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Direct and indirect genetic effects in parent-offspring trios

Abstract

Indirect genetic effects from relatives may result in misleading quantifica-

tions of heritability, but can also be of interest in their own right. In this

paper we propose Trio-GCTA, a model for separating direct and indirect ge-

netic effects when genome-wide single nucleotide polymorphism data have

been collected from parent-offspring trios. The model is applicable to phe-

notypes obtained from any of the family members. We discuss appropriate

parameter interpretations and apply the method to three exemplar pheno-

types; offspring birth weight, maternal relationship satisfaction, and pater-

nal body-mass index, using real data from the Norwegian Mother, Father

and Child Cohort Study (MoBa).

Keywords: Indirect genetic effects; within-family; Trio-GCTA; MoBa;

gene-environment correlation



Introduction

Most human traits exhibit some degree of heritability (Polderman et al. 2015).

Some phenotypes are characteristics not only of individuals, but also depend

on the influence of other individuals. While direct genetic effects refer to

how the phenotype of an individual depends on their own genotype, indirect

genetic effects refer to how it depends on the genotypes of others (McAdam,

Garant, and Wilson 2014). In this paper we describe a model for separat-

ing direct genetic effects from the indirect genetic effects of family members

when genome-wide single nucleotide polymorphism (SNP) data have been

collected from parent-offspring trios.

As parents transmit half their complement chromosomes to their chil-

dren, the genomes of parents and offspring are correlated. Because the same

genetic variants can have both direct and indirect effects, failing to account

for the indirect genetic effects of relatives when attempting to measure her-

itability can result in misleading quantifications of the importance of direct

genetic effects (Eaves et al. 2014; Young et al. 2019).

Indirect genetic effects can also be of interest in their own right. With

respect to the focal individual (i.e., the individual whose phenotype is the fo-

cus of study), indirect genetic effects are part of the environment and may be

of great interest when trying to understand causes of individual differences.

In this paper we are concerned with indirect genetic effects underlying intra-

familial dynamics. This can include instances where heritable characteristics

of parents affect offspring development. For example, maternal influence on

offspring health through the intrauterine environment (Evans et al. 2019),

or where parents affect offspring development by providing an advantageous

rearing environment. It also includes instances where heritable character-

istics of the offspring evoke responses in their parents. For example, when
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child behavior influences the mental well-being of their parents.

The quantitative genetics literature distinguishes between two approaches

to modelling indirect genetic effects. Trait-based models specify indirect

genetic effects on the phenotype of the focal individual mediated by the

phenotypes of other individuals. Variance-partitioning models avoid speci-

fication of the phenotypes that underlie the indirect genetic effects, instead

quantifying the total contributions from these effects while being agnostic

as to the underlying mechanisms (Bijma 2014).

The emergence of large-scale genotype data in population-based cohorts

has provided new opportunities for developing methods to separate direct

and indirect genetic effects. This was leveraged by Eaves et al. (2014) who

proposed a variance-partitioning method for separating indirect maternal

genetic effects from direct genetic effects with respect to an offspring pheno-

type, relying on genome-wide SNP data from mother-offspring pairs. In the

current manuscript we extend the work of Eaves et al. (2014) to separate

direct and indirect genetics effects within parent-offspring trios. We discuss

alternative interpretations of variance components depending on the role

of the focal individual, useful restricted model specifications and apply the

method to three etiologically diverse exemplar phenotypes (offspring birth

weight, maternal partner relationship satisfaction and paternal body mass

index) using real data from the Norwegian Mother, Father and Child Cohort

Study (Magnus et al. 2016).

Model formulation

Yang et al. (2010) introduced a method for quantifying additive genetic

variance contributions from all measured SNPs using a linear mixed effects

model. Extensions of this methodology include formulations for quantifying
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dominance genetic effects (Zhu et al. 2015), gene-environment interactions

(Yang et al. 2013), parent-of-origin effects (Laurin et al. 2018), maternal ef-

fects (Eaves et al. 2014) and avoiding bias from environmental effects (Young

et al. 2018). The current approach (Trio-GCTA) uses parent-offspring trios

to quantify the importance of direct and indirect genetic effects within the

nuclear family. We refer to the individual whose phenotype is under study

as the focal individual, noting that the method is applicable regardless of

who is the ’owner’ of the phenotype.

In order to formulate a model for direct and indirect genetic effects, we

assume that phenotypic measures have been obtained from a focal individual

in K parent-offspring trios, and that genotypes for the same M SNPs are

available for all individuals. We represent the three K × M matrices of

maternal, paternal and offspring standardized genotype dosages (Zhu et

al. 2015) by Zm, Zp and Zo, respectively, arranged so that row k corresponds

to the same parent-offspring trio. A linear model for the phenotypes can

then be formulated as

y = Xβ + Zmum + Zpup + Zouo + e,

where y is a K×1 vector of continuous phenotypes, X is a K×P matrix of

measured covariates with P × 1 vector of coefficients β, um, up and uo are

M × 1 random vectors of additive genetic effects associated with the mater-

nal, paternal and offspring standardized genotype dosages, respectively, and

e is a K × 1 vector of residual effects.

The genetic and residual effects are assumed to follow a multivariate

normal distribution, where the different types of genetic effects may be de-

pendent but individual SNP effects are independent. The residual effects
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are assumed to be independent of the genetic effects and across individuals
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Although independence is assumed for the effect size of individual SNPs, this

formulation makes no assumption about the structure of linkage disequilib-

rium (Yang et al. 2016). Because the effect sizes are assumed identically

distributed, the standardization we use for genotypes does however imply

that the unstandardized SNPs have effect sizes that decrease with increasing

allele frequency (Yang et al. 2017). The expected covariance structure of the

phenotype across all individuals is given by:
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σ2m, σ2p and σ2o are the variances of the maternal, paternal and offspring

genetic effects, respectively, σom is the covariance between the offspring and

maternal genetic effects, σop is the covariance between the offspring and

paternal genetic effects, σpm is the covariance between the paternal and

maternal genetic effects and σ2e is the residual variance. When mating is

random, the covariance between the maternal and paternal effects are not

expected to contribute to the variance of the phenotype and the total vari-

ance decomposition is therefore

Var(yk) = σ2m + σ2p + σ2o + σom + σop + σ2e .
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Depending on the role of the focal individual, the model parameters have

different interpretations. If it is an aspect of the offspring phenotype that is

under study, σ2m and σ2p corresponds to variance attributable to indirect ge-

netic maternal and paternal effects, respectively, whereas σ2o is the variance

due to direct genetic effects. The components σom and σop are the covari-

ances between the direct offspring genetic effect and the indirect maternal

and paternal genetic effects, respectively. These parameters quantify the

extent to which the same variants contribute to direct and indirect genetic

effects. With respect to the offspring, the maternal and paternal genetic

effects form part of the environment so these covariance terms may there-

fore also be interpreted as measuring variability due to gene-environment

correlations. The component σpm is the covariance between the indirect

maternal and paternal effects and is a measure of the extent to which the

same variants contribute to indirect genetic effects. Sex-dependent expres-

sion of genetic effects has been studied with respect to a variety of phe-

notypes using family designs (Neale and Cardon 2013). A weak correlation

between maternal and paternal effects would indicate a qualitative sex differ-

ence, wherein mothers and fathers influence their offspring through different

heritable traits (alternatively it could be that ostensibly the same trait is

under the influence of different genetic factors when expressed in mothers

and fathers). A correlation of unity but different magnitude between the

maternal and paternal effect would indicate a quantitative sex difference,

wherein mothers and fathers influence the offspring by the same heritable

traits, but to a quantitatively different extent. Sex-dependent expression of

parental effects can therefore potentially reveal insights into differences in

maternal and paternal effects on the offspring. σ2e is the residual variance of

the phenotype.
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If it is an aspect of a maternal phenotype that is under study, σ2m is

the variance due to direct genetic effects, whereas σ2p and σ2o measure vari-

ability due to indirect genetic effects. The paternal and offspring genetic

effects are environmental from the perspective of the mother. Although the

underlying mechanisms may be distinct, a maternal phenotype may depend

on interactions with both their partner and offspring. σpm and σom are the

covariance between the direct maternal genetic effect, and the indirect pa-

ternal and offspring genetic effects, respectively. If the same genetic variants

contribute to direct and indirect genetic effects, these covariance terms are

expected to differ from zero. Assuming that mating is random, a genetic

correlation between the direct maternal and indirect paternal effect is not

expected to affect the phenotypic variance, because maternal and paternal

genotypes are independent. However, as the offspring and maternal geno-

types are correlated, a genetic correlation between the direct maternal and

indirect offspring effect implies a gene-environment correlation that will ei-

ther increase or decrease the phenotypic variance depending on the sign of

σom. σop is the covariance between the indirect paternal and offspring effects

and is a measure of the extent to which the same additive genetic effects

contribute to the indirect genetic effects. σ2e is the residual variance of the

phenotype. These interpretations are conversely the same if it is a paternal

phenotype that is under study. Table 1 summarizes how interpretation of

parameters change depending on the role of the focal individual.
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Table 1: Interpretation of parameters with respect to the role of the focal
individual.

Role Direct Indirect Direct-Indirect Indirect-Indirect

Maternal σ2m σ2p, σ
2
o σom, σpm σop

Paternal σ2p σ2m, σ2o σop, σpm σom
Offspring σ2o σ2m, σ2p σom, σop σpm

Note. Direct genetic effects parameters quantify the importance of genetic
variation attributable to the focal individual, whereas indirect genetic effects
parameters quantify the importance of genetic variation attributable to the
other family members. Direct-indirect genetic effects parameters quantify
the covariance between direct and indirect effects, whereas Indirect-indirect
genetic effects parameters quantify the covariance between indirect genetic
effects.

Special cases

Several other models of potential interest can be obtained as special cases of

the general model described above. Young et al. (2018) introduced related-

ness disequilibrium regression (RDR) as a method to avoid environmental

bias in heritability estimates by modelling parental genetic nurturing effects

in addition to direct genetic effects. The RDR model can be specified by

setting vg = σ2o , ve∼g = σ2
m
2 =

σ2
p

2 =
σpm
2 and cg,e = σom

2 =
σop
2 , where vg is

the variance due to direct genetic effects, ve∼g is the variance due to parental

genetic effects and cg,e is the covariance between the direct and the parental

genetic effects. Therefore, the RDR model can also be seen as assuming the

maternal and paternal genetic effects are the same and of equal magnitude.

If maternal or paternal effects are not of specific interest on their own, this

will likely be a more effective way of accounting for indirect parental effects,

as only four variance parameters are required compared to seven under the

general model.

Eaves et al. (2014) proposed a method (M-GCTA) for jointly estimating
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the variance explained by direct genetic effects, indirect maternal genetic

effects and their covariance with respect to an offspring phenotype. The

M-GCTA model can be obtained with the constraints σ2p = σop = σpm = 0.

For many research questions, especially those related to pre- and peri-natal

phenotypes, this may be a sufficient model.

Under the original GCTA model (Yang et al. 2010) all genetic effects

are attributed to the focal individual and can be obtained by omitting all

indirect genetic effects from the model.

In the applications below we explore further interpretations of the model

parameters when the focal individual has different roles. In the supplemen-

tary material we provide a simulation study demonstrating that parameters

can be recovered when a trait is generated as a function of correlated direct

and indirect genetic effects.

Applications

We applied the Trio-GCTA method to a set of phenotypes measured in

parent-offspring trios participating in the Norwegian Mother, Father and

Child Cohort Study (MoBa, Magnus et al. 2016). MoBa is a population-

based pregnancy cohort study conducted by the Norwegian Institute of Pub-

lic Health. Participants were recruited from all over Norway from 1999-2008.

The women consented to participation in 41% of the pregnancies. The co-

hort comprises 114,500 children, 95,200 mothers and 75,200 fathers. The

current study is based on version 11 of the quality-assured data files. In-

formation was also obtained via a linkage to The Medical Birth Registry

(MBR), a national health registry containing information about all births

in Norway.

Blood samples were obtained from both parents during pregnancy and
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from mothers and children (umbilical cord) at birth. The project Bet-

ter Health by Harvesting Biobanks (HARVEST) sampled 11,000 parent-

offspring trios for genotyping from MoBa’s biobank at random. Genotyping

was performed using llumina HumanCoreExome-12 v.1.1 and HumanCoreExome-

24 v.1.0 arrays. The pre-imputation quality control and imputation proce-

dure is described in Helgeland et al. (2019). Post-imputation, we removed

individuals with more than 10% missing genotypes and SNPs with imputa-

tion info score less than 0.9 or minor allele frequency less than 0.05. This

procedure left 8157 complete triads and four and a half million SNPs eligible

for analysis.

Closely related individuals can disproportionally influence genetic vari-

ance estimates and introduce confounding from environmental effects not

specified in the model (Yang et al. 2017). We used a threshold of 0.10 for

the largest allowed genetic correlation between any two individuals (ignoring

parent-offspring pairs), reasoning that this will exclude most relations likely

to share environments without substantially reducing the sample size. For

pairs of individuals exceeding the threshold, we removed one individual at

random. This procedure left 7612 complete trios.

Out of the retained trios, 7605 had response data on birth weight, 6702

on relationship satisfaction and 7290 on body mass index. Due to attrition,

more responses are missing from later waves of data collection. We refer to

Magnus et al. (2016) for a description of attrition from the MoBa study.

Example 1: Birth weight (offspring phenotype)

Both offspring and maternal genes are likely to be involved in determin-

ing birth weight as the intrauterine environment is provided by the mother.

Both traditional family (Lunde et al. 2007; Magnus 1984) and molecular
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genetic designs (Warrington et al. 2019) have previously indicated substan-

tial portions of variance in birth weight determined by both direct offspring

and indirect maternal genetic effects. We applied to current method to

birth weight measures in order to obtain a comparison to previous findings.

This method further allows the correlation between maternal and offspring

genetic effects to be estimated.

Example 2: Relationship satisfaction (maternal phenotype)

Maternal reports of relationship satisfaction between mothers and fathers

have been found to decrease on average following the birth of a child (Dyrdal

et al. 2011). A possible explanation for this decrease is that relationship sat-

isfactions to some degree depend on aspects of the infant phenotype. We

therefore investigated whether maternal reports of relationship satisfaction

six months after birth are influenced by offspring genotype. Measures of

relationship satisfaction were obtained by summation of the ten items com-

prising the Relationship Satisfaction scale (Røysamb, Vittersø, and Tambs

2014).

Example 3: Body mass index (paternal phenotype)

Body mass index (BMI) in adulthood has both genetic and environmental

components of causation. Yang et al. (2015) found that 27% of variability

in BMI could be accounted for by direct genetic effects based on a detailed

analysis of genome-wide SNP data. We analyzed paternal BMI obtained

from maternal ratings of their partner’s weight and height. If any maternal

biases are inherent in these ratings, including an indirect maternal genetic

effect may allow us to still obtain valid estimates of the contributions from

direct genetic effects.
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A box-cox transformation and a scaling to zero mean and unit variance

was applied to all phenotype measures. Because of the expected mean dif-

ference in birth weight between boys and girls, we included gender as a

covariate. All models were fit using the OpenMx package (Neale et al. 2016)

in R (R Core Team 2019).

Table 2: Parameter estimates and standard errors from the fitted models.

Parameter BW RS BMI

Est SE Est SE Est SE

σ2m 0.075 0.052 0.103 0.053 0.023 0.036

σ2p 0.013 0.019 0.064 0.043 0.304 0.055

σ2o 0.106 0.065 0.102 0.071 0.011 0.018

σom 0.024 0.049 -0.053 0.051 -0.010 0.021

σop 0.004 0.031 -0.012 0.045 -0.057 0.043

σpm 0.031 0.029 0.075 0.039 0.065 0.039

σ2e 0.761 0.051 0.796 0.054 0.728 0.053

Note. BW = Offspring birth weight; RS = Maternal relationship satisfaction
six months after birth; BMI = Paternal body mass index.

Results from applying the full model to the three phenotypes are pre-

sented in table 2. The strongest genetic influences on birth weight were

due to direct offspring effects, accounting for 10.6% of the variation. In-

direct maternal effects accounted for another 7.5%, whereas there was no

indication of indirect paternal effects. A positive covariance between direct

offspring and indirect maternal genetic effects accounted for 2.4% of the

variance, corresponding to a correlation estimated as σom/(σoσm) = 0.27.

For maternal relationship satisfaction, direct maternal genetic effects

accounted for 10.3% of the variance. An almost equally large fraction of

10.2% was attributable to indirect offspring genetic effects, while indirect

paternal genetic effects accounted for 6.4%. The correlation between direct

maternal and indirect offspring genetic effects was estimated as -0.52, the
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correlation between direct maternal and indirect paternal genetic effects

as 0.92 and the correlation between indirect paternal and offspring genetic

effects as -0.15.

Genetic influences on paternal BMI were mainly attributable to direct

paternal effects, accounting for 30.4% of the total variance.

For all three phenotypes, direct effects accounted for the largest fraction

of genetic influences. These results are consistent with the general findings

from twin studies, pointing to direct additive genetic effects as the major sys-

tematic source of variation for most traits (Polderman et al. 2015; McAdams

et al. 2014).

In the analysis of birth weight, we considered the offspring as the focal

individual. Our analysis indicated contributions from both offspring and

maternal genetic effects, and a larger fraction from direct than from indi-

rect maternal effects. Estimates from biometric analysis of pedigrees have

attributed 30 - 50% of the variability in birth weight to direct genetic ef-

fects and around 20% to indirect maternal genetic effects (Magnus 1984;

Lunde et al. 2007). Two other studies, relying on similar methodology as

in our application, have estimated direct offspring genetic effects to account

for nearly 30% of the variation and indirect maternal genetic effects to ac-

count for nearly 10% (Warrington et al. 2019; Qiao et al. 2020). Similar

to our estimate, both studies also reported a positive correlation between

direct and indirect effects, suggesting that partially the same genes may

be involved in these effects. The relative importance of direct versus indi-

rect maternal genetic effects estimated in our analysis are thus consistent

with prior findings. The absolute magnitudes of our estimates are how-

ever generally smaller. Compared to findings from pedigree designs, this is

expected based on the different assumptions underlying these methodolo-
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gies (see Yang et al. [2017] and Young [2019] for discussions). It is more

difficult to reason about discrepancies between other studies using similar

approaches until large enough samples are available to obtain estimates with

satisfactory precision.

In the second exemplar analysis, the mother was the focal individual

reporting on her satisfaction with the relationship to her partner. We esti-

mated that a fraction of the trait variance could be ascribed to all family

members, with strongest contributions from direct maternal and indirect off-

spring genetic effects. The strong positive correlation between maternal and

paternal effects may suggest that the same genes contribute to the mater-

nal and paternal effects, whereas the negative correlation between maternal

and offspring genetic effects may indicate that genes have opposing effect

when expressed in mothers and offspring. A prior twin study estimated that

around half of the variability in relationship satisfaction could be ascribed

to direct genetic effects (South et al. 2016), but we are unaware of other

attempts to quantify the importance of genetic effects expressed in other

family members. These initial findings may motivate further studies into

how relationship satisfaction may depend on characteristics of partners and

children.

The last application concerned BMI where fathers were the focal indi-

vidual in the analysis. Because weight and height values were provided from

their partner, we considered the possibility that a component of the BMI

value could be attributed to maternal genetic effects. This was not indicated

in the analysis, and we estimated that approximately 30% of the variability

was due to direct genetic effects. This is close to the estimates from Yang

et al. (2015) of 27% and Young et al. (2018) of 34% which relied on genome-

wide SNP data. Results from twin and family designs are typically larger,
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with estimates ranging from 40 to 90% and 24 to 81%, respectively (Maes,

Neale, and Eaves 1997; Elks et al. 2012).

Considering the relatively large uncertainty associated with the param-

eter estimates, the results from the applications should be interpreted with

caution. We emphasize that our analyses are not intended as a comprehen-

sive study of the causes of variation for the phenotypes we examined, but

rather are meant to illustrate how the proposed model can be used to in-

vestigate a diverse range of research questions. Considerably larger sample

sizes may be necessary to justify reliable inferences about the model param-

eters (Visscher et al. 2014; Yang et al. 2017). For a more detailed analysis

it would likely be preferable to fit alternative nested models as described

above and compare whether simpler models are equally supported by the

data. We did not pursue this approach here because with the current sample

size it is unlikely that we could detect relevant aspects of alternative model

specifications. However, sufficiently large samples are increasingly available.

Discussion

We proposed a new method, Trio-GCTA, for resolving direct and indirect

genetic effects within parent-offspring trios when genome-wide SNP data is

available. The model formulation is invariant to which of the family members

is the focal individual in the analysis; only the interpretation of parameters

(in terms of direct and indirect genetic effects) changes in different cases.

We illustrated this by applying the method to three exemplar phenotypes

using real data on offspring, maternal and paternal phenotypes. Results

from the applications highlighted the potential of the method for clarifying

intra-familial dynamics.

An advantage of the proposed method is the ability to gain insights
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into the dynamics of intra-familial processes without requiring specification

of the specific traits that mediate the indirect genetic effects. Variance-

partitioning of direct and indirect genetic effects may therefore serve as a

useful first step, potentially motivating more detailed studies of specific pro-

cesses. Trait-based models (Bijma 2014), including explicit formulations of

the hypothesized mediating variables may potentially provide better under-

standing of such mechanisms. However, in addition to the computational

challenges, such specifications would also contradict one of the initial moti-

vations for the GCTA model which avoid bias from common environmental

effects by relying on measures obtained from unrelated individuals (Yang

et al. 2011).

Several other methodological approaches outside those we have already

discussed have been developed to address questions related to indirect ge-

netic effects from relatives. Various kinships have been used to specify vari-

ance partitioning (York et al. 2009; York et al. 2013) and trait-based models

(Maes, Neale, and Eaves 1997), and have a long history in quantitative ge-

netics (Lynch, Walsh, et al. 1998). The polygenic score approach taken in

Bates et al. (2018) and Kong et al. (2018) is related to our method, esti-

mating the contributions of indirect genetic effects associated with specific

parental traits.

There are several issues related to estimating genetic variance parameters

from genome-wide SNP data. Yang et al. (2017) emphasized that genetic

variance parameters based on measured (or imputed) genome-wide SNPs dif-

fer from population parameters because they are dependent on the specific

set of SNPs included in the analysis. They addressed several issues relat-

ing to estimating genetic variance parameters from genome-wide SNP data,

and these considerations apply also to the method proposed in the current
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paper. There are likely further challenges that are specifically related to the

use of parent-offspring trios and the method we have proposed here. First,

the full model has seven variance parameters, which will likely require large

sample sizes in order to obtain reliable estimates. Second, we have assumed

that mating is random, and it is currently unclear how assortative mating

could affect inferences under different models of intra-familial interactions.

Third, although the distinction between direct and indirect genetic effects of

parents and offspring may be an adequate description of many phenotypes,

other relatives such as siblings may also play important roles in determining

individual differences. Fourth, we have assumed that direct and indirect

genetics effects combine additively in influencing the phenotype. Both dom-

inance and epistatic effects within individuals, but also interactions between

direct and indirect genetic among family members would violate this.

We believe the proposed method will provide a useful tool for researchers

interested in the complexity of intra-familial dynamics, allowing investiga-

tions of research questions that may otherwise be difficult to study.
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