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ABSTRACT 13 

 14 

Aim: The extraordinary diversity of plants across the Cape Floristic Region is characterised 15 

by considerable species turnover among sites. Phytophagous insects show similarly high 16 

turnover, but their patterns are closely coupled to those of their hosts. If the mechanisms 17 

underlying high plant turnover are not unique to plants, similar patterns of turnover should 18 

also be seen in non-herbivorous arthropod groups. We tested this hypothesis using new data 19 

for the Collembola fauna of the Fynbos biome. 20 

 21 

Location: The south-western Cape, South Africa. 22 

 23 

Taxon: Springtails (Hexapoda: Collembola) 24 

 25 

Methods: We sampled springtails from six sites over two seasons. Species richness was 26 

compared with expected values from other studies worldwide given the environmental 27 

characteristics of the sites sampled. Nestedness and turnover components of beta diversity 28 

were calculated and compared against beta diversity patterns of springtails across Europe. 29 

 30 

Results: A total of 114 morphospecies from 14 families was collected. Species richness of 31 

Fynbos sites ranged from 14 to 31 species, which was not significantly different to that 32 

previously reported for non-Fynbos locations and generally within expectations given the 33 

temperature, rainfall, and productive energy of each site. Beta diversity was high across all 34 

pairwise comparisons of Fynbos sites and dominated by species replacement rather than 35 

assemblage nestedness. Relative to the distance between sites, Fynbos assemblages, with a 36 

median inter-site distance of 140 km, showed beta diversity substantially higher than in 37 

European assemblages, which had a median inter-site distance of 1270 km.  38 

 39 

Main conclusions: Alpha diversity of Fynbos Collembola assemblages is in keeping with 40 

species richness expectations. By contrast, beta diversity is high given the small distances 41 

among sites and is characterised predominantly by species turnover. These patterns of 42 

unremarkable alpha diversity, but high turnover among sites are comparable to many Fynbos 43 

plant groups. The mechanisms giving rise to high beta diversity of the plants may also have 44 

led to high diversity in other taxa.  45 

 46 
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1 ǀ INTRODUCTION 50 

Despite a strong relationship between large-scale environmental variation and species 51 

richness at global scales, some areas clearly stand out as extraordinarily diverse. One 52 

of the most significant of these is the Cape Floristic Region (CFR), and specifically 53 

the Fynbos Floristic Radiation at the south-western tip of Africa (Goldblatt, 1978; 54 

Kreft & Jetz, 2007; Jiménez & Ricklefs, 2014; Linder & Verboom, 2015). Much has 55 

therefore been done to document the region’s exceptional botanical diversity and 56 

understand the eco-evolutionary mechanisms underlying it (Cowling et al., 1996; 57 

Linder, 2003; Barraclough, 2006, Hawkins, 2006; Rundel et al., 2016). Although 58 

regional plant diversity is high, local (i.e. alpha) diversity is not exceptional compared 59 

with similar habitats elsewhere. Rather, the high regional diversity is a consequence 60 

of considerable turnover among local sites (Cowling et al., 1992; Cowling et al., 61 

1996; Cowling et al., 1998). Indeed, both spatial and temporal beta diversity is high in 62 

the biome (Buerki et al., 2012). Several mechanisms are thought to underlie such 63 

turnover, including limitations to gene flow (landscape barriers, pollinator and 64 

phenological specialisations), and highly variable local geography and climate, but 65 

long-term climatic stability, resulting in the extreme radiation of the Fynbos flora 66 

(Linder, 1991, Linder, 2003; Dupont et al., 2011; Jiménez & Ricklefs, 2014; Cowling 67 

et al., 2015; Linder & Verboom, 2015). 68 

If mechanisms such as landscape variation and gene flow limitation are 69 

responsible for the patterns in botanical diversity, they should also be manifest in the 70 

diversity patterns of other taxa. Surprisingly few attempts have been made to 71 

understand the relationships between local richness, turnover and regional richness of 72 

animal groups in the Fynbos. To some extent, low vertebrate richness here relative to 73 

other areas in Southern Africa (e.g. Huntley, 1989; Mokhatla et al., 2012; Perón & 74 

Altwegg, 2015), may account for the paucity of studies. For other groups, however, 75 

the situation is more complicated. 76 

For arthropods, and notably the insects, the Fynbos was long thought to be low 77 

in diversity generally (Johnson, 1992; Giliomee, 2003), though often without 78 

considering the distinction between local and regional richness. Yet, in some 79 

endophagous Fynbos insects, diversity is high (Wright & Samways, 2000). Indeed, 80 

species richness on a par with other areas seems to be the general pattern for 81 

phytophagous groups, with regional richness no lower than in other southern Africa 82 

biomes (Procheş & Cowling, 2006). Despite a focus on relationships between local 83 
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richness and turnover to elucidate potential underlying mechanisms for plants, only 84 

two investigations of arthropods in the CFR have dealt explicitly with turnover, 85 

concluding that monkey beetles (Scarabaeidae: Hopliini) and leafhoppers 86 

(Cephalelini: Cicadellidae) show high turnover among sites (Colville et al., 2002; 87 

Kemp & Ellis, 2017; Kemp et al., 2017). This turnover is linked to variation in plant 88 

diversity and independent of other environmental drivers in the case of leafhoppers. 89 

For non-phytophagous species, a single study has suggested that for epigaeic ants, 90 

local richness is in keeping with what might be expected from available energy 91 

(Braschler et al., 2012). 92 

Yet, this picture rests on a relatively narrow empirical foundation and one that 93 

typically has not carefully examined local richness and its patterns of turnover 94 

simultaneously (Kemp et al., 2017 being a notable exception). In effect, whether the 95 

drivers of the remarkable diversity of the Cape Floristic Radiation (Linder & 96 

Verboom, 2015) also have influenced the diversity of other groups, remains 97 

underexplored. In particular, an important question to address is to what extent non-98 

phytophagous arthropods will differ from the phytophagous insects in diversity 99 

patterns.  100 

The paucity of empirical work on CFR fauna constrains understanding of the 101 

eco-evolutionary dynamics of the region, so precluding more general insight into the 102 

circumstances that might promote unusually high diversity (Kreft & Jetz, 2007; 103 

Jiménez & Ricklefs, 2014; Kemp et al., 2017). But it is also of practical concern given 104 

on-going modification of the region by agriculture, urbanization, invasive species and 105 

climate change (Rouget et al., 2003; Rouget et al., 2014). If turnover among sites is 106 

indeed high in animal groups, the degradation or elimination of local habitat patches 107 

will be as much a threat to them as it is to the flora.  108 

Here, we investigate local richness, turnover and regional richness of the litter-109 

dwelling springtails (Collembola) of the Fynbos Biome. This group is typically not 110 

directly associated with vascular plants and mainly subsists on diets linked to soil 111 

fungi and microorganisms (Hopkin, 1997). Indeed, Collembola are not at all known 112 

for narrow host-plant specificity. Neither do they show direct, consistent relationships 113 

with plant richness, despite litter quality effects on their diversity (Salmon et al. 2004; 114 

Milcu et al. 2016; Sabais et al. 2011; Salmon et al., 2014; Leinaas et al. 2015; 115 

González-Macé & Scheu 2018; Raymond-Léonard et al. 2018). However, edaphic 116 

and landscape-level factors nonetheless have a strong influence on its patterns of 117 
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diversity (Ponge et al., 2003). Thus, springtails make a useful model to examine 118 

whether drivers of the unusually high turnover in the vascular plants of the Fynbos 119 

Floristic Radiation have also manifested in diversity patterns of arthropod groups with 120 

indirect relationships to plants, which contrast strongly with the tight relationships of 121 

host-specific insects. 122 

 123 

 124 

2 ǀ MATERIALS AND METHODS 125 

Sites and sampling 126 

Six sites within relatively unmodified landscape were sampled between 2008 and 127 

2011 in the Western Cape of South Africa, with the sites ranging from Cape Peninsula 128 

(34.26°S, 18.39°E) in the west to Wilderness (33.99°S, 22.73°E) in the east (Fig. 1). 129 

The Collembola fauna of the region has recently been the subject of an intense 130 

systematic and ecological campaign (e.g. Janion, et al., 2011a; Janion, Bedos, 131 

Deharveng, 2011b; Potapov et al. 2011; Janion, et al., 2012; Liu et al., 2012; Janion et 132 

al. 2013; Janion-Scheepers et al., 2015; Leinaas et al., 2015; Janion-Scheepers et al., 133 

2016; Weiner et al. 2017). In the present study, Collembola were sampled in a 134 

standardised way using litterbags constructed from cylindrical plastic containers 135 

(height = 4 cm, Ø = 7.5 cm) with a 0.5 mm aperture steel mesh bottom and 1.6 mm 136 

aperture mesh lid, filled with approximately 150 cm3of air-dried uncondensed litter 137 

(Leinaas et al., 2015 and references therein). Litter was prepared by harvesting plant 138 

material of the chosen plant species, drying this material at 40°C for at least 24 hours 139 

and cutting it into approximately 1 cm long pieces. The filled litterbags were stored 140 

dry at room temperature before being deployed in the field. At each of the six sites, 141 

two sub-sites, at least 200 m apart, were identified where the dominant flora 142 

comprised either Ericoid or Proteoid plants. At each of these sub-sites, 10 pairs of 143 

litterbags were deployed at the end of the austral summer (March/April). Each pair 144 

comprised one litterbag filled with Galenia africana litter and one litterbag filled with 145 

a 1:1 mixture of Erica and Protea litter (see details in Supplementary Material) placed 146 

under the dominant plant (Ericoid or Proteoid) at approximately 10 m intervals in an 147 

L-shaped configuration to cover a wide area of each of the Proteoid and Ericoid sites 148 

(Fig. 1), and also allow direct comparison to previous studies (see Bengtsson et al. 149 

2012, Janion-Scheepers et al., 2016). Galenia africana is an indicator of disturbance 150 

such as overgrazing and its nutrient content and decomposition rate is high relative to 151 
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Protea and Erica species (Bengtsson et al. 2012). Although this species is not a 152 

common Fynbos species, it was included because of its attractiveness to springtails 153 

(Leinaas et al., 2015). All litterbags were embedded in the soil such that the top of the 154 

litterbag was at ground level, allowing unimpeded movement of litter-dwelling 155 

invertebrates. Litterbags were always deployed on a Southern bearing less than 40 cm 156 

from the base of a dominant plant. They were left undisturbed and subsequently 157 

collected in either September (2008), or in July/August (2009-2011). This timing 158 

ensured that litterbags were in the field during the wet season (July/August), when 159 

Collembola are particularly abundant (Liu et al., 2012). On collection, the litterbags 160 

were wrapped in aluminium foil to prevent any animals from escaping and 161 

immediately placed in individual plastic bags and stored upright in a cool, thermally 162 

insulated container and returned to the laboratory within five hours of collection.  163 

All invertebrates were extracted into 100% propylene glycol using a custom-164 

built high-gradient extractor (Central Mechanical Services, Stellenbosch University), 165 

which used a heat source and temperature-controlled water bath (Grant Instruments 166 

R2, Cambridge, UK) to generate a thermal gradient along which invertebrates 167 

migrated (Macfadyen, 1953; Block, 1966; Leinaas, 1978). The extraction process 168 

took approximately four days for each litterbag. After extraction the animals were 169 

transferred to 99.9% ethanol for sorting and identification.  170 

Individuals were sorted into morphospecies based on our taxonomic 171 

experience of the group. Morphospecies were then identified to the lowest taxonomic 172 

level possible using available keys (e.g. Fjellberg, 1998; Potapov, 2001; Fjellberg, 173 

2007; Hopkin, 2007). Whenever possible, springtails were identified to species level. 174 

However, much of the springtail fauna of South Africa is not well described (Janion et 175 

al., 2011a, Janion-Scheepers et al., 2015; Janion-Scheepers et al., 2016). Nevertheless, 176 

the morphospecies approach is widely used and the level of systematic knowledge for 177 

the group for the region developed by the broader project (see Janion et al., 2011a) is 178 

sufficient to provide confidence that morphospecies are representative of the 179 

biological situation (i.e. species level differences are being assessed, rather than genus 180 

level or some other arbitrary criterion). After assignment to morphospecies, 181 

individuals were then counted for each trap. For analyses, species counts from all 182 

samples using Galenia and Erica-Protea litterbags across each site were pooled to 183 

represent a complete picture of species diversity at each site regardless of litter 184 

species/litter-type preferences. 185 
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 186 

Quantification of α-diversity and assemblage evenness 187 

To determine sampling efficacy at each site, randomised (10 000 permutations) 188 

sample-based species accumulation curves were plotted using the vegan (Dixon, 189 

2003) package in R statistical software (R Core Team, 2017). Individual litterbags 190 

were used as sample units (see Janion-Scheepers et al. 2016). Plots of species 191 

accumulation curves were qualitatively assessed to determine if they were 192 

approaching an asymptote, an indication that most species present at a site have been 193 

observed.  194 

Hill numbers (qD; Hill, 1973), metrics of alpha diversity that scale linearly, 195 

incorporate species abundance, and represent the effective number of species (Jost, 196 

2007), were used to quantify the richness of each site and to enable direct and easily 197 

interpretable comparisons amongst sites. Hill numbers were calculated for orders (q) 198 

0, 1 and 2 where: 199 

 200 

𝐷 =  (∑ 𝑝𝑖
𝑞𝑆

𝑖=1 ) 
𝑞 1/(1−𝑞)

        (1) 201 

 202 

The parameter q determines the sensitivity of the metric to species relative abundance 203 

(𝑝). Therefore, when q = 0, relative abundance is not included in the sum (i.e. 0D = 204 

Species richness). When q = 1, species are weighted relative to their frequency (note 205 

when q = 1 the equation is undefined, but limits 1D ≈ exp(Shannon entropy)), and 206 

when q = 2, common species are heavily weighted (2D = 1/Simpson index) (Gotelli & 207 

Chao, 2013). Hill numbers were directly compared amongst pairs of sites. Because 208 

Hill numbers scale linearly, Hill ratios (the ratio of qD for paired sites) can be used for 209 

orders 1D and 2D to compare directly the effective number of species between two 210 

sites (Jost, 2007; i.e. a Hill ratio of 2.0 indicates that site one has double the diversity 211 

of site two). 212 

Hill numbers give more weight to common species with increasing order and 213 

can be calculated for orders on a continuous scale (i.e. using non-integer values for q), 214 

thus their decline with increasing order can be used as an indicator of assemblage 215 

evenness. Diversity profiles, calculating qD for continuous orders between 0 – 5, 216 

were, therefore, also generated by to assess the evenness of the Collembola 217 
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assemblage at each site so that the roles of common and rare species could considered 218 

in between-site comparisons. 219 

 220 

Comparisons of Fynbos richness with sites elsewhere 221 

Variation in local species richness is typically a function of area and energy (Wylie & 222 

Currie, 1993; Storch et al., 2005; Ulrich & Fiera, 2009). To determine if the local 223 

richness estimates for the assemblages sampled here significantly differ from those 224 

globally or are in keeping with what might be expected from energy availability (e.g. 225 

Braschler et al., 2012), information on local springtail richness was compiled from the 226 

published literature. Studies documenting the Collembola species richness of sites 227 

across the globe were collated by the lead author (CJS).  The studies included were 228 

undertaken predominantly in natural systems, and, based on the conclusions of the 229 

authors of these studies, with the assumption that these studies had sampled species 230 

richness (i.e. alpha diversity) in a comprehensive manner. Owing to the range of 231 

collection methods used to sample Collembola, a quantitative comparison of sampling 232 

effort and completeness was not possible. Therefore, only studies where multiple 233 

samples were taken (minimum = 22 samples - Convey et al. 1999), or a large number 234 

of individuals collected (minimum = 2505 - Querner et al. 2010) were included. We 235 

assumed, therefore, that species richness estimates were unlikely to be substantially 236 

inaccurate and that any noise introduced by this approach was also unlikely to be 237 

biased in any way.  238 

Species richness values of sites from this study were first directly compared to 239 

species richness values from this compiled dataset through means of a Mann-Whitney 240 

U test. Then, using data from non-Fynbos sites, as the data was overdispersed, a 241 

negative binomial generalised linear model (GLM) was used (Zuur et al. 2009) to 242 

model Collembola species richness of sites as a function of four environmental 243 

variables describing upper and lower temperature, precipitation, and productive 244 

energy. These variables are all known to affect arthropod diversity variation in 245 

general and springtails in particular (Ulrich & Fiera, 2009; Braschler et al., 2012; 246 

Overgaard, Kearney, Hoffmann, 2014; Ballesteros-Meija, Kitching, Jetz, Beck, 2017). 247 

Temperature metrics were calculated as the mean day-time temperature of the 248 

warmest month and mean night-time temperature of the coldest month, respectively, 249 

across a 14-year recent time-series (January 2001 – December 2015) from monthly 250 

remote-sensed MODIS/Terra Land Surface Temperature data (MOD11C3; 0.05° 251 
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resolution) (see also Janion-Scheepers, et al., 2018). As a proxy of productive energy, 252 

mean Normalized Difference Vegetation Index (NDVI; MODIS/Terra MOD13C2; 253 

0.05° resolution) was calculated for the same period. Annual precipitation was 254 

extracted from the WorldClim2 dataset (Fick & Hijmans, 2017). The variance 255 

inflation factor was calculated for all variables used to ensure that collinearity of 256 

variables would not increase the chance of Type I error in the GLM.  257 

For the GLM, precipitation and NDVI were included as independent terms 258 

and upper and lower land surface temperature were included as interactive terms as 259 

the effect of one variable on the species richness of a site is expected to be dependent 260 

on the value of the other variable through means of temperature range/seasonality 261 

effects on species richness (Tello & Stevens, 2010; Hua, 2016). No variables were 262 

scaled. To determine whether Fynbos Collembola species richness differed from 263 

expected species richness given the energy availability and climate of the region, this 264 

GLM was then used to generate a richness estimate with 95% confidence intervals for 265 

each Fynbos site. Predictions were made using the same four environmental variables 266 

described above (upper and lower temperature, precipitation, NDVI). Estimated 267 

richness was then compared to observed richness of each Fynbos site. GLM analyses 268 

used the MASS package in R statistical software (R Core Team, 2017).  269 

 270 

Beta diversity 271 

Several approaches can be used to assess beta diversity (Koleff, Gaston, Lennon, 272 

2003; Baselga & Leprieur, 2015). The equal sampling effort applied to all sites meant 273 

that we were able to incorporate species abundance into our beta-diversity analyses. 274 

Partitioned Bray-Curtis dissimilarity (Baselga, 2013) was, therefore, calculated 275 

between pairs of sites to quantify the relative contributions of variation in abundance 276 

and abundance gradients to patterns of beta-diversity between all pairwise 277 

combinations of sites.  278 

To compare patterns of diversity of the Collembola assemblages described 279 

here with those of a non-Fynbos region, the published results of Petersen (2011) were 280 

used. Petersen described the species-density of six well-sampled Collembola 281 

assemblages across Europe. Due to methodological differences between this study 282 

and that of Petersen the abundance-dependent metrics of diversity are not comparable 283 

between studies. As a result, higher order Hill numbers and Partitioned Bray-Curtis 284 

dissimilarity were not calculated. Thus, incidence-based beta-diversity metrics 285 
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(Baselga, 2010) were instead calculated for the Fynbos Collembola assemblages from 286 

this study and for Collembola incidence data reported by Petersen (2011). Beta-287 

diversity analyses were performed using the betapart package (Baselga & Orme, 288 

2012) in R statistical software (R Core Team, 2017). 289 

 290 

Results  291 

A total of 17 408 Collembola comprising 114 morphospecies from 14 families was 292 

collected from the six sampled sites (Table 1, Table S1.1, Appendix S1). Kogelberg 293 

had the highest species richness (31 species) and Bontebok the lowest (14 species). 294 

Bontebok also had the lowest Collembola abundance (295 individuals), in contrast to 295 

Peninsula, which had the highest abundance of all sites (6 731 individuals). Although 296 

species accumulation curves did not reach an asymptote for any sites (Figs. S1-S6), 297 

sampling effort was equal across all sites, enabling among-site comparisons to be 298 

made.  299 

Comparing the effective number of species amongst sites using Hill numbers 300 

where q ≥ 1, incorporates the relative abundance of each species. While Kogelberg 301 

remains the most diverse site based on higher order Hill numbers, Jonkershoek 302 

supplants Bontebok as the least diverse site when relative abundance is considered 303 

(Table 1). This is indicative of the uneven composition of the Jonkershoek 304 

assemblage, which is dominated by an apparently endemic species, Parisotoma sp. 5 305 

(Table S1.1, Appendix S1). The unevenness of Jonkershoek is also reflected in the 306 

steep diversity-profile decline of this site (Fig. S8.1, Appendix S8).  307 

 Collembola species richness of the South African sites described in this study 308 

was not significantly different to Collembola species richness of sites globally (Fig. 2, 309 

Table 1; Table S2.1, Appendix S2; MWU; U = 40, Z = - 1.2188, p = 0.2355, r =  -310 

0.0469), acknowledging substantial variation in the compiled data. The fitted GLM 311 

explained 30.6 % of species richness deviance (Cox-Snell pseudo-R2 = 0.36) observed 312 

across the assemblages compiled from the literature, with productive energy (NDVI) 313 

identified as a significant predictor variable (Table S3.1, Appendix S3). Observed 314 

Fynbos Collembola species richness of four sites (PEN, MTR, WIL, KOG) was 315 

within 95 % confidence intervals predicted using this model. Observed species 316 

richness of the two remaining sites (JNK, BON) was below the lower 95 % 317 

confidence interval (Table 1). 318 
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Beta diversity was high across all pairwise comparisons of Fynbos sites (Table 319 

2; Table S1.1, Appendix S1, Table S4.1, Appendix S4). Partitioning of Bray-Curtis 320 

dissimilarity (Baselga, 2013) indicates that balanced variation in abundance, which is 321 

comparable to species turnover in incidence-based beta diversity partitioning, was 322 

almost wholly responsible for observed differences between sites. Abundance 323 

gradients, comparable to nestedness, contributed very little to the among-site 324 

differences (Table 2).  325 

Partitioned incidence-based beta diversity metrics for Fynbos Collembola 326 

mirror abundance-based metrics, with species turnover contributing almost 327 

exclusively to the high beta diversity between pairs of sites (Figs. 3 and 4, Table 3). 328 

Beta diversity, measured as total Sørensen Dissimilarity, was higher than that 329 

calculated from Collembola incidence data reported by Petersen (2011) for six sites 330 

across Europe (Fig. 4; Table S5.1, Appendix S5; Fynbos βsor: Q1 = 0.823, median = 331 

0.900, Q3 = 0.918; Europe βsor: Q1 = 0.694, median = 0.875, Q3 = 0.906). This 332 

difference was not significant (Mann-Whitney U test: U = 145, p = 0.184, r = 0.174). 333 

Fynbos sampling sites in this study were, however, almost an order of magnitude 334 

closer together than those used by Petersen (Fig. 4; Fynbos intra-site distance, Table 335 

S2.1, Appendix S2: Q1 = 57 km, median = 140 km, Q3 = 270 km; Europe intra-site 336 

distance, Table S5.1, Appendix S5: Q1 = 1033 km, median = 1272 km, Q3 = 1613 337 

km). This difference was significant with a large effect size (Mann-Whitney U test: U 338 

= 218, p ≤ 0.001, r = 0.799).  339 

 340 

Discussion 341 

We found that while local (alpha) diversity in springtails in the Fynbos biome 342 

was similar to what would be expected from environmental conditions, the beta 343 

diversity over small distances (50-250 km) was exceptionally high compared to 344 

springtail assemblages elsewhere. Most of this beta diversity was a result of species 345 

turnover. This suggests that there is a high diversity of soil animals in the Fynbos, as a 346 

result of factors such as a long history of isolation and variable geography, similar to 347 

what has been found for plants (e.g. Linder & Verboom 2015).  348 

Several studies have demonstrated that the species richness of arthropods in 349 

areas of the Cape Floristic Region is similar to that of other southern African biomes, 350 

either within the expectations of species-energy theory, or strongly related to plant 351 

diversity (Wright & Samways, 2000; Procheş & Cowling, 2006; Procheş et al., 2009; 352 
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Braschler et al., 2012; Kemp & Ellis, 2017; Kemp et al., 2017). Most of these 353 

investigations have, however, concerned phytophagous species, which often have 354 

strong associations with plants (Strong, Lawton, Southwood, 1984; Novotný, Drozd, 355 

Miller, Kulfan, Janda, Basset, Weiblen, 2006; Castagneyrol & Jactel, 2012; Kemp et 356 

al., 2017).  357 

Here we showed similar results for a group that subsists on soil fungi and 358 

microorganisms (Hopkin, 1997) and is not, therefore, directly linked through diet with 359 

vascular plants, suggesting again that Fynbos arthropods in general are not as species 360 

poor as originally thought (Marloth, 1908, see also Johnson, 1992). Rather, alpha 361 

diversity at each sampled site is in keeping with what might be expected for similar 362 

systems globally given energy availability, bearing in mind that the richness-363 

environmental variable analysis accounted for only 30% of the variation in richness 364 

(although a value not dissimilar to other studies at this scale – see e.g. Braschler et al., 365 

2012; Gillman et al., 2015; Beck et al., 2017). Other factors, such as regional area 366 

effects and long-term climatic stability (Galley, Linder, Zimmerman, 2009; Ulrich & 367 

Fiera, 2009), may be important contributors to richness, and will require further 368 

investigation. For the two sites with lower than expected species richness (Bontebok 369 

and Jonkershoek), more frequent disturbance than the other sites may have played a 370 

role (Supplementary Material Figs S7.3, S7.5 and S8.1, Appendices S7 and S8), 371 

though causes for richness variation among sites remain to be investigated. The 372 

unevenness of the Jonkershoek assemblage, which was dominated by Parisotoma sp. 373 

5, is particularly conspicuous, but whether this is related to specific species traits is 374 

not currently known. This species was dominant both before and after a fire in this 375 

area, showing high resistance to this disturbance, which is frequent in the Fynbos (see 376 

Janion-Scheepers et al. 2016). Such species-specific traits may play an important role 377 

in structuring Collembola assemblages in the Fynbos. 378 

In contrast to the unexceptional alpha diversity, beta diversity of Collembola 379 

between Fynbos sites was higher than reported from sites across Europe, despite 380 

geographic distances between Fynbos sites being significantly shorter by almost an 381 

order of magnitude (Fig. 4). Beta diversity was primarily due to species turnover 382 

(change in species identity) rather than species nestedness, as indicated by beta-383 

diversity partitioning. Indeed, compared against many other assemblages across a 384 

broad range of taxa (Soininen, Heino, Wang, 2018), the turnover found here is 385 

extraordinarily high and nestedness unusually low (Fig. 3). A study of springtail 386 
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assemblages from 16 Swedish pine forest sites, encompassing a comparable spatial 387 

scale as the present study, found Sørensen dissimilarity indices of ≈ 0.15-0.25, which 388 

are substantially lower than the turnover metrics reported here (Figs. 3 and 4; 389 

Widenfalk et al. 2017; see also Perez et al. 2013). Similarly, an investigation of 390 

springtail diversity among two major areas of Eastern Europe revealed high turnover 391 

of springtails, but again across a 1200 km gradient (Kuznetsova & Saraeva 2018). 392 

Elsewhere, across the whole of the Antarctic region (including the Southern Ocean 393 

Islands), with distances among sites spanning thousands of kilometres (Baird et al. 394 

2019), turnover values (βsim) similar to those found here over the much shorter 395 

distances we sampled were found. The European regions were substantially affected 396 

by the last glacial maximum, with evidence for postglacial colonization of 397 

Collembola from a South-Western European centre (Ulrich & Fiera, 2009), thus 398 

potentially accounting for low turnover. By contrast, strong evidence exists for 399 

persistence across several glacial cycles of the Antarctic arthropod fauna of many 400 

sites (Moon et al. 2017), yet turnover is still lower than in Fynbos given the different 401 

spatial extents. Thus, as is the case for previously studied phytophagous insects 402 

(Kemp et al. 2017), springtails across the CFR appear to follow similar patterns of 403 

spatial variation in species diversity as documented for fynbos vegetation (Cowling, 404 

1990; Cowling et al., 1992, Cowling et al., 1996; Cowling & Lombard, 2002; Buerki 405 

et al., 2012). How this spatial turnover is established relative to, for example, rates of 406 

movement and habitat preference in springtails (see e.g. Treasure & Chown 2013) 407 

remains to be determined. 408 

Spatial variation in diversity has been at the heart of characterisations of the 409 

high richness of plant species in the Fynbos biome (Cowling, 1990; Buerki et al., 410 

2012). In particular, alpha diversity tends to be low, but beta diversity is high, leading 411 

to the exceptionally high regional diversity that is characteristic of the Fynbos 412 

(Cowling, 1990; Cowling et al., 1992, Cowling et al., 1996; Cowling & Lombard, 413 

2002). A similar situation seems to be true of the Collembola examined in this study. 414 

Although the idea that high beta diversity of insects might explain high 415 

regional insect diversity in the Fynbos has been proposed previously (Procheş et al. 416 

2009), it has not been comprehensively examined for any arthropods. The most 417 

sophisticated assessment of arthropod diversity variation in the region has come from 418 

a study of cicadellid bugs associated with the plant family Restionaceae (Kemp et al. 419 

2017). Three likely hypotheses for similar patterns in host and insect spatial diversity 420 
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variation were proposed: 1. insect host specificity; 2. similar responses of insects and 421 

their hosts to climatic gradients; 3. similar biogeographic influences on each of the 422 

groups. For these relatively host-specific cicadelids, host specificity was identified as 423 

the likely underlying cause of similarity in spatial diversity patterns (Kemp et al., 424 

2017). In the succulent Karoo, plant beta diversity was also identified as being a 425 

major factor influencing beta diversity of the flower visiting beetles (Scarabaeidae: 426 

Hopliini) (Colville et al., 2002). 427 

In contrast to phytophagous insects, springtails mainly belong to the soil detritus 428 

food chain, and are not, therefore, closely associated with individual plant species 429 

(Hopkin, 1997; Salamon, Schaefer, Alphei, Schmid, Scheu, 2004), although they are 430 

responsive to plant richness and functional diversity (Sabais, Scheu, Eisenhauer, 431 

2011; Henneron et al., 2017). Accordingly, the majority of springtail species were 432 

found in both nutrient-rich and nutrient-poor litter types during preliminary litter-type 433 

studies the Jonkershoek site (Table S6.1), further bearing out the generalist foraging 434 

behaviour of these animals (see also Leinaas et al., 2015). In consequence, either 435 

responses to climatic gradients or biogeographic features similar to those found in 436 

many vascular plant groups of the Fynbos are likely responsible for high beta 437 

diversity in the springtails. A strong relationship was also found between plant 438 

phylogenetic diversity  and detritivore insect richness within the Fynbos at the 20 m 439 

sampling scale in a previous investigation (Proçhes et al. 2009), bearing out the 440 

independent, but likely similar, influence of environmental drivers on plants and on 441 

detritivorous arthropods. Understanding just what these mechanistic drivers are will 442 

require the kinds of coupled ecological and phylogenetic work that has provided so 443 

much insight into the mechanisms underlying plant diversity in the region (Linder, 444 

2003; Dupont et al., 2011; Cowling et al., 2015; Linder & Verboom, 2015; Rundel et 445 

al., 2016), including explicit tests of Kemp et al.’s (2017) hypotheses and other 446 

drivers such as interspecific interactions (Augustyn et al., 2017). Initial evidence 447 

suggests that some springtail genera, such as Seira, may have undergone significant 448 

radiations in the CFR (Janion, Bedos, Deharveng, et al. 2011; Liu, 2015), which 449 

points to the importance of eco-evolutionary processes, as is the case in the plants. 450 

Notwithstanding uncertainty about mechanisms, the level of replacement among sites 451 

was high, with more than 85% of species unique to one site (Table S1.1, Appendix 452 

S1). Such a high number of site-specific species contrasts strongly with what has been 453 

found for springtails of other areas at similar scales (Ulrich & Fiera, 2009). Although 454 
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our sampling was not comprehensive across the entire Fynbos Biome, and some 455 

species may not have been detected at each of the sites, other approaches in the 456 

region, which have demonstrated many local springtail endemics (Liu, 2015), suggest 457 

that the patterns are likely to be upheld. Thus, the CFR may be as important a 458 

biodiversity hotspot for belowground systems as it is for those more visible on the 459 

surface. Loss or degradation of local sites may thus have more of an impact on 460 

Fynbos biodiversity than is currently estimated (Rouget et al., 2014).  461 
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Table 1: Collembola assemblage sampling sites used in this study. Diversity metrics 759 

were calculated for Collembola from collected material. Annual precipitation, upper 760 

and lower land surface temperature, and Normalized Difference Vegetation Index 761 

(NDVI) of each site were used to predict Collembola species richness through the 762 

application of a generalized linear model (GLM) constructed from reported species 763 

richness of Collembola globally (Table S3.1).  764 

 765 

 Peninsula Jonkershoek Kogelberg 
Mont 

Rochelle 
Bontebok Wilderness 

  (PEN) (JNK) (KOG) (MTR) (BON) (WIL) 

Latitude -34.2601 -33.9886 -34.3248 -33.9034 -34.0784 -33.9916 

Longitude 18.3934 18.9552 18.9650 19.1590 20.4671 22.7349 

Diversity metrics       

Collembola richness 

(0D) 
26 20 31 27 14 25 

Collembola abundance 6731 2948 2581 2281 295 2572 

1D 4.63 3.75 9.69 7.15 6.17 7.00 

2D 3.17 2.08 6.34 4.03 4.32 4.71 

Environmental data       

Precipitation (mm) 681 1032 811 949 557 737 

Lower temperature (°C) 5.75 3.53 5.61 3.85 4.99 4.41 

Upper temperature (°C) 24.85 33.01 32.43 31.07 38.29 28.07 

NDVI 0.47 0.57 0.50 0.53 0.46 0.68 

GLM predictions             

Prediction 21.93 32.49 28.05 30.32 34.97 36.49 

Lower 95% estimate 10.30 23.82 18.56 21.77 19.34 24.94 

Upper 95% estimate 33.55 41.16 37.55 38.87 50.60 48.03 

 766 

  767 
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Table 2: Asymmetric distance matrix for abundance-based partitioning of pairwise 768 

Bray-Curtis dissimilarity (Baselga 2013) between Collembola assemblages of the 769 

Western Cape. The relatively large values for dissimilarity derived from balanced 770 

variation in abundance between sites (grey) indicates that species turnover is the main 771 

contributor of observed pairwise dissimilarity, while dissimilarity derived from 772 

unidirectional abundance gradients (white) contributes relatively little. 773 

 774 

PEN MTR WIL KOG JNK BON

PEN 0.0000 0.0264 0.0043 0.1328 0.0170 0.0093

MTR 0.9465 0.0000 0.0001 0.0026 0.0043 0.0000

WIL 0.9903 0.9982 0.0000 0.0000 0.0007 0.0000

KOG 0.7021 0.9579 0.9817 0.0000 0.0048 0.0539

JNK 0.9566 0.9667 0.9891 0.9272 0.0000 0.0111

BON 0.9898 1.0000 1.0000 0.9322 0.9864 0.0000  775 
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Table 3: Asymmetric distance matrix for incidence-based partitioning of pairwise 776 

beta diversity metrics (Baselga 2010; Table S2.1) between Collembola assemblages 777 

of the Western Cape. The relatively large values for the turnover component 778 

measured as Simpson dissimilarity (grey), indicates that species turnover is the main 779 

contributor of observed pairwise dissimilarity, while the nestedness component 780 

measured as the nestedness-resultant fraction of Sørensen dissimilarity (white), 781 

contributes relatively little. 782 

 783 

PEN MTR WIL KOG JNK BON

PEN 0.0029 0.0016 0.0202 0.0261 0.0429

MTR 0.8462 0.0031 0.0153 0.0149 0.0000

WIL 0.9200 0.9200 0.0214 0.0111 0.0000

KOG 0.7692 0.7778 0.8000 0.0647 0.0540

JNK 0.8000 0.9000 0.9000 0.7000 0.0378

BON 0.8571 1.0000 1.0000 0.8571 0.7857  784 
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Figures 785 

 786 

 787 

 788 

Fig. 1: Experimental design used at each site in this study. 789 

790 
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 791 

       792 

 793 

Fig. 2. Species richness of Collembola against the three most influential 794 

environmental variables of our generalised linear model (Table S4.1). Grey ribbons 795 

represent the 95% confidence intervals for each variable assuming all other variables 796 

are held at their respective mean. Blue points represent species richness of sites from 797 

published literature (excluding Liu et al. 2012) that were used to build the GLM. Red 798 

points represent Fynbos sites (i.e. all sites from this study and Liu et al. 2012). The 799 

boxplot directly compares species richness of Fynbos and non-Fynbos sites. 800 
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 801 

Fig. 3. Pairwise turnover (red) and nestedness (blue) components of incidence-based 802 

beta diversity metrics across latitude (a; mean latitude of site pair) and spatial extent 803 

(b; log10 distance between site pair) for the range of taxa compiled by Soininen, 804 

Heino, Wang, 2018 (lighter crosses) and springtail data from this study (darker 805 

asterisks; Table 3). 806 

 807 

808 
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 809 

 810 

Fig. 4. Comparison of incidence-based beta diversity metrics from Fynbos sites in this 811 

study and from sites across Europe from Petersen (2011). The colour of each line 812 

represents combined turnover and nestedness, measured as Sørensen pair-wise 813 

dissimilarity. The width of each coloured line represents spatial turnover (βsim), 814 

measured as Simpson pair-wise dissimilarity, while the width of each interior white 815 

line represents nestedness-resultant dissimilarity (βsne), measured as the nestedness-816 

fraction of Sørensen pair-wise dissimilarity. The relative proportions of coloured line 817 

and white line thickness are, therefore, indicative of turnover and nestedness, 818 

respectively, contributions to overall beta-diversity (actual values are shown in grey 819 

lettering with βsim being the upper value). Distances between sites in each sub-figure 820 

are to scale. 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 
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Supporting Information 835 

 836 

Table S1.1: Complete assemblage results from litter-traps deployed across the 837 

Western-Cape. See Table 1 for site location details. 838 

 839 

Table S2.1: Studies synthesised to identify the global environmental correlates of 840 

Collembola species richness, with associated NDVI and WorldClim2 (Fick & 841 

Hijmans 2017) environmental data. 842 

 843 

Table S3.1: Results of generalised linear model (GLM) with Collembola species 844 

richness from all non-Fynbos sites (Table S2.1) as a response to annual precipitation, 845 

temperature of the warmest and coldest month, and their interaction, and mean NDVI. 846 

 847 

Table S4.1: Asymmetric distance matrix for pairwise comparisons between Fynbos 848 

sites described in this study. Values shown are Sørenson dissimilarity (grey), an 849 

incidence-based metric of beta diversity, and geographic distance (white).  850 

 851 

Table S5.1: Asymmetric distance matrix for pairwise comparisons between European 852 

non-Fynbos sites described in Petersen (2011). Values shown are Sørenson 853 

dissimilarity (grey), an incidence-based metric of beta diversity, and geographic 854 

distance (white).  855 

 856 

Table S6.1: Abundance of species in different litter types in Jonkershoek Nature 857 

Reserve.  858 

 859 

860 
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Figure S7.1-S7.6: Randomised Collembola species accumulation curves for the sites 861 

described in this study. 862 

 863 

Figure S8.1: Diversity profile using Hill numbers – steep declines suggest abundance 864 

unevenness of samples, i.e. assemblages dominated by a few species. 865 

 866 

 867 
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Appendix S1 

 

Results from sampling litter traps across six sites in the Western Cape. 

 

Table S1.1: Complete springtail assemblage results from litter-traps deployed across the 

Western-Cape. See Table 1 in main text for site location details. 

 

 PEN MTR WIL KOG JNK BON 

Order Poduromorpha       

Family Neanuridae       

Neanura muscorum 0 3 0 12 0 0 

cf. Aethiopella sp. 1 0 0 1 0 0 0 

cf. Aethiopella sp. 2 7 0 0 0 2 2 

cf. Tasmanura sp. 0 0 0 0 2 0 

Ectonura sp. 1 0 0 0 0 8 0 

Ectonura sp. 2 0 50 0 0 0 0 

Friesea sp. 0 0 0 0 0 122 

Micranurida sp. 1 0 0 0 9 0 0 

Micranurida sp. 2 0 3 0 0 0 0 

Micranurida sp. 3 19 0 0 0 0 0 

Neanuridae sp. 1 0 0 0 0 0 

Pseudachorutes sp. 1 0 0 0 65 0 0 

Pseudachorutes sp. 2 0 19 0 0 0 0 

Pseudachorutes sp. 3 12 0 0 0 0 0 

Pseudachorutes sp. 4 0 0 41 0 0 0 

Pseudachorutes sp. 5 0 0 0 0 10 1 

Family Tullbergiidae       

Tullbergia sp. 1 0 0 0 0 0 2 

Tullbergia sp. 2 0 0 0 0 2 0 

Tullbergia sp. 3 0 0 0 19 0 0 

Tullbergia sp. 4 0 5 0 0 0 0 

Tullbergia sp. 5 7 0 0 0 0 0 
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Tullbergia sp. 6 0 0 89 0 0 0 

Mesaphorura sp. 1 0 0 63 20 25 0 

Mesaphorura sp. 2 0 3 0 0 0 0 

Mesaphorura sp. 3 2 0 0 0 0 0 

Family Odontellidae       

cf. Afrodontella sp. 2 0 0 0 0 0 

Odontellidae sp. 0 0 0 1 0 0 

Family Brachystomellidae       

Brachystomella georgensis 0 0 0 0 170 0 

Brachystomella platensis 0 51 0 0 0 0 

Brachystomella sp. 1 0 0 98 0 0 0 

Brachystomella sp. 2 0 0 0 243 0 0 

Brachystomella sp. 3 158 0 0 0 0 0 

Family Hypogastruridae       

Austrogastrura sp. 1 0 55 0 0 0 0 

Austrogastrura sp. 2 2 0 0 0 0 0 

Austrogastura sp. 3 0 0 845 0 0 0 

Ceratophysella denticulata 3242 1 0 691 0 0 

Hypogastruridae sp. 0 2 0 0 0 0 

Triacanthella sp. 1 0 0 0 0 248 0 

Triacanthella sp. 2 0 0 0 70 0 0 

Triacanthella sp. 3 0 260 0 0 0 0 

Triacanthella sp. 4 4 0 0 0 0 0 

Willemia sp. 1 0 0 0 1 0 0 

Willemia sp. 2 0 0 5 0 0 0 

Xenylla sp.  0 178 1 38 0 0 

Order Entomobryomorpha       

Family Isotomidae       

Mucrosomia cf. caeca 769 59 3 24 107 0 

Folsomides parvulus 0 0 81 1 0 0 

Hemisotoma sp. 0 0 9 0 0 0 

Isotoma sp. 1 0 0 0 0 0 1 
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Isotoma sp. 2 0 15 0 0 0 0 

Isotoma sp. 3 4 0 0 0 0 0 

Isotoma sp. 4  0 0 0 355 0 0 

Parisotoma sp. 1 0 0 0 0 0 7 

Parisotoma sp. 2 0 0 0 582 0 0 

Parisotoma sp. 3  0 1052 0 0 0 0 

Parisotoma sp. 4  1735 0 0 0 0 0 

Parisotoma sp. 5  0 0 0 0 2014 0 

Parisotoma sp. 6  0 0 474 0 0 0 

Proisotoma sp. 1 0 8 0 0 0 0 

Proisotoma sp. 2 0 0 2 0 0 0 

Isotomurus sp. 2 0 0 3 17 1 

Cryptopygus sp. 1 0 0 0 0 76 0 

Cryptopygus sp. 2 2 0 0 0 0 0 

Cryptopygus sp. 3 0 3 0 2 0 0 

Cryptopygus sp. 4 0 0 0 133 0 0 

Cryptopygus sp. 5 0 0 0 0 0 29 

Cryptopygus sp 6 0 174 0 0 0 0 

Cryptopygus sp. 7 0 0 0 29 0 0 

Family Entomobryidae       

Entomobryidae sp. 0 0 5 0 0 0 

Lepidocyrtus sp. 1 0 0 0 118 113 0 

Lepidocyrtus sp. 2 0 168 0 0 0 0 

Lepidocyrtus sp. 3 288 0 0 0 0 0 

Lepidocyrtus sp. 4 0 0 654 0 0 0 

Pseudosinella sp. 1 0 0 0 19 0 22 

Pseudosinella sp. 2 0 2 0 0 0 0 

Pseudosinella sp. 3 63 0 0 0 0 0 

Pseudosinella sp. 4 0 0 9 0 0 0 

Seira sp. 1 0 0 0 1 0 0 

Seira sp. 2 0 1 0 0 0 0 

Seira sp. 3 0 0 2 0 0 0 
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Seira sp. 4 0 0 0 7 0 0 

Seira sp. 5 0 2 0 0 0 0 

Seira sp. 6 0 0 0 0 0 43 

Seira sp. 7 0 0 50 0 0 0 

Seira sp. 8 0 0 0 0 0 41 

Seira sp. 9 0 0 0 11 18 0 

Seira sp. 10 3 0 0 0 0 0 

Seira sp. 11 0 0 0 21 0 0 

Seira sp. 12 12 0 0 0 0 0 

Seira sp. 13 21 28 0 31 17 0 

Seira sp. 14 0 0 16 0 0 0 

Seira sp. 15 0 13 0 0 0 0 

Seira sp. 16 0 0 24 0 0 0 

Seira sp. 17 0 0 0 0 3 0 

Family Cyphoderidae       

Cyphoderidae sp. 1 8 0 0 0 0 0 

Cyphoderidae sp. 2 0 0 1 0 0 0 

Order Neelipleona       

Family Neelidae       

Megalothorax cf. minimus 171 0 0 3 0 0 

Order Symphypleona       

Family Bourletiellidae       

Bourletiellidae sp. 1 0 0 0 0 0 1 

Bourletiellidae sp. 2 0 0 0 0 2 0 

Family Dicyrtomidae       

Dicyrtomidae sp. 1 0 0 0 6 0 0 

Dicyrtomidae sp. 2 0 1 0 0 0 0 

Family Katiannidae       

Sminthurinus sp. 1  0 0 43 0 0 0 

Sminthurinus sp. 2  0 0 0 0 9 0 

Sminthurinus sp. 3  0 0 0 0 81 0 

Sminthurinus sp. 4  0 0 2 0 0 0 
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Sminthurinus sp. 5  0 0 32 0 0 0 

Sminthurinus sp. 6  0 5 0 0 0 0 

Sminthurinus sp. 7  0 0 0 37 0 0 

Sminthurinus sp. 8  41 120 0 0 0 0 

Sminthurinus sp. 9  0 0 0 0 0 6 

Sminthurinus sp. 10  0 0 0 0 0 17 

Family Sminthuridae       

Sminthuridae sp. 1 0 0 0 1 0 0 

Sminthuridae sp. 2 1 0 0 0 0 0 

Family Sminthurididae       

Sphaeridia sp. 1 0 0 0 0 24 0 

Sphaeridia sp. 2 155 0 22 28 0 0 
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Appendix 2 

 

Summaries of studies  

 

Table S2.1 Studies synthesised to identify the global environmental correlates of Collembola species richness, with associated NDVI and 

WorldClim (Fick & Hijmans 2017) environmental data.  

Literature longitude latitude SR 
n 

sample 
method 

total 

Collembola 
metric fynbos 

WorldClim 

bio12 

Max 

LST 

Min 

LST 

Mean 

NDVI 

Cassagne 

et al. 2006 
1.07 42.86 51 60 

gradient 

extraction: 

litter + 

soil 

7187 n individuals 0 1158 26.37 -7.07 0.661 

Chauvat et 

al. 2011 
1.3 49.73 40 32 

gradient 

extraction: 

soil 

7231 n individuals 0 734 25.69 -5.59 0.697 

Convey et 

al. 1999 
-36.67 -54.2 20 22 

gradient 

extraction: 

litter + 

soil 

not stated NA 0 1600 11.81 -15.39 0.101 

Culik et al. 

2002 
-41.05 -20.38 38 88 

gradient 

extraction: 

soil 

9650 n individuals 0 1352 27.83 9.93 0.734 

Driessen & 

Greenslade 

2004 

146.2 -42.85 40 604 

sweep net 

+ pitfall 

traps 

28162 n individuals 0 2024 18.15 -3.11 0.744 

Driessen 

2006 
145.97 -41.8 51 576 

sweep net 

+ pitfall 

traps 

not stated NA 0 2225 19.41 -3.17 0.719 

Gabriel et 

al. 2001 
37.74 -46.89 16 1008 

gradient 

extraction: 

soil 

300 - 60 733 individuals/m2 0 2664 17.27 -5.51 0.462 
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Greenslade 

& Driessen 

1999 

146.17 -43.47 18 63 sweep net 8282 n individuals 0 1589 22.37 0.11 0.663 

Liu et al. 

2012 
18.43 -34.06 48 80 

gradient 

extraction: 

litter 

21278 n individuals 1 873 33.81 5.55 0.562 

Petersen 

2011_GBR 
-3.47 53.05 23 30 

suction 

sampling 

+ gradient 

extraction: 

soil 

12 533 - 20 

249 
individuals/m2 0 1189 21.31 -5.77 0.744 

Petersen 

2011_DNK 
10.95 56.38 26 30 

suction 

sampling 

+ gradient 

extraction: 

soil 

16 913 - 23 

372 
individuals/m2 0 571 24.25 -12.45 0.583 

Petersen 

2011_NLD 
5.92 52.4 33 30 

suction 

sampling 

+ gradient 

extraction: 

soil 

7 789 - 15 

934 
individuals/m2 0 794 31.21 -8.37 0.656 

Petersen 

2011_ESP 
1.82 41.3 38 30 

suction 

sampling 

+ gradient 

extraction: 

soil 

8 905 - 22 

810 
individuals/m2 0 906 36.17 -9.29 0.71 

Petersen 

2011_ITA 
8.15 40.6 40 

30 

 

 

suction 

sampling 

+ gradient 

extraction: 

soil 

3 190 - 5962 individuals/m2 0 608 29.73 5.63 0.578 

Petersen 

2011_HUN 
19.38 46.88 10 30 

suction 

sampling 

+ gradient 

extraction: 

soil 

4 898 - 12 

173 
individuals/m2 0 535 36.51 -14.93 0.508 

Querner et 

al. 2010 
16.95 48.07 41 30 

gradient 

extraction: 

soil 

2505 n individuals 0 640 37.41 -11.85 0.507 
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Rochefort 

et al. 2006 
-71.22 46.82 21 150 

gradient 

extraction: 

soil 

101311 n individuals 0 1108 31.03 -20.51 0.256 

Salmon et 

al. 2010 
0.69 42.96 64 54 

pitfall + 

gradient 

extraction: 

litter + 

soil 

7506 n individuals 0 976 30.35 -5.31 0.699 

Terauds et 

al. 2011 
158.95 -54.5 15 72 

gradient 

extraction: 

soil 

3351 - 194 

330 
individuals/m2 0 942 10.35 -6.29 0.535 

This study 

(BON) 
20.47 -34.08 14 40 

gradient 

extraction: 

litter bags 

295 n individuals 1 557 38.29 4.99 0.457 

This study 

(JNK) 
18.96 -33.99 20 40 

gradient 

extraction: 

litter bags 

2948 n individuals 1 1032 33.01 3.53 0.567 

This study 

(KOG) 
18.97 -34.32 31 40 

gradient 

extraction: 

litter bags 

2581 n individuals 1 811 32.43 5.61 0.504 

This study 

(MTR) 
19.16 -33.9 27 40 

gradient 

extraction: 

litter bags 

2281 n individuals 1 949 31.07 3.85 0.53 

This study 

(PEN) 
18.39 -34.26 26 40 

gradient 

extraction: 

litter bags 

6731 n individuals 1 681 24.85 5.75 0.467 

This study 

(WIL) 
22.73 -33.99 25 40 

gradient 

extraction: 

litter bags 

2572 n individuals 1 737 28.07 4.41 0.683 

Uvarov & 

Byzova 

1995 

16.09 77.14 32 912 

gradient 

extraction: 

soil 

not stated NA 0 359 1.15 -28.73 -0.056 

Zeppelini 

et al. 2009 
-34.97 -6.51 24 30 

malaise 

traps 
12183 n individuals 0 1643 33.93 16.45 0.538 
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Appendix S3 

 

Results of generalised linear model (GLM) 

 

Table S3.1 Results of generalised linear model (GLM) with Collembola species richness 

from all non-Fynbos sites (Table S3) as a response to annual precipitation, temperature of the 

warmest and coldest month, and their interaction, and mean NDVI. 

 

  Estimate 

Standard 

error z value p 

(Intercept) 1.9379 0.7495 2.5856 0.0097 * 

Annual precipitation < 0.0000 0.0002 -0.0939 0.9252 

Mean NDVI 1.6984 0.6312 2.6906 0.0071* 

Temperature of the coldest month -0.0663 0.0354 -1.8741 0.0609 

Temperature of the warmest 

month 0.0219 0.0174 1.2575 0.2086 

Interaction between temperatures 0.0021 0.0011 1.8541 0.0637 

     
Null deviance: 29.615 on 19 degrees of freedom 

  
Residual deviance: 20.565 on 14 degrees of freedom 

  
AIC: 166.68 
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Appendix 4 

 

Asymmetric distance matrix 

  

Table S4.1 Asymmetric distance matrix for pairwise comparisons between Fynbos sites 

described in this study. Values shown are Sørenson dissimilarity (grey), an incidence-based 

metric of beta diversity, and geographic distance (white).  

 

 PEN MTR WIL KOG JNK BON 

PEN  92.7185 481.4741 63.6445 68.4651 230.3502 

MTR 0.8491  396.0181 49.2797 24.2795 145.9669 

WIL 0.9216 0.9231  418.8200 418.4723 251.2622 

KOG 0.7895 0.7931 0.8214  35.4213 168.2755 

JNK 0.8261 0.9149 0.9111 0.7647  167.6352 

BON 0.9000 1.0000 1.0000 0.9111 0.8235  
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Appendix S5 

 

Asymmetric distance matrix 

 

Table S5.1 Asymmetric distance matrix for pairwise comparisons between European non-

Fynbos sites described in Petersen (2011). Values shown are Sørenson dissimilarity (grey), an 

incidence-based metric of beta diversity, and geographic distance (white).  

 

 DK GB NL HU ES IT 

DK  2616.0446 1382.2709 1605.2728 1992.1506 1415.8447 

GB 0.5102  1636.4767 1040.0965 922.8750 1887.1008 

NL 0.4576 0.5714  708.6487 1536.8121 1759.9269 

HU 0.9444 1.0000 0.9070  842.7948 1326.8212 

ES 0.7813 0.9016 0.7465 0.8750  979.4407 

IT 0.8788 0.9048 0.8082 0.9200 0.6410  
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Appendix S6 

 

Table S6.1 Abundance of species in different litter types in Jonkershoek Nature Reserve, 

(experiment performed in 2008, before a fire hit the area; decomposition rates reported in 

Bengtsson et al. 2012, see also Janion-Scheepers et al 2016).   

 

 Galenia Erica Protea Erica-

Protea 

mixture 

Restio 

Order Poduromorpha      

Family Neanuridae      

cf. Aethiopella sp. 0 0 1 2 0 

cf. Tasmanura sp. 0 5 8 4 2 

Ectonura sp. 4 1 25 4 1 

cf. Micranurida sp. 1 1 4 0 7 

Pseudachorutes sp. 2 11 15 8 10 

Family Tullbergiidae      

Mesaphorura sp. 127 5 49 21 30 

Tullbergia sp. 0 0 0 2 0 

Family Brachystomellidae      

Brachystomella sp. 153 39 159 75 208 

Family Hypogastruridae      

Austrogastura sp. 0 0 0 0 3 

Hypogastrura sp. 0 2 0 0 1 

Triacanthella sp. 212 19 15 91 5 

Xenylla sp. 0 0 8 1 1 

Order Entomobryomorpha      

Family Isotomidae      

Cryptopygus sp. 1 87 22 76 32 85 

Cryptopygus sp. 2 0 0 1 0 0 

Folsomides parvulus 2 0 0 1 0 

Isotoma sp. 1 0 0 1 0 11 
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Isotoma sp. 2 15 0 4 1 0 

Isotomurus sp. 4 6 6 3 9 

Mucrosomia cf. caeca 59 24 136 53 44 

Parisotoma. sp.1 0 0 0 0 11 

Parisotoma sp. 2 1031 223 823 1007 584 

Parisotoma sp. 3 76 52 91 94 14 

Proisotoma sp. 0 2 2 0 0 

Family Entomobryidae      

Lepidocyrtus sp. 85 126 48 65 72 

Seira sp. 1 16 7 8 3 14 

Seira sp. 2 0 1 0 0 0 

Seira sp. 3 0 1 2 4 8 

Seira sp. 4 20 14 11 7 4 

Order Symphypleona      

Family Katiannidae      

Sminthurinus sp. 1 17 15 29 12 19 

Sminthurinus sp. 2 45 85 19 48 50 

Sminthurinus sp. 3 3 2 3 2 18 

Sminthurinus sp. 4 0 3 12 4 0 

Family Arrhopalitidae      

Arrhopalites sp. 0 0 1 0 0 

Family Sminthurididae      

Sphaeridia sp. 25 0 14 1 4 
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Appendix S7 

 

Rarefaction curves and diversity profile of all sites investigated 

 

 

 

Fig. S7. 1 Species accumulation curve for Mont Rochelle.  
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Fig. S7.2 Species accumulation curve for Kogelberg. 
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Fig. S7.3 Species accumulation curve for Bontebok. 
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Fig. S7.4 Species accumulation curve for Peninsula. 
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Fig. S7.5 Species accumulation curve for Jonkershoek. 
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Fig. S7.6 Species accumulation curve for Wilderness. 
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Appendix S8 

 

Diversity profile of all sites investigated 

 

 

Figure S8.1 Diversity profile using Hill numbers – steep declines show abundances 

unevenness of samples, i.e. assemblages dominated by a few species.  
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