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ABSTRACT
Local approximations facilitate the application of post-Hartree–Fock methods in the condensed
phase, but simultaneously introduce errors leading to discontinuous potential-energy surfaces. In
this work, we explore how these discontinuities arise in periodic systems, their implications, and pos-
sible ways of controlling them. In addition, we present a fully periodic Divide-Expand-Consolidate
second-order Møller–Plesset approach using an attenuated resolution-of-the-identity approxima-
tion for the electron repulsion integrals and a convenient class to handle translation-symmetric
tensors in block-Toeplitz format.
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1. Introduction

The theoretical description of electronic interactions at
the quantum level is fundamentally the same for peri-
odic systems as for molecules. Challenges posed by the
computational scaling of correlated wavefunction meth-
ods have, however, proven much more limiting in the
periodic case, and condensed-phase wavefunction-based
results beyond Kohn–Sham density-functional theory
(KS-DFT) [1] or Hartree–Fock (HF) [2] theory remain
fairly uncommon in the literature relative to the molecu-
lar case.

With today’s line-up of efficient and publicly available
coupled-cluster (CC) implementations, it is possible to
perform highly accurate electronic structure calculations
for moderately sized molecules at an affordable compu-
tational cost [3]. While valuable in their own right, such
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results are often used to ensure the quality of other less
reliable but more efficient methods, such as KS-DFT or
semi-empirical methods. The results provided by these
implementations would have been unattainable, if not for
several important developments made in the past 2–3
decades, where the computational scaling with respect to
the number of electrons has been reduced towards linear-
ity by means of various approximations. Distance-based
approximations dating back to Pulay and others [4–10]
commonly referred to as local correlation methods have
been essential in this regard.

Notably, we have seen the revival ofMeyer’s pair natu-
ral orbitals (PNO) [11] in the work from Neese [12–16],
followed by Werner [17], where the most significant
part of the virtual orbital space is represented in a
compact manner for each pair of occupied orbitals.
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Simultaneously, extensive research into the decou-
pling of the orbital spaces has been made. Various
approaches for decoupling the CC equations have been
presented in the literature, including the divide-expand-
consolidate (DEC) approach by Jørgensen and cowork-
ers [18–22] and the closely related cluster-in-molecule
(CIM) approach by Li et al. [23,24], and the generalisa-
tion of the Pulay–Sæbø scheme by Werner and cowork-
ers [25], to name a few.

While these methods have greatly reduced the com-
putational cost of molecular CC calculations, their adap-
tation to the periodic case has not been without com-
plications. The natural way of dealing with the elec-
tronic wavefunction in bulk materials is to assume an
infinite periodic extent, which subsequently allows map-
ping the infinite problem onto the finite unit cell by
means of a Fourier transform [26,27]. The solution of
these equations, the Bloch orbitals, are expressed as lin-
ear combinations of delocalised plane waves [28]. As a
consequence, periodic systems are not just simply huge
molecules – they are truly infinite, yet subject to symme-
tries which reduce the computational expense of the cor-
relation treatment. One approach to correlationmethods
in solids thus is to deal with the problem in its canon-
ical form, expanded in either plane waves [29–31] or
localised atomic orbitals such as Gaussian basis func-
tions [32–36]. The connection to the more familiar local
quantum chemical treatment of correlation is, however,
conditioned on the availability of a Wannier representa-
tion of the orbital spaces [37], which is restricted to non-
conducting systems [38–41]. In this representation, each
orbital is no longer uniquely associated with a wave vec-
tor and the decoupling conditions are thus different than
in the Bloch case. Still, the prospect of achieving similar
results as for molecules has motivated a line of research
into the application of these methods on periodic sys-
tems, as documented by the work of Usvyat et al. [42],
Li et al. [43], and ourselves [44,45]. Beyond alleviat-
ing the notable computational challenges of obtaining
the ground-state solution, local correlationmethods may
provide novel pathways towards the calculation of band
gaps, thus providing promising venues for application
and a closer connection to experiment [46,47].

As we gain experience with these methods in the
periodic realm, it becomes increasingly clear that an effi-
cient implementation requires many layers of approxi-
mations, rather than one single principle. This includes
approximate schemes for the electron repulsion integrals
(ERIs) [48–50] and screening, as well as the local approx-
imation itself. While the resolution of the identity (RI)
approximation has been demonstrated to greatly acceler-
ate ERI generation and transformation in local second-
order Møller-Plesset (MP2) theory calculations [51,52],

there are open questions regarding fitting basis sets and
methodology which warrants further studies [50,53].
From new layers of approximations, new input parame-
ters follow, each affecting the final result of the calculation
in various ways. Careful consideration should thus be
taken in order to retain the best possible control of the
error in the result, so it can be suppressed or extrapo-
lated away in a systematic manner. In this work, we focus
on the error due to truncated orbital spaces, with spe-
cial focus on how it impacts potential-energy surfaces
(PESs) at the MP2 level of theory for periodic systems.
This is likely the most significant error present in these
calculations [54–57] and should be treated accordingly.

2. Theory

Within the adiabatic Born–Oppenheimer approxima-
tion, the electronic ground-state energy of a periodic
many-electron system defines the PES as a function of
the parameters describing the lattice and the coordinates
of the atoms associated with one unit cell, the reference
cell, in the lattice. The accuracy of the PES depends on
the level of theory used to calculate the energy, and can
in principle be treated systematically within convergent
hierarchies of wavefunction methods, such as the CC
methods [3]. However, the steep computational scaling
of post-HFmethods combined with the infinite nature of
periodic systems impose severe limitations already at the
level of MP2 theory, which has resulted in a considerable
effort being put into the adaptation of local correlation
methods [4–10] to the periodic case. While these meth-
ods greatly reduce the computational cost of post-HF
calculations, they are known to simultaneously introduce
discontinuities in PESs which can potentially be difficult
to control [54,58].

In order to understand how these discontinuities
emerge in periodic systems, we shall look closer into
how the local energies are computed in the first place.
The periodic Hartree–Fock equations are conventionally
solved in reciprocal space using either a plane-wave basis
or a translational symmetry-adapted local atomic orbital
(AO) basis such as Gaussian AOs. In both cases [59],
the resulting canonical representation of the orbital space
is the completely delocalised and complex-valued Bloch
orbitals [28].

For insulators, it is possible to obtain a non-canonical,
local representation of the orbital space by means of
an inverse Fourier transform and localisation in direct
space [41]. In this picture, the space is spanned by Wan-
nier orbitals ϕLp, where the uppercase, boldfont index
refers to the cell in the periodic structure in which the
orbital p belongs.
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In addition to being local in the sense of having a finite
spatial extent, the Wannier orbitals are translationally
orthogonal to each other [41]:∫

R3
ϕLpϕMqdr = δLMδpq, (1)

and can be real-valued by constraining the localisation
procedure [41].

Post-HF calculations from a non-canonical reference
determinant must account for non-diagonal terms in the
Fock matrix, meaning that, for instance, computing the
MP2 correlation energy is no longer a one-step proce-
dure. Pulay and Sæbø [9], therefore, derived an MP2
formulation from the Hylleraas functional that is inde-
pendent of unitary rotations within the occupied and vir-
tual spaces. In the periodic case, for Wannier functions,
these equations are

0 = (
IiAa|JjBb)+

∑
Cc

tCcBbIiJj fAaCc +
∑
Cc

tAaCcIiJj fBbCc

−
∑
Kk

tAaBbKkJj fKkIi −
∑
Kk

tAaBbIiKk fKkJj. (2)

where f is the Fock matrix, t are the MP2 amplitudes and
the periodic ERIs for real Wannier functions are

(
0iAa|JjBb) := ∫∫

R3

ϕ0i(r)ϕAa(r)ϕJj(r′)ϕBb(r′)
|r − r′| dr′dr.

(3)

The cell summations in Equation (2) run over the full,
infinite lattice. Due to the translational symmetry in the
amplitudes and ERIs, given by

tAaBbIiJj = t(A−I)a(B−I)b
0i(J−I)j , (4)

we may choose to keep the first occupied index fixed in
the reference cell 0without any loss of information. Upon
solving Equation (2) for the amplitudes, the correlation
energy per unit cell can be computed as

�EMP2 =
∑
J

∑
AB

∑
ij

∑
ab

tAaBb0iJj
(
2
(
0iAa|JjBb)

− (
0iBb|JjAa)) . (5)

It is well known that for localised orbitals, the ERIs
tend exponentially to zero with the inter-orbital distances
R0iAa and RJjBa, and proportional to R−3

0iJj with the inter-
pair distance R0iJj [60,61], where

RPpQq =
√(〈ϕPp|r̂|ϕPp〉 − 〈ϕQq|r̂|ϕQq〉

)2. (6)

These decay properties reveal a certain decoupling in the
amplitude equations and form the basis for various local

correlation methods. Linear scaling can be achieved by
partitioning the summations in Equations (2) and (5)
intoweakly coupled subspaces�k, where only the subsets
of occupied and virtual orbitals that significantly affect
the energy of these subspaces are included. After solving
the equations on these fragmented subspaces, the total
correlation energy can finally be approximately expressed
as a sum over the contribution from each:

�EMP2 ≈
∑
k

�EMP2(�k). (7)

The equations are typically solved on slightly larger
domains by inclusion of so-called buffer spaces [18] to
ensure that the energy inside each subspace is properly
converged.

The correlation energy is distributed across the exci-
tation space, and will smoothly flow between configura-
tions following smooth changes in geometry and repre-
sentations of the orbital spaces. Changes in the weakly
coupled local subspaces following the inclusion or exclu-
sion of orbitals depending on distance measures will,
however, inevitably introduce discontinuous changes in
the energy. Consequently, local correlation methods are
prone to yield non-smooth – or fractured – PESs and
careful consideration should thus be put into the algo-
rithms by which these local subspaces are constructed in
order to minimise such effects.

We shall distinguish the fragmentation schemes, i.e.
the principles used to construct the subspaces, from the
various other approximations involved. In terms of frag-
mentation, the challenges associated with fractured PESs
have been addressed in various ways, with the most com-
mon being that of choosing the subspaces sufficiently
large to suppress discontinuities [57]. Other approaches
include freezing the domains close to the equilibrium
geometry [55] or bumping the amplitudes [56]. The
orbital specific virtual (OSV) representation of the vir-
tual space has been of particular interest, as it has been
shown to yield smoother surfaces both for molecules and
periodic systems [57,62–64].

The divide-expand-consolidate (DEC) family of
methods takes a different approach and aims at control-
ling the magnitude of the discontinuities by converging
the energy with respect to changes in the orbital sub-
spaces. The various fragmentation schemes are them-
selves in principle agnostic with respect to the repre-
sentations of the orbital spaces, which for the virtual
space include local virtual orbitals (LVOs), projected
atomic orbitals (PAOs), OSVs and pair natural orbitals
(PNOs) [11–17]. While it is well known that the choice
of virtual representation makes a significant impact on
the energy and thus the PES, it currently remains unclear
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how to determine the suitability of such a representation
without performing the actual energy calculation [45,65].

Positions and locality can be ascribed to a set of
orbitals in a number of ways [45], and the exact definition
of the local subspaces on which the amplitude equa-
tions are solved may therefore differ between various
implementations. Following an “ERI-centric” approach,
we shall infer sparsity in the ERIs directly from distance
considerations,meaning thatwe assume (0iAa|JjBb) = 0
for distances R0iAa, RJjBb and R0iJj above some prede-
termined thresholds. This approach is convenient from
a periodic perspective, since it incorporates the transla-
tional symmetry of the product orbitals that appear in the
bra and ket of the ERIs,

T̂Mϕ0i(r)ϕAa(r) = ϕMi(r)ϕ(A+M)a(r), (8)

where T̂M is the lattice translation operator that offsets
the product orbitals in cellwise increments, such that any
excitation included in the reference cell is also included
in the translated copies.

By defining the elements

EAaBbIiJj := tAaBbIiJj
(
2
(
IiAa|JjBb)− (

IiBb|JjAa)) , (9)

we may express the full MP2 energy per cell more
compactly as

�EMP2 =
∑
i∈O0

∑
Jj∈O

∑
Aa∈V

∑
Bb∈V

EAaBb0iJj , (10)

where the summations are now partitioned in such a way
that the individual orbitals are emphasised rather than
the lattice structure. The summation is still infinite, but
we explicitly denote the full orbital spaces as V and O
(O0 for the reference cell) for the virtual and occupied
spaces, respectively.

In this setting, a fragmentation may be regarded as
a partitioning within the various terms, while the local
approximationmay be regarded as a distance-based trun-
cation of the orbital spaces. Taken together, this forms a
fragmentation scheme, and with the addition of approxi-
mative techniques such as various representations of the
orbital spaces, it can be seen as a local correlation method,
as found in a number of implementations.

The DEC family of methods [18–20] was originally
devised for molecules and has been extended to the
periodic case recently [44]. In the DEC approach, the
amplitude equations are solved within subspaces called
amplitude orbital spaces (AOSs) and the resulting ener-
gies are computed on a smaller subspace of each AOS
called the energy orbital space (EOS). In order to gain
control over the error in these calculations, these spaces
are constructed such that the error in the energy is below
a predefined threshold.

In terms of fragmentation, the DEC approach first
divides the occupied space into fragments, which are
non-overlapping setsP of occupied orbitals in each others
vicinity. The AOS for a fragment is

�k(0P) = O0P ∪ V0P, (11)

where the notationO0P andV0P signifies sets of occupied
and virtual orbitals in the vicinity of P (explicit definition
will follow later). The energy associated with a fragment
is in terms of Equation (7):

�Efrag,MP2
(
�k(0P)

) =
∑
ij∈P

∑
AaBb∈V0P

EAaBb0i0j , (12)

where the summation domain constitutes the EOS of the
fragment. The AOS of a fragment can be determined by
expanding O0P and V0P successively until the change in
energy is below a certain threshold referred to as the
fragment optimisation threshold (FOT). The converged
fragment spaces obtained in the expansive step may then
be used to set up the so-called pair-fragment spaces with
AOSs

�k(0P,Lq) = O0P ∪ V0P ∪ OLQ ∪ VLQ, (13)

onwhich the pair-fragment amplitude equations are then
solved. Finally, the fragment energies can be consolidated
with the pair-fragment energies of successively increasing
inter-pair distance until the energy is converged, where
the pair-fragment energy is

�Epair,MP2
(
�k(0PLQ)

) =
∑
i∈P

∑
j∈Q

∑
AaBb∈V0P∪VLQ

EAaBb0iLj ,

(14)

where again the summation domain is the EOS of the
pair-fragment. In contrast to molecular DEC we have in
the abovemade no distinction between the virtual spaces
used in the AOS and EOS. The AOS does, however, con-
tain buffer orbitals in the form of occupied orbitals used
merely to converge the energy inside the EOS.

The partitioning used to arrive at the sets P can of
course be varied, all the way from no partitioning (P =
O0) to full partitioning (Pi = ϕi). In the latter case,
this closely resembles what is known as the Pulay–Sæbø
approach [7,66], where every unique combination of
occupied orbitals are referred to as pairs. The fragmen-
tation, which has later been generalised by Werner and
coworkers [25,67], has been extended to periodic sys-
tems in the Cryscor program [42,51,57,68–71]. In this
approach, theDEC fragment is referred to as a strong pair,
while the pair fragments are classified into close, weak
or distant pairs depending on the inter-orbital distance
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between the constituent occupied orbitals. In the context
of Equation (7), these subspaces can be expressed as

�k(0iLj) = ϕ0i ∪ V0i ∪ ϕLj ∪ VLj,∀L ∈ Z3, (15)

and the energy of such a subspace is

�EMP2(�k(0iJj)) =
∑

AaBb∈V0i∪VJj

EAaBb0iJj . (16)

The pair-classification scheme is well suited for a multi-
level approach, where the pairs can be treated within var-
ious approximations, ranging from exact MP2 for strong
and close pairs, tomultipole expansion forweak pairs and
Lennard–Jones extrapolation for distant pairs. Its imple-
mentation in Cryscor is currently capable of running
MP2-calculations on systems with more than 100 atoms
per cell. [49]

With the inclusion of the occupied buffer space in the
vicinity of a given fragment (or strong pair), it is tempting
to include the corresponding amplitudes in the energy
calculation since they are likely already close to conver-
gence. This can be done by extending each fragment (or
strong pair) space Pi = ϕi with all pair-fragment spaces
where one of the occupied orbitals pertain to the given
fragment, forming the subspace

�k(0i) = ϕ0i ∪ O0i ∪ V0i, (17)

and computing the energy

�EMP2
(
�k(0i)

) =
∑
Jj∈O0i

∑
AaBb∈V0i

EAaBb0iJj . (18)

This fragmentation corresponds to the periodic cluster-
in-molecule (CIM) method [43], where the constituent
subspaces are referred to as clusters. In CIM, the spaces
are determined by including all orbitals up to a given
distance, typically fixed at 5.5 Å [43].

To summarise, the DEC and Pulay–Sæbø fragmenta-
tion schemes become identical in the case where each
DEC-fragment is comprised of one single occupied
orbital, while the CIM fragmentation differs from the
two others in the sense that the pair-contributions are
always included in each cluster. An illustrative compar-
ison of the three fragmentation schemes is presented in
Figure 1. While the smoothness of the PES in the DEC
approach can in principle be controlled by the FOT, dis-
continuities in the Pulay–Sæbø or CIM scheme are con-
ditioned on the default or user-defined domains being
sufficiently large. As with the incremental scheme DEC
offers a systematic path towards the exact correlation
energy for solids, yet in smaller increments and appli-
cable only to insulators [72,73]. All three fragmentation

schemes may serve as suitable starting points for embed-
ding approaches, where higher-level correlationmethods
designed for molecules can be used to improve upon the
results [74–76].

It thus turns out that by not fully contracting the
energy, but rather solving for the amplitudes within the
local subspace and thereafter storing the elements EAaBb0iJj
in addition to the positions of the orbitals, the energy can
be retrospectively recast as a Pulay–Sæbø-like, CIM-like
orDEC-like result. Furthermore, by computing a range of
such energies for various local truncations of the occu-
pied and virtual subspaces, it becomes possible to gain
insight into how and where discontinuities emerge in the
PES depending on the cutoff parameters. We have imple-
mented this functionality in the current XDEC-code, but
stress that this procedure does not equate to Cryscor or
CIM, since it lacks the many other approximative tech-
niques and orbital space representations that are used in
these implementations.

3. Implementation

The implementation of XDEC presented in this paper
shall be referred to as XDEC-RI (extended DEC with a
resolution of the identity approximation for the ERIs) in
order to distinguish it fromour previous implementation,
XDEC, since there are fundamental differences between
the two.

As with our XDEC implementation [44], the Wan-
nier functions in XDEC-RI are obtained from Crys-
tal [41,71] and the AO integrals from Libint [77]. A
notable change is the fact that the ERIs are now fitted to a
periodic basis using an attenuated Coulomb metric [50].
A global fitting at the onset of the calculation saves com-
putational time, since the ERIs can be easily computed
on demand and reused in the expansive steps of the frag-
ment optimisation. Furthermore, all integrals and orbital
spaces now fully incorporate translational symmetry.

The size of the local subspace is controlled as follows.
Each WF is assigned a position according to its centre.
The occupied orbitals may thereafter be subdivided into
fragments depending on their positions or they may be
kept in separate fragments depending on the user’s pref-
erence. A fragment centre is typically chosen to be the
centre of the first orbital in each fragment. The local sub-
space pertaining to the fragment is then chosen to consist
of all occupied and virtual orbitals inside given radii docc
and dvirt.

In our previous implementation of the XDEC
algorithm [44], we treated fragments and pair-fragments
as finite clusters. Although this, in principle, would allow
for the exploitation of highly optimised molecular algo-
rithms, we here report an implementation that maintains
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Figure 1. Illustration of the various periodic fragmentation schemes under consideration. Virtual and occupied orbitals inside the local
subspaces are coloured red and blue, respectively. CIM differs from the other two in the sense that the energy contributions from ampli-
tudes where i and j are not the same is included in the central cluster of i, here indicated by varying opacity in the occupied orbitals. (a)
A pair in the Pulay–Sæbø fragmentation. (b) A cluster in CIM. (c) A fragment in DEC. (d) A pair fragment in DEC.

full translational symmetry throughout the calculation.
This allows us to circumvent the main bottleneck of
the XDEC algorithm, namely the repeated evaluation
of ERIs, by reusing integrals in the fragment and pair-
fragment calculations. The main disadvantage of this
approach is that the resulting algorithm is no longer
embarrassingly parallel due to the increased amount of
communication between computer nodes.

To support full translational symmetry we have imple-
mented a Python class named TMAT (Toeplitz Matrix),
which is specifically designed to facilitate linear-algebra
operations on bi-infinite block-Toeplitz and block-
Circulant matrices [78] (definitions are given below).

Using local Gaussian basis sets from quantum chem-
istry, translational symmetry manifests itself in

equivalence among blocks of matrix elements of trans-
lationally invariant operators. A typical example is the
infinite overlap matrix, whose elements obey

SM,N
μν = 〈Mμ|Nν〉 = SM+L,N+L

μν . (19)

Matrices with this block structure are called bi-infinite
block Toeplitz (IBT) matrices. Using i, j ∈ Z to denote
row and column block indices, an IBT matrix is defined
by

Aij = Aj−i := Am. (20)
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The matrix product of two IBT matrices A and B is itself
an IBT matrix, since

(AB)(i+n),(j+n) =
∞∑

k=−∞
A(k−n)−iBj−(k−n) = (AB)ij,

(21)

and can thus be compactly expressed as

(AB)mIBT =
∞∑

k=−∞
Ak · Bm−k. (22)

If we assign to A a bandwidth N such that

Am = 0 for |m| > N (23)

we can define a discrete Fourier transformation

F {A}m =
N∑

n=−N
e−i( 2πM )mnAn := Ãm, (24)

and its inverse

F−1{Ã}n = 1
M

N∑
m=−N

e−i( 2πM )mnÃm = An, (25)

whereM = 2N + 1. The discrete Fourier transformation
followed by its inverse introduces a type of periodicity in
the matrices that satisfy the Born–von Karman bound-
ary condition [28], as apparent when considering blocks
outside the bandwidth:

AM+n =
N∑

n′=−N

An′
(

1
M

N∑
m=−N

ei2π
m
M (M+n−n′)

)
= An.

(26)

In order to account for this behaviour, it makes sense to
define a non-standard circulant operator

i � N := (i + N) mod (2N + 1) − N, (27)

where mod implies the remainder of integer division,
producing the following infinite series (in positive incre-
ments of 1):

. . . , N,−N, . . . , 0, . . . , N, −N, . . . ,
(28)

such that the transformation to and from reciprocal space
can be expressed

An =
N∑

n′=−N

An′ ( 1
M

N∑
m=−N

ei2π
m
M (n−n′)

)
δn�N,n′

, (29)

where we explicitly have pointed out the circulant nature
of the series expansion of the Kronecker delta by includ-
ing the circulant operator. A matrix subject to these con-
ditions can be referred to as an infinite block-circulant

(IBC) matrix, defined by

Aij = A(j−i)�N := An�N . (30)

We now consider for given n the inverse Fourier trans-
form of an element-wisemultiplication of two IBTmatri-
ces Ã and B̃ in reciprocal space:

F−1(F (A) ∗ F (B))n = 1
M

N∑
m=−N

ei
2π
M mnÃmB̃m. (31)

Expanding Ã and B̃ in terms of their blocks in direct
space,

F−1(F (A) ∗ F (B))n

=
N∑

n1=−N

N∑
n2=−N

×
(

1
M

N∑
m=−N

ei
2π
M m(n−n1−n2)

)
An1Bn2 , (32)

which by the circulant Kronecker delta can be reduced to
the IBC product

F−1(F (A) ∗ F (B))n =
N∑

n1=−N
An1Bn−n1�N

= (AB)nIBC. (33)

A comparison of Equations (33) and (22) reveals the
relation

(AB)nIBT = (AB)nIBC

−
k≤|n|∑
k=1

A−sgn(n)(N−k+1)Bn−sgn(n)(N+k), (34)

where the superscript IBT indicates the result from
Equation ((22)), thus showing that these products can be
made equivalent in any given bandwidth by padding the
outer layers in thematriceswith zeros so that the last term
in the above is zero.

Equation (33) is basically the familiar convolution
theorem. It provides key insight into the reciprocal
space treatment of infinite systems. In conjunction with
Equation ((34)), it shows that any factorisation in recip-
rocal space carries over to direct space in a well-defined
manner, paving the way for a straightforward imple-
mentation via reciprocal space of widely used linear-
algebra techniques such as singular value decomposition,
Cholesky factorisation, or diagonalisation.

Furthermore, with a periodic definition of the matrix
product there is no need for explicit inclusion of the
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lattice-summations in the notation, as they simply follow
from the definition. Most of the familiar tensor notation
in quantum chemistry thus smoothly carries over to the
periodic domain, making the process of extendingmeth-
ods from finite to extended systems conceptually simpler.
By implementing the IBT and IBC matrix structures as
a class in Python, the process of writing a periodic code
much more closely resembles what is typically done for
the molecular case, and the cumbersome process of deal-
ing with summations over lattice vectors is conveniently
dealt with automatically in the background. Efficiency
is ensured by using the Fast Fourier Transform (FFT)
algorithm [79] and level 3 BLAS routines [80], exploit-
ing multi-threaded and architecture-optimised libraries.
This computational efficiency, in conjunction with the
conditions provided by Equation ((33)), is extensively
used in our code.

The calculation of ERIs constitutes the main bot-
tleneck in the XDEC implementation, which requires
re-calculation of integrals for each fragment and pair-
fragment optimisation, including re-calculation in each
optimisation cycle. While embarrassingly parallel [22],
this approach is too costly to be applicable on small and
medium-sized commodity computer clusters. As men-
tioned above, we here exploit full translational symmetry
to enable the reuse of ERIs across fragments and pair-
fragments. Still, the calculation of the ERIs for the MP2
approximation formally scales as N5 with N being the
number of atomic orbitals in the supercell. To accelerate
the ERI generation and to reduce the memory footprint
of the algorithm, we use a periodic adaptation of the
resolution of the identity (RI) approximation [81–91].

In a suitable auxiliary basis {ϕNK}, the product of two
Wannier orbitals ϕ0iAa can be approximated as a linear
combination [42]:

|0iAa) ≈
∑
NK

|NK)dNK,0iAa := |0̃iAa). (35)

The optimal fitting coefficients d are obtained by min-
imising the residual norm in any positive, semidefinite
metric [86],

(0iAa − 0̃iAa|0iAa − 0̃iAa) := (�0iAa|�0iAa), (36)

upon which the residual is orthogonal to the fitting basis,
so that

(NK|�0iAa) = 0. (37)

The latter expression yields a set of fitting equations for
d:

(NK|0iAa) =
∑
MJ

(NK|MJ)dMJ,0iAa. (38)

If we define the infinite block-Toeplitz matrices O and
V with elements O−N

K,0iAa = (NK|0iAa) and VM−N
KJ :=

(NK|MJ), the above relationmay be cast intomatrix form
with a straightforward solution for the coefficients

d = V−1O, (39)

provided the matrix V is nonsingular – i.e. – provided
the auxiliary basis functions constitute a linearly inde-
pendent set in the chosen metric.

A natural choice for metric in Equation (37) is the
Coulomb operator, as this is the metric of the ERIs
themselves. The Coulomb operator, however, decays
slowly with distance (R−1), making it computation-
ally expensive for infinite periodic systems. Noting that
the Coulomb operator is obtained from an attenuated
Coulomb operator expressed in terms of the complemen-
tary error function [92],

1
r

= lim
ω→0

erfc(ωr)
r

, (40)

we may enforce more rapid decay by selecting a small
positive value for the attenuation parameterω. The atten-
uated Coulomb operator maintains characteristics simi-
lar to the true Coulomb operator for small ω, while for
increasingly large values it approaches the overlap met-
ric. As noted by several authors in the past [48,50,51],
this makes it an interesting candidate for fitting metric
in periodic systems. We shall indicate the usage of this
operator with a tilde in the affected matrices. The fit-
ting equations in the attenuated Coulomb metric thus
become

Ṽd̃ = Õ. (41)

Although the matrices involved are in principle infinite,
they exhibit to a certain degree a regular blockwise decay
in the elements with respect to the distance to the ref-
erence cell which can be tuned by ω. The matrices can
therefore be computed up to a given truncation threshold
by incrementally including chunks of blocks in spheri-
cal shells extending outwards from the reference cell (see
Algorithms 1 and 2). We shall use this approach in the
construction of the matrices required. The expression for
the three-index tensor elements can be reorganised as

(LJ |̃0iAa) =
∑

MμNν

(LJ |̃Mμ(M + N)ν)c−M
μi c−(M+N)+A

νa

:=
∑
Nν

Ō−L
JiNνc

−N+A
νa , (42)

where cdenotes the expansion coefficients of theWannier
orbitals in the AO basis, and

Ō−L
JiNν :=

∑
Mμ

(LJ |̃MμNν)c−M
μi , (43)

is an intermediate contraction tensor for the occupied
orbitals.
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There are two attractive features of this fitting scheme
that makes it especially well suited for XDEC. First,
by organising the elements in the intermediate tensor
Ō in the appropriate way, the contraction of any sub-
set of the virtual orbitals may be done efficiently by
means of a matrix product. This is useful for incremen-
tally including larger virtual spaces. Second, the circulant
product makes it possible to simultaneously compute for
all J (

0iAa|Jj(J + B)b
) ≈

(
0̃iAa| ˜Jj(J + B)b

)
= (d̃

T
0,AVd̃0,B)

J
iajb, (44)

bymeans of the IBCmatrix product in Equation (33). The
final contractions are with the full Coulomb matrix, but
since the attenuated fitting coefficients are only non-zero
on a finite extent of the infinite lattice, we only have to
compute the blocks in V that are required to make the
circulant product consistent with the Toeplitz product
inside the supercell. For simultaneous excitations inside
and outside the supercell (J outside) we can compute the
required extra layers in V on demand.

While the periodic auxiliary basis is infinite, two addi-
tional screening parameters ξ0 and ξ1 ensure a finite
bandwidth of the RI tensors, as outlined in Algorithms 1
and 2. The screening parameters are in effect a trun-
cation threshold on the level of blocks for the three-
index AO integrals and the contracted three-index ten-
sor Ō. Assuming monotonic decay, the screening has
been implemented such that the maximum element
of all blocks outside a spherical volume centred on
the reference cell is below the threshold. This allows
the matrices to be incrementally constructed outwards
from the reference cell until the requested precision is
reached.We finally remark that this fitting approach is not
robust [93]. In order to make it robust, one would have
to compute the corresponding O tensors in Coulomb-
metric, defeating the purpose of using attenuation in
the first place. Our procedure is specifically designed
with flexible orbitals spaces in mind and will likely
benefit from incorporating aspects from other similar
approaches in the future [53,94].

4. Computational details

The systems studied in this work are chosen to be
sufficiently complex for a meaningful analysis, while
small enough to make calculations relatively inexpensive
and keeping the analysis simple. Similarly, focusing on
sources of PES discontinuities rather than onhighly accu-
rate results, we use basis sets relatively far from the basis
set limit.

Algorithm 1 AO screening procedure implemented in
the XDEC-RI-LMP2 code

1: Compile a list � containing chunks of coordi-
nate vectors {M}R grouped together into concentric
spherical shells in order of increasing radial distance
||RM|| to the reference cell.

2: for {M}R in � do
3: Compute all (0J|0μMν)’s for the shell
4: if all | (0J|0μMν) |max ≤ ξ0 then
5: Break
6: end if
7: Append allMs to the screened domain 


8: end for
9: Set an initial reasonably large cutoff Rcut
10: for M in 
 do
11: Compute all cells (NJ|0μMν) within RN ≤ Rcut
12: if any

(
KboundaryJ|0μMν

) ≥ ξ0, where
0.95Rcut < RKboundary ≤ Rcut then

13: Halt execution, warn/advise user to increase
domains.

14: else
15: Append all blockswhere (NJ|0μMν) ≥ ξ0 to

screening domain 
M
16: Let Rcut = 1.1RNouter where RNouter corre-

sponds to the outermost cell in the appended blocks.
17: end if
18: end for

Algorithm 2 MO fitting screening procedure imple-
mented in the XDEC-RI-LMP2 code
1: Set Rtolerance = 10−12

2: Construct a list � of cell-indices L in order of
increasing distance ||RL|| to the reference cell.

3: for L in � do
4: Compute all ŌL,N

Jνp

5: if RL-RLprev ≥ Rtolerance and |ŌL,N
Jνp | ≤ ξ1 then

6: Break
7: end if
8: Store columns (Nν) and column indices of

ŌLJp,Nν with max absolute value above ξ1 for the
subsequent contraction of virtual coefficients.

9: end for

Validation of the implementation, including selection
of the Coulomb attenuation parameter for the RI approx-
imation, is performed using the same three-dimensional
(3D) and one-dimensional (1D) systems of neon atoms,
and the 1D system of ethylene molecules as in Ref. [44].
In addition, we use a 1D system with a unit cell contain-
ing two water molecules arranged as shown in Figure 2.
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Figure 2. The 2H2O system, where two water molecules per cell are repeated in a 1D lattice.

We use an experimentally determined internal geome-
try of water [95]. For the fixed geometry calculations, we
use a lattice parameter of approximately 4.8035AA (see
supplementary information for details). In the PES calcu-
lations, we vary the lattice parameter while the O–O–O
angles remain fixed. The water system contains more
significant inter-molecular correlation effects than ethy-
lene, and is thus more interesting with regard to the
exploration of PESs.

Convergence of the MP2 correlation energy with
respect to truncation of the local subspaces is investi-
gated for the water and ethylene systems alongwith water
molecules adsorbed on a LiH (001) surface in the slab
approximation. The geometry of the water adsorption
system is taken from Tsatsoulis et al. [96], with the unit
cell containing eight LiH and one water molecule, as
shown in Figure 3. This system will be referred to as
LiH-H2O.

Finally, the water and LiH-H2O systems are used to
investigate the continuity of PESs. For the LiH-H2O sys-
tem, we start from the equilibrium geometry reported
by Tsatsoulis et al. [96] and vary the distance between
Li and O to generate a one-dimensional cut through
the PES. This system has a lattice parameter of approx-
imately 5.78Å, thus increasing the interaction between
neighbouring water molecules at the surface as com-
pared to systems with lower density. Detailed geometric
data for all systems can be found in the supplementary
information.

We use the Crystal program [71] to compute the HF
reference determinant and to perform the Wannieriza-
tion and Foster-Boys localisation [41] of the occupied
and virtual orbitals separately. In order to converge the
HF reference determinant of LiH-H2O, we use a Fock
matrix mixing of 35% in place of the default value (30%
[97]) used for the other systems. The Brillouin zone
shrinking factor determining the density in reciprocal
space is set to 3 for the LiH-H2O system. This is not
as close to the thermodynamic limit as in Tsatsoulis
et al. [96], but sufficient for our purpose. The remaining
shrinking factors were 9 for neon and 8 for 2H2O and
ethylene.

The 6-31G basis set [98] obtained from the basis set
exchange database [99,100] is used for the 1D ethylene
system. For the hydrogen atoms in the 2H2O and LiH-
H2O systems, we use a valence triple-zeta basis set with

polarisation functions [101], and for Li we use a 6-1G
[102] basis set. The 6-31G basis set for oxygen [103] is
used both in 2H2O and LiH-H2O.

The cc-pVDZ RI fitting basis by Weigend et al. [91]
is used for ethylene and LiH-H2O, while the cc-pVTZ
RI fitting basis [91] is used for neon and 2H2O, both for
XDEC and Cryscor calculations. In order to avoid lin-
ear dependence, exponents less than 0.4 are removed for
LiH-H2O and less than 0.1 for the remaining systems.

We use the frozen-core approximation in the corre-
lation treatment for all cases except 3D neon. The MP2
equations are solved iteratively using fixed point itera-
tions until the residual norm is below a numerical thresh-
old set to 10−10, except for the 2H2O system where it is
determined dynamically from the FOT as 10−3 × FOT.
In the expansive step of the fragment optimisation, we
include by default a minimum of 6 new orbitals in the
local subspace in each iteration. For 3D neon, however,
we include a minimum of 10 new orbitals in order to be
consistent with Ref. [44].

5. Results and discussion

The XDEC-RI implementation differs fundamentally
from our previous work [44], so we first validate
the implementation by comparing fragment and pair-
fragmentMP2 energies for 3D neon, ethylene, and 2H2O
with results obtained with Cryscor [42,51,57,68–71]
and the original XDEC implementation [44]. In all
cases, the occupied space is completely fragmented, i.e.
each occupied orbital defines a fragment. The XDEC-
RI truncation parameters are set to ξ0 = 10−14 and
ξ1 = 10−14, and the attenuation is ω = 0.1 Bohr−1. For
3D neon, we use the XDEC-RI approach for the vir-
tual space, converging each fragment energy to FOT =
10−4 Hartree, while a CIM-like fragmentation is used for
ethylene and 2H2O, where for each occupied orbital the
amplitudes are solved within docc = dvirt = 20 Bohr and
thereafter cast into pairwise energy contributions. The
results, depicted as functions of the pair separation up to
20 Bohr in Figure 4, show excellent agreement across the
implementations.

To gain more insight into the impact of the atten-
uated RI approximation, we present total MP2 ener-
gies for 1D neon in Table 1 for various values of the
attenuation parameter ω, using the CIM result from
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Figure 3. Geometrical setup of the LiH-H2O adsorption system. A sideview is shown on top, while a top-down view is shown below. The
equilibrium geometry was taken from the work of Tsatsoulis et al. [96]

Ref. [43] as reference. With a cc-pVDZ fitting basis [91],
XDEC-parameters of ξ0 = 10−12, ξ1 = 10−12, FOT =
10−6 Hartree and orbital increment 10 [44], we find
fairly good results already at ω = 100.0 Bohr−1. This is
likely due to the fact that most of the significant cor-
relation effects in this system occur internally on the
atoms. The results are numerically the same as CIM for
ω = 0.5 Bohr−1, and we observe no significant change
below this value for this system.

Ideally, we would like the effect of the attenuation to
be minimal in comparison to the ones caused by the

distance cutoffs, so a closer scrutiny of the attenuation
dependence in the energy is warranted. We therefore
compute the CIM-like MP2 energies for ethylene and
3D neon for a range of ω-values, as shown in Figure 5.
Again, we obtain validating results from Cryscor using
the same auxiliary basis with a Coulomb-metric fit,
PAOs for the virtual orbital space and a local excita-
tion domain for all strong pairs which includes all vir-
tual orbitals associated with the 25 nearest neighbour-
ing atoms for ethylene, and 10 nearest neighbours for
neon.
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Figure 4. Validation of pair-fragment energies for (top to bot-
tom) 3Dneon, ethylene and2H2Oby comparison to Cryscor and the
original XDEC implementation. The fragment energy for 3D neon
is not included.

With a cutoff for the local subspace dvirt = 15.0 Bohr
for ethylene and dvirt = 6.0 Bohr for 3D neon, and a
range of docc-values, we find that both cases show the
energy approaching in a smooth fashion the Coulomb-
metric fit as indicated by the Cryscor results when ω

is decreased. The dependence on the attenuation param-
eter is similar to that reported for molecules in the
past [50,104], with a stable region for ω ≤ 0.3 Bohr−1. In
the region from 0.3 Bohr−1 to 10.0 Bohr−1, the energy
changes smoothly before it stabilises not too far from
the values obtained close to the Coulomb-metric fit.

Table 1. Total MP2 energy for 1D neon compared to CIM results
fromWang et al. [43].

Attenuation EMP2 / Hartree

XDEC-RI 100.0 −0.114314
10.0 −0.114319
1.0 −0.114351
0.5 −0.114363
0.1 −0.114363
0.07 −0.114363
0.05 −0.114363

CIM – −0.114363

Variations in the cohesion energy for ethylene follow-
ing changes in attenuation in the region below ω =
0.3 Bohr−1 is found to be less than 1% relative to
796.5 μHa, obtained at ω = 0.05 Bohr−1. In general, the
changes in energy due to attenuation below 0.3 Bohr−1

are fairly small in comparison to the changes in the cutoff
parameter docc, so we conclude that wemay safely choose
ω ≤ 0.3 Bohr−1 in our further examination.

The features of the curves in Figure 5 correspond-
ing to the various distance cutoffs appear more or less
internally unchanged, while they are simply shifted in
energy as the distance cutoff changes. This indicates that
the correlation energy distributes similarly across the
pairs independent of the attenuation parameter, but it
does not decisively tell us whether or not the attenua-
tion could cause artefacts in the PES beyond the ones
we expect from the fragmentation. Since the position
of each orbital remains fixed after the localisation, we
expect abrupt changes in energy to occur at the same
distance cutoffs regardless of the various other parame-
ters used in the approximation. Thus, in order to rule out
such attenuation-related effects in the energy, we com-
pute forω = 0.1 Bohr−1 andω = 0.2 Bohr−1, both safely
within the limit of ω = 0.3 Bohr−1, the CIM-like ener-
gies for 2H2O for a range of cutoffs. This is a slightly
more correlated system, since it features hydrogen bonds
both within and between the cells. In the results, pre-
sented in Figure 6, we find our first indications of abrupt

Figure 5. Dependence of the LMP2 energy on the attenuation parameterω for ethylene (left) and 3D neon (right). For ethylene, we had
dvirt = 15.0 Bohr, while for 3D neon we had dvirt = 6.0 Bohr.
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Figure 6. The XDEC-RIMP2 energy of 2H2O for various distance cutoffs. In the upper panel, docc = 13 Bohr and in the lower panel dvirt =
13 Bohr.

energetic changes, represented by an irregular conver-
gence pattern featuring cliffs and plateaus as the cutoff
parameters are increased in both the virtual and occu-
pied direction. The cliffs in this system are an order of
magnitude larger in the virtual direction, on the order of
10−4 Hartree, as compared to 10−5 Hartree in the occu-
pied direction. Comparing the curves for each ω, we find
that discontinuities along both docc and dvirt remain sta-
tionary when the attenuation parameter is changed. This
suggests that any discontinuities we see here are indepen-
dent of the attenuation parameter for ω ≤ 0.3 Bohr−1,
and are primarily caused by discrete changes in the local
subspace.

A more complete picture of the convergence pattern
can be revealed by varying docc and dvirt simultaneously.
In order to illustrate the theoretical considerations we
have made in regards to discontinuities, we therefore use
our code to compute energies for a range of distance cut-
off parameters for ethylene and 2H2O, shown in Figure 7.
In this way, the local MP2 energy can be shown as a
surface, approaching the exact result as docc and dvirt
becomes large. Both systems again show the expected
non-smooth yet monotonically decreasing energy with

respect to the domain sizes in the form of cliffs and
plateaus across the surface. The abrupt changes occur
at the same distances for one of the cutoff parameters
seemingly independently of the other. This feature sug-
gests that it is possible to converge the energy first with
regards to one cutoff, thereafter the other, in contrast to
repeated successive convergence of these two parameters
conventionally used in DEC methods [19,44].

We have indicated the mean number of occupied or
virtual orbitals per local subspace that are included in
the calculation for some chosen cutoffs, in order to high-
light that the sharp cliffs do not necessarily correspond
to distances at which a large number of orbitals enter the
calculation. Rather, it shows there are certain orbitals that
yield more significant contributions to the local correla-
tion energy, whether it be through direct contributions
or indirect buffer effects. These are scattered throughout
the neighbourhood of the reference cell, not necessarily
ordered by distance.

Large contributions to the energy from close pairs
are clearly present in both cases, while the contributions
in the virtual direction tend to be more evenly spread
out over larger intervals. This latter effect can likely be
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Figure 7. Convergenceof theCIM-like energyof theethylene sys-
tem (top) and a 2H2O systemwith respect to occupied and virtual
cutoff distances. The numbered lines on the surface indicate the
mean number of virtual and occupied orbitals per occupied that
are included per local subspace at a given truncation. Note that
there are energies from several local subspaces superimposed in
these figures, thus the number of orbitals may be fractional. (a)
Ethylene. (b) 2H2O.

explained by the centres of the virtual orbitals being
more arbitrarily dispersed in comparison to the occupied
orbitals who will likely be positioned close to atoms or
bonding sites in the lattice.Within the DEC formalism, it
is customary to assign orbitals to atomic sites by means
of for instance Mulliken or Löwdin charges [18,21,44].
If we instead assign the virtual orbitals to their closest
atomic centres and include all virtual orbitals for all atoms
inside dvirt in the local subspace, we obtain for ethylene
the results shown in Figure 8 in support of this explana-
tion. Here, we see clearly that the energy for the atomic
association features more distinct plateaus and cliffs in

Figure 8. The convergence of the virtual space for ethylene; a
comparison of a setup where orbitals are associated with atoms
and the default orbital-centred approach. We have also included
results where the occupied spacewas partitioned into two groups
based on their nearest neighbour rather than into individual
orbitals. The occupied cutoff is fixed at docc = 15.0 Bohr. As a
reference, Cryscor results for OSV tolerance 10−5 are shown. The
average size of the OSV orbital domains is 26.

the virtual direction as compared to the one where the
orbital centres are used directly. This effect persists inde-
pendently of whether we count distance or number of
virtual orbitals along the x-axis, which further reinforces
the point that the significance of each orbital with respect
to the correlation energy is not simply a function of the
distance.

We see similar irregularities emerge if we allow for
more than one orbital per fragment or cluster, as shown
for ethylene and 2H2O in Figures 8 and 9, respectively.
For ethylene, we here compare the outcome of a CIM-like
MP2 calculation where the occupied space has been sub-
divided into two clusters based on distance as outlined
in the implementational details, to the completely frag-
mented calculation. Similarly, for water, we compare two
clusters to the complete fragmentation. In both cases,
we find slightly sharper cliffs and flatter plateaus for the
clustered approach. The effect is independent of whether
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Figure 9. The convergence of the virtual space for 2H2O; a com-
parison between a setup where the occupied space is fully frag-
mented into individual orbitals and another setup where they are
partitioned into 4 groups based on their nearest neighbours. The
occupied cutoff is fixed at docc = 15.0 Bohr. As a reference, Cryscor
results for OSV tolerance 10−5 are shown.

distance or number of virtual orbitals is used for the x-
axis. When spatially non-coincidental occupied orbitals
are grouped into the same fragment or cluster, a purely
distance-based ordering of the virtual space can result
in a more irregular convergence pattern than that of a
totally fragmented occupied space, likely due to the fact
that being close does not necessarily guarantee strong
coupling to the same virtual subspace.

These results show that the discontinuities are clearly
dependent on the fragmentation, where both the clus-
tering of occupied orbitals and the common practice of
associating the virtual orbitals to atoms may increase the
likelihood of false convergence of the MP2 energy with
respect to dvirt.

We then focus on geometry dependence in the PES
by considering the adsorption of a water molecule on
a surface of LiH, as shown in Figure 3. We keep the
internal geometry of H2O fixed, while its distance per-
pendicular to the surface is varied between −1 to 2 Bohr
relative to its equilibrium. The equilibrium geometry is
taken from Ref. [96], where the water molecule has been
relaxed at the LiH surface at the KS-DFT level with the

Figure 10. The MP2 energy as a function of the local subspace
definition for a displacement of H2O from equilibrium perpendic-
ular to the surface of�zH2O = −1.115 Bohr (above) and�zH2O =
1.871 Bohr (below). As the water molecule approach the sur-
face, the energy decreases and the sharp discontinuities becomes
smeared out – or eroded – resulting in a more smooth conver-
gence pattern.

Perdew–Burke–Ernzerhof (PBE) XC functional [105].
We let ω = 0.15 Bohr−1.

As expected, varying the geometry results in signif-
icant changes in the convergence pattern, as shown in
Figure 10. The position of the orbitals in the LiH sur-
face moves as the water molecule approaches the surface,
resulting in a type of erosion of the sharp cliffs and
plateaus. Also, the MP2 energy is generally decreased
when water comes close as the interactions with the sur-
face intensifies. In Figure 11, we show the effect of various
choices for distance truncations of the local subspace.

Discontinuities are visible even for the largest sub-
space, and upon inspection, they are found to be on the
order of 10−4 Hartree. More discontinuities emerge for
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Figure 11. MP2 energy (left) and MP2 + reference energy (right) for the LiH-H2O surface. The x-axis shows the displacement of the
watermolecule relative to the relaxed geometry perpendicular to the surface. The distance truncation of the local subspace is in this case
dcut = docc = dvirt.

the smaller domains. We can observe at least two dis-
continuities at approximately −0.1 and 0.3 Bohr which
persists across the various cutoffs. The one at−0.1 Bohr is
positioned awkwardly close to the minimum of the total
energy, highlighting exactly how these kinds of effects can
influence the results. In this case, the minimum of the
potential curve is shifted slightly towards negative�zH2O
due to the presence of a discontinuity.

The MP2 adsorption energy is computed using a sim-
ilar definition as in Refs [96], where only inter H2O-
surface pairs up to our maximum cutoff threshold are
included in the energy. In terms of the energy expression
in Equation (9), this corresponds to

Eads,MP2 = 2
∑
i∈�0

∑
j∈O\�0

∑
ab∈V

Eabij , (45)

where �0 signifies the set of occupied orbitals situated at
the H2O molecule in the reference cell.

From the convergence pattern of the MP2 adsorp-
tion energy at equilibrium (�zH2O = 0 Bohr), shown in
Figure 12, we can clearly see a step-like pattern for pairs
at distances below 8 Bohr where significant contributions
to the energy are present. These significant contributions
can be attributed to surface-molecule pairs close to the
water molecule, as to be expected with localised orbitals.
An unexpected effect is, however, present in the virtual
cutoff, where sharp cliffs are present beyond distances
dvirt ≥ 8 Bohr.

The effect on the convergence pattern from the mov-
ing water molecule is shown in Figure 13. Also here we
can identify the step-like pattern for close pairs, and the
more distant contributions from the virtual space. The
movement of the water molecule reveals a distinction
between these effects; while the discontinuities in the
occupied direction move along with the geometry, the
virtual discontinuities appear to remain stationary. The

Figure 12. MP2 adsorption energy in Hartrees ( LiH-H2O surface-
molecule pairs within cutoff distances specified) as a function
of the distance truncation parameters at equilibrium (�zH2O =
0 Bohr).

distance at which they occur is just below the lattice
parameter (10.91 Bohr) and suggests that these contribu-
tions may be attributed to virtual orbitals at neighbour-
ing water molecules, or similarly virtual orbitals at the
corresponding Li- or H-atoms in neighbouring cells.

When compared to Figure 12, we find that these dis-
tant contributions from the virtual space persist also for
small occupied cutoffs, meaning that the distant virtual
orbitals are significant even when both occupied orbitals
are close to the origin. This could be an effect pertaining
to the LVO representation of the virtual space, but fur-
ther studies are required in order to determine whether
or not it would be resolved by replacing them with PAOs
or OSVs.

The DEC approach of converging the domains can in
principle be applied to any of the fragmentation schemes
under consideration. In order to demonstrate this, we
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Figure 13. MP2 adsorption energy in Hartrees (LiH-H2O surface
– molecule pairs within cutoff distances specified) as a function
of the distance truncation parameters in the occupied direction
when dvirt is at its maximum value (top) and similarly as a func-
tion of dvirt when docc is at its maximum value (bottom). The y axis
shows the vertical offset from equilibrium of the water molecule.

finally investigate the relationship between the magni-
tude of the discontinuities and the FOT in the 2H2O-
system by converging the CIM-like MP2 energy succes-
sively in the virtual and occupied directions as described
in Ref. [44]. We increase the spaces by a minimum of
6 orbitals per expansive step. As the lattice parameter is
altered, one H2O molecule is moved such that the bond
angles are preserved. The results are shown in Figure 14.
We finally find that the magnitude of the discontinuities
appears to be proportional to the FOT, which confirms
that the discontinuities indeed can be systematically sup-
pressed in this manner.

6. Concluding remarks

Discontinuities are inherently present in periodic PESs
produced with local correlation methods. The overall
source of these discontinuities is discrete changes in the
orbital spaces, and as long as the spaces are chosen suffi-
ciently large these problemsmay be insignificant. Exactly

Figure 14. Adaptive CIM approach for a chain of H2O (two
molecules per cell). The figure demonstrates that discontinuities
can be systematically suppressed for a CIM-based fragmentation
scheme by converging the energy of each cluster analogous to
what is done in XDEC.

what constitutes sufficiently large is, however, system
dependent and difficult to determine in a black boxman-
ner. The DEC approach of converging the energies of
each subspace can in principle provide control of the
magnitude of the discontinuities for most fragmentation
schemes, but the practical complications due to the irreg-
ular convergence behaviour represent a challenge. Ideally,
one would like every new set of orbitals that enters the
subspace to yield an energy contribution smaller than the
preceding ones. Our results confirm as expected that this
is not the situation for the purely distance-based selec-
tion of the WFs, but that in large enough increments the
overall behaviour is convergent.

The convergence behaviour is dependent on several
fragmentation-specific choices that are easy to control.
Notably, the risk of false convergence can be reduced
by choosing more fine-grained fragmentation and avoid
coincidental position definitions. Furthermore, the bal-
anced treatment of the virtual space of the Pulay–Sæbø
pairs and DEC pair fragments is natural to include in
periodic systems, for example by means of OSVs [57] or
a global fitting scheme, and may further reduce the risk
of discontinuities from the virtual cutoff.

In order to converge the local subspace, efficient han-
dling of the integrals is crucial. Such efficiency can be
achieved with a global fitting scheme as demonstrated
in this work. While the initial partial contraction of the
occupied space is computationally demanding, the sub-
sequent contraction of virtual spaces and calculation of
integrals is relatively cheap, and the intermediate con-
traction tensor contains all the required information to
obtain all ERIs for the crystal.
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