
SUPPLEMENTARY MATERIALS: Asymptotic, convergent, and exact1

truncating series solutions of the linear shallow water equations for channels with2

power law geometry∗3

Geir Pedersen
†4

5

SM1. Outline. SM2 is related to section 4 of the main text and contains additional6

mathematical details and examples on waves in simple geometries defined by power functions.7

The subsection SM2.1 offers an explanation for why the asymptotic expansion (3.3) works8

better in deep water than in shallow water if α < 2, and the other way around if α > 2.9

Self-similarity of 3.3 for power function geometries is briefly described in SM2.2. Next, SM2.310

sketches the special amplitude recursion for α = 2 that was omitted in 4.1, while the following11

SM2.4 discusses the qualitative properties of the trailing systems for ranges of α and β. SM2.512

then give examples complimentary to those of 4.4.13

SM3 is intended to widen the scope of 5. First SM3.1 gives additional mathematical de-14

tails on the modified recursion for a composite geometry with an apex. SM3.2 give additional15

solutions for non-planar slopes, linked to 5.2. Then SM3.3 presents the boundary value prob-16

lem on a slope that is related to the apex problem. Finally, another type of channel geometry17

and amplitude recursion for the amplitudes in (3.3) is presented in SM3.4. This allows for18

a gradual transition between uniform and variable channel sections and reflections from the19

transition are identified.20

In SM4 effects of approximated transmission on runup of sloping beaches are studied. In21

particular, one reason for a mild underestimation by the allegedly most famous runup formula22

is pointed out.23

The numerics employed in the article is not of the advanced sort. Anyway, a brief descrip-24

tion is found in SM5.25

In addition to power function geometries also geometries defined through exponentials26

have been investigated. Key results are given in SM6.27

The section SM7 relates the properties of the asymptotic expansions to the global balance28

of energy, mass and momentum. In particular the need for a trailing system is discussed and,29

at the same time, the lack of special properties of the closed form solutions with respect to30

conservation becomes apparent.31

In the final section of the supplement, SM8, the well-posedness of the linear shallow water32

equations for the channel is discussed in terms of integrated error estimates.33

SM2. Power function geometries; additional subtopics.34

SM2.1. Channel variation rate relative to α. As a measure of variation rate of the35

medium we may use the typical change of wave speed, c = h̄
1
2 , over a wavelength; lr = λc−1 dc

dx
,36

where λ ∼ κh̄
1
2 is a measure of the wavelength. Then lr ∼ const.x−µ decreases and increases37
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with x for α < 2 and α > 2, respectively. We would then expect that the asymptotic38

approximation is best in deeper water for α < 2, while the opposite should be the case for39

α > 2. This is consistent with the observations on the optimal number of terms, jmin, in the40

asymptotic expansions for F0 = Y0, as discussed at the end of section 4.3.1. It also agrees41

with the convergence rate of series for F0 = P
(M)
0 , as is given in (4.11).42

SM2.2. Self-similarity of (3.3). The solution defined by (3.3) and (4.3) may be scaled43

such that x0 = h0 = 1 (see section 2). Similarity properties are then revealed by changing the44

reference position to x1 and re-scaling according to x̄ = x−1
1 x and t̄ = x−µ

1 (t− τ(1) + τ(x1)).45

Then the solution is retrieved as the same expression with C̄0 = x−p
1 C0 and κ̄ = xµ1κ. Hence,46

the depth reduction diminishes the “effective κ” when α < 2, and increases it when α > 2.47

SM2.3. Explicit recursion for α = 2. For α = 2 (4.2) and (4.3) become invalid and Aj48

may no longer be expressed solely in terms of power functions. Instead a compact recursion49

is written as50

(SM2.1) Aj = x−
1
2
(β+1)

j
∑

n=0

a(j)n (lnx)n, a(j)n =
1

2
h

1
2
0

{

(β + 1)2

4n
a
(j−1)
n−1 − (n+ 1)a

(j−1)
n+1

}

.51

Ambiguity is avoided by requiring a
(j)
0 = 0 for j > 0. For j = n only the first of the two terms52

within the curly brackets is retained (corresponding to defining a
(j)
n = 0 for j > n). The phase53

becomes Θ = κ(h
− 1

2
0 ln(x/x0) + t).54

It is noteworthy that for a quadratic depth profile the wave equation (2.2) may be trans-55

formed to a Klein-Gordon equation, with constant coefficients [SM3]. Also the exact solutions56

for oscillations in a parabolic basin come to mind [SM9]. However, there is no apparent57

mathematical link between these solutions and (SM2.1).58

SM2.4. The first order corrections. The most important qualitative features of the as-59

ymptotic solutions are defined by the first two terms of the expansions (3.3) and (3.7). In the60

present subsection we assume β < 1 for simplicity. When the O(κ−1) amplitude factor for61

the velocity is defined as U1 ≡ −h̄−
1
2A1 + A0,x (see eq. (3.7)), it follows from (4.2), and the62

definitions µ = 1− 1
2α and p = 1

4α+ 1
2β, that63

(SM2.2) A1 = C0
p(µ− p)

2µ
h

1
2
0 x

−p−µ, U1 = C0
p(µ+ p)

2µ
x−p−1.64

For α < 4
3 − 2

3β the principal wave is trailed by a wave system with an elevation and a65

positive particle velocity (opposite direction of the wave advance). They drain volume and66

energy from the principal wave during propagation (see sec. SM7.2). When α = 4
3 − 2

3β the67

trailing elevation vanishes (A1 = 0), but the fluid velocity remains (U1 6= 0). Accordingly,68

η = A0F0 and u = h̄−
1
2A0F0 + κ−1U1F1 form an exact solution (see section 4.2.1 and [SM4]).69

For 4
3 − 2

3β < α < 2 (SM2.2) yields a trailing depression and a (still positive) fluid velocity70

which must counterbalance the formation of this depression in addition to the volume loss in71

the principal wave.72
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For α = 2 and β = 0 a two term solution reads73

(SM2.3)
η

C0
∼ x−

1
2F0 +

h
1
2
0

8κ
x−

1
2 lnxF1,

u

C0
∼ −h

− 1
2

0 x−
3
2F0 +

1

2κ
x−

3
2

(

1

4
lnx− 1

)

F1.74

Here the trailing η and u both change sign, but at different locations. The exact positions of75

these are due to the manner the ambiguity in (SM2.1) was resolved for A1 (xr = e2). The76

A1 from (SM2.2) becomes infinite as α → 2. To reconcile (SM2.2) with (SM2.3) we must77

utilize the ambiguity in the amplitude recursion to replace x
α
4
−1 in the A1 of the former with78

x−
α
4 (x

α
2
−1 − 1) before taking the limit. This corresponds to adding a B− 1

2h−
1
4 part to A179

and thus redefine the principal wave shape (see discussion below (3.6)). As (SM2.2) stands,80

A1 from this equation becomes large in the neighbourhood of α = 2 which seems to question81

the validity of the approximations. However, as seen in section SM2.5 (SM2.2) may still be a82

valid start of an accurate solution, but additional terms must then be included.83

Then, for 2 < α < 4 + 2β the signs of the trailing u and the η are swapped as compared84

to α < 2. When α = 4 + 2β (SM2.2) yields an exact solution again, this time with a velocity85

field defined by the principal wave alone, and a trailing system with a flat surface elevation.86

For α > 4− 2β both u and the η are positive again.87

SM2.5. Amplification of N-waves and on non-planar beaches. For all examples in this88

subsection β = 0.89

The N-wave is depicted in the upper panel of figure SM1. The tail is of higher order and is90

hardly visible. This may be described as a result of destructive interference between the tails91

from the crest and the trough. Otherwise the performance of the asymptotic approximation92

is rather similar to that for F0 = Y0.93

As stated in section SM2.4 the higher Aj may become large when α → 2. For the example94

α = 1.95, which is depicted in the lower panel of figure SM1, we observe that η0 no longer95

defines the shape of the wave. Hence, the solution shown cannot be regarded as a modest96

perturbation of what is called the “principal wave”. Still, if enough terms are retained the97

comparisons with numerical solutions show that the asymptotic series still provides a close98

approximation. In the lower panel of figure SM2 results for α = α
(ii)
5 = 20/9 = 2.222... and99

F0 = Y0 are depicted. Then η5 is an exact solution. As for α = 1.95 the deviations from η0100

are large, this time in form of an increased wave height and a high trailing surface elevation.101

When compared with solutions for similar, but slightly different, α values (not shown) the102

exact solutions, corresponding to the truncated series, do not appear to have any unique103

properties or to be distinguished in any way. For the limiting case of α = 2 (upper panel) η0104

again presents the dominant part of the solution. Here F0 = P (4) is the principal wave shape105

and the value of κ is reduced to have a rough match of wavelength with the other cases (see106

figure 2 in main article). It is stressed that the very different appearances for the α values107

close to 2 are linked to the differences in xr in the recursion relation (3.6) for the amplitudes.108

SM3. Waves entering the slope. This section extends the scope on wave transmission to109

a slope. First transmission to non-planer beaches is presented. Among other things, the wave110

shapes of the transmitted waves are investigated and related to the strange shapes which were111

found in some cases in section SM2.5, as well as in figure 5 (main article). Then, a pulse is112
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nu. 6

0

x

η

C0

-0.30

0.33

0.96

nu. 10

0 4

x

η

C0

-0.54
0.66

1.86

Figure SM1. Numerical surface elevation and selected ηn at times as indicated above the crests. Upper
panel: The N-wave (F0 = Y−1), κ = 4 α = 1, and t0 = −1.57. Lower panel: F0 = Y0, κ = 4 α = 1.95, and
t0 = −1.74.
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nu. 10

0

x

η

C0 -0.21

0.59

1.39

nu. 5

0 2

x

η

C0 0.35

1.55

Figure SM2. Surface elevations for selected beach profiles. Legends are as for figure SM1. Upper panel:F0 =
P

(4)
0 , κ = 0.7 α = 2, and t0 = −1.41. Lower panel: F0 = Y0, κ = 3, α = α

(ii)
5 = 2.222..., see (4.7), and

t0 = −2.05.
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simply generated from an input condition at a boundary located at the slope. The structure113

of the solution is quite similar to that of the wave transmitted through an apex. Finally, a114

new depth profile, with a smooth transition from a flat bottom to a slope, is investigated with115

special attention to reflections.116

SM3.1. Amplitude recursion for waves transmitted at an apex or generated from the117

boundary. The amplitude recursion used for the transmission at an apex is Aj+1 = L(Aj)118

where the linear operator L is119

(SM3.1) L(v) = −1

2
h̄

1
2 v′ +

1

2
σ−2A0

x
∫

x0

h̄BA0,xv
′dx̂.120

Next, we assume that h̄ and B are polynomials for x < x0. For A0 = const. × xq0 , with121

q0 = −1
2β− 1

4α, L(A0) will then be a combination of power q1 and q0. Another application of122

L will then give the three powers q2, q1 and q0 etc. More specific123

L(xqn) = νnbnx
qn+1 − (νnbn +

1

2
h

1
2
0 qn)x

−(n+1)µ
0 xq0 ,124

where, still, µ = 1 − 1
2α and νj , as well as bj , are from (4.2). Normalizing this recursion125

formula by C0 = 1 the form of Aj becomes126

(SM3.2) Aj =

j
∑

n=0

anCj−nx
qj−n ,127

where Cj is still defined through the recursion (4.2). Here a0 = a, provided the incident wave128

is aF0, and the other amplitude factors are given by the recursion formula129

(SM3.3) aj = −
j
∑

n=1

(

Cn +
1

2
h

1
2
0 qn−1Cn−1

)

x−nµ
0 aj−n.130

SM3.2. Transmission through an apex to non-planar beaches.131

SM3.2.1. The two term solution. With h̄ = h0x
α, B = B0x

β and xr = x0 an explicit132

modified recursion is outlined in section SM3.1. The amplitude of the second term becomes133

(SM3.4) A1 =











1
2h

1
2
0
x−p

x
−p
0

(

p2

µ

(

x−µ
0 − x−µ

)

+ px−µ
)

if α 6= 2,

1
2h

1
2
0
x−p

x
−p
0

(

p+ p2 ln
(

x
x0

))

if α = 2,
134

where µ = 1 − 1
2α and p = 1

4α + 1
2β. As stated in the main article the part of A1 that is135

proportional to x−p corresponds to a shape modification. For simplicity we now assume that136

α and β are both positive, which leads to A1(x0) > 0. However, A1(x) will change sign at137

some xs > 0 when α > 4
3 − 2

3β. The position xs increases (moves closer to the apex) with α138

and reaches e−2(1+β)−1
for α = 2. Hence, the tail behind the principal wave may decrease in139
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height but will become negative only in rather shallow water. In the case illustrated in SM4140

a reduction in the height of the trailing wave is still hardly visible even when the front is near141

the shore. For α > 2 the amplitude A1 still starts out positive at x = x0. As x decreases the142

shape-change part will dominate and A1 becomes negative. There is no high trailing elevation,143

such as the one in the upper panel of figure SM2. An example for α = 3.7 and β = 0 is shown144

in figure SM5.145

SM3.2.2. Transmission for α = α
(i)
0 . The reference [SM5] analyzed transmission from146

shallow to deeper water given by a α = 4
3 profile, using the Fourier transform, while the147

transmission at an apex in a parabolic channel was studied as a side problem in [SM7]. The148

latter is a special instance of the case in section 5.2.2. For x < x0 the solution may we written149

as150

η = x−
β+1
3 H(Θ),151

where H is the unknown shape function. When (5.1) is still used for x > x0 = xr, patching152

of η and u and elimination of R yield153

(SM3.5) − β + 1

6κ
H +H ′ = I ′,154

where the coefficients differ from those in [SM7] due to the general β and a different definition155

of the depth. Following [SM5] the solution of (SM3.5) can be written156

(SM3.6) H = e
β+1
6κ

θ

θ
∫

−∞

e−
β+1
6κ

sI ′(s)ds.157

When an incident wave with compact support is assumed ( I = 0 for Θ > Θb ) the surface158

elevation at the apex becomes a constant times e
β+1
6

t for Θ(x0, t) > Θb. The travel time from159

the apex to the beach and back again is 6/(β + 1), which is the e-folding time for η at the160

apex. Hence, the total growth is by a factor 3, say. The expansion (3.3) gave (5.7) which161

corresponds to (putting A0(x0) = 1)162

(SM3.7) H =
∞
∑

j=0

(

β + 1

6κ

)j

Fj(Θ), F0 = I.163

Using the ratio criterion, as in section 4.3.2, we find convergence when I is a polynomial. The164

representation (4.9) of the front of the sech2 shape (I = Y0) yields convergence as long as β is165

of order 1 and κ is large. Presumably, (SM3.7) converges for wide classes of I, but we do not166

pursue this further herein. Then, substitution shows that (SM3.7) fulfills (SM3.5). Moreover,167

straightforward integration by parts on the integral in (SM3.6) shows that this expression168

coincides with (SM3.7) for Θ = Θb. Hence, (SM3.6) and (SM3.7) are equivalent.169

The shape transformation and reflection for α = 4
3 , β = 0 are illustrated in figure SM3.170

SM3.3. Waves specified at a boundary.. A wave that propagates in the negative x-171

direction, for x < x0, may be obtained as solution of a boundary value problem with η(x0, t) =172

I(κt), where I is some shape function. To design an approximation we first choose the leading173
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nu. 0

10

x

η

C0

-0.30
0.10

0.90

Figure SM3. Normalized surfaces for transmission/reflection at an apex with α = 4
3
, h0 = x0 = 1, β = 0,

I = C0P
(4)
0 and κ = 1.5. The approximate solution η10 is compared to the numerical counterpart.

order approximation according to F0 = I and A0 = B(x0)
1
2 h̄(x0)

1
4 /B(x)

1
2 h̄(x)

1
4 . Then the174

free constant, xr, in (3.6) is chosen independently for each j as to give Aj(x0) = 0 for j ≥ 1.175

This corresponds to a modification in the lower limit for the integral in (SM3.1) that yields a176

addition const.× h̄−
1
4 to Aj+1 such that Aj+1(x0) = 0. We then still have amplitudes on the177

form (SM3.2), but the second term within the parentheses of (SM3.3) vanishes.178

As an example, after the normalization h0 = x0 = 1, the solution for a linear slope becomes179

η ∼ x−
1
4

(

F0(Θ) +
1

16κ

(

x−
1
2 − x−

1
4

)

F1(Θ) +
1

512κ2

(

9x−1 − 2x−
1
2 − 7x−

1
4

)

F2(Θ) + ...

)

.180

Comparing with (4.14) we observe that a new shape modifying term is introduced in each181

negative power in κ (see discussion below (3.6)). A tail will then develop gradually as the182

wave moves away from the boundary and x−
1
2 will dominate x−

1
4 .183

SM3.4. A smooth transition from constant depth to a slope. When h̄(x) is a monotonic184

function it may be inverted, a least in principle, to give x = x(h̄). Then, Aj and Θ may be185

expressed in terms of h̄ rather than x. For simplicity we put B = const., even though we186

could have introduced B(h̄). It is now convenient to define187

(SM3.8)
dh̄

dx
= G(h̄).188

With Aj = Aj(h̄) the amplitude recursion (3.6) may then be rewritten189

(SM3.9) Aj+1 = −1

2
h̄

1
2G(h̄)

dAj(h̄)

dh̄
− 1

8
h̄−

1
4

h̄
∫

h̄r

s−
1
4G(s)

dAj(s)

dh̄
ds,190
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nu. 10

x

η

C0

-0.21

0.22

1.08

Figure SM4. Normalized surfaces for transmission/reflection at an apex with α = 1.95, h0 = x0 = 1,

β = 0, I = C0P
(4)
0 and κ = 1.0. The approximate solution η10 is compared to the numerical counterpart.

This new form of the recursion is easily solved in closed form when G is a power function.191

However, this will only reproduce the cases when h̄ itself is a power function or an exponential.192

On the other hand, if G(0) = 1 and G → 1 as h̄ → 1 equation (SM3.8) may yield a193

geometry that includes a beach at one end and a nearly flat bottom at the other. The choice194

h̄r = 1 in the recursion (SM3.9) makes all Aj , j > 0 vanish when h̄ → 1. Then, for sufficiently195

small times the incident wave is given by F0 alone, whereas a trailing wave system develops196

when the wave moves into the region with markedly decreasing depth. Simple examples of197

geometries with the desired properties are obtained with G = 1 − h̄m. A large m then gives198

a sharp transition, akin to an apex, whereas m = 1 and m = 2 give simple solutions also for199

the phase. When a shore is located at x = 0 the choice m = 2 leads to200

(SM3.10) G(h̄) = 1− h̄2, h̄(x) = tanh(x).201

The phase and A1 then become202

(SM3.11) Θ = κ
(

arctan(h̄
1
2 ) + arctanh(h̄

1
2 ) + t+D

)

, A1 =
1

16
h̄−

3
4 +

1

12
h̄−

1
4 − 7

48
h̄

5
4 ,203

where D is a constant and the amplitudes are normalized such that A0 becomes unity as204

h̄ → 1. Also A2 and A3 are found as increasingly complex combinations of powers of h̄.205

Logarithms appear in A4 etc. and only results for n ≤ 3 are investigated herein.206

In figure SM6 we observe the amplification with decreasing depth and the evolution of the207

trailing system. For n = 3 both are described well within an error of 0.001 for x < 1 and208

t < 1. However, at the outskirt of the slope the deviations between numerical and analytical209

solutions increase after the passing of the wave and. At t = 1 the maximum deviation is210
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nu. 10

x

η

C0

-0.30

0.30

2.10

Figure SM5. Normalized surfaces for transmission/reflection at an apex with α = 3.7, h0 = x0 = 1, β = 0,

I = C0P
(4)
0 and κ = 1.5. The approximate solution η10 is compared to the numerical counterpart.

slightly above 0.004 while the error bound in (SM8.6) is as large as 0.033. Moreover, at this211

stage the lower panel of figure SM6 shows that the terms of (3.3) increase with n for x > 3, say.212

This indicates that the asymptotic expansion is inadequate, and not convergent by any rate,213

in this region. Anyway, the numerical solution evidently is a right-going wave for x > 2.5, say,214

which is not present in the expansion in this case. Since the wave still has not reached the215

shore at this time there is an apparent reflection from the geometry. Hence, the behaviour of216

(3.3) is qualitatively different in this case, as compared to the cases with geometries defined217

by powers (sec. 4.3.2) or exponentials (sec. SM6.3).218

SM4. Transmission at the apex and maximum runup. At the shoreline, meaning S =219

h̄B = 0 for a channel, the expansion (3.3) in general becomes invalid and runup at the shore220

cannot be calculated. On the other hand, the exact solutions, for which the series truncates,221

may be useful for runup analysis [SM2]. Still, the asymptotic approximation at the apex has222

some bearing on Synolakis’ [SM8] simple and much celebrated formula for runup of solitary223

waves on an inclined plane.224

The geometry and wave setup from section 5.2.1 (constant channel width and an inclined225

plane joined with a horisontal bottom) has been used in many theoretical and experimental226

investigations. One with particular impact is Synolakis’ [SM8] study, which, among other227

things, contains a linear analysis of the runup an incident wave of the shape aY0. The geometry228

is shown in figure SM7, together with a selection of incident waves from the subsequent229

analysis. In the [SM8] the application of a temporal Fourier transform led to an inversion230

integral involving Bessel functions. The transmission at the apex was simplified by the use of231

leading order asymptotic expressions for the Bessel functions. The linear runup solution was232

extended to a nonlinear solution by means of the hodograph transformation [SM1], with the233
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nu. 3

x

η

C0

-2.00-0.50

1.00

1.0

0.6

1

2

3

x

η

Figure SM6. Selected results for h̄ = tanhx, F0 = P
(4)
0 , t0 = −8 and κ = 1.5. D is chosen according to

Θ(1, 0) = 0. Upper panel: Geometry and surface elevation for three different times. Lower panel: Details for
large x and t. Curves marked by times (floats) correspond to numerical solutions. The data for t = 0.6 are
repeated with a 0.4 shift to the right, corresponding to the propagation of a reflected wave. For curves marked
by integers the integers define the order of the asymptotic approximation, all for t = 1.0.

This manuscript is for review purposes only.



SM12 G. PEDERSEN

x

η
a

κ = 1κ = 2κ = 4κ = 6

Figure SM7. The wave tank geometry used in the sections 5.2 and SM4, together with incident waves
η = I = Y0 of different lengths.

assumption that linear wave theory is valid well into the sloping region, but not necessarily234

close to the shore. Still, the maximum runup is the same as in the linear theory. In the235

original version of the runup formula the incident wave took on a solitary shape in the sense236

that κ = 1
2

√
3a. Exploiting that the maximum runup height is proportional to a the formula237

is readily recasted into one where a and κ appear independently. When the maximum runup238

height is denoted by Hs the result of [SM8] then reads239

(SM4.1)
Hs

a
= 3.042

√

κ

h0
.240

With h0 = 1, and a slightly different notation from the reference, the first step toward (SM4.1)241

is patching of the local solutions242

(SM4.2) η =

{

AJ0(2ω
√
x)eiωt for x ≤ 1,

aeiω(t+x−1) +Reiω(t−x+1) for 1 ≤ x,
243

in the same manner as was done in section SM3.2.2. Here a is the amplitude of the incident244

harmonics, R the amplitude factor of the reflection and the solution on the plane is obtained245

by requiring η(0, t) to be finite. The real parts of (SM4.2), say, has physical meaning. Using246

the leading asymptotics for J0 and J1 the result for A may be approximated, for large ω,247

according to248

(SM4.3) A =
2a

J0(2ω)− iJ1(2ω)
∼ 2a

√
πω ei(2ω−

π
4
)

249

The use of the rightmost expression is equivalent to invocation of the asymptotic approxima-250

tions for the Bessel functions in the patching itself. The proceding steps of [SM8] correspond251

to using the approximate A, identifying a(ω) with the temporal Fourier transform of Y0(κt),252

deforming the inversion integral in the complex plane and summing the resdiual contribu-253

tions, albeit the approximations of the Bessel functions were introduced in a late stage in the254

reference. It is noted that the standard asymptotic series for J0(2ω
√
x), multiplied with the255
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temporal factor cos(ωt), is reproduced by adding the asymptotic series (3.3), with F0 = cos(Θ),256

Θ = ω(τ(x)+t)− π
4 and Aj defined from (4.2) with C0 =

1
2

√

2/π, and the corresponding series257

in (3.8) with Θ̂ = ω(t− τ(x))+ π
4 . In these series, that now are standard WKB series, ω takes258

the place of κ. The outline given above suggests that the use of the asymptotic approximation259

in [SM8], corresponds to solving the patching condition (5.2) only to leading order and, thus,260

employ the solution obtained from equation (4.2) as incident wave at x = 1 on an inclined261

plane. The numerical runup obtained from this boundary/initial condition is denoted Ha.p.N,262

where N is the maximum number of terms (asymptotic series truncated at the smallest term).263

What is mainly lost in the formula (SM4.1) is then the effect of the shape change during the264

transmission as seen in, for instance, (5.5).265

For comparison we solve the shallow water equations numerically with the formula (5.5),266

or its higher order counterparts, used for boundary conditions at x = x0. The summation267

of (3.3) is stopped after the O(κ−N ) term or after the smallest one; whichever occurs first.268

This gives maximum runup heights which are denoted as HN . For order N = 0 the incident269

wave produced in this manner will actually correspond to the expansion at the end of section270

SM3.3. We assume an effective wave-length equal to the distance between the two points271

where Y0 = 0.001 and start the simulations at t = ti, when the peak is half this length outside272

x0 (the boundary of the computational domain). Since the solution (3.3) does not include273

reflections from the beach the maximum runup should be reached within t − ti = 6, say,274

which is an estimate of the travel time from the apex to the beach, then back to the apex,275

and to the beach again. Provided κ ≥ 1 it turns out that the maximum runup is reached276

before t − ti = 5.8. Comparisons are made to purely numerical reference simulations with277

the incident wave specified as an initial condition out on the flat bottom part of the channel.278

The result, Hnum then includes the full transmission. In addition we also make a “reasonably279

poorest attempt”, resulting in Hpoor, by making simulations where the geometry is replaced280

by a single inclined plane and we start from rest with an elevation η(x, 0) = 2aY0(κ(x− 1)).281

The relative deviations from the reference solution,282

∆H∗ =
Hnum −H∗

Hnum
,283

are shown in table SM1 for a selection of κ values. It turns out that all the approximate284

solutions included undershoot the reference solution. Grid refinement tests point to an relative285

error in the results which is less than 10−4 for κ = 6 and which is smaller for the longer incident286

waves. As expected Hpoor gives the largest error, while the error of H0 is roughly half this287

size for the larger κ values. Then, H1 is markedly better than H0 as it takes the amplification288

in the transmission into account. Inclusion of the third term improves the agreement with289

the reference solution further and the relative deviation (∆H2) is less than 0.01 even for the290

long wave (see figure SM7) corresponding to κ = 1 and decreases to about 0.0001 for κ = 4.291

Keeping κ = 1 and increasing N , we find that ∆HN first decreases and then changes sign at292

N = 8, before reaching an optimal value of −0.0005 for N = 9 (these values for ∆HN are not293

included in the table). It must be noted that only a few terms are used for small times (front294

of wave being fed in), while the higher order terms only give useful contributions at larger295

times (see figure 3 in main article). The procedure leading to (SM4.1) takes into account all296

the wave evolution on the slope, but not the extra amplification due to the shape shift in297
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κ Hnum ∆H0 ∆H1 ∆H2 ∆Hs ∆Ha.p.10 ∆Hpoor

1.0 3.241 0.1261 0.0250 0.0078 0.0614 0.0611 0.1457
1.5 3.881 0.0804 0.0098 0.0019 0.0399 0.0397 0.1292
2.0 4.433 0.0593 0.0052 0.0007 0.0296 0.0294 0.1070
3.0 5.374 0.0390 0.0022 0.0002 0.0196 0.0194 0.0757
4.0 6.175 0.0291 0.0012 0.0001 0.0147 0.0145 0.0578
5.0 6.883 0.0232 0.0008 0.0000 0.0117 0.0115 0.0466
6.0 7.525 0.0192 0.0005 0.0000 0.0098 0.0096 0.0391

Table SM1
The relative runup height deviations ∆H∗, as defined in the text. The numbers refer to the orders included

in (5.5) for the boundary forcing. ∆Hs corresponds to the result for Synolakis’ runup formula (SM4.1), while
the subscript poor refers to the initial value problem on an inclined plane.

the transmission at the apex. Hence, it is to be expected that ∆Hs falls between ∆H0 and298

∆H2, as it neatly does. Moreover, ∆Ha.p.10, for which the shape modification at the apex is299

neglected, but a high order asymptotic solution is used as incident wave, is very close to ∆Hs.300

Runup computations are made also for the geometry h(x) = tanh(x). Maximum runups301

are only slightly higher than for the apex geometry and the relative difference is decreasing302

with κ. For κ = 1 the difference is 1.7 %.303

SM5. Numerical details.304

SM5.1. Numerical solutions of the wave equation. Herein, the single equation (2.2),305

in its conservative form, has been solved by centered differences (a standard five point star-306

scheme) in space and time. Numerical solutions are mainly used for comparison with the307

analytic ones. In section SM4 it also used for runup on an inclined plane. Some extra care308

is then needed, by placing the shoreline midway between two spatial nodes and invoking the309

zero volume flux condition Bh̄ηx = 0 at this point. This both excludes the solutions that are310

singular at the shoreline and removes the need for an auxiliary node on-shore. Still, a fine311

grid is needed in shallow depths and grid refinement are performed for the computed cases.312

SM5.2. Numerical integration of shape functions. Presumably a fair number of shape313

functions may be computed by direct successive integration with high order and fine resolu-314

tion. However, a procedure that only integrates numerically expressions that are available in315

formulas is preferred. The integration is started at some negative value Θa, where (4.9) is316

used if F0 = Y0, but where all Fj is put to zero if such an expansion for large, negative Θ317

is unavailable. In the latter case Θa must have a sufficiently large absolute value. Then the318

shape functions are advanced from Θi to Θi+1 = Θi + ∆Θ, say, by Taylor’s formula on the319

form320

(SM5.1) Fj(Θi+1) =

j−1
∑

n=0

∆Θn

n!
Fj−n(Θi) +

Θi+1
∫

Θi

(Θi+1 − Θ̂)j−1

(j − 1)!
F0(Θ̂)dΘ̂,321

where the last term is integrated numerically by a Gaussian quadrature of high order (typically322

14). First, F0(Θi+1) is calculated by its formula and then the Fj are found sequentially by323
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(SM5.1) until the desired degree of the expansion is reached. In this manner a table of values324

for Fn is computed and can then be interpolated by cubic splines to provide values for any325

given argument. Naturally, (SM5.1) may be employed for any shape function that vanishes326

sufficiently fast, e.g. exponentially, as Θ → −∞.327

SM6. Channel width and depth given by exponentials.328

SM6.1. Amplitude recursion. Explicit expressions for amplitudes are also found when329

the geometry is described by exponentials330

(SM6.1) h̄ = h0e
αx, B = B0e

βx, Aj = Cje
qjx.331

Insertion of these expressions in (3.6), with xr = 0 for α > 0 and xr = ∞ for α < 0, yields332

(SM6.2) qj = −1

2
β + (

1

2
j − 1

4
)α, Cj+1 = −h

1
2
0 qj(qj + β + α)

(j + 1)α
Cj .333

This is only valid when α 6= 0.334

SM6.2. Exact solutions for geometries defined by exponentials. As for power functions335

we obtain two classes of α values for which the series (3.3) for η truncates after n terms. From336

(SM6.2) it follows337

(SM6.3) α(i)
n =

−β

n+ 3
2

, α(ii)
n =

β

n− 1
2

.338

The first sequence requires that the width and the depth of the channel are increasing in339

different directions while the latter sequence allows for channels that become shallower and340

narrower in the same direction, provided n > 0. The special case α
(ii)
0 corresponds to Bh̄

1
2 =341

const. When β > 0, Bh̄
1
2 is otherwise increasing with x for both families, implying that342

principal wave is amplified during propagation towards decreasing x.343

SM6.3. Convergence properties. For exponential h̄ a measure of the relative variation344

of the medium (see section SM2.1) becomes lr = λc1 dc
dx

= const. × e
1
2
αx, meaning that the345

asymptotic expansion is better for the smaller x. This points to a behaviour of the series akin346

to that for polynomial h̄ with a power larger than 2.347

As j → ∞ the ratio Cj/Cj−1 from SM6.2 approaches −1
4h

1
2
0 αj. Invoking polynomial348

wave shapes we combine this with (A.4) and find, in analogy to (4.10), that the series (3.3)349

converges if350

(SM6.4) K ≡ |α|
4κ

h
1
2
0 e

1
2
αx(Θ−Θ0) < 1,351

and diverges if K > 1. Introducing the shoreline position, xf , as in section 4.3.2, we find352

(SM6.5) K =
1

2

∣

∣

∣
1− e

1
2
α(x−xf )

∣

∣

∣
< 1.353

Hence, when α > 0 there is convergence in a region defined by h̄ < 9h̄(xf ) or x − xf <354

α−12 ln 3 ≈ 2.2α−1.355
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A0F0 +A1F1/κ

A0F0

xbxa

x

Figure SM8. Definition sketch. The moving control volume for the balance of energy, mass and momentum.

SM7. Conservation properties. A general conservation equation reads356

(SM7.1)
∂T

∂t
= −∂Q

∂x
+ S,357

where T , Q and S are density, flux and source density, respectively. From the set (2.1) we358

readily obtain359

T Q S
Energy 1

2Bh̄u2 + 1
2Bη2 Bh̄uη 0

Momentum Bh̄u Bh̄η η(Bh̄)x

Volume Bη Bh̄u 0

360

The momentum source term arises from the additional pressure, due to the surface elevation,361

on the channel perimeter.362

It is now assumed that the shape function F0 either has compact support or is vanishing363

exponentially at its outskirts. We may then identify the principal (leading order) wave as364

being confined to the interval xa(t) < x < xb(t), where xa is in front of the (left-propagating)365

wave system, while Θ(xb, t) equals a sufficiently large constant value, Θb. It follows that366

dxb

dt
= −

(

h̄(xb)
) 1

2 . Integrating (SM7.1) over the interval we obtain367

(SM7.2)
dT̂

dt
− Ŝ = −

(

Q+ h̄
1
2T
)

|x=xb
≡ −Qb, T̂ =

xb
∫

xa

Tdx, Ŝ =

xb
∫

xa

Sdx,368

where Qb is the flux through the moving boundary x = xb and where we have exploited that369

Q and T are both zero at x = xa. Equation (SM7.2) expresses the balance of the quantities370

in a moving domain as depicted in figure SM8.371

Inserting the asymptotic series in T̂ and Ŝ we must deal with integrals that are of the372
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type373

I =

xb
∫

xa

f(x)G(Θ)dx,374

where f is some combination of amplitudes (Aj), h̄ and B and where G is a linear or quadratic375

expression in the form functions (Fj). Moreover, we assume that G vanishes at x = xa. I376

may be expanded by integration by parts377

(SM7.3)

I =

xb
∫

xa

f(x)G(Θ)dx =
1

κ

(

h̄
1
2 f
)

|x=xb
G1(Θb)−

1

κ

xb
∫

xa

d

dx

(

h̄
1
2 f
)

G1dx

=

[

1

κ
h̄

1
2 fG1 −

1

κ2
h̄

1
2
d

dx

(

h̄
1
2 f
)

G2

]

b

+
1

κ2

xb
∫

xa

d

dx

(

h̄
1
2
d

dx

(

h̄
1
2 f
)

)

G2dx,

378

where G1 =
∫ Θ
−∞

G(s)ds, etc., and the subscript, b, at the bracket indicates that the content379

is evaluated for x = xb and Θ = Θb. The process of integration by parts may be continued to380

any power in 1/κ.381

In the following we assume that the principal wave have a net volume in the sense that382

F1(Θb) ≈ F1(∞) is non-zero.383

SM7.1. Energy conservation. Now T = E = Ek + Ep where Ek and Ep are kinetic and384

potential energy, respectively. Inserting the asymptotic series in the densities and employing385

(SM7.1) we obtain a sum of products of factors of two different kinds. The first ones are386

expressions in terms of h̄ and Aj , evaluated at x = xb, whereas the second factors are expres-387

sions of Fj(Θ), or integrals of such, evaluated at Θ = Θb. Since Θb is constant only the first388

type of factors are differentiated when dT̂
dt

is formed. When the two first orders are included,389

Êp and Êk become390

(SM7.4)



















Êp ∼
1

2κ
Bh̄

1
2A2

0

∞
∫

−∞

(F0(Θ))2dΘ+
1

2κ2
Bh̄

1
2A0A1(F1(∞))2 +O(κ−3),

Êk ∼ Êp +
1

2κ2
Bh̄

1
2A0A0,x(F1(∞))2 +O(κ−3),

391

where Aj and h̄ are evaluated at xb. The leading order (κ−1) contributions are constant due392

to (3.4) (Green’s law). The next order (κ−2) is different for kinetic and potential energy;393

the principle of energy equipartiton does not apply in non-uniform media. When the wave394

amplifies during propagation (toward decreasing x) we have Êk < Êp. Using the amplitude395

recursion formula in (3.5) we find the energy shedding rate396

(SM7.5)
dÊ

dt
∼ − 1

2κ2
Bh̄

3
2 (A0,x)

2 (F1(∞))2 = − 1

8κ2
h̄

(

h̄x
2h̄

+
Bx

B

)2

(F1(∞))2,397

which implies that the principal wave looses energy to the trailing system whenever there is398

amplification or attenuation. The expression is akin to the formula first reported by [SM6] for399
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the energy loss of a solitary wave over an uneven bottom. Equation (SM7.5) may be checked400

by direct calculation of −Qb, which gives the same result. If the volume of the principal wave401

is zero (F1(∞) = 0) the energy loss of the principal wave will be of higher order, corresponding402

to the trailing wave system being of higher order.403

According to (SM7.5) the rate of energy loss in the principal wave, due to the trailing404

system, depends explicitly on relative rates of change of B and h̄. Hence, in this respect there405

is no difference between the exact truncated solutions and others. However, this only applies406

as long as the asymptotic approximation is valid.407

SM7.1.1. Energy balance in power geometries. When the geometry is defined through408

power functions the energy shedding rate and fluxes become409

(SM7.6) Q ∼ γ(xb)
p2

4µ2
(p2 − µ2),

dÊ

dt
∼ −1

2
γ(xb)p

2, h̄
1
2E ∼ −

(

dÊ

dt
+Q

)

,410

where411

µ = 1− 1

2
α, p =

1

2
β +

1

4
α, γ(x) = κ−2B0h

3
2
0C

2
0 [F1(∞)]2xα−2.412

From figure SM9, left panel, we observe that the energy increase in the trailing system,413

represented by h̄
1
2E, is more important for the energy shedding of the principal wave than414

the flux, Q. The latter is zero for α = α
(i)
0 and becomes negative (transport in the direction415

of wave advance) when α > α
(i)
0 . The relative energy loss when the tail moves from h̄(1) = h0416

to hb = h̄(xb) is417

(SM7.7) ê ∼

1
∫

xb

dÊ
dt
h̄−

1
2 dx

1
2κBh̄

1
2A2

0

∞
∫

−∞

(F0(Θ))2dΘ

=
h

1
2
0 p

2

2κµ











[F1(∞)]2

∞
∫

−∞

(F0(Θ))2dΘ











(

x−µ
b − 1

)

.418

For F0 = Y0 the parenthesis in the middle of the right expression becomes 3. The right panel419

of figure SM9 shows that ê has a minimum for an α = αm that decreases with hb. Concerning420

energy loss in the principal wave there is again nothing that distinguishes the exact solution421

with α = α
(i)
0 .422

SM7.2. Volume conservation. For volume the relative change in T̂ is of lower order than423

the change in the energy. Hence, a leading order expression is obtained from η ∼ A0F0, alone.424

The use of (3.4) then yields the compact result425

(SM7.8)
dT̂

dt
∼ κ−1Bh̄A0,xF1(∞),426

which implies that a wave amplifying while propagating to the left needs to shed volume.427

From (SM7.2) it then follows428

(SM7.9) − κ−1Bh̄A0,xF1(∞) ∼ Qb = Bh̄
1
2 (η + h̄

1
2u)|x=xb,429
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Q/γ

h̄
1
2E/γ

dÊ
dt
/γ

α

0.5

0.2

0.1

α

κê

Q/γ

h̄
1
2E/γ

dÊ
dt
/γ

α

0.5

0.2

0.1

α

κê

Figure SM9. Results for β = 0 and F0 = Y0. Left: Relative importance of energy loss factors. Right:
relative energy loss in principal wave from h = h0 to h = hb. Curves marked with value of hb/h0.

which expresses that volume in the leading pulse is removed by a combination of a prolongation430

of a trailing surface elevation (first term within the parentheses) and a fluid velocity (second431

term). While the sum of these contributions is determined by Bh̄A0,x, they may be unequal432

and even of different signs (see sec. SM2.4). When the series (3.3) and (3.7) are inserted on433

the right hand side of (SM7.9) the leading order terms (κ0) cancel out and the next order434

terms combine to equal the left hand side.435

SM7.3. The balance of horizontal momentum. For the momentum (SM7.2) yields the436

same equation as for the volume conservation, save that each term is multiplied by h̄
1
2 . How-437

ever, the interpretations of some of the terms are quite different. The momentum of the438

principal wave is negative and decreases in magnitude, such that439

dT̂

dt
∼ κ−1h̄

1
2 (Bh̄A0)xF1(∞),440

is positive when B
1
2 h̄

3
4 increases with x. The increase is provided by the sidewall/bottom441

source term, Ŝ. However, this term produces a surplus positive momentum, making dT̂
dt

− Ŝ442

positive. This extra positive momentum is then carried away by the trailing fluid velocity and443
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surface elevation in Qb. This may be concieved as a form of reflection, even though it is not444

conveyed by something that immediately can be recognized as a traveling wave. Momentum445

balance also leads to (SM7.9).446

SM7.4. Energy transmission at an apex. As pointed out in section 5.1 the first order447

amplitude in the transmission of an elevation wave, A1, becomes positive when the wave is448

amplifying in the variable part of the channel after the apex. This may be reconciled with449

energy conservation due to the reduced kinetic energy in (SM7.4). When the incident wave450

is defined by I it’s energy becomes Ei = κ−1
∫∞

−∞
(I(Θ))2dΘ. According to (3.4) and (SM7.4)451

the energy immediately after transmission (the whole of I has passed x0) is452

Ê ∼ Ei +
1

4
κ−2 (A0(x0))

−1A0,x(x0)





∞
∫

−∞

I(Θ)dΘ





2

.453

Hence, even though the wave height of the transmitted wave is larger than that of the incident454

wave, the energy is smaller. The difference then goes into the reflected wave.455

SM8. Error estimate for the boundary value problem. A boundary value problem is456

defined on an interval xa ≤ x ≤ xb by combining (2.1) with η = ηn and u = un as initial457

conditions and η = ηn used for the boundary conditions at x = xa and x = xb. Here, ηn and458

un are the partial sums from (3.3) and (3.7), respectively, including the terms of order κ−n.459

If u is eliminated from this system we obtain the boundary value problem given at the start460

of section 4.4. The errors are then v = u − un and ζ = η − ηn. The error ζ corresponds to461

∆ηn from section 4.4. The errors are solutions of the modified boundary value problem462

(SM8.1) vt = −ζx − rn, Bζt = −(Bh̄v)x −Rn,463

with the boundary conditions v = ζ = 0 at t = 0 and ζ = 0 at x = xa, xb. The residuals, rn464

and Rn, are found by substituting un and ηn into (2.1). Multiplying the momentum part of465

(SM8.1) with Bh̄v, integrating over the interval and using ζ = 0 at x = xa, xb we obtain the466

energy-type equation467

(SM8.2)
d

dt
[ǫ] = − [Rnζ]−

[

Bh̄rnv
]

,468

where ǫ = 1
2Bζ2 + 1

2Bh̄v2 and [f ] is the average of f over the solution interval (integral from469

xa to xb divided by xb − xa). Spatial extrema over the interval are marked by the indices470

’max’ and ’min’ and auxiliary inequalities read471

(SM8.3) [ǫ] ≥ 1

2
Bmin

[

ζ2
]

, [ǫ] ≥ 1

2
(Bh̄)min

[

v2
]

,
[

f2
]

≥ ([|f |])2 .472

The combination of (SM8.2) and (SM8.3) leads to473

(SM8.4)
d

dt
[ǫ] ≤

√
2 γ
√

[ǫ], γ =
|Rn|max√

Bmin
+

|Bh̄rn|max
√

(Bh̄)min

.474
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By use of the initial conditions this expression is readily integrated to475

(SM8.5)
√

[ǫ] ≤ 1√
2

t
∫

0

γdt,476

which again implies the following error estimate for the surface elevation477

(SM8.6)
√

[ζ2] ≤ 1√
Bmin

t
∫

0

γdt,478

where the left hand side is recognized as the normalized L2 norm from section 4.4.479

Insertion of the expressions for un and ηn followed by application of the recursion formula480

for the amplitude yield481

rn = κ−nAn,xFn, Rn = Bh̄
1
2 rn.482

Through the elimination of u these are shown to be fully compatible with the residue483

−κ−nB−1(Bh̄An,x)xFn484

for the second order equation for η, (2.2).485
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