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Abstract
We study a financial market where the risky asset is modelled by a geometric Itô-Lévy
process, with a singular drift term. This can for example model a situation where the asset
price is partially controlled by a company which intervenes when the price is reaching a
certain lower barrier. See e.g. Jarrow and Protter (J Bank Finan 29:2803–2820, 2005) for an
explanation and discussion of this model in the Brownian motion case. As already pointed
out by Karatzas and Shreve (Methods of Mathematical Finance, Springer, Berlin, 1998) (in
the continuous setting), this allows for arbitrages in the market. However, the situation in the
case of jumps is not clear. Moreover, it is not clear what happens if there is a delay in the
system. In this paper we consider a jump diffusion market model with a singular drift term
modelled as the local time of a given process, and with a delay θ > 0 in the information flow
available for the trader. We allow the stock price dynamics to depend on both a continuous
process (Brownian motion) and a jump process (Poisson random measure). We believe that
jumps and delays are essential in order to get more realistic financial market models. Using
white noise calculus we compute explicitly the optimal consumption rate and portfolio in
this case and we show that the maximal value is finite as long as θ > 0. This implies that
there is no arbitrage in the market in that case. However, when θ goes to 0, the value goes to
infinity. This is in agreement with the above result that is an arbitrage when there is no delay.
Our model is also relevant for high frequency trading issues. This is because high frequency
trading often leads to intensive trading taking place on close to infinitesimal lengths of time,
which in the limit corresponds to trading on time sets of measure 0. This may in turn lead
to a singular drift in the pricing dynamics. See e.g. Lachapelle et al. (Math Finan Econom
10(3):223–262, 2016) and the references therein.
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1 Introduction

It is well-known that in the classical Black-Scholes market, there is no arbitrage. However,
if we include a singular term in the drift of the risky asset, it was first proved by Karatzas and
Shreve [11] (Theorem B2, page 329), that arbitrages exist. Subsequently this type of market
has been studied by several authors, including Jarrow and Protter [10]. They explain how a
singular term in the drift can model a situation where the asset price is partially controlled
by a large company which intervenes when the price is reaching a certain lower barrier, in
order to prevent it from going below that barrier. They also prove that arbitrages can occur
in such situations.
The purpose of our paper is to extend this study in two directions:
First, we introduce jumps in the market. More precisely, we study a jump diffusion market
driven by a Brownian motion B(·) and an independent compensated randommeasure ˜N (·, ·)
with an added singular drift term, modelled by a local time of an underlying Lévy process
Y (·). In view of the unstable financial markets we have seen in recent years, and in particular
during the economic crises in 2008 and the corona virus crisis this year, we think that jumps
are useful in an attempt to obtain more realistic financial market models.
Introducing jumps in the stock price motion goes back to Cox and Ross [5] and to Merton
[12].
Second, we assume that the trader only has access to a delayed information flow, represented
by the filtrationFt−θ , where θ > 0 is the delay constant andFt is the sigma-algebra generated
by both {B(s)}s≤t and {N (s, ·)}s≤t . This extension is also motivated by the effort to get more
realistic market models. Indeed, in all real-life markets there is delay in the information flow
available, and traders are willing to pay to get the most recent price information. Especially,
when trading with computers even fractions of seconds of delays are important.We represent
the singular term by the local time of a given process and show that as long as θ > 0 there is
no arbitrage in this market. In fact, we show that this delayed market is viable, in the sense
that the value of the optimal portfolio problem with logarithmic utility is finite. However, if
the delay goes to 0, the value of the portfolio goes to infinity, at least under some additional
assumptions.We emphasize that our paper deals with delayed information flow, not delay in
the coefficients in the model, as for example in the paper by Arriojas et al [2]. There are many
papers on optimal stochastic control with delayed information flow, also by us. However, to
the best of our knowledge the current paper is the first to discuss the effect of delay in the
information flow on arbitrage opportunities in markets with a singular drift coefficient. We
will show that by applying techniques from white noise theory we can obtain explicit results.
Specifically, our model is the following:
Suppose we have a financial market with the following two investment possibilities:

• A risk free investment (e.g. a bond or a (safe) bank account), whose unit price S0(t) at
time t is described by

{

dS0(t) = r(t)S0(t)dt; t ∈ [0, T ],
S0(0) = 1.

(1.1)
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• A risky investment, whose unit price S(t) at time t is given by a linear stochastic differ-
ential equation (SDE) of the form
{

dS(t) = S(t−)
[

μ(t)dt+α(t)dLt +σ(t)dB(t)+∫
R0

γ (t, ζ )˜N (dt, dζ )
]

; t ∈ [0, T ],
S(0) > 0,

(1.2)

where R0 = R\{0}. Here B(·) and ˜N = N (dt, dζ ) − ν(dζ )dt is a standard Brownian
motion and an independent compensated Poisson random measure, respectively, defined on
a complete filtered probability space (�,F, P) equipped with the filtration F = {Ft }t≥0

generated by the Brownian motion B(·) and N (·). The measure ν is the Lévy measure of the
Poisson random measure N , and the singular term Lt = Lt (y) is represented as the local
time at a point y ∈ R of a given F-predictable process Y (·) of the form

Y (t) =
∫ t

0
φ(s)dB(s) +

∫ t

0

∫

R0

ψ(s, ζ )Ñ (ds, dζ ), (1.3)

for some real deterministic functions φ : [0, T ] → R, ψ : [0, T ] × R0 → R satisfying

0 <

∫ T

t

{

φ2(t) +
∫

R0

ψ2(t, ζ )ν(dζ )
}

dt < ∞ a.s. for all t ∈ [0, T ]. (1.4)

The coefficients r(t), μ(t), α(t), σ (t) > 0 and γ (t, ζ ) > 0 are given bounded F-predictable
processes, with σ(t) bounded away from 0.In this market we introduce a portfolio process
u : [0, T ]×� → R giving the fraction of the wealth invested in the risky asset at time t , and
a consumption rate process c : [0, T ]×� → R

+ giving the fraction of the wealth consumed
at time t . We assume that at any time t both u(t) and c(t) are required to be adapted to a
given possibly smaller filtrationG = {Gt }t∈[0,T ] with Gt ⊆ Ft for all t . For example, it could
be a delayed information flow, with

Gt = Fmax(0,t−θ), t ≥ 0, for some delay θ > 0. (1.5)

This case will be discussed in detail later.
Let us denote by AG the set of all admissible consumption and portfolio processes. We
say that c and u are admissible and write c, u ∈ AG if, in addition, u is self-financing and

E

[

∫ T
0 (u(t)2 + c(t)2)dt

]

< ∞, where E denotes expectation with respect to P . Note that if

c, u are admissible, then the corresponding wealth process X(t) = Xc,u(t) is described by
the equation

dX(t) = X(t−)[[(1 − u(t))r(t) + u(t)μ(t) − c(t)]dt + u(t)α(t)dLt

+ u(t)σ (t)dB(t) + u(t)
∫

R0
γ (t, ζ )˜N (dt, dζ )]. (1.6)

For simplicity, we put the initial value X(0) = 1.
The optimal consumption and portfolio problem we study is the following:

Problem 1.1 Let a > 0, b > 0 be given constants. Find admissible c∗, u∗, such that

J (c∗, u∗) = sup
c,u

J (c, u), (1.7)

where

J (c, u) = E

[

∫ T

0
a ln(c(t)X(t))dt + b ln(X(T ))

]

. (1.8)
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Our results are the following:
Using methods from white noise calculus we find explicit expressions for the optimal con-
sumption rate c∗(t) and the optimal portfolio u∗(t). Then we show that the value is finite for
all positive delays in the information flow. In particular, this shows that there is no arbitrage
in that case. This result appears to be new.
We also show that, under additional assumptions, the value goes to infinity when the delay
goes to 0. This shows in particular that also when there are jumps the value is infinite when
there is no delay, in agreement with the arbitrage results of Karatzas and Shreve [11] and
Jarrow and Protter [10] in the Brownian motion case.

Remark 1.2 In our problem we are using the logarithmic utility function, both for the con-
sumption and for the terminal value. It is natural to ask if similar results can be obtained for
other utility functions. The method used in this paper is quite specific for the logarithmic
utility and will not work for other cases. This issue will be discussed in a broader context in
a future research.

2 Preliminaries

Aswe havementioned above, we will use white noise calculus to find explicit expressions for
the optimal consumption and the optimal portfolio. Specifically, we will define the local time
in the terms of the Donsker delta function which is an element of the Hida space of stochastic
distributions (S)∗. A brief introduction to white noise calculus is given in the Appendix. For
more information on the underlying white noise theory we refer to Hida et al. [9], Oliveira
[14], Holden et al. [8] and Di Nunno et al. [7] and Agram and Øksendal [3].

2.1 The Donsker delta function

We now define the Donsker delta function and give some of its properties. It will play a
crucial role in our computations.

Definition 2.1 Let Y : � → R be a random variable which also belongs to the Hida space
(S)∗ of stochastic distributions. Then a continuous functional

δY (·) : R → (S)∗ (2.1)

is called a Donsker delta function of Y if it has the property that
∫

R

g(y)δY (y)dy = g(Y ), a.s. (2.2)

for all (measurable) g : R → R, such that the integral converges.

Explicit formulas for the Donsker delta function are known in many cases. For the Gaussian
case, see Section 3.2. For details and more general cases, see e.g. Aase et al. [1].

In particular, for our process Y described by the diffusion (1.3), it is well known (see e.g.
[6,7,13]) that the Donsker delta functional exists in (S)∗ and is given by

δY (t)(y) = 1

2π

∫

R

exp	
[∫ t

0

∫

R0

(eixψ(s,ζ ) − 1)Ñ (ds, dζ )

+
∫ t

0
i xφ(s)dB(s)
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+
∫ t

0

{∫

R0

(eixψ(s,ζ ) − 1 − i xψ(s, ζ ))ν(dζ )

−1

2
x2φ2(s)

}

ds − i xy

]

dx, (2.3)

where exp	 denotes the Wick exponential.
Moreover, if 0 ≤ s ≤ t, we can compute the conditional expectation

E[δY (t)(y)|Fs]
= 1

2π

∫

R

exp
[

∫ s

0

∫

R0

i xψ(r , ζ )Ñ (dr , dζ ) +
∫ s

0
i xφ(r)dB(r)

+
∫ t

s

∫

R0

(eixψ(r ,ζ ) − 1 − i xψ(r , ζ ))ν(dζ )dr −
∫ t

s

1

2
x2φ2(r)dr − i xy

]

dx . (2.4)

Note that if we put s = 0 in (2.4), we get

E[δY (t)(y)] = 1

2π

∫

R

exp
(

− 1

2
x2
∫ t

0
φ2(r)dr

+
∫ t

0

∫

R0

(eixψ(r ,ζ ) − 1 − i xψ(r , ζ ))ν(dζ )dr − i xy

)

dx < ∞.

Putting ν = 0 in (2.4), yields

1

2π

∫

R

exp
[

∫ s

0
i xφ(r)dB(r) − ∫ ts 1

2 x
2φ2(r)dr − i xy

]

dx

=
(

2π
∫ t
s φ2(r)dr

)− 1
2
exp

(

−
(∫ s

0 φ(r)dB(r) − y
)2

2
∫ t
s φ2(r)dr

)

, (2.5)

where we have used, in general, for a > 0, b ∈ R, that
∫

R

e−ax2−2bxdx =
√

π

a
e
b2
a . (2.6)

In particular, applying the above to the random variable Y (t) := B(t) for some t ∈ (0, T ]
where B is Brownian motion starting at 0 , we get for all 0 ≤ s < t ,

E[δB(t)(y)|Fs] = (2π(t − s))−
1
2 exp
[

− (B(s) − y)2

2(t − s)

]

. (2.7)

We will also need the following estimate:

Lemma 2.2 Assume that 0 ≤ s ≤ t ≤ T . Then

E[δY (t)(y)|Fs] ≤
(

2π
∫ t
s

{

φ2(r) + ∫
R0

ψ2(r , ζ )ν(dζ )
}

dr
)− 1

2
. (2.8)

Proof From (2.4) we get, with i = √−1,

|E[δY (t)(y)|Fs]| ≤ 1

2π

∫

R

exp

[∫ t

s

∫

R0

Re(eixψ(r ,ζ )

−1 − i xψ(r , ζ ))ν(dζ )dr − 1

2

∫ t

s
x2φ2(r)dr

]

dx
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≤ 1

2π

∫

R

exp

[∫ t

s

∫

R0

−1

2
x2ψ2(r , ζ )ν(dζ )dr − 1

2

∫ t

s
x2φ2(r)dr

]

dx

= 1
2π

∫

R
exp
[

− 1
2 x

2
∫ t
s

{

φ2(r) + ∫
R0

ψ2(r , ζ ))ν(dζ )
}

dr
]

dx

=
(

2π

(∫ t

s

{

φ2(r) +
∫

R0

ψ2(r , ζ )ν(dζ )

}

dr

)

)− 1
2
.

��

2.2 Local time in terms of the Donsker delta function

In this subsection we define the local time of Y (·) at y and we give a representation of it in
terms of the Donsker delta function.

Definition 2.3 The local time Lt (y) of Y (·) at the point y and at time t is defined by

Lt (y) = lim
ε→0

1

2ε
λ({s ∈ [0, t]; Y (s) ∈ (y − ε, y + ε)}),

where λ denotes Lebesgue measure on R and the limit is in L2(λ × P).

Remark 2.4 Note that this definition differs from the definition in Protter [15] Corollary 3,
page 230, in two ways:

(i) We are using Lebesgue measure dλ(s) = ds as integrator, not d[Y , Y ]s .
(ii) Protter [15] is defining left-sided and right-side local times. Our local time corresponds

to the average of the two.

If the process Y is Brownian motion both definitions coincide with the standard one. We
choose our definition because it is convenient for our purpose.

There is a close connection between local time and the Donsker delta function of Y (t), given
by the following result.

Theorem 2.5 The local time Lt (y) of Y at the point y and the time t is given by the following
S∗-valued integral

Lt (y) =
∫ t

0
δY (s)(y)ds, (2.9)

where the integral converges in (S)∗.
Proof In the following we let χF denote the indicator function of the Borel set F , i.e.

χF (x) =
{

1 if x ∈ F,

0 if x /∈ F .
(2.10)

By definition of the local time and the Donsker delta function, we have

Lt (y) = lim
ε→0

∫ t

0

1
2ε χ(y−ε,y+ε)(Y (s))ds

= lim
ε→0

∫ t

0

(

∫

R

1

2ε
χ(y−ε,y+ε)(x)δY (s)(x)dx

)

ds

= lim
ε→0

∫

R

1
2ε χ(y−ε,y+ε)(x)

(

∫ t
0 δY (s)(x)ds

)

dx = ∫ t0 δY (s)(y)ds,

because the function y → δY (s)(y) is continuous in (S)∗. ��
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3 Optimal consumption and portfolio in amarket with a local time drift
term under partial information

We now return to the model in the Introduction. Thus we consider the optimal portfolio and
consumption problem (1.7)–(1.8) of an agent in the financial market (1.1) and (1.2). The
agent has access to a partial information flow G = {Gt }t≥0 where Gt ⊆ Ft for all t . It is
known that if G = F, i.e. Gt = Ft for all t , and if there are no jumps (N = ν = 0), then
the market is complete and it allows an arbitrage. See Karatzas and Shreve [11] and Jarrow
and Protter [10]. It is clear that our market with jumps is not complete, even if G = F.
However, we will show that if Gt = Ft−θ for some delay θ > 0, then the market is viable
(i.e. the optimal consumption and portfolio problem has a finite value) and it has no arbitrage.
Moreover, we will find explicitly the optimal consumption and portfolio rates. If the delay
goes to 0, we show that the value goes to infinity, in agreement with the existence of arbitrage
in the no-delay case.
First we need the following auxiliary result.

Lemma 3.1 Suppose that E[δY (t)(y)|Gt ] ∈ L2(P) and that

μ(t) − r(t) + α(t)E[δY (t)(y)|Gt ] > 0.

Then there exists a unique solution u(t) = u∗(t) > 0 of the equation

(a + b)σ 2(t)u∗(t) + [a(T − t) + b]
∫

R0

u∗(t)γ 2(t, ζ )

1 + u∗(t)γ (t, ζ )
ν(dζ )

= (a(T − t) + b)[μ(t) − r(t) + α(t)E[δY (t)(y)|Gt ]].
Proof Define

F(u) = a1u + a2

∫

R0

uγ 2(t, ζ )

1 + uγ (t, ζ )
ν(dζ ), u ≥ 0,

where a1 = (a + b)σ 2(t), a2 = a(T − t) + b. Then

F ′(u) = a1 + a2

∫

R0

γ 2(t, ζ )

(1 + γ (t, ζ ))2
ν(dζ ) > 0,

and

F(0) = 0, lim
u→∞ F(u) = ∞.

Therefore, for all a > 0 there exists a unique u > 0 such that F(u) = a. ��
We can now proceed to our first main result:

Theorem 3.2 (Optimal consumption and portfolio) Assume that α and γ > 0 are G-
adapted and that

E[δY (t)(y)|Gt ] ∈ L2(λ × P) and E[μ(t) − r(t)|Gt ] + α(t)E[δY (t)(y)|Gt ] > 0, for all t ∈ [0, T ].
Then the optimal consumption rate is

c∗(t) = c∗(t) = a

b + a(T − t)
,
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and the optimal portfolio is given as the unique solution u∗(t) > 0 of the equation

(a + b)E[σ 2(t)|Gt ]u∗(t) + (a(T − t) + b)
∫

R0

u∗(t)γ 2(t, ζ )

1 + u∗(t)γ (t, ζ )
ν(dζ )

= (a(T − t) + b)
(

E[μ(t) − r(t)|Gt ] + α(t)E[δY (t)(y)|Gt ]
)

.

In particular, if there are no jumps (N = ν = 0), the optimal portfolio will be

u∗(t) =
(a(T − t) + b)

(

E[μ(t) − r(t)|Gt ] + α(t)E[δY (t)(y)|Gt ]
)

(a + b)E[σ 2(t)|Gt ] .

Proof By the Itô formula for semimartingales, see e.g. Protter [15], we get that the solution
of (4.2) is

X(t) = exp
(

∫ t

0
u(s)σ (s)dB(s)

+
∫ t

0

{

r(s) + [μ(s) − r(s)]u(s) − c(s) − 1

2
σ 2(s)u2(s)

}

ds

+
∫ t

0
u(s)α(s)dLs +

∫ t

0

∫

R0

{ln(1 + u(s)γ (s, ζ )) − u(s)γ (s, ζ )}ν(dζ )ds

+
∫ t

0

∫

R0

ln {1 + u(s)γ (s, ζ )} ˜N (ds, dζ )
)

.

Since σ and γ are bounded and u ∈ AG the stochastic integrals in the exponent have
expectation 0. Therefore we get

E| ln(X(t))] = E

[ ∫ t

0
{r(s) + [μ(s) − r(s)]u(s) − c(s) − 1

2
σ 2(s)u2(s)}ds

+
∫ t

0
u(s)α(s)dLs +

∫ t

0

∫

R0

{ln(1 + u(s)γ (s, ζ )) − u(s)γ (s, ζ )}ν(dζ )ds

]

.

(3.1)

Formulas (4.2) and (1.8) and the Itô formula, lead to

J (c, u) = E

[ ∫ T

0
a ln(c(t)X(t))dt + b ln(X(T ))

]

= E

[

∫ T

0

{

a ln(c(t)) + a ln(X(t))

+ b

(

r(t) + [μ(t) − r(t)]u(t) − c(t) − 1

2
σ 2(t)u2(t)

)}

dt

+ b
∫ T

0
u(t)α(t)dLt

+ b
∫ T

0

∫

R0

{ln(1 + u(t)γ (t, ζ )) − u(t)γ (t, ζ )}ν(dζ )dt

]

.

Substituting (3.1) in the above, gives
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J (c, u) = E

[

∫ T

0

{

a ln(c(t))

+ a
(

∫ t

0
{r(s) + [μ(s) − r(s)]u(s) − c(s) − 1

2
σ 2(s)u2(s)}ds

+
∫ t

0
u(s)α(s)dLs

+
∫ t

0

∫

R0

{ln(1 + u(s)γ (s, ζ )) − π(s)γ (s, ζ )}ν(dζ )ds
)

+ b
(

∫ T

0

{

r(t) + [μ(t) − r(t)]u(t) − c(t) − 1

2
σ 2(t)u2(t)

)}

dt

+
∫ T

0
u(t)α(t)dLt

+
∫ T

0

∫

R0

{ln(1 + u(t)γ (t, ζ )) − u(t)γ (t, ζ )}ν(dζ )dt
)]

.

Note that in general, we have, by the Fubini theorem,
∫ T

0

(

∫ t

0
h(s)ds

)

dt =
∫ T

0

(

∫ T

s
h(s)dt

)

ds

=
∫ T

0
(T − s)h(s)ds =

∫ T

0
(T − t)h(t)dt,

and
∫ T

0

(

∫ t

0
h(s)dLs

)

dt =
∫ T

0

(

∫ T

s
h(s)dt

)

dLs

=
∫ T

0
(T − s)h(s)dLs =

∫ T

0
(T − t)h(t)dLt .

Therefore, using that

dLt = dLt (y) = δY (t)(y)dt,

we get from the above that

J (c, u) = E

[

∫ T

0
E
[{

a
(

ln(c(t)) + (T − t){r(t) + [μ(t) − r(t)]u(t) − c(t) − 1

2
σ 2(t)u2(t)

+ (T − t)u(t)α(t)δY (t)(y)

+ (T − t)
∫

R0

{ln(1 + u(t)γ (t, ζ )) − u(t)γ (t, ζ )}ν(dζ )
)

dt

+ b
(

r(t) + [μ(t) − r(t)]u(t) − c(t) − 1

2
σ 2(t)u2(t)} + u(t)α(t)δY (t)(y)

+
∫

R0

{ln(1 + u(t)γ (t, ζ )) − u(t)γ (t, ζ )}ν(dζ )
)}∣

∣

∣Gt
]

dt
]

. (3.2)

Using that c, u, α and γ are G-adapted, we obtain

J (c, u) = E

[ ∫ T

0

{

a
(

ln(c(t)) + (T − t){E[r(t)|Gt ]
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+ E[μ(t) − r(t)|Gt ]u(t)

− c(t) − 1

2
E[σ 2(t)|Gt ]u2(t)}

+ (T − t)u(t)α(t)E[δY (t)(y)|Gt ]

+ (T − t)
∫

R0

{ln(1 + u(t)γ (t, ζ )) − u(t)γ (t, ζ )}ν(dζ )

)

+ b

(

E[r(t)|Gt ] + E[μ(t) − r(t)|Gt ]u(t) − c(t) − 1

2
E[σ 2(t)|Gt ]u2(t)

+ u(t)α(t)E[δY (t)(y)|Gt ]

+
∫

R0

{ln(1 + u(t)γ (t, ζ )) − u(t)γ (t, ζ )}ν(dζ )

)}

dt

]

. (3.3)

This we can maximise pointwise over all possible values c, u ∈ AG by maximising for each
t the integrand. Then we get the optimal consumption rate

c∗(t) = a

b + a(T − t)
,

and the optimal portfolio is given as the unique solution u∗(t) > 0 of the equation

(a + b)E[σ 2(t)|Gt ]u∗(t)

+ [a(T − t) + b] ∫
R0

u∗(t)γ 2(t,ζ )
1+u∗(t)γ (t,ζ )

ν(dζ )

= (a(T − t) + b)
[

E[μ(t) − r(t)|Gt ]
+ α(t)E[δY (t)(y)|Gt ]

]

.

In particular, if there are no jumps (N = ν = 0), we get

u∗(t) =
(a(T − t) + b)

[

E[μ(t) − r(t)|Gt ] + α(t)E[δY (t)(y)|Gt ]
]

(a + b)E[σ 2(t)|Gt ] .

��

3.1 The case whenGt = Ft−�, t ≥ 0

From now on we restrict ourselves to the subfiltration Gt = Ft−θ , t ≥ 0 for some constant
delay θ > 0, where we put Ft−θ = F0 for t ≤ θ . In this case we can compute the optimal
portfolio and the optimal consumption explicitly. By (2.4) we have the following result:

Lemma 3.3 Assume that α and γ > 0 are Gθ -adapted, where Gθ = {Ft−θ }t≥0. For t ≥ θ

we have

E
[

δY (t)(y)|Ft−θ

] = 1

2π

∫

R

exp

[∫ t−θ

0

∫

R0

i xψ(r , ζ )˜N (dr , dζ ) +
∫ t−θ

0
i xφ(r)dB(r)

+
∫ t

t−θ

∫

R0

(eixψ(r ,ζ ) − 1 − i xψ(r , ζ ))ν(dζ )dr
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−
∫ t

t−θ

1

2
x2φ2(r)dr − i xy

]

dx . (3.4)

In particular, if ψ = 0 and φ = 1, we get Y = B and (see also (2.7))

E[δB(t)(y)|Ft−θ ] = (2πθ)−
1
2 exp
[

− (B(t − θ) − y)2

2θ

]

. (3.5)

Then by Theorem 3.2, we get

Theorem 3.4 Suppose Gt = Ft−θ with θ > 0. Then the optimal consumption rate is given
by

c∗(t) = a

b + a(T − t)
,

and the optimal portfolio is given as the unique solution u∗(t) > 0 of the equation

(a + b)E[σ 2(t)|Ft−θ ]u∗(t) + (a(T − t) + b)
∫

R0

u∗(t)γ 2(t, ζ )

1 + u∗(t)γ (t, ζ )
ν(dζ )

= (a(T − t) + b)
(

E[μ(t) − r(t)|Ft−θ ] + α(t)E[δY (t)(y)|Ft−θ ]
)

.

In particular,

sup
c,u

J (c, u) = J (c∗, u∗) < ∞,

and there is no arbitrage in the market.

4 The limiting case when the delay goes to 0

In this section, we concentrate on the delay case and with optimal portfolio only, i.e. without
consumption. Thus we are only considering utility from terminal wealth, and we put a = 0
and b = 1 in Theorem 3.2. Moreover, we assume that φ = 1 and ψ = 0, i.e. that

Y (t) = B(t); t ∈ [0, T ]. (4.1)

Also, to simplify the calculations we assume that r = 0 and μ(t) = μ > 0, α(t) = α >

0, σ (t) = σ > 0 are constants, and γ (t, ζ ) = γ (ζ ) is deterministic and does not depend on
t . Then the wealth equation will take the form

dX(t) = X(t)[u(t)μdt + u(t)αdLt

+ u(t)σdB(t) + u(t)
∫

R0
γ (ζ )˜N (dt, dζ )]; t ∈ [0, T ], X(0) = 1, (4.2)

where the singular term Lt = Lt (y) is represented as the local time at a point y ∈ R of B(·).
The performance functional becomes

J0(u) = E[ln X (u)(T )]; u ∈ Aθ ,

where Aθ denotes the set of all Ft−θ -predictable control processes. This now gets the form

J0(u) = E

[

∫ T

0

{

μu(t) − 1

2
σ 2u2(t) + u(t)αE[δY (t)(y)|Ft−θ ]

+
∫

R0

{ln(1 + u(t)γ (ζ )) − u(t)γ (ζ )}ν(dζ )
}

dt
]

. (4.3)

Our second main result is the following:
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Theorem 4.1 Suppose in addition to the above that
∫

R0

γ 2(ζ )ν(dζ ) < σ 2.

Then

lim
θ→0+ sup

u∈Aθ

J0(u) = ∞.

In particular, if there is no delay (θ = 0) the value of the optimal portfolio problem is infinite.

Proof For given θ > 0 choose

uθ (t) = μ + αR

σ 2 ,

where we for simplicity put

R = Rθ = E[δB(t)(y)|Ft−θ ].
Then we see that

J0(uθ ) ≥ 1

2
E[(μ + αR)2]

(

1 −
∫

R0
γ 2(ζ )ν(dζ )

σ 2

)

=: C1E[(μ + αR)2] ≥ C2 + C3E[R2],
since, by (2.8), E[R] < ∞. Here C1,C2,C3 are positive constants.
It remains to prove that

E[R2
θ ] → ∞ when θ → 0+.

To this end, note that by (2.5) we have

E[R2
θ ] = E[(δB(t)(y)|Ft−θ )

2] = (2πθ)−1
E

[

exp
(

− 2(B(t − θ) − y)2

2θ

)]

. (4.4)

By formula 1.9.3(1) p.168 in [4] we have, with κ > 0 constant,

E[exp(−κ(B(t − θ) − y)2)] = 1

1 + 2κ(t − θ)
exp
(

− κ y2(t − θ)

1 + 2κ(t − θ)

)

. (4.5)

Applying this to κ = 1
θ
we get

E[R2
θ ] = 1

2π
√

θ
√
2t − θ

exp
(

− y2

2t − θ

)

→ ∞, (4.6)

when θ → 0. ��

5 The Brownianmotion case

In the case when Y (t) = B(t) the computations above can be made more explicit. We now
illustrate this, assuming for simplicity that y = 0. Then by Theorem 3.4 the optimal portfolio
û(t) is given by

û(t) = μ + α�(t)

σ 2 ,
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where

�(t) = E[δB(t)(0)|Ft−θ ] = (2πθ)−
1
2 exp
[

− B(t − θ)2

2θ

]

; t ≥ θ,

�(t) = 1√
2πθ

; 0 ≤ t ≤ θ. (5.1)

By (4.3) and (5.1)we see, after somealgebraic operations, that the correspondingperformance
̂Jθ = J (0, π̂) is

̂Jθ = E

[

∫ T

0

(

μπ̂(t) − 1

2
σ 2π̂2(t) + π̂(t)α�(t)

)

dt
]

= E

[

∫ T

0

(μ + α�(t))2

2σ 2 dt
]

= A1 + A2 + A3,

where

A1 = μ2

2σ 2 T , A2 = μα

σ 2 E

[

∫ T

0
�(t)dt

]

, A3 = α2

2σ 2E

[

∫ T

0
�2(t)dt

]

.

Using the density of B(s), we get

E

[

exp
(

− B2(s)

2θ

)]

=
∫

R

exp

(

− y2

2θ

)

1√
2πs

exp

(

− y2

2s

)

dy

= 1√
2πs

∫

R

exp

(

−1

2
y2(

1

θ
+ 1

s
)

)

dy. (5.2)

In general we have, for a > 0,
∫

R

exp(−ay2)dy =
√

π

a
,

we conclude, by putting s = t − θ in (5.2), that

A2 = θ√
2πθ

+
∫ T

θ

μα

σ 2
√
2πθ

√

θ

t
dt =
√

θ

2π
+ 2μα(

√
T − √

θ)

σ 2
√
2π

.

Finally we use similar calculations to compute

A3 = α2

2σ 2 (2πθ)−1
(

θ +
∫ T

θ

�(t)dt

)

,

where, putting t − θ = s,

ψ(t) = E

[

exp

(

− B(s)2

θ

)]

=
∫

R

e− y2

θ
1√
2πs

e− y2

2s dy

= 1√
2πs

∫

R

exp

(

−y2(
1

θ
+ 1

2s
)

)

dy = 1√
2πs

√

π
1
θ

+ 1
2s

= 1
√

2s
θ

+ 1
.

This gives

A3 = α2

2σ 2

(

1

2π
+
∫ T−θ

0

1

2π
√

θ
√
2s + θ

ds

)

= α2

4πσ 2

(

1 +
√
2T − θ − √

θ√
θ

)

.

We have proved the following:
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Theorem 5.1 The optimal performance with a given delay θ > 0 is given by
̂Jθ = μ2

2σ 2 T +
√

θ
2π + 2μα(

√
T−√

θ)

σ 2
√
2π

+ α2

4πσ 2 (1 +
√
2T−θ−√

θ√
θ

).

In particular, ̂Jθ → ∞ when θ → 0.

Corollary 5.2 (i) For all information delays θ > 0 the value of the optimal portfolio problem
is finite.

(ii) When there is no information delay, i.e. when θ = 0, the value is infinite.
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6 Appendix

In this section we give a brief survey of the underlying theory of white noise analysis used
in this paper. For more details see e.g. Di Nunno et al. [7] and Holden et al. [8] and the
references therein.

Definition 6.1 LetS(R)be theSchwartz space consistingof all real-valued rapidly decreasing
functions f on R, i.e.,

lim|x |→∞ |xn f (k)(x)| = 0; for all integers n, k. (6.1)

Example 6.2 For instance C∞ functions with compact support, f (x) = e−x2 , f (x) =
e−x4 , . . . are all functions in S(R).

For any n, k ≥ 0, define a norm ‖.‖n,k on S(R) by

‖ f ‖n,k = sup
x∈R

(1 + |x |)n | f (k)(x)|. (6.2)

Then the Schwartz space S(R), equipped with the topology defined by the family of semi-
norms
{‖.‖n,k, n, k ≥ 0} is a Fréchet space.
Let S ′(R) be the dual space of S(R). S ′(R) is called the space of tempered distributions. Let
B denote the family of all Borel subsets of S(R) equipped with the weak topology.From now
on we will use the notation 〈a, b〉 that means a acting on b.

Theorem 6.3 (Minlos) Let E be a Fréchet space with dual space E∗. A complex-valued
function φ on E is the characteristic functional of a probability measure ν on E∗, i.e.,

φ(y) =
∫

E∗
ei〈x,y〉dν(x); y ∈ E, (6.3)

if and only if it satisfies the following conditions:
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1. φ(0) = 1,
2. φ is positive definite, i.e.

n
∑

j,k=1

z j z̄kφ(a j − ak) ≥ 0 for all z j , zk ∈ C, a j , ak ∈ E,

3. φ is continuous.

Remark 6.4 The measure ν is uniquely determined by φ. Observe that φ(0) = ν(E∗). Thus
when condition 1 above is not assumed, then we can only conclude that ν is a finite measure.

6.1 White noise for Brownianmotion

6.1.1 Construction of Brownian motion

Let φ be the function on S(R) given by

φ(ξ) = exp(−1

2
|ξ |2); ξ ∈ S(R),

where | · | is the L2(R) norm.
Then it is easy to check that conditions 1–3 above are satisfied.
Therefore, by the Minlos theorem there exists a unique probability measure P on S ′(R) such
that

exp

(

−1

2
|ξ |2
)

=
∫

S ′(R)

ei〈ω,ξ〉dP(ω); ξ ∈ S(R). (6.4)

Definition 6.5 The measure P is called the standard Gaussian measure on S ′(R). The prob-
ability space (S ′(R),B, P) is called the white noise probability space. In the following we
will use the notation � = S ′(R) and the elements of � are denoted by ω. The expectation
with respect to P is denoted by E[·],
Note that from (6.4) it follows that

E[〈ω, ξ 〉] = 0 for all ξ ∈ S(R) and (6.5)

E[〈ω, ξ 〉2] = |ξ |2 for all ξ ∈ S(R) (The Itô isometry). (6.6)

Using the Itô isometry we see that we can extend the definition of 〈ω, ξ 〉 from ξ ∈ S(R) to
all φ ∈ L2(R) as follows:

〈ω, φ〉 = lim
n→∞ 〈ω, ξn〉 (limit in L2(P)),

for any sequence ξn ∈ S(R) converging to φ in L2(R).

Thus for each t we can define B(t, ·) ∈ L2(P) by

B(t, ω) = 〈ω, χ[0,t](·
〉

); t ≥ 0, ω ∈ �.

Then the process {B(t, ω)}t≥0,ω∈� has stationary independent increments of mean 0 (by
(6.5)), and the variance of B(t) is t (by (6.6)). Moreover, by the Kolmogorov continuity
theorem the process has a continuous version. This version is a Brownian motion. This is the
Brownian motion we work with in this paper.
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6.1.2 TheWiener-Itô chaos expansion

Let the Hermite polynomials hn(x) be defined by

hn(x) = (−1)ne
1
2 x

2 dn

dxn
(e− 1

2 x
2
); n = 0, 1, 2, . . .

The first Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − x, . . .

Let ek be the kth Hermite function defined by

ek(x) := π− 1
4 ((k − 1)!)− 1

2 e− 1
2 x

2
hk−1(

√
2x); k = 1, 2, . . . (6.7)

Then {ek}k≥1 constitutes an orthonormal basis for L2(R) and ek ∈ S(R) for all k. Define

θk(ω) := 〈ω, ek〉 =
∫

R

ek(x)dB(x, ω); ω ∈ �. (6.8)

Let J denote the set of all finite multi-indices α = (α1, α2, . . . , αm),m = 1, 2, . . . , of
non-negative integers αi . If α = (α1, . . . , αm) ∈ J , α �= 0, we put

Hα(ω) :=
m
∏

j=1

hα j (θ j (ω)); ω ∈ �. (6.9)

By a result of Itô we have that

Im(ê⊗α) =
∏

j=1

hα j (θ j ) = Hα, (6.10)

where Im denotes the m-iterated Itô integral, defined below.We set H0 := 1. Here and in the
sequel the functions e1, e2, . . . are defined in (6.7) and ⊗ and ̂⊗ denote the tensor product
and the symmetrized tensor product, respectively.
The family {Hα}α∈J is an orthogonal basis for the Hilbert space L2(P). In fact, we have the
following result.

Theorem 6.6 (The Wiener-Itô chaos expansion theorem (I)) The family {Hα}α ∈ J con-
stitutes an orthogonal basis of L2(P). More precisely, for all FT -measurable X ∈ L2(P)

there exist (uniquely determined) numbers cα ∈ R, such that

X =
∑

α∈J
cαHα ∈ L2(P). (6.11)

Moreover, we have
‖X‖2L2(P)

=
∑

α∈J
α!c2α. (6.12)

Let us compare the above Theorem to the equivalent formulation of this theorem in terms
of iterated Itô integrals. In fact, if ψ(t1, t2, . . . , tn) is a real deterministic symmetric function
in its n variables t1, . . . , tn and ψ ∈ L2(Rn), that is,

‖ψ‖L2(Rn) :=
∫

Rn
|ψ(t1, t2, . . . , tn)|2dt1dt2 . . . dtn
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then its n-iterated Itô integral is defined by

In(ψ) :=
∫

Rn
ψdB⊗n

= n!
∫ ∞

−∞

∫ tn

−∞

∫ tn−1

−∞
. . .

∫ t2

−∞
ψ(t1, t2, . . . , tn)dB(t1)dB(t2) . . . dB(tn),

where the integral on the right-hand side consists of n-iterated Itô integrals.
Note that the integrand at each step is adapted to the filtration F. Applying the Itô isometry
n times we see that

E

[

(∫

Rn
ψdB⊗n

)2 ]

= n!‖ψ‖2L2(Rn)
. (6.13)

For n = 0 we adopt the convention that

I0(ψ) :=
∫

R0
ψdB⊗0 = ψ = ‖ψ‖L2(R0),

for ψ constant. Let ˜L2(Rn) denote the set of symmetric real functions on R
n , which are

square integrable with respect to Lebesgue measure.Then we have the following result:

Theorem 6.7 [The Wiener Itô chaos expansion theorem (II)]For all FT - measurable X ∈
L2(P) there exist (uniquely determined) deterministic functions fn ∈ ˜L2(Rn) such that

X =
∞
∑

n=0

∫

Rn
fndB

⊗n =
∞
∑

n=0

In( fn) ∈ L2(P). (6.14)

Moreover, we have the isometry

‖X‖2L2(P)
=

∞
∑

n=0

n!‖ fn‖2L2(Rn)
. (6.15)

The connection between these two expansions in Theorems (6.6) and (6.7) is given by

fn =
∑

α∈J ,|α|=n

cαe
⊗α1
1
̂⊗e⊗α2

2
̂⊗ . . .̂⊗e⊗αm

m , n = 0, 1, 2, . . .

where |α| = α1 + α2 . . . + αm for α = (α1, . . . , αm) ∈ J ,m = 1, 2, . . .
Recall that the functions e1, e2, . . . are defined in (6.7) and ⊗ and ̂⊗ denote the tensor

product and the symmetrized tensor product, respectively.
Note that since Hα = Im(ê⊗α), for α ∈ J , |α| = m, we get that

m!‖ê⊗α‖2L2(Rm )
= α!, (6.16)

by combining (6.12) and (6.15) for X = Xα .

6.1.3 Stochastic distribution spaces

Analogous to the test functions S(R) and the tempered distributions S ′(R) on the real lineR,

there is a useful space of stochastic test functions (S) and a space of stochastic distributions
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(S)∗ on the white noise probability space. We now explain this in detail:In the following we
use the notation

(2N)α =
m
∏

j=1

(2 j)α j , (6.17)

if α = (α1, α2, . . .).We define

ε(k) = (0, 0, . . . , 1, . . .),

with 1 on the kth place. Thus we see that

(2N)ε
(k) = 2k.

The Kondratiev Spaces (S)1, (S)−1 and the Hida Spaces (S) and (S)∗

Definition 6.8 Let ρ be a constant in [0, 1].
• Let k ∈ R. We say that f = ∑α∈J aαHα ∈ L2(P) belongs to the Kondratiev test

function Hilbert space (S)k,ρ if

‖ f ‖2k,ρ :=
∑

α∈J
a2α(α!)1+ρ(2N)αk < ∞. (6.18)

• We define the Kondratiev test function space (S)ρ as the space

(S)ρ =
⋂

k∈R
(S)k,ρ

equipped with the projective topology, that is, fn → f , n → ∞, in (S)ρ if and only if
‖ fn − f ‖k,ρ → 0, n → ∞, for all k.

• Let q ∈ R. We say that the formal sum F = ∑α∈J bαHα belongs to the Kondratiev
stochastic distribution space (S)−q,−ρ if

‖ f ‖2−q,−ρ :=
∑

α∈J
b2α(α!)1−ρ(2N)−αq < ∞. (6.19)

We define the Kondratiev distribution space (S)−ρ by

(S)−ρ =
⋃

q∈R
(S)−q,−ρ

equipped with the inductive topology, that is, Fn → F, n → ∞, in (S)−ρ if and only if
there exists q such that ‖Fn − F‖−q,−ρ → 0, n → ∞.

• If ρ = 0 we write

(S)0 = (S) and (S)−0 = (S)∗.

These spaces are called the Hida test function space and the Hida distribution space,
respectively.

• If F =∑α∈J bαHα in (S)−1, we define the generalized expectation E[F] of F by

E[F] = b0. (6.20)

(Note that if F ∈ L2(P), then the generalized expectation coincides with the usual
expectation, since E[Hα] = 0 for all α �= 0).
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Note that (S)−1 is the dual of (S)1 and (S)∗ is the dual of (S). The action of F =
∑

α∈J bαHα ∈ (S)−1 on f =∑α∈J aαHα ∈ (S)1 is given by

〈F, f 〉 =
∑

α

α!aαbα.

We have the inclusion

(S)1 ⊂ (S) ⊂ L2(P) ⊂ (S)∗ ⊂ (S)−1.

Example 6.9 Since

B(t) = 〈ω, χ[0,t]
〉 =

∞
∑

k=1

(ek, χ[0,t]) 〈ω, ek〉

=
∞
∑

k=1

(∫ t

0
ek(s)ds

)

Hε(k) ,

we see that white noise
•
B(t) defined by

•
B(t) = d

dt
B(t) =

∞
∑

k=1

ek(t)Hε(k) ,

exists in (S)∗.

6.1.4 TheWick product

In addition to a canonical vector space structure, the spaces (S) and (S)∗ also have a natural
multiplication given by the Wick product:

Definition 6.10 Let X =∑α∈J aαHα and Y =∑β∈J bβHβ be two elements of (S)∗. Then
we define the Wick product of X and Y by

X 	 Y =
∑

α,β∈J
aαbβHα+β =

∑

γ∈J

⎛

⎝

∑

α+β=γ

aαbβ

⎞

⎠ Hγ .

Example 6.11 We have

B(t) 	 B(t) = B2(t) − t,

and more generally
(∫

R

φ(s)dB(s)

)

	
(∫

R

ψ(s)dB(s)

)

=
(∫

R

φ(s)dB(s)

)

.

(∫

R

ψ(s)dB(s)

)

−
∫

R

φ(s)ψ(s)ds,

for all φ,ψ ∈ L2(R).

Some basic properties of the Wick product.We list some properties of the Wick product:
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1. X , Y ∈ (S)1 ⇒ X 	 Y ∈ (S)1.
2. X , Y ∈ (S)−1 ⇒ X 	 Y ∈ (S)−1.
3. X , Y ∈ (S) ⇒ X 	 Y ∈ (S).
4. X 	 Y = Y 	 X .
5. X 	 (Y 	 Z) = (X 	 Y ) 	 Z .
6. X 	 (Y + Z) = X 	 Y + X 	 Z .
7. In( fn) 	 Im(gm) = In+m( fn̂⊗gm).

In view of the properties (1) and (4) we can define the Wick powers X	n (n = 1, 2, . . .) of
X ∈ (S)−1 as

X	n := X 	 X 	 . . . 	 X (n times).

We put X	0 := 1. Similarly, we define the Wick exponential exp	 X of X ∈ (S)−1 by

exp	 X :=
∞
∑

n=0

1

n! X
	n ∈ (S)−1.

In view of the aforementioned properties, we have that

(X + Y )	2 = X	2 + 2X 	 Y + Y 	2,

and also

exp	(X + Y ) = exp	 X 	 exp	 Y ,

for X , Y ∈ S−1.Let E[X ] denote the generalized expectation of an element X ∈ (S). It
coincides with the standard expectation if X ∈ L1(P). Then we see that

E[X 	 Y ] = E[X ]E[Y ],
for X , Y ∈ (S)−1. Note that independence is not required for this identity to hold. By
induction, it follows that

E[exp	 X ] = expE[X ],
for X ∈ (S)−1.

6.1.5 Wick product, white noise and Itô integration

One of the spectacular results in white noise theory is the following, which combines Wick
product, white noise and Itô integration:

Theorem 6.12 Let ϕ(t) ∈ L2([0, T ] × �) be F-adapted. Then the integral
∫ T
0 ϕ(t) 	 •

B(t)dt
exists in (S)∗ and

∫ T

0
ϕ(t)dB(t) =

∫ T

0
ϕ(t) 	 •

B(t)dt . (6.21)

Remark 6.13 Heuristically, we can see that we obtain this result by using that
•
B(t) = d

dt B(t).
If we work in (S)∗ this argument can be made rigorous.
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6.2 White noise for Lévy process

6.2.1 Construction of Lévy processes

The construction we did above for Brownian motion can be modified to apply to other
processes. For example, we obtain a white noise theory for Lévy processes if we proceed as
follows (see [7] for details):

Definition 6.14 Let ν be a measure on R0 such that
∫

R

ζ 2ν(dζ ) < ∞. (6.22)

Define

h(ϕ) = exp
(

∫

R

�(ϕ(x))dx
)

; ϕ ∈ (S), (6.23)

where

�(w) =
∫

R

(eiwζ − 1 − iwζ)ν(dζ ); w ∈ R, i = √−1. (6.24)

Then h satisfies the conditions (i)–(iii) of the Minlos Theorem 6.3. Therefore there exists a
probability measure Q on � = S ′(R) such that

EQ

[

ei〈ω,ϕ〉] :=
∫

�

ei〈ω,ϕ〉dQ(ω) = h(ϕ); ϕ ∈ (S). (6.25)

The triple (�,F, Q) is called the (pure jump) Lévy white noise probability space.

One can now easily verify the following

• EQ[〈·, ϕ〉] = 0; ϕ ∈ (S)

• EQ[〈·, ϕ〉2] = K
∫

R
ϕ2(y)dy; ϕ ∈ (S), where K = ∫

R
ζ 2ν(dζ ).

As we did for the Brownian motion, we use an approximation argument to define

η̃(t) = η̃(t, ω) = 〈ω, χ[0,t]
〉 ; a.a.(t, ω) ∈ [0,∞) × �. (6.26)

Then the following holds:

Theorem 6.15 The stochastic process η̃(t) has a càdlàg version. This version η(t) is a pure
jump Lévy process with Lévy measure ν.

6.2.2 Chaos expansion

We assume that the Lévy measure ν satisfies the following condition:
For all ε > 0 there exists λ > 0 such that

∫

R0\(−ε,ε)

exp(λ |ζ |)ν(dζ ) < ∞. (6.27)

This condition implies that the polynomials are dense in L2(ρ), where

ρ(dζ ) = ζ 2ν(dζ ). (6.28)

Now let {lm}m≥0 = {1, l1, l2, . . .} be the orthogonolization of
{

1, ζ, ζ 2, . . .
}

with respect to
the inner product of L2(ρ). Define

p j (ζ ) := ∥∥l j−1
∥

∥

−1
L2(ρ)

ζ j−1(ζ ); j = 1, 2, . . . (6.29)
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and

m2 :=
(∫

R0

ζ 2ν(dζ )

) 1
2 = ‖l0‖L2(ρ) = ‖1‖L2(ρ) . (6.30)

In particular,
p1(ζ ) = m−1

2 ζ or ζ = m2 p1(ζ ). (6.31)

Then
{

p j (ζ )
}

j≥1 is an orthonormal basis for L2(ν).
Define the bijection κ : N × N −→ N by

κ(i, j) = j + (i + j − 2)(i + j − 1)/2. (6.32)

(1) (2) (4) (i)
• −→ • • · · · • −→

(3) ↙ (5) ↙
• •

(6) ↙
•
...

( j)
•
↓

Let {ei (t)}i≥1 be the Hermite functions. Define

δκ(i, j)(t, ζ ) = ei (t)p j (ζ ). (6.33)

If α ∈ J with index(α) = j and |α| = m, we define δ⊗α by

δ⊗α(t1, ζ1, . . . , tm, ζm)

= δ
⊗α1
1 ⊗ . . . ⊗ δ

⊗α j
j (t1, ζ1, . . . , tm, ζm)

= δ1(t1, ζ1) · . . . · δ1(tα1 , ζα1)
︸ ︷︷ ︸

α1 factors

· . . . · δ j (tm−α j+1, ζm−α j+1) · . . . · δ j (tm, ζm)
︸ ︷︷ ︸

α j factors

.(6.34)

We set δ⊗0
i = 1. Finally we let δ⊗̂α denote the symmetrized tensor product of the δk

′s :

δ⊗̂α(t1, ζ1, . . . , tm, ζm) = δ
⊗̂α1
1 ⊗ . . . ⊗ δ

⊗̂α j
j (t1, ζ1, . . . , tm, zm). (6.35)

For α ∈ J define
Kα := I|α|

(

δ⊗̂α
)

. (6.36)

Theorem 6.16 Chaos expansion Any F ∈ L2(P) has a unique expansion of the form

F =
∑

α∈J
cαKα. (6.37)

with cα ∈ R. Moreover,
‖F‖2L2(P)

=
∑

α∈J
α!c2α. (6.38)
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6.2.3 The Lévy-Hida spaces

(i) Let (S) consist of all ϕ =∑α∈J aαKα ∈ L2(P) such that

‖ϕ‖2k :=
∑

α∈J
a2αα!(2N)kα < ∞ for all k ∈ N, (6.39)

equipped with the projective topology, where

(2N)kα =
∏

j≥1

(2 j)kα j , (6.40)

if α = (α1,α2,, . . .) ∈ J .
(ii) Let (S)∗ consist of all expansions F =∑α∈J bαKα such that

‖F‖2−q :=
∑

α∈J
b2αα!(2N)−qα < ∞ for someq ∈ N. (6.41)

endowed with the inductive topology. The space (S)∗ is the dual of (S). If F =
∑

α∈J bαKα ∈ (S)∗ and ϕ =∑α∈J aαKα ∈ (S), then the action of F on ϕ is

〈F, ϕ〉 =
∑

α∈J
aαbαα!. (6.42)

(iii) If F =∑α∈J aαKα ∈ (S)∗, we define the generalized expectation E[F] of F by

E[F] = a0.

Note that E[Kα] = 0 for all α �= 0. Therefore the generalized expectation coincides with
the usual expectation if F ∈ L2(P).

We can now define the white noise
•
η(t) of the Lévy process

η(t) =
∫ t

0

∫

R0

ζ ˜N (dt, dζ ).

and the white noise
•
˜N (t, ζ ) of ˜N (dt, dζ ) as follows.

•
˜N (t, ζ ) = ˜N (dt, dζ )

dt × ν(dζ )
(Radon-Nikodym derivative). (6.43)

Also note that
•
η is related to

•
˜N by

•
η(t) =

∫

R0

•
˜N (t, ζ )ζν(dζ ). (6.44)

6.2.4 TheWick product

We now proceed as in the Brownian motion case and use the chaos expansion in terms of
{Kα}α∈J to define the (Lévy-) Wick product.
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Definition 6.17 Let F = ∑α∈J aαKα and G = ∑β∈J bβKβ be two elements of (S)∗.
Then we define the Wick product of F and G by

F 	 G =
∑

α,β∈J
aαbβKα+β =

∑

γ∈J

⎛

⎝

∑

α+β=γ

aαbβ

⎞

⎠ Kγ . (6.45)

6.2.5 TheWick product, white noise and Skorohod integral

Theorem 6.18 (i) Let Y (t) be Skorohod integrable with respect to η. Then Y (t) 	 •
η(t) is

dt−integrable in the space (S)∗ and
∫

R

Y (t)δη(t) =
∫

R

Y (t) 	 •
η(t)dt . (6.46)

(ii) Let X(t, ζ ) be Skorohod-integrable with respect to ˜N (·, ·). Then X(t, ζ ) 	
•
˜N (t, ζ ) is

ν(dζ )dt−integrable in (S)∗ and
∫

R

∫

R0

X(t, ζ )˜N (δt, dζ ) =
∫

R

∫

R0

X(t, ζ ) 	
•
˜N (t, ζ )ν(dζ )dt . (6.47)
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