest generation of climate models, the Coupled Modeling Intercomparison 150 

Project (CMIP6), has increased in the 27 models currently available (1.8 – 5.6 K) compared to 151 

previous estimates (1.5 – 4.5 K) (Bindoff et al., 2013). This is attributed to stronger positive 152 

cloud feedbacks (amount and scatter), and linked to reductions in low cloud cover and water 153 

content in the mid-latitudes in response to changes in sea-surface temperatures (SSTs) (Zelinka 154 

et al., 2020). The small negative feedback from low cloud scattering in CMIP5 is on average 155 

positive in CMIP6. This weaker liquid water path (LWP) increase with warming is qualitatively 156 

consistent with Tan et al., (2016) and several other studies (Bodas-Salcedo et al., 2019; 157 

Gettelman et al., 2019; McCoy et al., 2015; Zelinka et al., 2020). 158 
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This study examines the response of observationally constrained clouds to orbital forcing in 159 

pairs of simulations in which obliquity is prescribed at the extremes of its Pleistocene range (Lo 160 

and Hi simulations).  We use the same model set up and observationally constrained SLF values 161 

(SLF1 and SLF2) as used in Tan et al., (2016). However, in this work we explore the impact of 162 

observationally constrained SLFs on the response to obliquity forcing rather than CO2 forcing. 163 

Changes in obliquity are not spatially uniform, with a larger impact in the higher latitudes than in 164 

the tropics.  Obliquity values are taken from the Erb et al., (2013) study which first evaluated 165 

radiative feedbacks in response to orbital forcing and identified a negative high latitude cloud 166 

feedback.  167 

 168 

2. Materials and Methods 169 

2.1. Climate Model Setup 170 

The Community Earth System Model (CESM) version 1.0.6 (Hurrell et al., 2013) is 171 

comprised of the atmospheric component CAM5.1 (Liu et al., 2012; Neale et al., 2010) which 172 

has 30 vertical levels and uses the three-mode version of the Modal Aerosol Module (MAM3) 173 

(Liu et al., 2012); the Community Land Model (CLM4.0) (Lawrence et al., 2011; Oleson et al., 174 

2010); the ocean model (Parallel Ocean Program Ocean model, POP2) (Smith et al., 2010) and 175 

the Ice Model (Community Ice CodE, CICE4.0) (Holland et al., 2012; Hunke et al., 2010). In 176 

these simulations CAM5.1 and CLM4.0 are run with a resolution of 1.9°x2.5° whilst POP2 and 177 

CICE4.0 have a nominal 1° resolution. The DEF simulation is run with the default cloud 178 

microphysics scheme (Morrison & Gettelman, 2008) and the standard ice-nucleation 179 

parameterization scheme (Meyers et al., 1992) in which ice nucleating particle number 180 

concentration is calculated based on temperature and supersaturation. For the SLF1 and SLF2 181 
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simulations the ice-nucleation parameterization scheme is updated (DeMott et al., 2015) to a 182 

more realistic scheme which enables ice nucleating particle number concentration to be 183 

diagnosed as a function of the concentration of large dust particles in addition to temperature. 184 

This allows for the spatial and temporal variability of dust ice nucleating particles (INP) to be 185 

taken into account. As in Tan et al., (2016) SLFs in SLF1 and SLF2 were determined from the 186 

results of a 256 member quasi Monte Carlo sampling approach in which six cloud microphysical 187 

parameters were modified, and the resulting cloud phase was compared with satellite data from 188 

NASA’s Cloud-Aerosol-Lidar with Orthogonal Polarization (CALIOP) (Winker et al., 2009). 189 

The parameter combinations selected for SLF1 and SLF2 were very different (Table S1) but both 190 

produced SLFs in excellent agreement with CALIOP.  191 

2.2. Climate Simulations 192 

We use a pre-industrial model configuration (i.e. land mask, ice sheets, greenhouse gases, 193 

vegetation and aerosols) whereas Tan et al., (2016) used a present-day configuration. This leads 194 

to a large top-of-atmosphere (TOA) radiative imbalance which would require very long 195 

simulations to reduce. We re-tune the model slightly (Table S2) and the findings from our 196 

untuned simulations (not included) and tuned simulations are consistent.   197 

Following Erb et al., 2013 we perform idealized simulations in which only obliquity is 198 

modified to a low (Lo) value of 22.079° and a high (Hi) value of 24.480° representative of the 199 

past 600 Kyr. DEF, SLF1 and SLF2 are run with Lo and Hi obliquity (six simulations) until the 200 

TOA energy budget is < 0.3 Wm
-2

 which takes between 350– 850 years for the different 201 

simulations (Table S3). These simulation lengths are long enough to capture broad changes in 202 

the atmosphere and surface ocean but are not long enough for the oceans to fully respond to the 203 

obliquity forcing. The final 50 years of the simulation are used as the input for cloud radiative 204 
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kernel computations, for calculations of climate means and for the International Satellite Cloud 205 

Climatology Project (ISCCP) satellite simulator analysis (Klein & Hartmann, 1993; Webb et al., 206 

2001). The majority of results are presented as Lo-Hi anomalies as this convention reduces 207 

northern hemisphere (NH) summer insolation, which is conducive to a cooling climate and NH 208 

glaciation.  209 

2.3. Downscaling Model 210 

Because climate model resolutions are too coarse to capture the detail required for realistic 211 

ice sheet dynamics, i.e. underlying bedrock topography, (Birch et al., 2017; Pollard & 212 

Thompson, 1997), a downscaling approach was also used to determine the extent to which the 213 

differences in cloud parametrization would affect the persistence of snow cover in the low 214 

obliquity simulation. As in Notaro et al., (2014), the downscaling method we used employed the 215 

SNOW-17 snow accumulation and ablation model (Anderson 2006), which is used by the United 216 

States National Weather Service for real-time hydrologic modeling.  SNOW-17 is driven by 217 

daily temperature and precipitation.  Modern snow cover was simulated on a 1° by 1° latitude-218 

longitude grid by using 30 years of observed daily temperature and precipitation from the data 219 

set compiled by Kluver et al., (2016).  To simulate snow cover in the low obliquity experiments, 220 

the so-called “delta-change” approach is used  (Lettenmaier et al., 1999). For each month, 221 

climatological differences in surface air temperature were computed between each low obliquity 222 

simulation and a corresponding historical simulation (using historical forcing from 1850-2000) 223 

with the same cloud parameterization.  These differences were interpolated to the 1° by 1° grid 224 

and added to the 30-year observed daily temperature time series at each point.  A similar 225 

approach was used for precipitation except that the ratio of low obliquity and historical 226 
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precipitation was determined, and the observed precipitation time series was multiplied by this 227 

ratio.   228 

 229 

3. Results  230 

3.1. Temperature and Insolation Seasonal Cycle 231 

Obliquity affects the annual latitudinal distribution of insolation and modulates 232 

seasonality especially in the high latitudes. These changes have a negligible impact on global 233 

annual mean insolation, with lower (Lo) obliquity reducing polar insolation in summer and 234 

increasing it in winter. Figure 1 shows the annual mean Lo-Hi surface air temperature (SAT) 235 

anomaly (colored contours) with the insolation anomaly overlaid (black contours). The negative 236 

insolation anomaly (in all simulations) extends across almost all the northern hemisphere (NH) 237 

from March to September. In the DEF experiment, negative SAT anomalies lag the insolation 238 

anomaly by ~ 6 weeks and have a smaller spatial and temporal extent than the negative 239 

anomalies in SLF1 and SLF2. In SLF1 and SLF2 negative SAT anomalies extend equator-wards 240 

in March and over the entire NH (and globe) until January where a very small 0.25 K tropical 241 

warming occurs.  242 

Negative SAT anomalies in SLF1 and SLF2 extend into areas with a positive insolation 243 

anomaly and indicate the importance of climate feedbacks over direct insolation forcing. The Lo-244 

Hi global annual mean SAT anomalies for our experiments are  -0.79 K, -1.30 K and -1.36 K for 245 

DEF, SLF1 and SLF2 respectively. This cooling signal and its extension to lower latitudes with 246 

constrained SLF applies to both hemispheres, unlike other studies which simulate very little 247 

cooling in the Southern Hemisphere (Jochum et al., 2012). These SAT anomalies indicate that 248 
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the climate response to obliquity forcing is considerably larger when cloud phase is 249 

observationally constrained.  250 

3.2. Radiative Feedbacks  251 

We calculate the radiative feedbacks of surface albedo, atmospheric water vapor, vertical 252 

temperature lapse rate and cloud optical properties using the radiative kernel method of climate 253 

feedback analysis (Shell et al., 2008; Soden et al., 2008). Note that results are presented as the 254 

effect of feedbacks on net TOA radiation ΔRnet (Wm
-2

) and not as feedbacks (Wm
-2 

K
-1

) as this 255 

avoids dividing by small values of global mean ∆T (Erb et al., 2013).  In the context of how our 256 

results are presented: For Lo-Hi anomalies, a positive value of ΔRnet indicates a feedback effect 257 

that opposes orbitally driven cooling. A negative value of ΔRnet indicates a feedback effect that 258 

strengthens the orbital signal. Globally, the ΔRnet from all radiative feedbacks is ~1.6 to 1.7 times 259 

stronger in SLF1 and SLF2 compared to DEF. Global mean ΔRnet from SW cloud and water 260 

vapor feedbacks are much larger in SLF1 and SLF2 compared to DEF, whilst the ΔRnet from 261 

lapse rate feedback is similar in all simulations and the ΔRnet from surface albedo feedback is 262 

only marginally larger in SLF1 and SLF2. When broken down into hemispheres and regions 263 

(Figure 2) the mid-latitude cloud feedback and tropical water vapor feedback effects stand out as 264 

being much larger in SLF1 and SLF2 compared to DEF.   265 

During late summer in the high latitude insolation is reduced due to low obliquity, which 266 

should lead to local cooling. Over this period in DEF, column-integrated liquid (i.e. LWP) 267 

reduces and acts to oppose and reduce cooling from this obliquity driven reduction in insolation 268 

(Figure S1). In the SLF1 and SLF2 simulations this high-latitude LWP reduction in summer is 269 

not evident, but a large increase in total (ice+liquid) water path (TWP) appears in the mid-270 
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latitudes (30-60°N) which increases cloud reflectivity and thus cooling throughout the year 271 

(Figure S2).  272 

In response to obliquity forcing (Lo-Hi), cooling leads to cloud liquid being converted to 273 

cloud ice, which is optically thinner. The cloud phase bias in DEF causes an exaggerated cloud 274 

thinning as too much liquid is converted to ice with cooling. This exaggerated reduction in cloud 275 

optical depth counters the other, mainly positive, cloud feedbacks and therefore weakens the 276 

spreading of high-latitude cooling to mid- and low latitudes. In contrast, the amplifying mid-277 

latitude cloud feedback in SLF1 and SLF2 is twice as strong as in DEF, permitting high-latitude 278 

cooling to spread across the mid-latitudes towards the tropics. The slight cooling in the tropics 279 

(as opposed to the warming seen in DEF) is accompanied by a slight decrease in atmospheric 280 

water vapor, as expected according to the Clausius-Clapeyron relation. Since water vapor is a 281 

potent greenhouse gas, this reduction in water vapor increases outgoing longwave (LW) 282 

radiation and thus constitutes a powerful amplifying feedback in the tropics. High and mid-283 

latitude cooling in DEF is not amplified by cloud feedbacks as in SLF1 and SLF2. This results in 284 

the slightly positive summer Lo-Hi tropical insolation anomaly producing a warming in DEF and 285 

thus a positive water vapor feedback that opposes high-latitude orbitally-forced cooling. 286 

3.3. Decomposing the Cloud (Feedback) Response to Orbital Forcing  287 

In order to more fully understand the changes in cloud properties that occur in response to orbital 288 

forcing we examine the output from the International Satellite Cloud Climatology Project 289 

satellite simulator (ISCCP) (Klein & Jakob, 1999; Webb et al., 2001) which is implemented in 290 

the atmosphere component of CESM, the Community Atmosphere Model (CAM5.1). The 291 

ISCCP simulator allows cloud properties in models to be diagnosed in a manner consistent with 292 

the satellite view from space. The radiative impact of changes in cloud amount (CLD), optical 293 



Confidential manuscript submitted to Geophysical Research Letters 

 

depth (COT) and cloud top pressure (CTP) as well as a residual term are calculated following 294 

Zelinka et al., (2012) and summarized by feedback in Figure 3 with the net feedback shown in 295 

Figure S2. This de-composition of the net (SW+LW) cloud feedback into contributions from 296 

CLD, CTP and COT reveals that the latter component is responsible for the difference in mid-297 

latitude cloud feedback between DEF on one hand, and SLF1 and SLF2 on the other. Because 298 

the orbital signal is strongest between 60-90°N, it helps to consider this region first. Between 60-299 

90°N SW COT is positive in DEF whilst in SLF1 and SLF2 it is shifted to less positive values. 300 

Between 30-60°N, SW COT has decreased from near zero in DEF, to -3 Wm
-2 

in SLF1 and 301 

SLF2 across this latitude band.  In the Southern Hemisphere, the SW COT feedback becomes 302 

significantly less positive (60-90°S) and more negative (30-60°S) in SLF1 and SLF2 compared 303 

to DEF.  304 

3.4. Glacial inception 305 

The central tenet of Milanković’s orbital theory is that cooler summers allow high latitude snow 306 

to survive the summer melt season. Perennial snow cover subsequently leads to snow-albedo 307 

feedbacks, which amplify ice cap expansion and initiate the growth of large-scale ice-sheets. 308 

Sediment cores indicate that in the NH the last glacial inception occurred ~ 115,000 years ago in 309 

the region of Hudson Bay and Baffin Island over a period of around 20,000 years (Clark et al., 310 

1993). Furthermore, SLF2, which generally has a higher supercooled liquid water content than 311 

SLF1 (Tan et al. 2016) exhibits more snow-free days than SLF1, in line with Tan & Storelvmo 312 

2019, suggesting the importance of ice cloud microphysics on Arctic amplification. We gauge 313 

the summer melt response to the cooling signal in these experiments by calculating the 314 

percentage change in positive degree-days (PDD) for Lo-Hi over the June-July-August (JJA) 315 

period (Figure 4a-c). PDD are calculated as the sum total of daily average temperatures above 316 
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0°C in a given time period. We focus on JJA as although Milanković theory considers caloric 317 

summer half year, the majority of glacial melt takes place over the short summer season.  All 318 

three experiments show a substantial reduction in PDD (up to 50%) in the high Arctic, Hudson 319 

Bay area and over Baffin Island, which are likely locations of the last initiation of the Laurentide 320 

ice sheet. In SLF1 and SLF2 the reduction in PDD extends further into the mid-latitudes than 321 

DEF, in agreement with the increased extent of negative SATs.  322 

As climate models are too coarse to capture the detail required for realistic ice sheet dynamics. 323 

we use a downscaling method to provide an additional metric for evaluating glacial inception. 324 

Figure 4d-e shows the average number of days without snow cover > 1” for the Lo - historical 325 

anomaly over the Canadian Arctic. SLF1 and SLF2 have fewer snow free days over the summer 326 

than DEF, with this increase in snow preservation occurring over the southern part of Baffin 327 

Island, eastwards of the Hudson Bay and over much of northern and middle Canada, which is in 328 

line with the proxy evidence (Clark et al., 1993). Because modern simulations were not available 329 

for this study, and the modern climate is warmer than the historical climate, our use of historical 330 

anomalies likely underestimates the duration of snow cover in the low obliquity experiments. 331 

 332 

4. Discussion and Conclusions 333 

We have repeated the experiments in Erb et al., (2013) to examine the obliquity driven 334 

climate response in a model with observationally constrained supercooled liquid fraction (SLF) 335 

in mixed phase clouds (MPCs). SLFs are increased in two experiments (SLF1 and SLF2) using a 336 

more realistic ice-nucleation scheme (DeMott et al., 2015) but using different methods in order 337 

to account for the uncertainties associated with MPC microphysics. These are compared with a 338 

default model (DEF) in which SLFs are known to be underestimated (Cesana et al., 2015; 339 
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Komurcu et al., 2014). Other studies have found that orbitally induced climate changes are 340 

opposed by negative high latitude low cloud feedbacks (Birch et al., 2017; Erb et al., 2013; 341 

Jochum et al., 2012). However, when realistic present-day SLFs are used, the strength of this 342 

negative cloud feedback is reduced which allows obliquity-driven cooling to spread to lower 343 

latitudes. This cooling leads to an increased liquid water path (LWP) and ice water path (IWP) in 344 

mid-latitude clouds and this positive cloud feedback further extends the cooling signal both 345 

throughout the year and leads to a strong tropical water vapor feedback.  346 

We compare our three simulations with the CM2.1 the model used in the Erb et al., 2013 347 

study. Overall the SAT response in CESM is larger than that in CM2.1: the response of SLF1 348 

and SLF2 is 1.6-1.7 times that in DEF and is 2-3 times larger than that in CM2.1. The sum of net 349 

radiative feedbacks effects (ΔRnet) are 1.9 - 2.4 times larger in SLF1 and SLF2 compared with 350 

DEF and 2.6 – 3.5 times larger than in CM2.1. Reductions in positive degree days (PDDs) of up 351 

to 50% occur in the summer melt season in the Hudson Bay and Baffin Island area which have 352 

been identified as probable locations for the expansion of the Laurentide ice sheet (Clark et al., 353 

1993). These and further reductions in PDD which extend into the mid-latitudes in SLF1 and 354 

SLF2, and reduction in snow-free days calculated from the downscaling approach provide 355 

further support that the climate in these experiments is more conducive to ice-sheet growth. 356 

Column-integrated liquid (i.e. LWP) reduces and acts to oppose and reduce cooling from 357 

this obliquity driven reduction in insolation (Figure S1). This process is also seen in CM2.1.   358 

The cloud feedback processes that contribute to the extension and expansion of the cooling 359 

signal apply to both hemispheres (Figures 1, 3) unlike previous studies in which only a strong 360 

northern hemisphere cooling signal is simulated (Jochum et al., 2012). Southern hemisphere 361 

cooling is important for sea ice expansion in the Antarctic, which drives increased carbon 362 
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sequestration in the ocean. Proxy records indicate that early during the last glacial cycle around, 363 

115 kya, polar cooling and sea ice expansion in the Antarctica were associated with an initial 364 

drawdown of CO2 (35 ppm) (Kohfeld & Chase, 2017). In addition to the snowfall and ablation 365 

metrics which support larger ice sheet expansion in SLF1 and SLF2 than in DEF, increased 366 

southern hemisphere cooling and ice formation would sequester more CO2.  367 

Proxy reconstructions from the tropical oceans indicate that Pleistocene SSTs cooled 368 

prior to changes in continental ice volume (Dyez et al., 2016; Medina-Elizalde & Lea, 2005) and 369 

in regions SST changed in the opposite direction to changes in local annual insolation (Liu & 370 

Herbert, 2004). As ours is an idealized study, and we have only presented Lo-Hi surface 371 

temperature anomalies (Figure 1), subsequently explicit comparisons with proxy records are not 372 

suitable. However, in our work SLF1 and SLF2 both demonstrate tropical cooling throughout 373 

much of the year despite a positive insolation anomaly, whereas DEF and CM2.1 show a 374 

warming. This provides further support for the notion that high latitude cooling can drive tropical 375 

climate change, in qualitative agreement with proxy reconstructions.   376 

 Simulating cloud processes is a challenging area of study and it should be noted that the 377 

microphysics that contribute to high SLFs in mixed phase clouds are not completely understood: 378 

both reductions in the efficiency of the Wegner-Bergeron-Findeisen (WBF) process (Lohmann & 379 

Hoose, 2009; Storelvmo et al., 2008; Tan & Storelvmo, 2016) and the availability, size 380 

distribution and effectiveness of INPs such as mineral dust (Atkinson et al., 2013; Kok et al., 381 

2017; Murray et al., 2012; Sagoo & Storelvmo, 2017) have a significant impact on SLFs and 382 

climate.  The positive cloud and water vapor feedbacks which amplify the orbital signal in this 383 

work are unmasked because the high latitude negative low cloud feedback was not present in 384 

SLF1 and SLF2. Understanding the response of low Arctic clouds to changes in climate and sea-385 
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ice cover is challenging (Kay et al., 2011; Kay & Gettelman, 2009) and thus the magnitude and 386 

even the presence of a high latitude summer low cloud feedback are still not well constrained. 387 

Finally, in summary, we find strong support for Milanković’s orbital theory in this study when 388 

SLFs are observationally constrained. Enhanced cooling in the high latitudes leads to the 389 

unmasking of well-known positive mid-latitude cloud feedbacks and tropical water vapor 390 

feedback, which amplify the obliquity signal by additional cooling which reduces summer 391 

snow/ice melt.   392 
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Figure Captions 642 

Figure 1. Seasonal changes in zonally averaged surface air temperature (SAT) and insolation 643 

shown as Lo-Hi obliquity anomalies. a) DEF, b) SLF1 and c) SLF2.  SAT is shown in color 644 

shading with the global annual mean SAT anomaly value shown at the top of each figure in 645 

parenthesis. Overlaid black contours and labels denote the Lo-Hi surface insolation anomaly 646 

with the thick black line indicating the zero-insolation contour. 647 

Figure 2.  The effect of radiative feedbacks partitioned into individual components (surface 648 

albedo, lapse rate, water vapor, cloud shortwave (SW), cloud longwave (LW) and residuals (SW 649 

and LW)) and split by region and hemisphere: a) & b) Northern and Southern hemisphere mean 650 

(NH & SH); c) & d) tropics (0-20°N and 0-20°S; e) & f)) mid-latitudes (30-60°N and 30-60°S) 651 

and g) & h) high latitudes (60-90°N and 60-90°S). Note that results are presented as the effect of 652 

feedbacks on net TOA radiation (Wm
-2

) and not as surface temperature-mediated feedbacks 653 

(Wm
-2

 K
-1

). 654 

Figure 3. Longwave (LW) and shortwave (SW) and net cloud feedback effects (expressed as 655 

ΔRnet in Wm
-2

) calculated using the International Satellite Cloud Climatology Project satellite 656 

simulator (ISCCP). LW feedbacks are shown in the top row: a) DEF, b) SLF1, c) SLF2, SW 657 

feedbacks are shown in the bottom row:  d) DEF, e) SLF1 and f) SLF2 with feedbacks due to 658 

changes in cloud amount (CLD) shown in orange, cloud optical depth (COT) in green, cloud top 659 

pressure (CTP) in blue, a residual component in magenta and total feedbacks are shown in black. 660 

Figure 4. Indicators of change in summer (June, July, August) snow preservation. Percentage 661 

change in positive-degree days (PDD) polewards of 30°N for northern hemisphere for Lo-Hi 662 

anomaly shown for a) DEF, b) SLF1 and c) SLF2 Lo-Hi experiments with blue indicating fewer 663 

PDD and increased likelihood of snow preservation. A downscaling model was used to calculate 664 

the average number of days without snow > 1” in the Canadian Arctic for the Lo-Pre-industrial 665 

anomaly for DEF, SLF1 and SLF2. The anomaly of d) SLF1-DEF and e) SLF2-DEF are shown 666 

in the bottom row where blue indicates an increase in snow covered days. 667 

 668 
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