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Abstract 11 

Quantifying the uncertainty of probabilistic water quality forecasting induced by 12 

missing input data is fundamentally challenging. This study introduced a novel 13 

methodology for probabilistic water quality forecasting conditional on point forecasts. 14 

A Multivariate Bayesian Uncertainty Processor (MBUP) was adopted to 15 

probabilistically model the relationship between the point forecasts made by a deep 16 

learning artificial neural network (ANN) and their corresponding observed water 17 

quality. The methodology was tested using hourly water quality series at an island of 18 

Shanghai City in China. The novelties relied upon: firstly, the use of a transfer 19 

learning algorithm to overcome flatten- and under-prediction bottlenecks of river 20 

water quality raised in artificial neural networks, and secondly, the use of the MBUP 21 

to capture the dependence structure between observations and forecasts. Two deep 22 

learning ANNs were used to make the point forecasts. Then the MBUP approach 23 

driven by the point forecasts demonstrated its competency in improving the accuracy 24 

of probabilistic water quality forecasts significantly, where predictive distributions 25 

encountered in multi-step-ahead water quality forecasts were effectively reduced to 26 

small ranges. The results demonstrated that the deep learning plus the post-processing 27 

approach suitably extracted the complex dependence structure between the model’s 28 

output and observed water quality so that model reliability (Containing Ratio > 85% 29 

and average Relative Band-width < 0.25) as well as forecast accuracy (Nash-Sutcliffe 30 

Efficiency coefficient > 0.8 and Root-Mean-Square-Error < 0.4 mg/l) for future 31 

horizons from 1 hour up to 10 hours were significantly improved, even if the input 32 

data missing rate reaches 50%.  33 

Keywords: Probabilistic forecast; River water quality; Missing data; Artificial 34 

intelligence; Deep learning   35 
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Nomenclature 36 

Abbreviations 37 

ANFIS                       adaptive neural fuzzy inference system 38 

ANN                        artificial neural network 39 

BASINS                     better assessment science integrating point and nonpoint Sources 40 

BPNN                       back propagation neural networks 41 

BMA                        Bayesian model averaging 42 

BUP                         Bayesian uncertainty processor 43 

CODCr                       chemical oxygen demand using the chromium test 44 

CNN                        convolutional neural networks 45 

CR                          containing ratio 46 

DO                          dissolved oxygen 47 

FC                           fuzzy clustering 48 

GLUE                        generalized likelihood uncertainty estimation 49 

HSPF                        hydrological simulation program fortran 50 

LSTM                        long-short term memory 51 

MBUP                        multivariate Bayesian uncertainty processor 52 

MLR                         multiple linear regression 53 

NARX                       non-linear auto-regressive with exogenous inputs neural network 54 

NH3-N                       ammonium nitrogen under the NH4/NO3/NO2 environment 55 

NSE                         Nash-Sutcliffe efficiency coefficient 56 

PH                          pondus hydrogenii 57 

PLOAD                      pollutant load 58 

PMI                         partial mutual information 59 

QQ                          quantile-quantile 60 

QRNN                       quantile regression neural networks 61 

RB                          relative band-width 62 

RBF                         radial basis function 63 

RF                          random forest 64 

RMSE                        root-mean-square-error 65 

RTS                          reference temporal sequence 66 

TL-LSTM                     transfer learning-based LSTM 67 

TTS                          target temporal sequence 68 

SOM                         self-organizing map 69 

SVM                         support vector machine 70 

SWAT                        soil and water assessment tool 71 

USEPA                       United States Environmental Protection Agency 72 

WT                          wavelet transform 73 

Indices 74 

i                             index of monitoring station, from 1 to K 75 

t                             index of time step, from 1 to N 76 

m                            index of forecast horizon, from 1 to M 77 

Parameters 78 

N                            number of time step 79 
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K                            number of monitoring station 80 

M                            number of forecast horizon 81 

Variables 82 

                              incomplete target temporal sequence (=   
    

    
  ) 83 

  
                             missing segment in    84 

  
                             first complete segment in    85 

  
                             last complete segment in    86 

                              highest correlation complete sequence of    87 

                              highest correlation complete sequence of    88 

                                forecasted data (i.e. model output) at the tth time 89 

                               observed data at the tth time 90 

                                average of observed data at the tth time 91 

                                lower limitation of model forecasts at the t time 92 

                                upper limitation of model forecasts at the t time 93 

                                complete sequence at the ith monitoring station (=   
    

    
  )  94 

  
                               fist segment of complete sequence    95 

  
                               second segment of complete sequence    96 

  
                               third segment of complete sequence    97 

                                number of concordant pairs in two datasets 98 

                                number of discordant pairs in two datasets 99 

 100 

1. Introduction 101 

Water quality monitoring and forecasting became crucial problems since plenty of 102 

contaminants were discharged into the marine environment every year (Mian et al., 103 

2018). Point sources (e.g. municipal and industrial sewage discharges, etc.) and 104 

nonpoint sources (e.g. farmland and livestock, aquaculture operations, etc.) are two 105 

common categories of water pollution sources (Perelman et al., 2012). It is imperative 106 

to make accurate and reliable water quality forecasts in advance to mitigate health 107 

risks and govern water pollution sources. A lot of studies were dedicated to building 108 

various models to forecast water quality (Fu et al., 2018; Newhart et al., 2019). Two 109 

fundamental challenging themes have occurred in water quality prediction for 110 

fulfilling the increasing public consciousness of human health. Firstly, missing input 111 

data not only would increase the difficulty in water quality forecasting but also would 112 
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limit the discoveries in impact assessment. Secondly, real-time water quality 113 

forecasting is gradually shifting from traditional deterministic forecasting to 114 

probabilistic forecasting.  115 

Water quality datasets were collected using automated machine sensors located at 116 

different sites. Due to facility malfunction, routine maintenance, changes of sensors 117 

setting, insufficient sampling and other reasons, data collection usually contained a 118 

large number of missing data (Ekeu-wei et al., 2018). Missing data situation is not a 119 

unique problem for water quality prediction but a ubiquitous concern in many 120 

scientific fields (Gao et al., 2017; Tencaliec et al., 2015), such as hydro-meteorology, 121 

air quality and traffic load, etc. Data imputation (Yang et al., 2017) and transfer 122 

learning (Che et al., 2018) algorithms are two common methods used to mitigate the 123 

impacts of missing values on forecasting (Lepot et al., 2017). The data imputation 124 

algorithm is direct to fill the missing data from the perspective of data 125 

spatial-temporal scale while the transfer learning algorithm is indirect to estimate the 126 

missing data from the perspective of model and parameters transferring. Although the 127 

combination of data imputation algorithm and forecast model was widely used, 128 

previous studies suggested that this combination was easy to create systematical 129 

flatten-prediction and under-prediction results due to inducing a substantial bias in 130 

multi-step-ahead forecasts (Ding et al., 2018). Accordingly, the topic of integrating 131 

transfer learning algorithm and forecast model for multi-step-ahead water quality 132 

forecasts is interesting, as it is becoming a challenge for water quality forecasting 133 

under high data missing rate.  134 
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In recent years, two main categories of forecasting models, physically-based (or 135 

chemical transport) (Krapu et al., 2019) and data-driven (or artificial intelligence) 136 

(Regina and Stefan 2019; García-Alba et al., 2019) ones, were introduced for water 137 

quality forecasting. The United States Environmental Protection Agency (USEPA) 138 

developed the Better Assessment Science Integrating Point and Nonpoint Sources 139 

(BASINS) software system, which integrated several powerful hydrological and water 140 

quality simulation packages of the Hydrological Simulation Program Fortran (HSPF), 141 

the Soil and Water Assessment Tool (SWAT), Pollutant Load (PLOAD) and the 142 

enhanced stream water quality module (https://www.epa.gov/). The advantage of 143 

physically-based models is their capability to adequately simulate the chemical 144 

mechanisms of the water pollution process, whereas their disadvantages are that they 145 

become invalid for imitating the water pollution process if the data missing and 146 

changing environment occurred (Krapu et al., 2019). The data-driven models can 147 

handle nonlinear and highly stochastic predictions through dynamically and 148 

adaptively correcting model elements (e.g. structure, algorithms and parameters) 149 

(Isiyaka et al., 2019; Yaseen et al., 2019). Additionally, deep learning is classified as 150 

one of machine learning algorithms based on Artificial Neural Networks (ANNs) that 151 

employs multiple hidden processing layers between the input and output layers to 152 

progressively extract higher-level (whatever it be linear or complex nonlinear) 153 

features from the raw datasets (Yann et al., 2015). The core theoretic principles of 154 

deep learning are three-fold: Firstly, deep learning is a learning algorithm based on 155 

ANNs. Secondly, artificial neural networks have multiple (≥ 2) hidden layers between 156 
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the input and output layers. Thirdly, deep learning is commonly used to discover 157 

intricate structures in relation to large data sets (Schmidhuber 2015). In the past 158 

decades, ANNs were successfully utilized for water quality and environmental 159 

prediction, classification and pattern recognition (Aguilera et al., 2001; Peleato et al., 160 

2018). For instance, the Random Forest (RF), the Quantile Regression Neural 161 

Networks (QRNN), the Back Propagation Neural Networks (BPNN), the Radial Basis 162 

Function (RBF), the Self-Organizing Map (SOM), the Support Vector Machine 163 

(SVM), the Non-linear Auto-Regressive with eXogenous inputs neural network 164 

(NARX), the Adaptive Neural Fuzzy Inference System (ANFIS), the Convolutional 165 

Neural Networks (CNN) and the Long-Short Term Memory (LSTM) were widely 166 

introduced for water quality (Pearce et al., 2013; Jiang et al., 2016; Zhang et al., 2018; 167 

Gerhard and Gunsch, 2019; Helbich et al., 2019) and hydro-meteorological 168 

forecasting (Cannon 2011; Chang and Tsai, 2016; Zhou et al., 2019a,b). Owing to the 169 

powerful learning capability for time-sequential data, the LSTM was successfully 170 

applied in speech recognition, image segmentation, traffic volume prediction, and 171 

meteorological prediction (e.g., Akbari et al., 2018; Yi et al., 2018; Zhao et al., 2018; 172 

Gallego et al., 2019; Kao et al., 2020), etc. However, the available literature on 173 

utilizing LSTM for multi-step-ahead water quality forecasts under the missing data 174 

conditions is limited in number (Liang et al., 2019; Tiyasha and Yaseen, 2020). The 175 

LSTM was introduced for predicting traffic flow with the missing data (Tian et al., 176 

2018), whereas it was incline to produce flatten values if the data missing rate was 177 

high (≥ 0.30). In other words, when plenty of input datasets were missed, the LSTM 178 
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model was easier to trigger flatten prediction and/or under-prediction problems. 179 

Hence, under the high missing data conditions, it is essential to conduct the hybrid of 180 

the transfer learning algorithm and deep learning LSTM model for improving the 181 

reliability and accuracy of data-driven water quality forecasting models.  182 

The uncertain and inaccurate meteorological forcing, initial condition (i.e. natural 183 

and anthropogenic sources), and model structure and parameters have a significant 184 

impact on the reliability and accuracy of water quality forecasts (Moreno-Rodenas et 185 

al., 2019). Several techniques were commonly used to quantify the uncertainty of 186 

water quality forecasts, for instance, (1) pre-processing techniques: the Fuzzy 187 

Clustering (FC) method (Kim and Pachepsky, 2010), the Wavelet Transform (WT) 188 

(Barzegar et al., 2018) and the bias-correction method (Libera and 189 

Sankarasubramanian, 2018) and (2) post-processing techniques: the Multiple Linear 190 

Regression (MLR) (Wallace et al., 2016), the Kalman filtering (Rajakumar et al., 2019; 191 

Zhou et al., 2020), the Generalized Likelihood Uncertainty Estimation (GLUE) 192 

(Zhang et al., 2015), the Bayesian Model Averaging (BMA) (Mok et al., 2018) and 193 

the Bayesian Uncertainty Processor (BUP) (Borsuk et al., 2002; Arhonditsis et al., 194 

2019). The creation of probabilistic forecast intervals could be taken as one of the 195 

effective approaches to quantify the impact of different uncertainties on water quality 196 

forecasting (Krapu et al., 2019). The deterministic forecast model plus the 197 

probabilistic post-processing techniques were widely employed to complement the 198 

predictive information of point-value predictions (Camacho et al., 2018). The BUP 199 

was a vital component of probabilistic post-processing techniques used to measure the 200 
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predictive uncertainties (Herr and Krzysztofowicz, 2015). Follow up on the BUP 201 

framework developed by Krzysztofowicz (1999), two probabilistic post-processing 202 

approaches were developed and effectively adopted to predict water quality time 203 

series (Liang et al., 2016; Yang et al., 2016). The univariate BUP (UBUP) 204 

(Krzysztofowicz, 2002) approach was employed to extract the nonlinear bivariate 205 

correlation between forecasts and observations, whereas the multivariate BUP 206 

(MBUP) (Krzysztofowicz and Maranzano, 2004) approach was used to quantify the 207 

nonlinear multivariate (≥ 3) correlation between forecasts and observations 208 

(Krzysztofowicz and Maranzano, 2004). Bayesian multivariate probabilistic 209 

post-processing (i.e. MBUP) not only puts forward challenges but also brings about 210 

various opportunities for probabilistic water quality forecasting. Hence, it is 211 

interesting to implement in-depth research on the MBUP for characterizing and 212 

decreasing the uncertainty associated with multi-step-ahead water quality forecasting 213 

by extracting the nonlinear multivariate correlation between forecasts and 214 

observations.  215 

This study proposed an MBUP-based approach hybriding deep learning ANN and 216 

MBUP to reduce the prediction intervals of multi-step-ahead water quality forecasts 217 

under the data missing situation. There existed two main contributions in this work: 218 

First, seamless integration of transfer learning and deep learning ANN was conducted 219 

to overcome flatten/under-predictions of deterministic river water quality forecasts 220 

induced by missing input data. Second, the multivariate uncertainty processor (i.e., 221 

MBUP) was further employed as the post-processing technology to increase the 222 
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reliability of probabilistic river water quality forecasts.  223 

In the beginning two ANNs, a Transfer Learning-based LSTM (i.e. TL-LSTM) 224 

and a standard LSTM, were utilized to construct water quality forecast models under 225 

the data missing situation, and the model that created more reliable and accurate point 226 

forecasts was employed to carry out probabilistic forecasting. Next, the MBUP 227 

probabilistic post-processing approach was implemented to transform point water 228 

quality forecasts into probabilistic water quality forecasts. Finally, the meteorological 229 

and water quality series at an island of Shanghai City in China were utilized as a study 230 

case to demonstrate the reliability and applicability of the deep learning ANN plus the 231 

MBUP post-processing approach.  232 

 233 

2. Methods 234 

Figure 1 illustrated the probabilistic forecast architecture that integrated the 235 

multi-output deep learning LSTM model with h (≥ 2) hidden layers (Figure 1 (a), 236 

descried in Section 2.1 and Appendix A), the transfer learning algorithm (Figure 1 (b), 237 

described in Section 2.2 and Appendix B) and the MBUP probabilistic forecast 238 

approach (Figure 1 (c), described in Section 2.3). The TL-LSTM model was 239 

employed to create deterministic point forecasts under the data missing condition, 240 

where the LSTM model was taken as the benchmark. The deterministic forecast 241 

model was established and evaluated to provide inputs for the following probabilistic 242 

forecasts. And then, the MBUP approach was used to create probabilistic forecasts. 243 

The related methods were briefly described below.  244 
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245 

Fig. 1. Probabilistic forecast architecture. (a) LSTM neural network model. (b) 246 

Hybrid of Transfer Learning and LSTM model (TL-LSTM). (c) MBUP approach.  247 
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2.1 Long Short-Term Memory (LSTM) neural network 248 

The ANN models usually considered forecasts of water quality as a mathematical 249 

function of water quality as well as hydro-meteorological variables (Olsen et al., 2012; 250 

Guo et al., 2019). The LSTM model adopted in this study is a special architecture of 251 

recurrent neural network proposed by Hochreiter and Schmidhuber
 
(1997). The 252 

LSTM model is capable of learning from the long-term (static) and short-term 253 

(dynamic) dependencies raised in time series and can conquer the 254 

exploding/vanishing gradient bottlenecks owing to the gradient propagation of the 255 

recurrent network over multi-layers. The difference between LSTM and other ANNs 256 

is that the hidden layer in LSTM is constituted of an internal self-looped unit. 257 

Moreover, the common ANN models (e.g. BPNN, ANFIS, NARX) need to construct 258 

multiple independent models to make water quality forecast at various monitoring 259 

stations whereas the multi-output deep learning LSTM model h (≥ 2) hidden layers 260 

demands only one model to achieve regional water quality multi-outputs (Figure 1(a)). 261 

The detailed description concerning the LSTM structure, the readers could find it 262 

from Appendix A.  263 

2.2 Hybrid of Transfer Learning and LSTM model (TL-LSTM) 264 

The transfer learning algorithm can transfer the learned knowledge from one similar 265 

domain (Reference) to another related domain (Target). The transfer learning 266 

algorithm was commonly used in cases that the forecast model for the target domain 267 

is too complicated or the target domain has long-interval data missing condition 268 

(Gupta et al., 2019). In this study, the transfer learning algorithm was introduced to 269 
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learn and transfer the knowledge from the Reference Temporal Sequence (RTS) which 270 

has complete data to the Target Temporal Sequence (TTS) which has data missing 271 

situation. Transfer learning mechanisms are classified to three different settings, i.e. 272 

data pattern transfer (e.g. trend and statistical characteristics), model transfer (e.g. 273 

model structure and parameters) and task transfer (e.g. multi-task learning about 274 

classification and clustering) (Pan and Yang, 2009). Since it needs to learn and model 275 

the pattern from an RTS, both data pattern transfer (statistic characteristics) and model 276 

transfer (model structure and parameters) would be adopted in this study. Figure 1 (b) 277 

showed the seamless integration of the transfer learning algorithm and the LSTM 278 

model (TL-LSTM model). The general implementation procedure of the TL-LSTM 279 

model was described in Appendix B.  280 

For comparison analysis, two deterministic forecast models (TL-LSTM & LSTM) 281 

were established and evaluated to provide inputs for the following probabilistic 282 

forecasts. The differences between TL-LSTM and LSTM models consist of: (1) the 283 

former uses the transfer learning algorithm to process the data missing situation 284 

whereas the latter does not use it; (2) the input data of two models in the training and 285 

validating stages are significantly different, as shown in Table 1.  286 

Table 1. Input data of deterministic forecast models under missing data conditions 287 

Stage TL-LSTM model LSTM model 

Training       
        

        
    

         
    

      
        

        
    

        
    Validating       

        
        

    
        

    

Testing       
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Notes: Each stage (training, validating and testing) of the dataset was erased with one percentage (e.g. 288 

50%) during the establishment and application of the LSTM models.    and     were the selected 289 

RTSs.    was the incomplete TTS. Take the incomplete TTS with one missing segment    290 

   
    

    
   for example,   

  was the missing segment,   
  and   

  were the complete segments. If 291 

  
  was at the beginning or the end of   ,   

  or   
  was empty dataset.    was the highest 292 

correlation complete sequence of    while     was the highest correlation complete sequence of   .  293 

 294 

2.3 Multivariate Bayesian Uncertainty Processor (MBUP) 295 

Four basic steps in Figure 1(c) constituted the general implementation procedures of 296 

the MBUP and were briefly described as follows (Krzysztofowicz and Maranzano, 297 

2004).  298 

Step 1: Data conversion. Both observed and forecasted datasets with real space 299 

were transformed to the Gaussian data by using the meta-Gaussian strategy 300 

(Krzysztofowicz, 2002).  301 

Step 2: Determination of prior density and likelihood functions. The 302 

meta-Gaussian strategy was also employed to compute the prior density function and 303 

the likelihood function.  304 

Step 3: Determination of posterior density function. After the prior density and 305 

likelihood functions were determined, the posterior density function was calculated 306 

accordingly.  307 

Step 4: Probabilistic forecasts. A Monte Carlo simulation was conducted to 308 

create probabilistic forecasts. A realization of observation at the horizon m was 309 

simulated according to the posterior density function and the Monte Carlo simulation 310 

was repeated for K times. K was the number of Monte Carlo simulation and was set 311 

as 1000 in this study. 90 % confidence intervals were employed to reveal the 312 

uncertainty of water quality probabilistic forecasts. And then, both observed and 313 
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forecasted datasets (e.g. DO, NH3-N, COD) with the Gaussian space were 314 

transformed to the real space for evaluating the performance of MBUP probabilistic 315 

forecasts.  316 

The general implementation programming of the machine learning model (e.g., 317 

LSTM) and the transfer learning algorithm can be obtained from the Statistics and 318 

Machine Learning Toolbox of the Matlab software (website: 319 

https://ww2.mathworks.cn/products/statistics.html#machine-learning) while the 320 

Bayesian model can be acquired from the Econometrics Toolbox of the Matlab 321 

software (website: https://ww2.mathworks.cn/help/econ/index.html).  322 

2.4 Evaluation criteria 323 

For comparison purpose, the Root-Mean-Square-Error (RMSE) as well as the 324 

Nash-Sutcliffe Efficiency coefficient (NSE) were introduced to evaluate the 325 

performance of deterministic forecast models. The indicators of RMSE and NSE 326 

were presented as follows.  327 

       

 
             

 
 
                          (1) 328 

      
             

 
 
   

             
  

   

                             (2) 329 

where      ,     and       is the forecasted data (i.e. model output), observed data 330 

and the average of observed data at the tth time, respectively. N is the number of 331 

time step.  332 

The average Relative Band-width (RB) as well as the Containing Ratio (CR) 333 

were adopted to evaluate the performance of probabilistic forecast models (Gneiting, 334 

2008; Xiong et al., 2008). Their mathematical formulas were described below.  335 

https://ww2.mathworks.cn/products/statistics.html#machine-learning
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                                  (3) 336 

      
                              

                                

                  (4a) 337 

   
      
   

 
                                     (4b) 338 

where       and       are the lower and upper limitations of the model forecasts 339 

with respect to a confidence level at the t time. If the NSE and CR values are higher 340 

and the RMSE and RB values are lower, the models would achieve better 341 

performance.  342 

 343 

3. Study area and background discussion 344 

3.1 Study area 345 

The study area (Figure 2) is briefly introduced as follows. The island in Shanghai City 346 

of China has 52 km
2
 administrative area and is located at the estuary of Yangtze River 347 

Delta. Annual precipitation ranged between 600 mm and 1400 mm as well as mean 348 

annual temperature is 15 ℃. In 2018, the land uses in this island are as follows: 1.95 % 349 

urbanization, 65.68 % agriculture, 1.45 % industry, 12.32 % forest, 18.37 % surface 350 

water and 0.23 % others while the total population of the island was about 34 351 

thousand (source: https://sthj.sh.gov.cn/, in Chinese). With the economy and 352 

population fast boosting, one of the hot topics in Shanghai City concentrates on water 353 

quality deterioration. People in the island are compelled to handle a high-level 354 

intervention of water pollution. In recent years, water pollution got a serious focus in 355 

Shanghai City of China (Liu et al., 2015; Zhao et al., 2015). Water pollution not just 356 

induced cancer, stone and cardiovascular sclerosis diseases but also caused a matter of 357 

https://sthj.sh.gov.cn/
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life or death. Hence, it must make accurate and reliable water quality forecasts to 358 

adequately process the health risk caused by regional water pollution.  359 

 360 

Fig. 2. Study area and water quality data collection. (a) Meteorological and river 361 

water quality monitoring stations in the island of Shanghai City. (b) Water quality 362 

data collection from monitoring stations.  363 

 364 

 The positions of the island, 25 meteorological as well as 10 water quality 365 

monitoring stations monitoring stations were presented in Figure 2(a), while water 366 

quality datasets are collected from monitoring stations as depicted in Figure 2(b). The 367 
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basic information on ten monitoring stations in five regions were summarized in 368 

Table 2. Hourly data of water quality factors (nine variables: Dissolved Oxygen (DO), 369 

Ammonium Nitrogen (NH3-N) under the NH4/NO3/NO2 environment, Chemical 370 

Oxygen Demand (CODCr) using the chromium test, Pondus Hydrogenii (pH), 371 

oxidation-reduction potential (ORP), electrical conductivity (EC), turbidity, water 372 

level and water temperature) and meteorological factors (three variables: precipitation, 373 

wind speed and light intensity) over a span of four years (31/08/2015-31/08/2019) are 374 

available.  375 

Table 2. Basic information on ten monitoring stations in five regions 376 

Region Station Type of pollution Source 

East S1 & S2 Nonpoint source Aquaculture or natural area 

South S3 Point source Industry 

West S4-S6 Point source Industry 

North S7 Nonpoint source Farmland and livestock 

Center S8-S10 Point source Urban domestic sewage 

 377 

The data calibration procedure was executed in the phase of the measurement 378 

prior to model construction and validation. The Oxidation-Reduction Potential (ORP) 379 

values were calibrated to potential redox (Eh) and pH using Quinhydrone, where a 380 

typical Quinhydrone calibration (to the standard hydrogen electrode), using an ORP 381 

meter was undertaken at pH = 4, and 7 (an example calibration is, Eh (mV) = −65.667 382 

pH + 744.67 + ORP (mV)). The data calibration procedure is similar to what 383 

described in Jardim (2014). For more information about the field measurement of 384 

ORP, the interested reader is pointed to the operating procedure provided by the U.S. 385 

Environmental Protection Agency and some international examples of the 386 

quinhydrone calibration procedure (http://www.pulseinstrument.com/ and 387 
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http://www.astisensor.com/). The procedures of data calibration and data quality 388 

control were also applied to the datasets of EC, DO, COD and Nitrogen (e.g., 389 

Fofonoff and Millard, 1983).  390 

Similar to Shrestha and Kazama (2007), the statistical analysis was performed by 391 

using the principal component analysis in this study as to what water quality factors 392 

and meteorological factors were the most important in explaining the variability of 393 

river water quality concentrations. The twelve water quality and meteorological 394 

factors afforded more than 94% contribution to river water quality concentrations, 395 

where the eight factors (precipitation, water level, water temperature, DO, CODCr, EC, 396 

NH3-N, ORP) afforded more than 87% contribution as well as the other factors (pH, 397 

turbidity, wind speed and light intensity) afforded more than 7% contribution. Besides, 398 

the multivariate statistical analysis by Shrestha and Kazama (2007) clearly pointed 399 

out that the factors contribution to water quality concentrations are closely associated 400 

with the streamflow (or water level) and water temperature in natural regions; organic 401 

pollution (point source: domestic wastewater) in less pollution regions; organic 402 

pollution (point source: domestic wastewater) and nutrients (non-point sources: 403 

farmland and livestock) in medium pollution regions; and both organic pollution and 404 

nutrients (point sources: domestic wastewater, wastewater treatment plants and 405 

industries) in high pollution regions.  406 

The correlation analysis of input variables using the Kendall tau coefficient 407 

further revealed that the input variables (water level, DO, CODCr, EC, NH3-N, ORP, 408 

turbidity, wind speed and light intensity) would be regarded as the independent factors, 409 
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meanwhile, partial dependencies between the input variables (link water temperature 410 

to EC, COD, or DO, and link precipitation to water level) were identified. The reasons 411 

for taking both 9 water quality factors (DO, NH3-N, CODCr, pH, ORP, EC, turbidity, 412 

water level and water temperature) and 3 meteorological factors (precipitation, wind 413 

speed and light intensity) as input variables simultaneously consist of: (1) various 414 

pollution sources with natural, organic pollution or nutrients appeared in the ten 415 

monitoring stations of five regions (Table 2) as well as modeling various pollution 416 

sources implied demand for different model inputs; (2) the multi-input and 417 

multi-output LSTM model (described in section 2.1) adopted in this study not only 418 

could grant the input variables to have independent features and partial dependencies, 419 

but also could adaptively adjust the model weight parameters (varied in the interval [0, 420 

1]) for different input variables according to the pollution sources in various 421 

monitoring stations. Consequently, the forecasts for water quality (e.g. DO, NH3-N, 422 

CODCr) are considered as a math function of water quality (9 factors) as well as 423 

meteorological (3 factors) variables. Each forecast model could output the forecast 424 

results of water quality (e.g. DO, NH3-N and CODCr) at 10 stations.  425 

In this study, the Partial Mutual Information (PMI) (Sharma, 2000) and Kendall 426 

tau coefficient methods were used to select input variable combinations. In 427 

accordance with the highest values of the PMI (≥ 0.5) (Galelli et al., 2014) as well as 428 

the Kendall tau coefficient (≥ 0.6)
 
(Zhou et al., 2019a), the results of selected time 429 

lags were identical. In brief, the time lags of 1h-7h were identified for water quality 430 

factors as well as the time lags of 1h-5h were identified for meteorological factors.  431 
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A total of 3,157,920 (= 4 (years) × 365 (or 366 days) × 24 (hours) × 10 (stations) 432 

× 9 (factors)) hourly water quality datasets and a total of 2,631,600 (= 4 (years) × 365 433 

(or 366 days) × 24 (hours) × 25 (stations) × 3 (factors)) hourly meteorological 434 

datasets were used in this study, where 40 % datasets (31/08/2015-06/04/2017) were 435 

employed for ANN model training while the remaining 30 % datasets 436 

(07/04/2017-18/06/2018) and 30 % datasets (19/06/2018-31/08/2019) were employed 437 

for validating and testing ANN model respectively.  438 

3.2 Background discussion 439 

Figure 3 presented the statistic indexes of DO, NH3-N and CODCr concentrations at 440 

five regions while Table 3 summarized the statistic indexes of the other 9 input factors 441 

at five regions. Since the higher value of DO and the lower values of CODCr and NH-442 

3-N usually indicated better water quality, the three water quality factors (i.e. DO, 443 

NH3-N and CODCr) were specified to discuss the research background. It indicated 444 

that the values of the maximum, average as well as quartiles of CODCr and NH3-N 445 

(DO) concentrations at the North region were the highest (lowest) whereas those in 446 

the Center region were the lowest (highest), which would be owing to the primary 447 

source of water pollution of a region. The nonpoint source pollution from farmland 448 

and livestock was the primary source of water pollution at the North region while the 449 

point source pollution from urban domestic sewage was the primary source of water 450 

pollution at the Center region. In other words, the nonpoint source pollution 451 

(agriculture) was stronger driving force of water pollution than the point source 452 

pollution (industry and urban domestic sewage) in this island. The five regions do 453 
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represent three situations (agriculture (East & North), industry (South & West) and 454 

urban domestic sewage (Center)) and significant differences in the statistical indexes 455 

of the monitoring data (Figure 3).  456 

 457 

Fig. 3. Statistic indexes of DO, NH3-N and CODCr concentrations at five regions (a–e) 458 

in the island. The abbreviations (max, ave, min, std) denote the maximum, average, 459 

minimum and standard deviation respectively. The time period of statistic covers four 460 

years (31/08/2015-31/08/2019).  461 

 462 

Table 3. Statistic indexes of the other 9 input factors at five regions 463 

Region Index 
Factor 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

East 

Max. 13.6 1380.6 1524.8 1087.3 14.9 39.8 53.2 9.2 20.7 

Ave. 7.5 271.0 351.3 241.6 12.9 17.6 22.7 3.4 16.5 

Min. 6.9 200.0 5.8 7.1 4.3 0.0 0.0 0.0 0.0 

South 

Max. 11.5 1460.7 1337.0 948.5 14.7 35.8 47.8 4.4 24.5 

Ave. 7.5 219.7 334.4 229.4 12.0 18.1 19.7 1.8 17.8 

Min. 6.2 153.5 4.2 6.4 3.6 0.0 0.0 0.0 0.0 

 

West 

 

Max. 13.7 1388.6 1358.2 980.3 15.2 39.8 43.6 4.3 21.2 

Ave. 7.5 217.1 462.6 315.3 12.0 17.9 14.6 1.6 16.9 

Min. 6.3 128.1 7.6 5.8 2.1 0.0 0.0 0.0 0.0 

 

North 

 

Max. 19.3 1402.1 1679.2 1191.5 14.3 39.8 51.7 6.7 19.7 

Ave. 7.5 234.5 453.9 307.4 11.3 17.8 20.5 2.4 15.3 

Min. 6.9 180.1 8.4 10.3 1.8 0.0 0.0 0.0 0.0 
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Center 

 

Max. 11.5 1400.9 1113.8 751.8 14.6 32.2 45.2 3.6 22.3 

Ave. 7.5 229.9 439.4 298.7 11.3 17.6 15.9 0.7 17.2 

Min. 6.8 180.3 7.9 4.7 0.9 1.3 0.0 0.0 0.0 

The abbreviations of Max, Ave and Min denoted the maximum, average and minimum. The factors in 464 

columns No. (1)-(9) were pondus hydrogenii (/), oxidation-reduction potential (mV), conductivity 465 

(S/m), turbidity (mg/l), water level (m), water temperature (℃), precipitation (mm/h), wind speed (m/s) 466 

and light intensity (mega-joule/m
2
) respectively.  467 

 468 

4. Results 469 

The LSTM and TL-LSTM models were used to make deterministic forecasts of river 470 

water quality independently, and then the MBUP approach was used to make 471 

probabilistic forecasts of river water quality. The results and findings were displayed 472 

in the order of the deterministic water quality forecasts (Section 4.1) and the 473 

probabilistic water quality forecasts and summarization (Section 4.2), shown as 474 

follows.  475 

4.1 Deterministic water quality forecasts 476 

Lead times up to 10 hours (t+1 ˗ t+10) at a temporal scale of one hour were employed 477 

to evaluate the validity of the two deterministic water quality forecast models (LSTM 478 

and TL-LSTM). Take the horizon t+10 and data missing rate 0.5 (all input factors) in 479 

the training and validating stages for instance, the optimal parameters of the LSTM 480 

and the TL-LSTM models were presented in Table 4.  481 

The results pointed out that: the optimal number of neurons was 30 owing to the 482 

maximum NSE of 0.72 and the minimum RMSE of 0.43, while the optimal number of 483 

hidden layers was 3 owing to the maximal NSE value of 0.75 and the minimal RMSE 484 

value of 0.31 in the training stage as well as better indicator values in the validating 485 
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stage regarding the LSTM model. Moreover, under the same data missing rate (= 0.5), 486 

the TL-LSTM model produced the smallest RMSE value and the largest NSE value as 487 

compared with other LSTM models. Hence, in the following comparison analysis, the 488 

parameters of each LSTM model and each TL-LSTM model included the maximal 489 

generation (Gmax), number of neurons, number of hidden layers, learning rate and 490 

dropout probability, which were set as 1000, 30, 3, 0.001 and 0.5 respectively.  491 

Table 4. Parameters of the LSTM and TL-LSTM models at horizon t+10 in the 492 

training and validating stages 493 

Model 
Data missing 

rate 

Parameters Training Validating 

Gmax Neurons 
Hidden 

 layer 

Learning  

rate 

Dropout  

probability 
RMSE NSE RMSE NSE 

LSTM a 0.5 1000 20 1 0.001 0.5 0.65 0.64 0.68 0.62 

   30    0.43 0.72 0.42 0.73 

   40    0.58 0.67 0.61 0.64 

   50    0.71 0.61 0.71 0.61 

LSTM 0.5 1000 30 2 0.001 0.5 0.37 0.71 0.39 0.70 

    3   0.31 0.75 0.29 0.76 

    4   0.49 0.68 0.51 0.67 

TL-LSTM b 0.5 1000 30 3 0.001 0.5 0.24 0.88 0.23 0.89 

A value in bold indicated the optimal parameter. The data missing rate (= 0.5) denoted that all DO, 494 

NH3-N and CODCr time series at 10 stations missed 50% of datasets and each stage (training, validating 495 

and testing) of the dataset was erased with the same percentage (i.e. 50%) during the establishment and 496 

application of the LSTM models. The computation result was the average result of 10 runs of each 497 

model. The value of RMSE was the average RMSE of water quality forecasts (DO, NH3-N and CODCr 498 

values with standardization) while the value of NSE was the average NSE of water quality forecasts 499 

(DO, NH3-N and CODCr values with standardization).  500 
a
 LSTM denoted the long-short term memory model. 501 

b
 TL-LSTM denoted the hybrid of transfer learning and long-short term memory model.  502 

To further assess the impacts of different data missing rates (0 − 0.9) at different 503 

water quality stations (S1 – S10) on model performance, four sets of comparison 504 

experiments were designed to evaluate the accuracy of the two deterministic 505 

forecasting models.  506 

Firstly, to investigate the performance of TL-LSTM model for different missing 507 
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rates, the experiment scheme was set as the data missing rate (0 − 0.9, step = 0.1) and 508 

the incomplete target temporal sequence (  ) from the Station S10. The reference 509 

temporal sequence (  ) was identified as the sequence from the Station S8 while the 510 

highest correlation complete sequence to    was identified as the sequence (   ) 511 

from the Station S9. Take the horizons t+2 (2 hours), t+6 (6 hours) and t+10 (10 hours) 512 

for example, Figure 4 displayed the model performance of deterministic forecasts 513 

concerning water quality under different data missing rates in the testing stage.  514 

The results revealed that: 1) the LSTM model produced an inferior performance 515 

for water quality forecasting under each data missing rate at each horizon; 2) the 516 

TL-LSTM model acquired the best performance not only in individual data missing 517 

rate but also at each horizon. It was easy to find that the TL-LSTM model created 518 

much higher values of NSE indicator but much smaller values of RMSE indicator 519 

under all data missing rates in the testing stages, in comparison to the LSTM model. 520 

For horizon t+10 and data missing rate (= 0.9), the improvement rates of RMSE and 521 

NSE indicators reached 24.7 % and 23.3 % respectively.  522 

Previous researches (e.g. Lepot et al., 2017; Yang et al., 2017; Che et al., 2018; 523 

Tian et al., 2018) reported the maximum data missing rate that most of the methods 524 

could withstand was less than 0.3. The performance of forecast models became 525 

unsatisfied when the missing rate was large. The maximum data missing rate can be 526 

further extended according to forecast horizons, while its reliability and accuracy 527 

would be further decreased. The maximum data missing rate (= 0.5) that the proposed 528 

technique (TL-LSTM) could withstand was determined based on the forecast 529 
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accuracy requirement (NSE > 0.75 and RMSE < 0.4) corresponding to the maximum 530 

horizon t+10, where this forecast accuracy could meet the practical needs of the users, 531 

decision-makers and stakeholders. Therefore, the data missing rate (= 0.5) was 532 

specified to assess the reliability and accuracy of the proposed approach in the 533 

following results. 534 

 535 

Fig. 4. Model performance of deterministic forecasts concerning water quality under 536 

different data missing rates (0 − 0.9, step = 0.1) at horizons t+2, t+6, t+10 at the 537 

Station S10 in the testing stage. In comparison analysis between TL-LSTM and 538 

LSTM models, the position of data missing in the initial data input always kept 539 

consistent in both models. That was to say, the position of data missing was randomly 540 

generated for the TL-LSTM model while the LSTM model had the same position of 541 

data missing with the TL-LSTM model. The computation result was the average result 542 
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of 10 runs of each model. The value of RMSE was the average RMSE of water 543 

quality forecasts (DO, NH3-N and CODCr values with standardization) while the value 544 

of NSE was the average NSE of water quality forecasts (DO, NH3-N and CODCr 545 

values with standardization).  546 

 547 

Secondly, to investigate the performance of TL-LSTM model for different water 548 

quality stations, the experiment scheme was set as the incomplete target temporal 549 

sequence (  ) varying from the Station S1 to Station S10 and the data constant 550 

missing rate (= 0.5). Take the horizons t+2, t+6 and t+10 for example, Figure 5 551 

displayed the model performance of deterministic forecasts concerning water quality 552 

at different stations in the testing stages. The results indicated that the TL-LSTM 553 

model created much higher values of NSE indicator but much smaller values of 554 

RMSE indicator at all monitoring stations in the testing stages, as compared with the 555 

LSTM model. Take horizon t+10 and Station S7 for instance, the improvement rates 556 

of RMSE and NSE indicators achieved as much as 22.2 % and 12.5 % respectively. 557 

The results of Figure 5 demonstrated the technique had universally applicable to the 558 

data missing referring to different types of pollutions.  559 

Thirdly, to investigate the impact of data missing in meteorological factors (e.g. 560 

precipitation and wind speed) and water quality factors (e.g. NH3-N and CODCr) on 561 

the performance of LSTM models, the experiment scheme was set as the incomplete 562 

target temporal sequence (  ) occurred at the Station S7 under the data constant 563 

missing rate (= 0.5). Take the horizons t+2, t+6 and t+10 for example, Table 5 564 

presented the model performance of deterministic forecasts concerning water quality 565 

in the testing stages. The results pointed out that both LSTM models under the water 566 

quality data missing situation (Scenarios No. 3 and No. 4) produced much higher 567 
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RMSE values but much smaller NSE values than these under the meteorological data 568 

missing situation (Scenarios No. 1 and No. 2). In other words, the data missing in 569 

water quality factors had a more significant impact on the performance of LSTM 570 

models, as compared with the data missing in meteorological ones. The reason for 571 

causing such results was: if the forecasts for water quality (e.g. DO, NH3-N, CODCr) 572 

were considered as the math function of water quality (9 factors) as well as 573 

meteorological (3 factors) variables, the autoregressive variables (e.g. NH3-N and 574 

CODCr) had a more significant impact on the performance of forecast model, in 575 

comparison with the implicit exogenous variables (e.g. precipitation and wind speed). 576 

In other words, the modeler and forecaster should pay more attention to the raw data 577 

quality control and TL-LSTM model application when the data missing situation 578 

appeared in the autoregressive factors.  579 
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 580 

Fig. 5. Model performance of deterministic forecasts concerning water quality (DO, 581 

NH3-N, and CODCr) under the data missing rate (= 0.5) at horizons t+2, t+6, t+10 at 582 

different stations (S1 – S10) in the testing stages. In comparison analysis between 583 

TL-LSTM and LSTM models, the position of data missing in the initial data input 584 

always kept consistent in both models. The computation result was the average result 585 

of 10 runs of each model. The value of RMSE was the average RMSE of water 586 

quality forecasts (DO, NH3-N and CODCr values with standardization) while the value 587 

of NSE was the average NSE of water quality forecasts (DO, NH3-N and CODCr 588 

values with standardization).  589 

 590 

Table 5. Impact of data missing in meteorological and water quality factors on the 591 

performance of LSTM models at the Station S7 in the testing stage.  592 

Scenario: missing factor Model Indicator 
Horizon 

t+2 t+6 t+10 

No.1: Precipitation 
TL-LSTM 

RMSE 0.19 0.24 0.29 

NSE 0.87 0.82 0.77 

LSTM RMSE 0.22 0.28 0.33 
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NSE 0.83 0.78 0.73 

No.2: Wind speed 

TL-LSTM 
RMSE 0.16 0.21 0.27 

NSE 0.92 0.86 0.81 

LSTM 
RMSE 0.19 0.26 0.32 

NSE 0.89 0.84 0.79 

No.3: NH3-N 

TL-LSTM 
RMSE 0.22 0.27 0.32 

NSE 0.88 0.83 0.79 

LSTM 
RMSE 0.31 0.38 0.48 

NSE 0.83 0.78 0.69 

No.4: CODCr 

TL-LSTM 
RMSE 0.21 0.28 0.30 

NSE 0.90 0.85 0.81 

LSTM 
RMSE 0.32 0.36 0.46 

NSE 0.84 0.80 0.71 

No.5: All meteorological 

and water quality factors 

TL-LSTM 
RMSE 0.26 0.31 0.39 

NSE 0.86 0.81 0.76 

LSTM 
RMSE 0.37 0.43 0.54 

NSE 0.80 0.75 0.64 

The value of RMSE was the average RMSE of water quality forecasts (DO, NH3-N and CODCr values 593 

with standardization) while the value of NSE was the average NSE of water quality forecasts (DO, 594 

NH3-N and CODCr values with standardization).  595 

 596 

Fourthly, the incomplete target temporal sequence (  ) occurred at the Station S7 597 

under the data constant missing rate (= 0.5) was specified to investigate the impact of 598 

data missing positions on the performance of LSTM models. Take the horizons t+2, 599 

t+6 and t+10 for example, Table 6 summarized the model performance of 600 

deterministic forecasts concerning water quality at the Station S7 in the testing stages. 601 

It was easy to find that both LSTM models under the peak data missing situation 602 

(Scenario No. 1) created the largest values of RMSE indicators but the smallest values 603 

of NSE indicators. Moreover, the loss of the trough data (Scenario No. 2) had the 604 

smallest impact on the performance of LSTM models. That was to say, the loss of the 605 

peak/trough data in the data sequence and the loss of the non-peak/non-trough data 606 

resulted in different forecast impacts on the performance of LSTM models (Scenarios: 607 

No.1 > No. 3 > No. 4 > No. 2). The results revealed that the modeler and forecaster 608 



31 

should pay more attention to the raw data quality control and TL-LSTM model 609 

application if the data missing situation occurred in the peak datasets. 610 

Table 6. Impact of data missing positions on the performance of LSTM models at the 611 

Station S7 in the testing stage 612 

Scenario: data missing position Model Indicator 
Horizon 

t+2 t+6 t+10 

No.1: Peak data  

possessing the missing rate (0.5) 

TL-LSTM 
RMSE 0.22 0.29 0.37 

NSE 0.84 0.80 0.75 

LSTM 
RMSE 0.26 0.38 0.49 

NSE 0.81 0.76 0.69 

No.2: Trough data  

possessing the missing rate (0.5) 

TL-LSTM 
RMSE 0.17 0.22 0.27 

NSE 0.93 0.87 0.83 

LSTM 
RMSE 0.21 0.25 0.30 

NSE 0.90 0.84 0.80 

No.3: Peak and trough data possessing 

 the missing rate (0.25) respectively 

TL-LSTM 
RMSE 0.20 0.25 0.31 

NSE 0.89 0.84 0.78 

LSTM 
RMSE 0.24 0.28 0.35 

NSE 0.85 0.80 0.73 

No.4: Non-peak and non-trough data 

possessing the missing rate (0.5) 

 

TL-LSTM 
RMSE 0.19 0.24 0.29 

NSE 0.91 0.85 0.80 

LSTM 
RMSE 0.22 0.27 0.33 

NSE 0.88 0.82 0.77 

The value of RMSE was the average RMSE of water quality forecasts (DO, NH3-N and CODCr values 613 

with standardization) while the value of NSE was the average NSE of water quality forecasts (DO, 614 

NH3-N and CODCr values with standardization). 615 

 616 

In short, the TL-LSTM model created the best forecasting performance not only 617 

at different data missing situations (e.g. different water quality monitoring stations, 618 

data missing in meteorological and water quality factors, data missing positions) but 619 

also at each horizon. Furthermore, it was interesting to find that the TL-LSTM model 620 

could improve forecast accuracy and reliability (NSE values > 0.75 and RMSE values 621 

< 0.4) even under the most adverse data missing scenario.  622 

To differentiate the capabilities of the LSTM and TL-LSTM models, three water 623 

pollution events at three monitoring stations (S1, S7, S10) were specified to validate 624 
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both models by evaluating the goodness-of-fit of observed and forecasted datasets 625 

under the data missing rate (= 0.5) at horizon t+10 in the testing stages, as shown in 626 

Figure 6. It can be seen from Figure 6 that the TL-LSTM model was capable of 627 

forecasting well at horizon t+10 whereas the LSTM model had an apparent flatten 628 

prediction phenomenon as well as induced significantly large gaps between observed 629 

and forecasted data. It clearly revealed that the TL-LSTM model adequately followed 630 

the trails of water pollution events, effectively conquered the technical bottleneck of 631 

the flatten prediction, and created reliable as well as accurate multi-step-ahead 632 

forecasts of river water quality.  633 

634 

Fig. 6. Deterministic water quality forecast results (DO, NH3-N and CODCr) of LSTM 635 

and TL-LSTM models under the data missing rate (= 0.5) at horizon t+10 in the 636 

testing stages at the Station S1 (East region), the Station S7 (North region) and the 637 

Station S10 (Center region) respectively. In comparison analysis between TL-LSTM 638 

and LSTM models, the position of data missing in the initial data input always kept 639 

consistent in both models. The computation result was the average result of 10 runs of 640 
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each model. The test event with small-scale (a) occurred at the Station S10. The test 641 

event with medium-scale (b) occurred at the Station S1. The test event with high-scale 642 

(c) occurred at the Station S7.  643 

 644 

The results revealed that forecasts of the TL-LSTM model at horizons higher than 645 

t+2 were more excellent by using transfer learning algorithm under the input data 646 

missing circumstances. In other words, the transfer learning algorithm significantly 647 

improved water quality forecasts with different data missing rates by transferring 648 

model structure and parameters.  649 

Although the forecast results of the TL-LSTM model exhibited well-off evidence 650 

of superior model performance as well as attained high confidence in deterministic 651 

forecasts, the values of water quality forecasting, regrettably, were easy to fall into 652 

systematic under-prediction for extreme water pollution events (Figure 6). 653 

Furthermore, apart from input data missing in meteorological and water quality 654 

factors, the uncertainties of parameters and the structure of LSTM models were the 655 

main reasons for inducing time-lag and flatten prediction phenomena that appeared in 656 

multi-step-ahead forecasts. Accordingly, the post-processing technique (MBUP) was 657 

further adopted for quantifying the predictive uncertainty of probabilistic water 658 

quality forecasts. The below subsection concentrated on the comparison analyzing 659 

between LSTM plus MBUP and TL-LSTM plus MBUP approaches for probabilistic 660 

water quality forecasting.  661 

4.2 Probabilistic water quality forecasts 662 

Several horizons (e.g. t+2, t+6, t+10) and water quality monitoring Stations (e.g. S1, 663 

S7, S10) were specified for validating the performance of probabilistic forecast 664 
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techniques. The values of CR and RB corresponding to deterministic forecast model 665 

(LSTM or TL-LSTM) plus the post-processing technique MBUP with the data 666 

missing rate (= 0.5) were summarized in Table 7.  667 

The results demonstrated that the TL-LSTM plus MBUP approach made better 668 

forecasting accuracy at all horizons and all stations whereas the LSTM plus MBUP 669 

approach performed inadequately at horizons larger than t+6 (the value of CR was 670 

lower than 89% and the value of RB was higher than 0.15). Take the Station S7 and 671 

horizon t+10 for instance, the TL-LSTM plus MBUP approach obtained the 672 

improvement rate of 7.4% for the CR indicator and the improvement rate of 21.1% for 673 

the RB indicator in the testing stage, in comparison to the LSTM plus MBUP 674 

approach. In other words, the TL-LSTM plus MBUP technique not only improved 675 

probabilistic forecast accuracy in a significant extent according to the high CR values 676 

denoting a narrow prediction but also mitigated the influence of the magnitude of 677 

pollutant concentration for the band-width of the prediction bounds according to the 678 

small RB values at the same time.  679 

 680 

Table 7. Results of probabilistic water quality forecasting under the data missing rate 681 

(= 0.5) at horizons t+2, t+6, t+10 in the testing stages  682 

Station Model Indicator 
Horizon 

t+2 t+6 t+10 

S1 

TL-LSTM plus MBUP 
CR(%) 96.17 92.39 88.62 

RB 0.09 0.18 0.25 

LSTM plus MBUP 
CR(%) 95.22 90.04 83.56 

RB 0.12 0.22 0.30 

S7 

TL-LSTM plus MBUP 
CR(%) 95.07 91.43 85.96 

RB 0.13 0.21 0.30 

LSTM plus MBUP 
CR(%) 94.24 89.25 80.07 

RB 0.15 0.27 0.38 
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S10 

TL-LSTM plus MBUP 
CR(%) 98.63 93.17 89.66 

RB 0.08 0.15 0.22 

LSTM plus MBUP 
CR(%) 97.48 91.24 84.39 

RB 0.10 0.21 0.26 

The value of CR was the average CR of water quality forecasts (DO, NH3-N and CODCr) while the 683 

value of RB was the average RB of water quality forecasts (DO, NH3-N and CODCr).  684 

 685 

 686 

Fig. 7. Quantile-Quantile (QQ) plots of probabilistic water quality (DO, NH3-N and 687 

CODCr) forecasts at the Station S7 under the data missing rate (= 0.5) at horizons t+2, 688 

t+6, t+10 in the testing stages.  689 

 690 

Moreover, QQ plots were employed for evaluating the probabilistic forecasting 691 

reliability (LSTM plus MBUP & TL-LSTM plus MBUP). Figure 7 displayed the QQ 692 

plots for probabilistic water quality forecasting (e.g. Station S7) under the data 693 

missing rate (= 0.5) at horizons t+2, t+6, t+10 in the testing stages. It revealed that the 694 

QQ plot points created by the TL-LSTM plus MBUP approach were prone to be 695 

closer to the 1:1 line, as compared to that of the LSTM plus MBUP approach. In other 696 
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words, the former (i.e. the TL-LSTM plus MBUP approach) acquired smaller bias as 697 

well as higher reliability than the latter (i.e. the LSTM plus MBUP approach).  698 

The results pointed out that the TL-LSTM plus MBUP approach could provide 699 

effective support for quantifying predictive uncertainty because of the better 700 

goodness-of-fit between the predicted and the observed datasets. This finding 701 

demonstrated that the TL-LSTM plus MBUP approach executed better in terms of 702 

reliability assessment.  703 

To distinctly distinguish the capabilities of probabilistic forecast models (LSTM 704 

plus MBUP & TL-LSTM plus MBUP) in the testing stages, the water pollution events 705 

(DO, NH3-N and CODCr) at Station S7 were selected to test both models under the 706 

data missing rate (= 0.5) through evaluating if the water quality observations dropped 707 

within the interval of 90% prediction at horizon t+10 (Figure 8).  708 

The results indicated that: (1) the 90% prediction intervals generated by 709 

TL-LSTM plus MBUP approach could cover the observed pollutant concentration 710 

peaks whereas the 90% prediction intervals generated by LSTM plus MBUP approach 711 

were still prone to systematically under-predictions, and (2) the TL-LSTM plus 712 

MBUP approach produced a narrower distribution of predictive water quality than 713 

that of the LSTM plus MBUP approach. The aim of probabilistic forecasting was to 714 

output the maximal sharpness for river water quality predictions, where the sharpness 715 

denoted the density of the predictive distributions. Hence, the hybrid of the TL-LSTM 716 

and MBUP approach was superior to the hybrid of the LSTM and MBUP approach 717 

for probabilistic river water quality forecasting. It was noticed that in Figure 8 the 718 
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fluctuation range of water quality prediction became wider with the increase of 719 

corresponding water quality value. All fluctuation ranges in TL-LSTM plus MBUP 720 

(e.g. -0.9 mg/l ≤ Range of DO ≤ +1.8 mg/l) were significantly smaller than LSTM 721 

plus MBUP ones (e.g. -2.5 mg/l ≤ Range of DO ≤ +1.3 mg/l). Though the fluctuation 722 

ranges of CODCr values (-32.2 mg/l ≤ Range ≤ +19 mg/l) in the TL-LSTM plus 723 

MBUP approach were still wide, it was able to meet the needs of the practical 724 

application (forecast horizon up to 10 hours) of the model from the standpoint of 725 

relative error values (-12% ≤ Relative error ≤ +8%).  726 

 727 

 728 

Fig. 8. Probabilistic water quality (DO, NH3-N and CODCr) forecasts for Station S7 729 
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under the data missing rate (= 0.5) at horizon t+10 in the testing stages. The range is 730 

equal to the forecast minus the observation.  731 

 732 

5. Conclusions and discussion 733 

5.1 Conclusions 734 

This study explored deep learning ANNs with MBUP approach for modelling 735 

probabilistic water quality forecasts. How to enhance the forecasting accuracy and 736 

reliability at water quality monitoring stations with plenty of missing data was 737 

fundamentally challenging. Moreover, the need for the probabilistic forecast instead 738 

of the deterministic forecast approach was attributed to the requirement of real-world 739 

operational forecasting and decreasing the stochasticity of water quality forecasts. 740 

Firstly, two deep learning ANNs (TL-LSTM and LSTM) were deployed to construct 741 

deterministic forecasting models for the local water quality values of the island in 742 

Shanghai City. The comparison of TL-LSTM as well as LSTM models was to 743 

demonstrate the contributions of the transfer learning algorithm on more accurate 744 

deterministic forecasts. Then, the exploration of the post-processing technique 745 

(MBUP) was implemented for transforming the deterministic forecasting (i.e. LSTM 746 

models) into the probabilistic forecasting. The contribution of the MBUP approach 747 

relied upon extracting the complex nonlinear multivariate (≥3) correlation between 748 

observations and forecasts as well as upon decreasing the predictive uncertainty of 749 

river water quality forecasts.  750 

Both two deterministic models utilized for forecasting the regional water quality 751 

(DO, NH3-N and CODCr) series of the island in Shanghai City illustrated that the 752 
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TL-LSTM model remarkably performed better than the relative LSTM model for the 753 

three cases (i.e. training, validation and testing) at various horizons as well as 754 

different monitoring stations. It indicated that the TL-LSTM model could make highly 755 

more accurate forecasts for the river water quality series at long lead times (future 10 756 

hours) and could effectively overcome flatten prediction bottlenecks in comparison to 757 

the LSTM model. However, the TL-LSTM model still undergone the technical 758 

difficulty of flatten-predicting the peaks of river water quality.  759 

The MBUP would explicitly extract the complex nonlinear multivariate 760 

correlation between observations and forecasts as well as would alleviate the 761 

stochasticity of probabilistic river water quality forecasting. The comparison analysis 762 

demonstrated that the TL-LSTM plus MBUP approach was substantially preferable to 763 

the LSTM plus MBUP one, according to the values of CR and RB indicators as well 764 

as the 90% prediction intervals. The hybrid of TL-LSTM plus MBUP technique 765 

succeeded in obtaining excellent results of probabilistic river water quality forecasting 766 

would be attributed to the first key strategy: the incorporation of the transfer learning 767 

algorithm into ANNs for reinforcing the model structure and parameters transferring 768 

to overcome input data missing drawback, and the second core strategy: the adequate 769 

extraction of the nonlinear multivariate correlation information between model 770 

forecasts and observations for lowering the predictive uncertainty through the 771 

multivariate Bayesian uncertainty processing technique.  772 

5.2 Discussion 773 

From the standpoint of water pollution mechanisms, the point source pollution 774 
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processes associated with industry and urban domestic sewage conditions (e.g. Station 775 

S10) made a too slight difference in forecasting accuracy between the LSTM and the 776 

TL-LSTM models, whereas the nonpoint source pollution processes associated with 777 

agricultural activities (e.g. Station S7) made a significant difference in forecasting 778 

accuracy between the LSTM and the TL-LSTM models. The island in Shanghai City 779 

has experienced rapid development, and the local water quality of the island has 780 

constantly undergone interactions with intensive industrial sewages, urban and 781 

agricultural activities. A high water pollution event was commonly driven by the 782 

processes of nonpoint source pollutions either associating with the local 783 

transformation of the aged fertilizer/aquatic feed or associating with the secondary 784 

transportation of eutrophication pollutants. A water pollution event corresponding to 785 

the point source pollution processes was prone to associate with the primary sewage 786 

discharges as well as regional weather conditions. The LSTM model made a better 787 

forecasting accuracy at the Station S10 than at the Station S1 and Station S7. 788 

Nevertheless, the TL-LSTM model gained better improvement rates of RMSE and 789 

NSE at Station S1 and Station S7 than at the Station S10. The TL-LSTM model not 790 

only attained higher improvement rates for forecasting accuracy at water quality 791 

Station S1 and Station S7 (nonpoint source pollution processes) but also executed as 792 

good as the performance of the LSTM model at the water quality Station S10 (point 793 

source pollution processes).  794 

The imitation of real-time evolution in water quality was attributed to twofold: 795 

First, the data collection from water quality stations was based on real-time 796 
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processing (hourly collecting). Second, it was worth noting that the computational 797 

time (less than 2 minutes) of the proposed approach was extremely short and therefore 798 

it could be applied with success to real-time water quality forecasting. From the 799 

standpoint of science forward, this study no only initiated effective research on 800 

probabilistic water quality forecasts under data missing situation that was beneficial to 801 

water quality warning and prediction but also contributed to innovating artificial 802 

intelligence-based solutions to river environmental management in the interest of 803 

green economy development. Following this study that constructed a framework to 804 

conquer the under-prediction phenomena and quantify the uncertainty of probabilistic 805 

water quality forecasting induced by input data missing, several subsequent studies 806 

can be conducted, for instance, incorporating extreme learning mechanisms into this 807 

framework to predict water quality better once an extreme phenomenon happens. 808 

Additionally, future research would explore the hybrid of deep learning and 809 

probabilistic post-processing techniques from the small and medium spatial scale (a 810 

local or regional city) of time series to large spatial scale (country or global) ones.  811 

 812 

Appendix A 813 

LSTM model structure 814 

The LSTM model structure consists of six components: input block, three gates, 815 

self-looped cell and output block. The following steps illustrate how the LSTM model 816 

is updated at every time step t.  817 

Step 1: The input block is employed to create memory information (   ) at the 818 
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current time t by jointing the output state (ht-1) at the previous time t-1 with the model 819 

input (xt) at the current time t.  820 

                                          (1) 821 

where tanh(·) is a hyperbolic tangent function. Wc is the weight for the input of the 822 

current state in the input block. Uc is the weight for the output of the previous state in 823 

the input block. bc is the bias in the input block at the current state.  824 

Step 2: The input gate (it) is conducted to calculate how much information to 825 

allocate to the current cell state through learning from the output state (ht-1) at the 826 

previous time t-1 and the model input (xt) at the current time t.  827 

                                          (2) 828 

where  (·) is a sigmoid transfer function. Wi is the weight for the input of the current 829 

state in the input gate. Ui is the weight for the output of the previous state in the input 830 

gate. bi is the bias in the input gate at the current state.  831 

Step 3: The forget gate (ft) is conducted to quantify how much information to 832 

delete from the current cell state through learning from the output state (ht-1) at the 833 

previous time t-1 and the model input (xt) at the current time t.  834 

                                        (3) 835 

where Wf is the weight for the input of the current state in the forget gate. Uf is the 836 

weight for the output of the previous state in the forget gate. bf is the bias in the forget 837 

gate at the current state. 838 

Step 4: The self-looped cell (Ct) is used to update the previous self-looped cell 839 

state (Ct-1) through integrating the information of the input and forget gates with the 840 
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current input block (   ). 841 

                                          (3) 842 

Step 5: The output gate (ot) is conducted to quantify the output of the 843 

self-recurrent cell. The tanh function is also adopted to transform the self-looped cell 844 

state () to confirm that the value lies in the interval of [-1, 1] and the transformed 845 

results would be multiplied by the value of the output gate, which creates the current 846 

output state (ht).  847 

                                     (5a) 848 

                                         (5b) 849 

where Wo is the weight for the input of the current state in the output gate. Uo is the 850 

weight for the output of the previous state in the output gate. Vo is the weight for the 851 

self-recurrent cell state in the output gate. bo is the bias in the output gate at the 852 

current state. 853 

Step 6: The output block is employed to calculate the output of the LSTM model, 854 

which is regarded as the algebraic sum of the output gate.  855 

                                       (6) 856 

where     is the output of the LSTM model. Wy is the weight for the current output 857 

state. by is the bias in the output block at the current state. 858 

Appendix B 859 

General implementation procedure of transfer learning-based LSTM model 860 

Step 1: Data pattern transfer. After implementations of data collection, cleaning 861 

and normalization, a RTS is selected according to the most statistic similarity between 862 
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TTS and potential RTSs. The transfer learning algorithm is employed owing to the 863 

statistical similarity between RTS and TTS. The Kendall tau coefficient (Maidment et 864 

al., 1993) is used to identify the highest correlation between TTS and RTS. The 865 

computation equations for selecting RTS are described as follows.  866 

                                             (7) 867 

                  
    

      
    

                     (8) 868 

    
     

 

 
      

                                (9) 869 

where    is the selected RTS.    is the incomplete TTS, and take the incomplete 870 

TTS with one missing segment       
    

    
   for example,   

  is the missing 871 

segment,   
  and   

  are the complete segments. If   
  is at the beginning or the 872 

end of   ,   
  or   

  would be empty dataset.    is the complete sequence (i.e. 873 

potential RTS) at the ith monitoring station,       
    

    
  ,       and    , 874 

  
 ,   

  and   
  are three segments of complete sequence    corresponding to three 875 

segments in   , where K is the number of monitoring stations. n is the number of 876 

dataset.    and    are the number of concordant pairs and discordant pairs in two 877 

datasets (TTS & RTS) respectively. In this step, two RTSs (   &    ) would be 878 

selected for training TL-LSTM model.    is the highest correlation complete 879 

sequence of    while     is the highest correlation complete sequence of   .  880 

Step 2: Model structure and parameters transfer. A reference TL-LSTM model 881 

(      ) would be trained using the RTS while validates and tests the model 882 

(structure and parameters) using the TTS. In the training stage, the input data of 883 

       is       
        

        
    

         
    instead of 884 
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   , where q is the time-lags of input variables, m 885 

is the forecast horizon and m = 1, …, M. After the        is given, the model 886 

structure is frozen while in the validating stage the model (      ) parameters are 887 

fine-tuned using the input data       
        

        
    

        
    to create the 888 

target TL-LSTM model (      ) in the validating stage. The        can maintain 889 

the model structure        (structure transfer), fine-tune the model parameters 890 

(parameters transfer) based on the data pattern transfer          and         891 

so as to reduce the flatten forecasts and improve the model transferability.  892 

Step 3: Iteration: the stopping rules are employed to terminate the computation 893 

process. If the value of the objective function would not decline in the next 100 894 

consecutive iterations, the accuracy of the ANN model would no longer be increased, 895 

which causes the calculation to stop. Once the maximum of iterations is attained, the 896 

training and validating processes stop. Otherwise, update the iteration, and repeat Step 897 

2. The given        can be used for multi-step-ahead forecasts under missing data 898 

conditions in the testing stage.  899 

Output: the optimized structure (multi-output and number of hidden layers) and 900 

parameters (the learning rate, the weight vector and the bias vector) of the TL-LSTM 901 

model would be saved and the TL-LSTM model would create the deterministic water 902 

quality forecasts for different monitoring stations.  903 
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Abstract 

Quantifying the uncertainty of probabilistic water quality forecasting induced by missing 

input data is fundamentally challenging. This study introduced a novel methodology for 

probabilistic water quality forecasting conditional on point forecasts. A Multivariate 

Bayesian Uncertainty Processor (MBUP) was adopted to probabilistically model the 

relationship between the point forecasts made by a deep learning artificial neural network 

(ANN) and their corresponding observed water quality. The methodology was tested 

using hourly water quality series at an island of Shanghai City in China. The novelties 

relied upon: firstly, the use of a transfer learning algorithm to overcome flatten- and 

under-prediction bottlenecks of river water quality raised in artificial neural networks, 

and secondly, the use of the MBUP to capture the dependence structure between 

observations and forecasts. Two deep learning ANNs were used to make the point 

forecasts. Then the MBUP approach driven by the point forecasts demonstrated its 

competency in improving the accuracy of probabilistic water quality forecasts 

significantly, where predictive distributions encountered in multi-step-ahead water 

quality forecasts were effectively reduced to small ranges. The results demonstrated that 

the deep learning plus the post-processing approach suitably extracted the complex 

dependence structure between the model’s output and observed water quality so that 

model reliability (Containing Ratio > 85% and average Relative Band-width < 0.25) as 

well as forecast accuracy (Nash-Sutcliffe Efficiency coefficient > 0.8 and Root-Mean-

Square-Error < 0.4 mg/l) for future horizons from 1 hour up to 10 hours were 

significantly improved, even if the input data missing rate reaches 50%.  

Abstract
Click here to download Abstract: Abstract.docx

http://ees.elsevier.com/hydrol/download.aspx?id=1573980&guid=e5878d0f-f59b-4472-a688-9972b949b15e&scheme=1


1 

• For the first time a TL-LSTM model is proposed to model water quality forecasts. 

• Deep learning plus post-processing enhances probabilistic water quality forecasts. 

• Deep learning improves accuracy of deterministic water quality forecasts. 

• Transfer learning overcomes flatten/under-predictions induced by missing input data. 
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Fig. 1. Probabilistic forecast architecture. (a) LSTM neural network model. (b) Hybrid of 

Transfer Learning and LSTM model (TL-LSTM). (c) MBUP approach.  

Figures
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Fig. 2. Study area and water quality data collection. (a) Meteorological and river water 

quality monitoring stations in the island of Shanghai City. (b) Water quality data 

collection from monitoring stations.  
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Fig. 3. Statistic indexes of DO, NH3-N and CODCr concentrations at five regions (a–e) in 

the island. The abbreviations (max, ave, min, std) denote the maximum, average, 

minimum and standard deviation respectively. The time period of statistic covers four 

years (31/08/2015-31/08/2019).  
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Fig. 4. Model performance of deterministic forecasts concerning water quality under 

different data missing rates (0 − 0.9, step = 0.1) at horizons t+2, t+6, t+10 at the Station 

S10 in the testing stage. In comparison analysis between TL-LSTM and LSTM models, 

the position of data missing in the initial data input always kept consistent in both models. 

That was to say, the position of data missing was randomly generated for the TL-LSTM 

model while the LSTM model had the same position of data missing with the TL-LSTM 

model. The computation result was the average result of 10 runs of each model. The 

value of RMSE was the average RMSE of water quality forecasts (DO, NH3-N and 

CODCr values with standardization) while the value of NSE was the average NSE of 

water quality forecasts (DO, NH3-N and CODCr values with standardization).  
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Fig. 5. Model performance of deterministic forecasts concerning water quality (DO, NH3-

N, and CODCr) under the data missing rate (= 0.5) at horizons t+2, t+6, t+10 at different 

stations (S1 – S10) in the testing stages. In comparison analysis between TL-LSTM and 

LSTM models, the position of data missing in the initial data input always kept consistent 

in both models. The computation result was the average result of 10 runs of each model. 

The value of RMSE was the average RMSE of water quality forecasts (DO, NH3-N and 

CODCr values with standardization) while the value of NSE was the average NSE of 

water quality forecasts (DO, NH3-N and CODCr values with standardization).  
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Fig. 6. Deterministic water quality forecast results (DO, NH3-N and CODCr) of LSTM 

and TL-LSTM models under the data missing rate (= 0.5) at horizon t+10 in the testing 

stages at the Station S1 (East region), the Station S7 (North region) and the Station S10 

(Center region) respectively. In comparison analysis between TL-LSTM and LSTM 

models, the position of data missing in the initial data input always kept consistent in 

both models. The computation result was the average result of 10 runs of each model. 

The test event with small-scale (a) occurred at the Station S10. The test event with 

medium-scale (b) occurred at the Station S1. The test event with high-scale (c) occurred 

at the Station S7.  
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Fig. 7. Quantile-Quantile (QQ) plots of probabilistic water quality (DO, NH3-N and 

CODCr) forecasts at the Station S7 under the data missing rate (= 0.5) at horizons t+2, t+6, 

t+10 in the testing stages.  
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Fig. 8. Probabilistic water quality (DO, NH3-N and CODCr) forecasts for Station S7 under 

the data missing rate (= 0.5) at horizon t+10 in the testing stages. The range is equal to 

the forecast minus the observation.  
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Table 1. Input data of deterministic forecast models under missing data conditions 
Stage TL-LSTM model LSTM model 

Training       
        

        
    

         
    

      
        

        
    

        
    Validating       

        
        

    
        

    

Testing       
        

        
    

        
    

Notes: Each stage (training, validating and testing) of the dataset was erased with one percentage (e.g. 50%) 

during the establishment and application of the LSTM models.    and     were the selected RTSs.    was 

the incomplete TTS. Take the incomplete TTS with one missing segment       
    

    
   for example,   

  

was the missing segment,   
  and   

  were the complete segments. If   
  was at the beginning or the end of 

  ,   
  or   

  was empty dataset.    was the highest correlation complete sequence of    while     was the 

highest correlation complete sequence of   . 

 

 

Table 2. Basic information on ten monitoring stations in five regions 
Region Station Type of pollution Source 

East S1 & S2 Nonpoint source Aquaculture or natural area 

South S3 Point source Industry 

West S4-S6 Point source Industry 

North S7 Nonpoint source Farmland and livestock 

Center S8-S10 Point source Urban domestic sewage 

 
 

Table 3. Statistic indexes of the other 9 input factors at five regions 

Region Index 
Factor 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

East 

Max. 13.6 1380.6 1524.8 1087.3 14.9 39.8 53.2 9.2 20.7 

Ave. 7.5 271.0 351.3 241.6 12.9 17.6 22.7 3.4 16.5 

Min. 6.9 200.0 5.8 7.1 4.3 0.0 0.0 0.0 0.0 

South 

Max. 11.5 1460.7 1337.0 948.5 14.7 35.8 47.8 4.4 24.5 

Ave. 7.5 219.7 334.4 229.4 12.0 18.1 19.7 1.8 17.8 

Min. 6.2 153.5 4.2 6.4 3.6 0.0 0.0 0.0 0.0 

 

West 

 

Max. 13.7 1388.6 1358.2 980.3 15.2 39.8 43.6 4.3 21.2 

Ave. 7.5 217.1 462.6 315.3 12.0 17.9 14.6 1.6 16.9 

Min. 6.3 128.1 7.6 5.8 2.1 0.0 0.0 0.0 0.0 

 

North 

 

Max. 19.3 1402.1 1679.2 1191.5 14.3 39.8 51.7 6.7 19.7 

Ave. 7.5 234.5 453.9 307.4 11.3 17.8 20.5 2.4 15.3 

Min. 6.9 180.1 8.4 10.3 1.8 0.0 0.0 0.0 0.0 

 

Center 

 

Max. 11.5 1400.9 1113.8 751.8 14.6 32.2 45.2 3.6 22.3 

Ave. 7.5 229.9 439.4 298.7 11.3 17.6 15.9 0.7 17.2 

Min. 6.8 180.3 7.9 4.7 0.9 1.3 0.0 0.0 0.0 

The abbreviations of Max, Ave and Min denoted the maximum, average and minimum. The factors in 

columns No. (1)-(9) were pondus hydrogenii (/), oxidation-reduction potential (mV), conductivity (S/m), 

turbidity (mg/l), water level (m), water temperature (℃), precipitation (mm/h), wind speed (m/s) and light 

intensity (mega-joule/m
2
) respectively.  

Tables
Click here to download Table: Tables.docx

http://ees.elsevier.com/hydrol/download.aspx?id=1574026&guid=a0df625f-79c3-4578-9246-ccc75ab8f8ee&scheme=1


2 

 

Table 4. Parameters of the LSTM and TL-LSTM models at horizon t+10 in the training 

and validating stages 

Model 
Data missing 
rate 

Parameters Training Validating 

Gmax Neurons 
Hidden 

 layer 

Learning  

rate 

Dropout  

probability 
RMSE NSE RMSE NSE 

LSTM a 0.5 1000 20 1 0.001 0.5 0.65 0.64 0.68 0.62 

   30    0.43 0.72 0.42 0.73 

   40    0.58 0.67 0.61 0.64 

   50    0.71 0.61 0.71 0.61 

LSTM 0.5 1000 30 2 0.001 0.5 0.37 0.71 0.39 0.70 

    3   0.31 0.75 0.29 0.76 

    4   0.49 0.68 0.51 0.67 

TL-LSTM b 0.5 1000 30 3 0.001 0.5 0.24 0.88 0.23 0.89 

A value in bold indicated the optimal parameter. The data missing rate (= 0.5) denoted that all DO, NH3-N 

and CODCr time series at 10 stations missed 50% of datasets and each stage (training, validating and testing) 

of the dataset was erased with the same percentage (i.e. 50%) during the establishment and application of 

the LSTM models. The computation result was the average result of 10 runs of each model. The value of 

RMSE was the average RMSE of water quality forecasts (DO, NH3-N and CODCr values with 

standardization) while the value of NSE was the average NSE of water quality forecasts (DO, NH3-N and 

CODCr values with standardization).  
a
 LSTM denoted the long-short term memory model. 

b
 TL-LSTM denoted the hybrid of transfer learning and long-short term memory model.  
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Table 5. Impact of data missing in meteorological and water quality factors on the 

performance of LSTM models at the Station S7 in the testing stage.  

Scenario: missing factor Model Indicator 
Horizon 

t+2 t+6 t+10 

No.1: Precipitation 

TL-LSTM 
RMSE 0.19 0.24 0.29 

NSE 0.87 0.82 0.77 

LSTM 
RMSE 0.22 0.28 0.33 

NSE 0.83 0.78 0.73 

No.2: Wind speed 

TL-LSTM 
RMSE 0.16 0.21 0.27 

NSE 0.92 0.86 0.81 

LSTM 
RMSE 0.19 0.26 0.32 

NSE 0.89 0.84 0.79 

No.3: NH3-N 

TL-LSTM 
RMSE 0.22 0.27 0.32 

NSE 0.88 0.83 0.79 

LSTM 
RMSE 0.31 0.38 0.48 

NSE 0.83 0.78 0.69 

No.4: CODCr 

TL-LSTM 
RMSE 0.21 0.28 0.30 

NSE 0.90 0.85 0.81 

LSTM 
RMSE 0.32 0.36 0.46 

NSE 0.84 0.80 0.71 

No.5: All meteorological 

and water quality factors 

TL-LSTM 
RMSE 0.26 0.31 0.39 

NSE 0.86 0.81 0.76 

LSTM 
RMSE 0.37 0.43 0.54 

NSE 0.80 0.75 0.64 

The value of RMSE was the average RMSE of water quality forecasts (DO, NH3-N and CODCr values with 

standardization) while the value of NSE was the average NSE of water quality forecasts (DO, NH3-N and 

CODCr values with standardization).  
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Table 6. Impact of data missing positions on the performance of LSTM models at the 

Station S7 in the testing stage 

Scenario: data missing position Model Indicator 
Horizon 

t+2 t+6 t+10 

No.1: Peak data  

possessing the missing rate (0.5) 

TL-LSTM 
RMSE 0.22 0.29 0.37 

NSE 0.84 0.80 0.75 

LSTM 
RMSE 0.26 0.38 0.49 

NSE 0.81 0.76 0.69 

No.2: Trough data  

possessing the missing rate (0.5) 

TL-LSTM 
RMSE 0.17 0.22 0.27 

NSE 0.93 0.87 0.83 

LSTM 
RMSE 0.21 0.25 0.30 

NSE 0.90 0.84 0.80 

No.3: Peak and trough data possessing 

 the missing rate (0.25) respectively 

TL-LSTM 
RMSE 0.20 0.25 0.31 

NSE 0.89 0.84 0.78 

LSTM 
RMSE 0.24 0.28 0.35 

NSE 0.85 0.80 0.73 

No.4: Non-peak and non-trough data 

possessing the missing rate (0.5) 

 

TL-LSTM 
RMSE 0.19 0.24 0.29 

NSE 0.91 0.85 0.80 

LSTM 
RMSE 0.22 0.27 0.33 

NSE 0.88 0.82 0.77 

The value of RMSE was the average RMSE of water quality forecasts (DO, NH3-N and CODCr values with 

standardization) while the value of NSE was the average NSE of water quality forecasts (DO, NH3-N and 

CODCr values with standardization). 

 

 

Table 7. Results of probabilistic water quality forecasting under the data missing rate (= 

0.5) at horizons t+2, t+6, t+10 in the testing stages  

Station Model Indicator 
Horizon 

t+2 t+6 t+10 

S1 

TL-LSTM plus MBUP 
CR(%) 96.17 92.39 88.62 

RB 0.09 0.18 0.25 

LSTM plus MBUP 
CR(%) 95.22 90.04 83.56 

RB 0.12 0.22 0.30 

S7 

TL-LSTM plus MBUP 
CR(%) 95.07 91.43 85.96 

RB 0.13 0.21 0.30 

LSTM plus MBUP 
CR(%) 94.24 89.25 80.07 

RB 0.15 0.27 0.38 

S10 

TL-LSTM plus MBUP 
CR(%) 98.63 93.17 89.66 

RB 0.08 0.15 0.22 

LSTM plus MBUP 
CR(%) 97.48 91.24 84.39 

RB 0.10 0.21 0.26 

The value of CR was the average CR of water quality forecasts (DO, NH3-N and CODCr) while the value of 

RB was the average RB of water quality forecasts (DO, NH3-N and CODCr).  
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