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Thermal weakening of cracks and brittle-ductile transition of matter: A phase model
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We present a model for the thermally activated propagation of cracks in elastic matrices. The propagation is
considered as a subcritical phenomenon, the kinetics of which is described by an Arrhenius law. In this law, we
take the thermal evolution of the crack front into account, assuming that a portion of the released mechanical
energy is transformed into heat in a zone surrounding the tip. We show that such a model leads to a two-phase
crack propagation: the first phase at low velocity in which the temperature elevation is of little effect and the
propagation is mainly governed by the mechanical load and by the toughness of the medium, and the second
phase in which the crack is thermally weakened and propagates at greater velocity. We illustrate, with numerical
simulations of mode I cracks propagating in thin disordered media, how such a dual behavior can explain the
usual stick-slip in brittle fracturing. In addition, we predict the existence of a limiting ambient temperature above
which the weakened phase ceases to exist and we propose this critical phenomenon as a novel explanation for
the brittle-ductile transition of solids.
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I. INTRODUCTION

Of paramount importance in engineering and geophysics,
the impact of temperature in fracturing processes has since
long been studied. It can simplistically be sorted into two cat-
egories: background effects where the temperature is treated
as an environmental constant affecting the rates at which
the defects of a medium are propagating or healing [1–4]
and dynamic effects where the propagation of fractures self-
induces a rise in temperature in the vicinity of the crack
front [5–9]. In the latter case, the heat elevation can be
regarded as more than a secondary effect of the medium’s
damage: it can be an active process back affecting the crack
propagation. This phenomenon will be here referred to as
“thermal weakening.” Such a weakening has notably been
studied in earth science where it is believed to play a role in
faults stability and earthquake triggering [10,11] and it was
included in the so-called rate-and-state framework [12] as an
explanation for rate weakening faults. Several mechanisms
have been proposed to explain thermal weakening, such as
the softening [13,14] or melting of fracture surfaces or the
thermopressurization of fault fluids [15–17]. We here con-
sider a model which disregards such effects and focuses on
the statistical physics consideration of higher reaction rates
(i.e., quicker fracture propagation) at higher temperatures, as
implied by an Arrhenius law [18]. This model notably showed
good agreement with the rupture dynamics, experimentally
reported in various polymers [19]. In this work, we further
discuss how, in addition, it stands as a physical explanation
for the brittle-ductile transition of matter.
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II. THE THERMAL WEAKENING MODEL

Arrhenius based models for the velocity of crack fronts
have long been considered [1,2,4,20] and have recently been
shown to show good agreement with experimental observ-
ables of mode I cracks slowly propagating in acrylic glass
bodies [21–23]. The rupture is then not considered as a
Griffith-like threshold mechanism [24] where the crack only
advances for G > Gc, where G is the energy release rate of
the crack in J m−2 (arising from the mechanical load given
to the crack front) and Gc the fracture energy of the medium
(the energy barrier per surface unit to overcome molecular
bonds). It is rather considered as a thermally activated sub-
critical phenomenon (G < Gc) for which the crack velocity is
expressed as

V = αν exp

(
α2(G − Gc)

kBT

)
, (1)

where α is a characteristic size (m) of the fracturing process,
that is associated with its energy barrier. kB ≈ 1.38 × 10−23

J K−1 is the Boltzmann constant, T the absolute temperature
at the crack tip and ν the thermal bath collisional frequency.
Equation (1), as any Arrhenius law, is a continuous expression
of a discrete process arising at the molecular scale. Cochard
et al. [23] have recently discussed it at length. The exponential
term is the probability (i.e., <1) for the thermal agitation to
exceed the activation energy −α2(G − Gc) and hence for the
crack to advance by a length α. This probability is challenged
every 1/ν seconds. In theory ν is also temperature dependent
but this is of negligible effect compared to the exponential
dependence of the probability term [18] and we hence define
V0 = αν, the maximum crack velocity obtained when the
activation energy is always reached. V0 shall typically be in
the range of the Rayleigh surface wave velocity [25]. Because
we consider the thermal evolution around the crack tip we also
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FIG. 1. Steady-state values of the temperature elevation. It is
obtained by solving Eq. (2) for a crack propagating at a constant
velocity and for φG = 200 (plain plot) and 50 J m−2 (dotted plot).

note T = T0 + �T , where T0 is the ambient temperature and
�T any variation away from it at the tip.

Such variations are induced by the dissipation of the me-
chanical energy given to the elastic matrix in a plastic zone
that surrounds the crack tip [26]. There are many processes
responsible for such an energy loss, as the creation of new
defects surfaces and the emission of mechanical waves, but
we here focus on the release of heat. The model we use is
based on the work of Toussaint et al. [9]: a portion φ of the
energy release rate is dissipated on a cylindrical zone of radius
l centered around the crack tip. Such a configuration leads to
a thermal evolution governed by

∂ (�T )

∂t
= λ

C
∇2(�T ) + φGV

Cπ l2
f , (2)

which is a diffusion equation including a source term. λ is
the medium’s thermal conductivity in J s−1 m−1 K−1, C is the
volumetric heat capacity in J K−1 m−3, t is the time variable
and ∇2 is the Laplace operator. f is the support function of
the heat production zone of surface integral π l2 (i.e., f = 1
in the zone and f = 0 otherwise). Solving this equation for a
crack propagating at a constant velocity and constant release
rate, one can show that the thermal elevation at the tip reaches
a steady state after a short transient time. Figure 1 shows the
evolution of this steady state as a function of V and for two
values of G. See Ref. [27] for details on its computation. In
our model, we use this relation to describe �T (V, G), thus
discarding any transient regime. Equation (1) becomes

V = V0 exp

(
α2(G − Gc)

kB[T0 + �T (V, G)]

)
. (3)

Parameters used for illustration

Note that most of the previously introduced parameters
are strongly dependent on the medium in which the crack
propagates. The figures we display here use parameters that
could be likely for the propagation of interfacial cracks in
sintered acrylic glass bodies [21,22] and are discussed in the
Supplemental Material Ref. [27]: α = 2.5 × 10−11 m, Gc =
250 J m−2, T0 = 293 K, C = 1.7 × 106 J K−1 m−3, λ = 0.19
J s−1 m−1 K−1, V0 = 1000 m s−1, l = 20 nm, and φ = 1. Note
that we use this set of values only to propose some likely

FIG. 2. Representation of V = SG(V ) for three values of G:
Gstop, Gaval (>Gstop) and the mid-value between Gstop and Gaval.
The intersections of SG with the identity plot (straight line) give
the possible crack velocities. They are denoted Vlow, Vmid, and Vhigh

and are emphasized for the intermediate G plot. Vaval and Vstop are
indicated on the two others plots. The dashed arrows indicate how
off-balanced situations evolve to a stable fixed point.

orders of magnitude for our parameters, and not to accurately
represent the rupture of a specific material, as done in [19].

III. PHASE BEHAVIOR

Equation (3) defines, for a given load G, a function SG

such as V = SG(V ). To fit the model, the actual velocity at
which a crack advances must be a solution of this equation
(i.e., be a fixed point for the function SG) [28]. Figure 2
illustrates that, depending on the value of G, SG has one to
three fixed points: three possible values for the crack velocity.
This finite number of solutions arises from the steady-state
approximation. If we were to consider the transient regimes,
SG(V ) would be, for a front propagating at any velocity V
and load G, a target velocity. Any crack not having reached a
steady state would thus accelerate or slow down to follow this
function. The intermediate fixed point, when it exists, is then
unstable (virtually impossible): a crack with a velocity value
just above this point [V < SG(V )] is too slow to be steady. The
heat generation at the tip is higher than what the diffusion can
accommodate, the temperature rises and the velocity increases
to converge to the upper fixed point. On the contrary, if a crack
is slightly slower than the intermediate solution [V > SG(V )],
the crack cools down to the lower fixed point. We here assume
that such transitions happen in a negligible time so the steady
velocities are sufficient to describe the main dynamics. The
outer solutions of (3) being the only stable ones, the model
displays a two-phase behavior. The lower velocity marks a
slow phase. The temperature elevation at the crack tip has
little effect on the propagation, as �T (V, G) � T0. The higher
solution corresponds to a thermally weakened phase where
�T (V, G) has reached the plateau temperature of Fig. 1. The
velocity is there increased as the induced heat is potentially
significant compared to the thermal background.

Notice in Fig. 2 that there are two particular values of the
load G for which either the lower or the higher phase ceases
to exist. We denote them Gaval and Gstop (with Gaval > Gstop)
as they correspond to mechanical loads at which a slow crack
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FIG. 3. Solutions for the crack velocity as a function of G for
T0 = 293 K. All solutions in between Vstop and Vaval are unstable, any
other point is a possible crack velocity. The arrows represent how a
crack avalanches of slows down at the phase transition thresholds.

will have to avalanche to the thermally weakened phase or at
which a fast (weakened) crack can only cool down to the slow
phase. For G in between these two thresholds, a hysteresis
situation holds, there are several solutions for V and the crack
might or might not be thermally weakened, depending on the
mechanical history. To Gaval and Gstop correspond some spe-
cific velocities Vaval < Vstop in between which a crack cannot
propagate, as any solution is there unstable. Figure 3 shows
the possible crack velocities for various values of G. One can
notice how similar it is to a first order phase transition [29] for
the order parameter V associated to avalanches (jumps in V )
triggered by variations in the driving field G at temperature
T0. Such a description compares interestingly with various
(V , G) branches that are experimentally reported, for in-
stance in the rupture dynamics of pressure adhesives [30,31],
PMMA [21,32], or elastomers [33] and the model can hence
be matched to actual data over decades of velocities [19]. Note
that, in the hysteresis domain, we do not discriminate on the
relative stability of each phase. One can however argue, by
analogy with other phase transition systems [29], that one
of the two solutions could only be metastable, that is, in an
equilibrium which is less energetically favorable than the one
of the alternative phase. In this case, when traveling though
an heterogeneous medium where the variations in fracture
energy are enough to get shifts from only one state to the
other, one of the phase could still be preferential for the crack
propagation.

IV. CRITICAL POINT

Besides G, T0 is the only other parameter of (3) which is not
dependent on the medium’s properties. Figure 4 thus shows
the predicted propagation velocities for various ambient tem-
peratures. Notice the existence of a critical ambient temper-
ature: T ∗

0 , at which Gaval = Gstop = G∗ and V = V ∗. Beyond
T ∗

0 , the Joule effect cannot overcome the thermal background
enough for the crack to be weakened. Increasing the load then
only leads to a smooth increase in the velocity. To relate to
the theory of critical phenomena in phase transitions [29], we

FIG. 4. Solutions for the crack velocity as a function of G and for
various T0. The dashed lines show the (Vstop, Gstop) and (Vaval, Gaval)
couples and converge to the critical point.

looked for the real numbers β, δ, and γ such that

V − V ∗

V ∗ ∼
(

T0 − T ∗
0

T ∗
0

)β

G=G∗
, (4)

G − G∗

G∗ ∼
(

V − V ∗

V ∗

)δ

T0=T ∗
0

, (5)

G∗

V ∗
∂V

∂G
∼

(
T0 − T ∗

0

T ∗
0

)−γ

G=G∗
, (6)

where ∼ stands for a mathematical equivalence in the vicinity
of the critical point (any pre-factor is overlooked). These
exponents describe how V converges towards V ∗ beyond
the critical point (T0 � T ∗

0 ). We also characterized how the
hysteresis domain shrinks, looking for β ′, δ′, and γ ′ such that

Vstop − Vaval

V ∗ ∼
(

T ∗
0 − T0

T ∗
0

)β ′

, (7)

Gaval − Gstop

G∗ ∼
(

Vstop − Vaval

V ∗

)δ′

, (8)

G∗

V ∗
Vstop − Vaval

Gaval − Gstop
∼

(
T ∗

0 − T0

T ∗
0

)−γ ′

. (9)

With a bisection, we numerically estimated the critical point,
checking for the number of solutions of V = SG(V ) (three
solutions below T ∗

0 and one above). Analyzing the shape
of the velocity map in the derived vicinity, we found: β ≈
1/3, δ ≈ 3, γ ≈ 2/3, and β ′ ≈ 1/2, δ′ ≈ 3, γ ′ ≈ 1 (see
Ref. [27]). Both sets of exponents respect the scaling re-
lation [29]: 2β + γ = β(δ + 1). We hence derived critical
exponents which are, along the phase co-existence domain,
the same as the mean field exponents for, say, the liquid-
gas transition [29], but different beyond the critical point.
The mean-field characteristic might arise from the statistical
nature of the Arrhenius law only representing an average
velocity while consecutive molecular bonds can be overcome
at very different speeds. Another interpretation is that it
translates the zero-dimensional character of our model. We
have indeed disregarded any velocity variations and elastic
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FIG. 5. Geometry for the numerical simulations of zero-
dimensional crack fronts overcoming a tough asperity.

interactions along the crack front, making the assumption
that it is thin or symmetrical enough perpendicularly to the
propagation direction.

V. SIMULATIONS OF 0D FRONTS
IN DISORDERED MEDIA

Let us finally illustrate the phase transitions with some
simulations of such zero-dimensional fronts loaded in mode
I. The loading geometry that we consider is shown in Fig. 5.
The support body consists in two sintered elastic plates which
are progressively separated at the edge. The deflection on the
side, u(t ) (in m), is increased linearly with time: u(t ) = vut .
Using the Euler-Bernoulli beam theory [34], one can compute
the energy release rate at the tip of such a system:

G(t ) = 3Eh3vu
2t2

8a(t )4 if a � h, (10)

with E the body Young modulus (in Pa), h half of its thick-
ness and a the crack advancement such as V = ∂a/∂t . By
inserting (10) in (3), we obtain the differential equation in a(t )
that governs the crack progression and that we solved with
a time step adaptive Runge-Kutta algorithm [35]. We here
consider a crack interface with a homogeneous background
cohesion Gc = Gcb which is only disturbed by a single tough
asperity of length La (Gca > Gcb). Figure 5 shows a schematic
for this anomaly while Fig. 6 shows, for several values of
Gca , the course of the crack over it and the corresponding
evolution of the energy release rate. When the front reaches
the asperity, the crack velocity dramatically decreases as
it reaches a tougher area. Meanwhile the load G increases
because the far field deflection continues to build up on a now
quasistatic crack. Once the anomaly finally gets passed, the
simulations show two possible scenarios. If Gaval(Gcb ) (i.e.,
the phase shift threshold for the background Gcb) was not
reached over the anomaly, then the crack only accelerates back
to its pre-asperity state. However, if Gaval(Gcb ) was overcome,
the crack shifts phase and becomes thermally weakened: it
avalanches until G = Gstop. In Fig. 6, one can read the values
of Gaval and Gstop and remark that they match the theoretical
values displayed in Fig. 3. Note that, if the load was to be
quickly increased, an avalanche could be triggered without the
need for any asperity. We showed, however, how the medium’s
disorder can lead to some spontaneous thermal weakening of
the crack course.

FIG. 6. Numerical simulations for a crack overcoming an asper-
ity as defined by the differential equation from (3) and (10) and
for various Gca . La = 100 μm, vu = 120 μm s−1, h = 5 mm, and
E = 3.2 GPa. The top plot is the crack advancement a(t ), the bottom
one is the energy release rate G(t ). Thermal weakening is or is not
triggered depending on the anomaly strength.

VI. DISCUSSION AND CONCLUSION

By combining an Arrhenius law and the heat equation, we
have thus demonstrated the possibility of a thermally activated
dynamic phase transition in the propagation of cracks. This
phase description may have major implications for the under-
standing of fracture dynamics. With a rather simple subcritical
model, we indeed explain both slow creep regimes and fast
ruptures. We do not however strictly disregard over-critical
propagations, as G > Gc only implies that the Arrhenius
activation energy is null and hence always exceeded. In this
case, we predict V ∼ V0. Note that at such high velocities,
crack fronts tend to complexify [36,37], and our model might
not hold as such, as it only considers single fronts. We derive
a tip temperature approaching the 104 K range. Although
it is high, some experimental characterizations of tribolumi-
nescense [7,8] have shown that fast cracks can reach such
a temperature, which only stands on small volumes (∼l2L,
where L is the length of the front) and short time periods
(∼l/V ) such that it does not imply a gigantic level of energy
nor it necessary leads to local fusion or sublimation of the
solid. Note that the temperature merely measures the ampli-
tude of the atoms agitation and its statistical definition actually
suffers for heat production zones smaller than the molecular
scale. While atomic scale simulations [38] would be more
appropriate to study the induced heat, such computationally
demanding models are often run at given (fixed) tempera-
tures. Yet, some occurrences [39,40] derive a non-negligible
induced heat.
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Besides describing the two phases, we explained the po-
tential shifts from one to the other and point out here how
compatible this is with Maugis’ reinterpretation [41] of the
Griffith criteria [24] and so, with the usual stick-slip in brittle
fracturing processes [20,30], when avalanches get consider-
ably larger than the scales of the in situ quenched disorder.
We also showed that above a critical ambient temperature,
T ∗

0 , this phenomenon cannot occur. For materials where T ∗
0

is lower than the melting point at a given confining pressure,
the same solid then displays a different behavior under cool
or hot conditions: fragile when cold, but smoother/ductile
when warm, as thermal avalanches are inhibited. The model
thus could stand as a novel and physical explanation for the
fragile-ductile transition of matter. Of course, it might be over-
simplifying to assume that all our parameters stay constant
when varying T0. The general physical principles, however,
remain valid. Previous theories [42–44] actually support the
importance of the crack-tip plasticity in the fragile-ductile
transition, but rather relate it to the nucleation and mobility of
dislocations ahead of the front. Such processes are compatible
with induced thermal elevation [39], but are not directly
captured by our mesoscopic description of the heat production
zone.

Finally, and although we presented a mode I model, we
suggest that some analogy is to be made with the frictional
effects induced in mode II and mode III fracturing. Notably,
as frictional heating is believed to be a cause for the instability

of some seismic faults, a potential earthquake triggered when
overcoming a strong fault plane asperity might indeed be
amplified due to thermal weakening. The existence of the
critical point would then explain the disappearance of such
amplifications at higher depth (i.e., where rocks are in ductile
conditions [45]) as the thermal background is there enough to
make the frictional heating negligible and, hence, favors creep
over brittle ruptures.
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