
COHOMOLOGICAL CORRESPONDENCE CATEGORIES
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Abstract. We prove that homotopy invariance and cancellation properties are satisfied by
any category of correspondences that is defined, via Calmès and Fasel’s construction, by an
underlying cohomology theory. In particular, this includes any category of correspondences

arising from the cohomology theory defined by an MSL-algebra.

1. Introduction

Originally envisioned by Grothendieck, the theory of motives was set in new light by Beilinson’s
conjecture on the existence of certain motivic complexes, from which it should be possible to
derive a satisfactory motivic cohomology theory. This point of view ultimately led to Suslin and
Voevodsky’s construction of the derived category of motives DM(k) over any field k [Voe00b].
The basic ingredient of this construction is the category Cork of finite correspondences over k.
Finite correspondences define an additive category, and presheaves on this category—baptized
presheaves with transfers—are exceptionally well behaved. Indeed, presheaves with transfers carry
a very rich theory, satisfying fundamental properties such as preservation of homotopy invariance
under sheafification [Voe00a], and a cancellation property with respect to smashing with Gm
[Voe10]. These results are crucial in order to obtain a good category of motivic complexes.

Shortly after Suslin and Voevodsky’s introduction of motivic complexes, a “nonlinear” version
of DM(k) was defined by Morel and Voevodsky [MV99] in the context of motivic homotopy theory.
In this more general setting, the motivic stable homotopy category SH(k) was constructed, most
notably via the A1-localization and the P1-stabilization process. The category SH(k) is equipped
with an adjunction

γ∗ : SH(k) � DM(k) : γ∗ (1.0.1)

such that the image of the unit for the symmetric monoidal structure on DM(k) is mapped
to the motivic Eilenberg–Mac Lane spectrum HZ in SH(k) under γ∗. In fact, this adjunction
exhibits DM(k) as the category of modules over the ring spectrum HZ (at least after inverting
the exponential characteristic of k) [RØ08]. Furthermore, the restriction of γ∗ to the heart of the
homotopy t-structure on DM(k) is fully faithful. In fact, with rational coefficients, the category
SH(k)Q splits into a plus part and a minus part, where the plus part is equivalent to DM(k,Q)
[CD19]. Informally we can think of DM(k,Q) as consisting of the oriented part of SH(k)Q.

Several alternative and refined versions of the category of correspondences have been introduced
in the wake of Suslin and Voevodsky’s pioneering work, many of which attempt to provide a
better approximation to the motivic stable homotopy category than DM(k). In particular, it is
desirable to construct correspondences that capture also the unoriented information contained in
SH(k). Examples include

• the category ZF∗(k) of linear framed correspondences, introduced by Voevodsky and
further developed by Garkusha and Panin [GP18a];
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• K⊕0 -, and K0-correspondences, studied by Suslin and Walker in [Sus03; Wal96];

• the category C̃ork of finite Milnor–Witt correspondences, introduced by Calmès–Déglise–
Fasel [CF17; DF17a]; and

• the category GWCork of finite Grothendieck–Witt correspondences defined by the first
author in [Dru18b].

To exemplify to what extent the above categories succeed in providing better approximations to
SH(k), let us mention that framed correspondences classify infinite P1-loop spaces [Elm+18], and

the heart of the category D̃M(k) associated to C̃ork is equivalent to the heart of SH(k) (with
respect to the homotopy t-structure) [AN19].

Along with the introduction of each new category of correspondences follows the need to prove
fundamental properties like strict homotopy invariance and cancellation in order to produce a
satisfactory associated derived category of motives. For the above examples, this is achieved in
[AGP18; GP18b; Sus03; FØ17; DF17a; Dru18c; Dru18a]. The aim of this note is to establish
these properties simultaneously for a certain class of correspondence categories, namely those that
are defined by an underlying cohomology theory (see Definition 3.0.1 for the precise meaning).
This includes Voevodsky’s finite correspondences—which can be defined using the cohomology

theory CH∗ of Chow groups—as well as finite Milnor–Witt correspondences C̃ork, which are

defined using Chow–Witt groups C̃H
∗
. More generally, any ring spectrum E ∈ SH(k) that is

an algebra over Panin and Walter’s algebraic cobordism spectrum MSL [PW18] gives rise to a
cohomological correspondence category.

1.1. Outline. In Section 2 we introduce the axioms for a cohomology theory A∗ needed to build
the associated category CorAk of finite A-correspondences. The definition of the category CorAk is
given in Section 3. In addition we give in Section 3 a number of constructions in the category
CorAk . Most notably, Construction 3.5.2 ensures that a regular function on a smooth relative curve
along with a trivialization of the relative canonical class gives rise to a finite A-correspondence;
this construction is used to define all the finite A-correspondences needed to prove strict homotopy
invariance and cancellation.

Section 4 is a brief comparison between our construction of A-correspondences and framed cor-
respondences. This is done by constructing a functor from the category of framed correspondences
Fr∗(k) to CorAk .

Sections 5, 6, 7 and 8 are devoted to the proof of the strict homotopy invariance property of
homotopy invariant presheaves on CorAk . The proof breaks down into several excision results as
well as a moving lemma, each of which is treated in its own section.

In Section 9 we show the cancellation theorem for finite A-correspondences, following the
technique in Voevodsky’s original proof [Voe10].

Finally, in Section 10 we use the previous results to establish a well behaved category of motivic
complexes DMA(k) associated to the category CorAk , and we show several properties expected
of this category. In particular, we define A-motivic cohomology in this category, and show that
DMA(k) comes equipped with an adjunction to SH(k) parallelling (1.0.1). Note that these
constructions are for the most part standard. For this reason we keep it rather brief on certain
formal aspects of the constructions, and refer the interested reader to, e.g., [Voe00b; MVW06] or
[DF17a] for further details.

Appendix A is a collection of the geometric results used in the proofs of the excision theorems.

1.2. Relationship to other works. In the independent project [Elm+20], the construction of

the category CorEk of Section 3.1.1 is generalized to arbitrary ring spectra in SH(S) over a base
scheme S. Let us also mention that functors from the category of framed correspondences to other
correspondence categories have been considered by several authors. The original construction of a
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functor Fr∗(k)→ C̃ork from framed correspondences to finite Milnor–Witt correspondences was
given by Déglise and Fasel in [DF17a]. In [Elm+20, §4.2], the functor of Déglise and Fasel was

refined to an hSpc-enriched functor ΦE : hCorrfr(SchS) → hCorrE(SchS) from the homotopy
category of the ∞-category of framed correspondences to finite E-correspondences.

1.3. Conventions and notation. Throughout, the symbol k will denote a field, and the symbol
Gm := Spec(k[t, t−1]) will denote the multiplicative group scheme over k. In certain sections we
will also need to put some restrictions on the field k; this will be stated in the beginning of the
relevant section.

By a base scheme we mean a noetherian scheme of finite Krull dimension. If S is a base
scheme, we let SmS denote the category of schemes that are smooth, separated and of finite type
over S. By an essentially smooth scheme we mean a scheme that is a projective limit of open
immersions of smooth ones. We denote the category of essentially smooth schemes by EssSmS . If
f : X → Y is a morphism in SmS (or EssSmS), we let ωf := ωX/S ⊗ f∗ω−1

Y/S denote the relative

canonical sheaf. Moreover, we may write simply ωY for ωX×SY/X . In the case of smooth (or
essentially smooth) schemes X,Y ∈ Smk (or EssSmk) over a field k, we will often abbreviate
X ×k Y to X × Y ; Ank to An and Pnk to Pn. Throughout, we will let i0 and i1 denote the zero-,
respectively the unit section i0, i1 : Spec k → A1. If we for example need to emphasize that A2

has coordinates (x, y), we may for brevity denote this by
(x,y)

A2 . This notation will in particular be
used in the tables in Sections 5, 6, 7 and 8.

If L is a line bundle on a scheme X and s ∈ Γ(X,L ) is a section of L , we will denote
by Z(s) ⊆ X the vanishing locus of s. We say that a section s ∈ Γ(X,L ) is invertible if the
homomorphism OX → L defined by s is an isomorphism.

We denote by MapC (X,Y ) the mapping spaces of an ∞-category C , and write [X,Y ]C :=
π0 MapC (X,Y ). If C is any category, we denote by PSh(C ) := Fun(C op,Spc) the ∞-category of
presheaves on C , and for a ring R we denote by PSh(C ;R) the ∞-category of presheaves of R
modules on C . Moreover, we let PShΣ(C ) denote the full subcategory of PSh(C ) spanned by
presheaves that carry finite coproducts to finite products [Lur09, §5.5.8].

1.4. Acknowledgments. We are grateful to Alexey Ananyevskiy, Frédéric Déglise, Jean Fasel,
Ivan Panin, and Paul Arne Østvær for helpful discussions and comments. We would also like
to thank Marc Hoyois for explaining to us how to use the six functors formalism to construct
pushforwards.

Both authors gratefully acknowledge the support provided by the RCN Frontier Research
Group Project no. 250399 “Motivic Hopf equations”. The first author would also like to thank
“Native towns”, a social investment program of PJSC “Gazprom Neft”, for support.

Finally, we would like to thank the anonymous referee for several very helpful comments and
remarks.

2. Twisted cohomology theories with support

Let S be a base scheme. We denote by SmOpL
S the category of triples (X,U,L ), where

X ∈ SmS is separated, smooth and of finite type over S, U is an open subscheme of X and
L is a line bundle on X. A morphism (X,U,L ) → (Y, V,M ) in SmOpL

S consists of a pair
(f, α) of a morphism of S-schemes f : X → Y such that f(U) ⊆ V , and an isomorphism

α : L
∼=−→ f∗M . Note that there is an embedding SmS → SmOpL

S given by X 7→ (X,∅,OX).

For any (X,U,L ) ∈ SmOpL
S , we will write iU for the inclusion iU : U → X and jU for the

inclusion jU : (X,∅,L )→ (X,U,L ). In the case when U = ∅, we will often denote the triple

(X,∅,L ) ∈ SmOpL
S simply by (X,L ).
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Definition 2.0.1. A twisted pre-cohomology theory is a graded functor

A∗ : (SmOpL
S)op → AbZ

which satisfies the following properties:

(a) (Localization) There is a natural transformation ∂ : A∗(X,U,L ) → A∗+1(U, i∗UL ) of
degree +1 which fits into an exact sequence

A∗(X,L )
i∗U−→ A∗(U, i∗UL )

∂−→ A∗+1(X,U,L )
j∗U−→ A∗+1(X,L ).

(b) (Étale excision) Suppose that f : X → Y is an étale morphism of smooth S-schemes.
Assume moreover that Z ⊆ Y is a closed subset such that f |f−1(Z) : f−1(Z)→ Z is an
isomorphism. Then the pullback homomorphism

f∗ : An(Y, Y \ Z,L )→ An(X,X \ f−1(Z), f∗L )

is an isomorphism for any line bundle L on Y and any n ∈ Z.

If (X,U,L ) ∈ SmOpL
S , let Z := X \ U be the closed complement of U . We then write

A∗Z(X,L ) := A∗(X,U,L ). The map j∗U : A∗Z(X,L ) → A∗(X,L ) is called the extension of
support-homomorphism.

Remark 2.0.2. Definition 2.0.1 is but a twisted version of Panin and Smirnov’s definition of a
cohomology theory considered for example in [Pan09], except that for our purposes we need not
assume the axiom of homotopy invariance. In the case of oriented homotopy invariant theories,
our definition coincides with Panin and Smirnov’s definition.

Remark 2.0.3. The axiom of étale excision in Definition 2.0.1 implies that there is a canonical
isomorphism A∗Z1qZ2

(X,L ) ∼= A∗Z1
(X,L ) ⊕ A∗Z2

(X,L ), i.e., that the cohomology theory A∗

also satisfies Zariski excision. In fact, Zariski excision is enough to prove most of the results
below. The only places where we need étale excision are in the construction of the functor from
framed correspondences to A-correspondences in Section 4, and in the proof that A-transfers are
preserved under Nisnevich sheafification (Theorem 10.1.1). Furthermore, the latter case only
requires étale excision on local schemes. In Corollary 8.0.10 we show that a homotopy invariant
cohomology theory satisfying Zariski excision will automatically satisfy étale excision on local
schemes.

Definition 2.0.4. Let A∗ be a twisted pre-cohomology theory. Suppose that we in addition are
given the following data:

(1) (Pushforward) For any morphism f : X → Y ∈ SmS of smooth equidimensional S-schemes
of constant relative dimension d, and any closed subset Z ⊆ X such that f |Z is finite, we
have a pushforward homomorphism

f∗ : AnZ(X,ωf ⊗ f∗L )→ An−df(Z)(Y,L )

for any n ≥ 0 and any line bundle L on Y .
(2) (External product) The cohomology theory is a ring cohomology theory, i.e., there is an

associative product structure

× : AnZ1
(X,L )⊗AmZ2

(Y,M )→ An+m
Z1×SZ2

(X ×S Y,L � M )

and a unit 1 ∈ A0(S).

We say that a pre-cohomology theory A∗ equipped with the homomorphisms f∗ and the product
× as above forms a good cohomology theory if the following properties hold:
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(3) (Pushforward functoriality) The homomorphisms f∗ are functorial in the sense that

id∗ = id, and if (X1, U1,L1)
f−→ (X2, U2,L2)

g−→ (X3, U3,L3) are composable morphisms

in SmOpL
S finite on the supports Zi := Xi \ Ui, then the diagram

A
n−df
f(Z1)(X2, ωg ⊗ g∗L3) A

n−dgf
gf(Z1)(X3,L3)

AnZ1
(X1, ωf ⊗ f∗L2)

g∗

f∗
(gf)∗

is commutative. Here df , dg and dgf are the respective relative dimensions of the
morphisms.

(4) (External product functoriality) The external product × commutes with pullbacks in
the sense that if f : (X, f∗L )→ (Y,L ) and g : (X ′, g∗L ′)→ (Y ′,L ′) are morphisms in

SmOpL
S , then the diagram

An(Y,L )⊗Am(Y ′,L ′) An+m(Y ×S Y ′,L � L ′)

An(X, f∗L )⊗Am(X ′, g∗L ′) An+m(X ×S X ′, f∗L � g∗L ′)

×

f∗⊗g∗ (f×g)∗

×

is commutative.
(5) (Base change) For any strongly transversal square (defined in Definition 2.0.6) that is

equipped with a set of compatible line bundles (defined in Definition 2.0.8) the diagram

An
φ−1
Y (Z)

(Y ′,M ′) An−d
′

i′(φ−1
Y (Z))

(X ′,L ′)

AnZ(Y,M ) An−di(Z)(X,L ),

i′∗

φ∗Y

i∗

φ∗X

is commutative.
(6) (Projection formula) Suppose that f : X → Y and Z ⊆ X satisfy the hypotheses of (1),

and let W ⊆ Y be a closed subset. Let moreover L and M be two line bundles on Y .
Given any two cohomology classes α ∈ AnZ(X,ωf ⊗ f∗L ) and β ∈ AmW (Y,M ), we then
have

f∗(α) ^ β = f∗(α ^ f∗β).

(7) (Graded commutativity) For any α ∈ AnZ(X,L ) and β ∈ AmZ (X,L ), we have

α ^ β = 〈−1〉nm(β ^ α).

Here 〈−1〉 ∈ A0(S) is given as the pushforward 〈−1〉 := (idS ,−1)∗(1); see Definition 3.5.8.
Hence the ring A∗(S) is 〈−1〉-graded commutative.

Remark 2.0.5. The existence of an external product × as in Definition 2.0.4 (2) is equivalent to
the existence of a cup product ^ : AnZ1

(X,L )⊗AmZ2
(X,M )→ An+m

Z1∩Z2
(X,L ⊗M ); see [Pan09,

Definition 1.5] for further details on this.

Definition 2.0.6. Let

Y ′ X ′

Y X

i′

φY φX

i

(2.0.7)
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be a Cartesian square of smooth S-schemes. The square (2.0.7) is called transversal if the
corresponding sequence

0→ g∗(ΩX)→ φ∗Y (ΩY )⊕ i′∗(ΩX′)→ ΩY ′ → 0

is exact, where g := φX ◦ i′ = i ◦ φY . Note that for any transversal square, the isomorphism dφY
induces an isomorphism dφY : φ∗Y ωi

∼=−→ ωi′ .
A transversal square (2.0.7) is called strongly transversal if one of the following two conditions

are satisfied:

• The morphisms i and i′ are closed embeddings.
• The morphisms φX and φY are smooth and surjective.

Definition 2.0.8. Suppose that the square (2.0.7) is strongly transversal. Then a compatible set
of line bundles on the square (2.0.7) consists of the following data:

• Line bundles L ,L ′,M ,M ′ on respectively X,X ′, Y and Y ′.
• Isomorphisms of line bundles

α : φ∗XL
∼=−→ L ′; γ : i∗L ⊗ ωi

∼=−→M ;

β : φ∗Y M
∼=−→M ′; δ : (i′)∗L ′ ⊗ ωi′

∼=−→M ′.

We furthermore require that β ◦φ∗Y (γ) corresponds to δ ◦ ((i′)∗(α)⊗ idωi′ ) under the isomorphism

HomOY ′ (φ
∗
Y i
∗L ⊗ φ∗Y ωi,M ′) ∼= HomOY ′ ((i

′)∗φ∗XL ⊗ ωi′ ,M ′)

induced by the canonical isomorphism φ∗Y ωi
∼= ωi′ for the transversal square.

3. Cohomological correspondences

We are now ready to extend Calmès and Fasel’s definition of finite Milnor–Witt correspondences
[CF17] to our setting:

Definition 3.0.1. Let S be a connected base scheme, and suppose that A∗ is a good cohomology
theory on SmOpL

S . Assume further that p : X → S is a smooth map of constant relative dimension
d. Denote by A0(X/S) the set of admissible subsets1 of X relative to S—that is, closed subsets T
of X such that each irreducible component of Tred is finite and surjective over S via the morphism
p. The set A0(X/S) is partially ordered by inclusions. As the empty set has no irreducible
components, it is admissible. If X is connected, we define the group of finite relative A-cycles on
X as

CA0 (X/S) := lim−→
T∈A0(X/S)

AdT (X,ωX/S).

If X is not connected, we may write X =
∐
j Xj where the Xj ’s are the connected components

of X. We then set CA0 (X/S) :=
∏
j CA0 (Xj/S).

Now let k be a field, and suppose further that S ∈ Smk. Let CorAS denote the category whose
objects are the same as the objects of SmS , i.e., smooth separated schemes of finite type over
S, and morphisms defined as follows. Let X,Y ∈ SmS , and suppose first that X and Y are
connected. We define the group of finite relative A-correspondences from X to Y as

CorAS (X,Y ) := CA0 (X ×S Y/X).

Note in particular that CorAS (X,S) = A0(X) for any X ∈ SmS . If X or Y is not connected,
let X =

∐
iXi and Y =

∐
j Yj denote the connected components of X and Y . Then we put

1Note that for any X,Y ∈ Smk we have A0(X × Y/X) = A(X,Y ), where A(X,Y ) is the set of admissible
subsets of X × Y in the sense of [CF17, Definition 4.1].



COHOMOLOGICAL CORRESPONDENCE CATEGORIES 7

CorAS (X,Y ) :=
∏
i,j CorAS (Xi, Yj). If S = Spec k, we refer to CorAk (X,Y ) simply as the group of

finite A-correspondences from X to Y .
Composition of finite relative A-correspondences is defined in an identical manner as [CF17,

§4.2]. Indeed, if α ∈ CorAS (X,Y ) and β ∈ CorAS (Y,Z), we put

β ◦ α := (pXZ)∗(p
∗
XY α ^ p∗Y Zβ). (3.0.2)

Here we write pXY for the projection pXY : X ×S Y ×S Z → X ×S Y , and similarly for the
other two maps. An identical proof as that of [CF17, Lemma 4.13] then shows that the groups

CorAS (X,Y ) form the mapping sets of a (discrete) category CorAS whose objects are the same as

those of SmS . We refer to CorAS as the category of finite relative A-correspondences. In the case

when S = Spec k, we refer to CorAk simply as the category of finite A-correspondences.

Finally, we define the homotopy category Cor
A

S of CorAS as follows. The objects of Cor
A

S are

the same as those of CorAS , and the morphisms are given by

Cor
A

S (X,Y ) := CorAS (X,Y )/ ∼A1

= coker

(
CorAS (A1

S ×S X,Y )
i∗0−i

∗
1−−−→ CorAS (X,Y )

)
.

We write [α] for the class in Cor
A

S of a finite relative A-correspondence α from X to Y .

3.0.3. Graph functors. We define a graph functor γA,S : SmS → CorAS similarly as [CF17, §4.3]:
the functor γA,S is the identity on objects, and if f : X → Y is a morphism in SmS , we let
γA,S(f) := i∗(1). Here i : Γf → X×SY is the embedding of the graph of f , and i∗ : A0(Γf ,OΓf )→
AdimY

Γf
(X ×S Y, ωY ) is the induced pushforward. If S = Spec k, we will write γA for the graph

functor. We will often abuse notation and write simply f instead of γA,S(f).

3.0.4. Symmetric monoidal structure. Defining X ⊕ Y := X q Y turns CorAS into an additive

category with zero-object the empty scheme. Moreover, CorAS is symmetric monoidal, with tensor
product ⊗ defined by X ⊗ Y := X ×S Y on objects, and given by the external product on
morphisms.

Lemma 3.0.5. The category CorAk is a (discrete) correspondence category in the sense of [EK19,
Definition 4.1] (see also [Gar19, §2]).

Proof. This follows from [EK19, Proposition 4.5]. �

3.0.6. For S a smooth k-scheme there is a functor extS : CorAk → CorAS defined as follows. For
any X ∈ Smk, let XS := X ×k S. Let X,Y ∈ Smk; by working with one connected component at
a time, we may assume that X and Y are connected. By the universal property of fiber products
we have a morphism f : XS ×S YS → X × Y , which induces a pullback morphism

f∗ : AdimY
T (X × Y, ωY )→ AdimY

f−1(T )(XS ×S YS , f∗ωY )

for any T ∈ A0(X × Y/X). As finiteness and surjectivity are preserved under base change we
have f−1(T ) ∈ A0(XS ×S YS/XS). Moreover, the canonical sheaf ωX/k pulls back over XS to
ωXS/S , and similarly for ωY/k. Hence f∗ωX×Y/X ∼= ωXS×SYS/XS . Since pullbacks commute with
extension of support, we get an induced map on the colimit

extS : CorAk (X,Y )→ CA0 (XS ×S YS/XS) = CorAS (XS , YS).
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It follows from the base change axiom applied to the diagram

XS ×S YS ×S ZS XS ×S YS

X × Y × Z X × Y

pXSYS

fXYZ fXY

pXY

that the map extS preserves composition of finite A-correspondences. Thus we obtain a functor
extS : CorAk → CorAS .

3.0.7. In the opposite direction there is a “forgetful” functor resS : CorAS → CorAk induced by
pushforwards. Indeed, let X,Y ∈ SmS . Then there is a Cartesian diagram

X ×S Y
iXY //

��

X × Y

��

∆S
i // S × S,

where ∆S ⊆ S × S denotes diagonal. Moreover, we have isomorphisms ωX×SY ⊗ i∗XY ω
−1
X×Y

∼=
ωiXY

∼= ωi ∼= ω−1
S . Thus there is, for any T ∈ A0(X ×S Y/X), a pushforward homomorphism

(iXY )∗ : AdimS Y
T (X ×S Y, ωY/S)→ AdimY

iXY (T )(X × Y, ωY ).

Passing to the colimit, we obtain a map resS : CorAS (X,Y ) → CorAk (X,Y ). To show that this
homomorphism preserves composition in the category CorS , first note that the commutative
diagram

X ×S Y ×S Z X × Y × Z

X ×S Z X × Z

pX×SZ

iXYZ

pXZ

iXZ

yields (iXZ)∗(pX×SZ)∗ = (pXY )∗(iXY Z)∗. By decomposing the morphism iXY Z as

iXY Z : X ×S Y ×S Z
iX−−→ X × Y ×S Z

iY−→ X × Y × Z

and applying the projection formula twice, we obtain the claim. Hence the maps resS above
define a functor resS : CorAS → CorAk .

3.0.8. For any X ∈ SmS , Y ∈ Smk and any admissible subset T of X × Y we have a natural
isomorphism AdimY

T (X × Y, ωY ) ∼= AdimS YS
T (X ×S YS , ωX×SYS/X). These isomorphisms define a

natural isomorphism CorAk (X,Y ) ∼= CorAS (X,YS). Similarly as in [CF17, §6.2] we deduce from

this that the functors resS and extS form an adjunction resS : CorAS � CorAk : extS .

3.1. Examples of cohomological correspondence categories. Different choices for the co-
homology theory A∗ recover various known correspondence categories, as well as new ones. For
example, if A∗ = CH∗ is the theory of Chow groups, then the definition of CorAk gives back
Voevodsky’s category Cork of finite correspondences. If the ground field k is perfect and of

characteristic not 2, then we can let A∗ be Chow–Witt theory, i.e., A∗ = C̃H
∗
. In this case we

obtain Calmès–Déglise–Fasel’s category C̃ork of finite Milnor–Witt correspondences. On the other
hand, we can also define a good cohomology theory A∗ by letting AnT (X,L ) := Hn

T (X, In,L ),

where In is the Nisnevich sheaf of powers of the fundamental ideal. Then CorAk is the category
WCork of finite Witt-correspondences considered in [CF17, Remark 5.16]. Note that WCork thus
defined differs from the category of Witt correspondences defined in [Dru16]; however, arguing
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similarly as in [BF18] one can show that the associated derived categories of motives are equivalent
after inverting the exponential characteristic of the ground field.

3.1.1. Algebras over MSL. More generally, we claim that any ring spectrum E ∈ SH(k) that
is an algebra over MSL defines a cohomological correspondence category. Here MSL ∈ SH(k)
denotes the ring spectrum constructed by Panin and Walter in [PW18].

In order to show this, let us first recollect a few notions from the formalism of six functors.
Let X ∈ Smk, and suppose that i : Z ⊆ X is a closed subscheme. Let moreover p : X → Spec k
be the structure map. We then have adjunctions p∗ : SH(k) � SH(X) : p∗ and i! : SH(Z) �
SH(X) : i!. If q : E → X is a vector bundle on X, let s : X → E denote the zero section. Recall
from [Hoy17, §5.2] that this defines Thom transformations

ΣE := q#s∗ : SH(X) � SH(X) : s!q∗ =: Σ−E .

In fact, these functors are defined for any ξ ∈ K(X) [BH18, §16.2].

Definition 3.1.2 ([DF17b; Elm+20]). Let E ∈ SH(k) be a spectrum and let X, Z be as above.
Let furthermore ξ ∈ K(Z). The ξ-twisted cohomology of X with support on Z and coefficients in
E is the space

EZ(X, ξ) := MapSH(k)(1k, p∗i!Σ
ξi!p∗E),

where 1k ∈ SH(k) denotes the motivic sphere spectrum. The associated bigraded twisted
cohomology groups with support are then given as

Ep,qZ (X, ξ) := [1k,Σ
p,qp∗i!Σ

ξi!p∗E]SH(k).

Proposition 3.1.3. Suppose that E ∈ SH(k) is an MSL-algebra. Let X ∈ Smk, and suppose
that i : Z ⊆ X is a closed subscheme. For any line bundle L on X, set

AnZ(X,L ) := E2n,n
Z (X, i∗L )

Then A∗Z(X,L ) defines a good cohomology theory and hence a cohomological correspondence

category CorEk .

Proof. The proposition follows from the six operations on SH(k), as explained in [DF17b;
DJK18] or [Elm+20]. Indeed, for the contravariant functoriality we refer to [DF17b, §2.2],
and for the definition of the cup product, see [DF17b, §2.3.1]. The pushforward is given
by the Gysin map f! : EZ(X, f∗ξ + Lf ) → Ef(Z)(Y, ξ), where Lf ∈ K(X) is the cotangent
complex of f ; see [DJK18; Elm+20]. In particular, for MSL we have the Thom isomorphism
ΣξMSL ' Σ2 rk ξ,rk ξΣdet ξ−OMSL [BH18, Example 16.29]. When ξ is a line bundle L , this gives

the pushforward f∗ : AnZ(X,ωf ⊗ f∗L ) → An−df(Z)(Y,L ). For the base change and projection

formulas, see [DF17b, Proposition 2.2.5] and [DF17b, Remark 2.3.2]. �

3.2. Presheaves on CorAk . Our basic object of study is the ∞-category PShΣ(CorAk ;Z) of

presheaves of abelian groups on CorAk that take finite coproducts to finite products. More generally

we may of course also consider, for any coefficient ring R, the ∞-category PShΣ(CorAk ;R) of
presheaves of R-modules. For notational simplicity we will however mostly work with R = Z.

Definition 3.2.1. The objects of PShΣ(CorAk ;Z) will be referred to as presheaves with A-transfers.

A presheaf with A-transfers F ∈ PShΣ(CorAk ;Z) is homotopy invariant if for any X ∈ Smk, the

map pr∗ : F (X)
∼=−→ F (X × A1) induced by the projection pr : X × A1 → X is an isomorphism.

3.2.2. The ∞-category PShΣ(CorAk ;Z) inherits a symmetric monoidal structure from that on

CorAk via Day convolution. Moreover, the graph functor γA : Smk → CorAk defines a “forgetful”

functor γA∗ : PShΣ(CorAk ;Z)→ PShΣ(Smk) given by γA∗ (F ) := F ◦ γA. Similarly as in [DF17a,
§1.2], we deduce that the functor γA∗ admits a left adjoint γ∗A which is symmetric monoidal.
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3.2.3. Sheaves on CorAk . For any Grothendieck topology τ , we define the∞-category Shvτ (CorAk ;Z)

consisting of those presheaves F ∈ PShΣ(CorAk ;Z) such that γA∗ (F ) is a τ -sheaf on Smk. The
adjunction (γ∗A, γ

A
∗ ) above then defines an adjunction

γ∗A : Shvτ (Smk) � Shvτ (CorAk ;Z) : γA∗ ,

and the symmetric monoidal structure on PSh(CorAk ;Z) restricts to a symmetric monoidal

structure on Shvτ (CorAk ;Z).

3.2.4. In this text, we will almost exclusively work with the case when τ = Nis is the Nisnevich
topology. We show below (see Theorem 10.1.1) that the full inclusion i : ShvNis(CorAk ;Z) →
PShΣ(CorAk ;Z) admits a left adjoint aNis : PShΣ(CorAk ;Z)→ ShvNis(CorAk ;Z). In particular, the

Nisnevich sheafification of a presheaf on CorAk comes equipped with A-transfers in a canonical
way. Hence we can make the following definition:

Definition 3.2.5. Let X ∈ Smk be a smooth k-scheme. Following the notation of [CF17], we let

cA(X) ∈ PShΣ(CorAk ;Z) denote the representable presheaf on CorAk given by U 7→ CorAk (U,X).
Moreover, we let

ZA(X) := aNis(cA(X)) ∈ ShvNis(CorAk ;Z)

denote the Nisnevich sheaf associated to the presheaf cA(X).

3.3. Correspondences of pairs. In the excision theorems of Sections 6 and 8 we are always in
the setting of a pair of schemes j : U ⊆ X, and we are led to consider the associated quotient
coker(j∗ : F (X) → F (U)) for a given presheaf with A-transfers. In particular, if U = X and
j is the identity, then the associated quotient is zero. The notion of a correspondence of pairs
provides a natural setting to study these objects.

Definition 3.3.1. Let CorA,pair
S denote the category whose objects are those of SmOpS and

whose morphisms are defined as follows. For (X,U), (Y, V ) ∈ SmOpS , with open immersions
jX : U → X and jY : V → Y , consider the complex

CorAS (X,V )
d0−→ CorAS (X,Y )⊕ CorAS (U, V )

d1−→ CorAS (U, Y )

in which d0 := ((jY )∗, j
∗
X) and d1 := j∗X − (jY )∗. We define the group CorA,pair

S ((X,U), (Y, V ))
of finite relative A-correspondences of pairs as the homology of this complex, i.e.,

CorA,pair
S ((X,U), (Y, V )) := ker d1/ im d0.

In particular, if U = X, then CorA,pair
S ((X,X), (Y, V )) = 0. We denote the elements of

CorA,pair
S ((X,U), (Y, V )) by (α, β), where α ∈ CorAS (X,Y ) and β ∈ CorAS (U, V ). If β is im-

plicitly understood, we may write simply α instead of (α, β). The composition in CorA,pair
S is

defined by (α, β) ◦ (γ, δ) := (α ◦ γ, β ◦ δ).
Finally, we define the homotopy category Cor

A,pair

S of CorA,pair
S as follows. The objects of

Cor
A,pair

S are the same as those of CorA,pair
S , and the morphisms are given by

Cor
A,pair

S ((X,U), (Y, V )) := CorA,pair
S ((X,U), (Y, V ))/ ∼A1

= coker

(
CorA,pair

S (A1
S ×S (X,U), (Y, V ))

i∗0−i
∗
1−−−→ CorA,pair

S ((X,U), (Y, V ))

)
.

Here A1
S ×S (X,U) is shorthand for (A1

S ×S X,A1
S ×S U). If (α, β) ∈ CorA,pair

S ((X,U), (Y, V )) is
a finite relative A-correspondence of pairs, we write [(α, β)], or simply [α], for the image of (α, β)

in Cor
A,pair

S ((X,U), (Y, V )).



COHOMOLOGICAL CORRESPONDENCE CATEGORIES 11

3.4. Correspondences between essentially smooth schemes. We will frequently encounter
local-, and henselian local schemes, and we need to consider correspondences also between such
objects. The definitions and results below take care of this. We remind the reader that the
definition of an étale neighborhood can be found in Definition A.0.6 in the appendix.

Definition 3.4.1. Let X = lim←−Xα ∈ EssSmS be an essentially smooth S-scheme. Consider a
closed subscheme T = lim←−Tα of X, where Tα is a closed subscheme of Xα for each α. Define

AnT (U ×S X,ωX) := lim−→
α

AnTα(U ×S Xα, ωXα).

Furthermore, for any U = lim←−α Uα ∈ EssSmS , and for any X ∈ SmS , we define

CorAS (U,X) := lim−→
α

CorAS (Uα, X).

Finally, for any X ∈ SmS , any point x ∈ X, and any U ∈ EssSmS , we put

CorAS (U,Xh
x ) := lim←−

v

CorAS (U,X ′).

Here the limit ranges over all étale neighborhoods v : (X ′, x)→ (X,x) of x in X.

Lemma 3.4.2. For any X ∈ SmS of relative dimension d over S, and for any henselian local
scheme U ∈ EssSmS, we have

AdT (U ×S X,ωX) =
⊕
x∈X

AdTx(U ×S Xx, ωX) =
⊕
x∈X

AdThx (U ×S Xh
x , ωXhx )

for any T ∈ A0(U ×S X/U). Here x ranges over the set of all (not necessarily closed) points of
X, and Tx := T ×X Xx; Thx := T ×X Xh

x .

Proof. Since U is henselian local and T ∈ A0(U ×S X/U) is finite over U , it follows that T is
a semi-local henselian scheme. In fact, T =

∐
z∈T(0)

Thz , where z ranges over the set of closed

points in T . Hence T =
∐
x∈X

Tx and T =
∐
x∈X

Thx , where x ranges over the set of all points

of X. In particular we have Tx = Thx . We note that Thx is semi-local henselian, but not
necessarily local. By Zariski excision, we obtain AdT (U ×S X,ωX) =

⊕
x∈X A

d
Tx

(U ×S X,ωX),

and AdTx(U ×S X ′, ωX) = AdTx(U ×S X,ωX) for any open X ′ ⊆ X containing x. This implies the
first claim.

For the second equality, note that since the scheme Thx is semi-local henselian for any x ∈ X, it
follows that Thx is isomorphic to its preimage under any étale neighborhood v : (X ′, x)→ (X,x).
Hence it follows from étale excision that AdThx

(U×SX,ωX) = AdThx
(U×SX ′, ωX), and consequently

AdThx
(U ×S X,ωX) = AdThx

(U ×S Xh
X , ωXhX ). So the second equality follows. �

Lemma 3.4.3. Let X ∈ SmS be as in Lemma 3.4.2. Then, for any point x ∈ X and for any
henselian local scheme U ∈ EssSmS we have

CorAS (U,Xx) = lim−→
T∈A0(U×SXx/U),x∈X

AdT (U ×S Xx, ωXx),

CorAS (U,Xh
x ) = lim−→

T∈A0(U×SXhx/U),x∈X
AdT (U ×S Xh

x , ωXhx ).



COHOMOLOGICAL CORRESPONDENCE CATEGORIES 12

Proof. The first claim follows from the first equality of Lemma 3.4.2, by the following computation:

CorAS (U,Xx) = lim←−
v

lim−→
T∈A0(U×SX′/U)

AdT (U ×S X ′, ωX′)

= lim←−
v

lim−→
T∈A0(U×SX′/U)

⊕
x′∈X′

AdTx′ (U ×S X
′
x′ , ωX′x′ )

= lim←−
v

⊕
x′∈X′

lim−→
T∈A0(U×SX′x′/U)

AdT (U ×S X ′x′ , ωX′x′ )

= lim←−
v

lim−→
T∈A0(U×SX′x/U)

AdT (U ×S X ′x, ωX′x) = AdT (U ×S Xx, ωXx).

Here v : (X ′, x) ↪→ (X,x) ranges over the set of Zariski neighborhoods of x in X. The second
equality of the claim follows in a similar manner from the second equality of Lemma 3.4.2 with
Xx replaced by Xh

x , and with v ranging over the set of étale neighborhoods of x in X. �

3.5. Constructing correspondences from functions and trivializations. From now on we
will assume that the base scheme S is the spectrum of a field k. Later on we will also have to put
more restrictions on k (e.g., infinite or perfect); the appropriate assumptions will be stated in the
beginning of each section where they are needed.

3.5.1. We will now describe how to construct a finite A-correspondence from the data of a regular
function on a relative curve together with a trivialization of the relative canonical class. This
construction can be thought of as an analogous statement to the defining axiom of a pretheory in
the sense of Voevodsky [Voe00a], and will be used throughout.

Construction 3.5.2. Suppose that there is a diagram

C A1

U X

f

p
g (3.5.3)

in Smk satisfying the following properties:

(1) p : C → U is a smooth relative curve, and g : C → X is any morphism.
(2) Z(f) = Z q Z ′, with Z finite over U .

(3) There is an isomorphism µ : OC
∼=−→ ωC/U .

We can then define finite A-correspondences

divAU (f)µZ ∈ CorAU (U, C); divA(f)µZ ∈ CorAk (U, C);

divAU (f)µ,gZ ∈ CorAU (U,X); divA(f)µ,gZ ∈ CorAk (U,X)

as follows:
Let Γf denote the graph of the morphism f , with embedding if : Γf ↪→ C × A1. Consider the

pushforward homomorphism (if )∗ : A0(Γf ,OΓf ⊗ωif )→ A1
Γf

(C ×A1,OC×A1), and let dT : OA1 ∼=
ωA1 be the trivialization defined by the coordinate function T on A1. Using the trivializations −dT
and µ we then obtain a homomorphism i∗ : A0(Γf ,OΓf )→ A1

Γf
(C × A1, ωC×A1/U×A1). Consider

the image i∗(1) ∈ A1
Γf

(C × A1, ωC×A1/U×A1) of 1 ∈ A0(Γf ,OΓf ) under the map i∗.

Next we may pull back along the zero section, i∗0 : A1
Γf

(C ×A1, ωC×A1/U×A1)→ A1
Z(f)(C, ωC/U ).

Since Z(f) = Z q Z ′ we have A1
Z(f)(C, ωC/U ) = A1

Z(C, ωC/U ) ⊕ A1
Z′(C, ωC/U ) by Remark 2.0.3.

We define the finite relative A-correspondence

divAU (f)µZ ∈ CorAU (U, C)
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as the image of i∗(1) ∈ A1
Γf

(C × A1, ωC×A1/U ) under the composite homomorphism

A1
Γf

(C × A1, ωC/U )
i∗0−→ A1

Z(f)(C, ωC/U )→ A1
Z(C, ωC/U )→ CorAU (U, C).

Here the second map is the projection to the first coordinate, and the last map is the canonical
homomorphism to the colimit. By composing with the morphism g we obtain the finite relative
A-correspondence

divAU (f)µ,gZ := g ◦ divAU (f)µZ ∈ CorAU (U,X).

We readily obtain a nonrelative A-correspondence by applying the functor resU . More precisely,
we define

divA(f)µ,gZ := g ◦ resU (divAU (f)µZ) ∈ CorAk (U,X).

If it is clear from the context, we might drop the trivialization µ or the map g from the notation.
Moreover, if Z = Z(f) and Z is finite over U , we may also abbreviate divA(f)Z(f) to divA(f).

We think of divA(f)µZ as a divisor supported on Z whose multiplicity at each component of Z is
given by an A-cohomology class.

Lemma 3.5.4. Let C, Z, p, f and g be as in Construction 3.5.2. Then divA(λf)λµ,gZ = divA(f)µ,gZ
for any λ ∈ Γ(U,O×U ).

Proof. For any smooth U -scheme X, any closed subscheme Z ⊆ X, and any line bundle L on X,
define the automorphism ΛX : A∗Z(X,L )→ A∗Z(X,L ) as the map induced by the automorphism
L → L given by multiplication by λ.

Consider the homomorphisms

i∗ : A0(Γf ,OΓf )→ A1
Γf

(C × A1, ωC×A1/U ),

iλf,λµ∗ : A0(Γλf ,OΓλf )→ A1
Γλf

(C × A1, ωC×A1/U )

in the constructions of divA(f)µ,gZ and divA(λf)λµ,gZ . Let moreover iλµ∗ denote the homomorphism

iλµ∗ : A0(Γf ,OΓf )→ A1
Γf

(C × A1, ωC×A1/U )

given by the trivialization dT ⊗ λµ. Define automorphisms

Hλ : A1 × C → A1 × C, (T, x) 7→ (λT, x),

Hλ−1

: A1 × C → A1 × C, (T, x) 7→ (λ−1T, x).

Then Hλ−1

(Γλf ) = Γf , and Hλ−1

∗ (dT ) = λ−1dT . Hence

Hλ−1

∗ ◦ iλf,λµ∗ = (ΛC×A1)−1 ◦ iλµ∗ = i∗,

and the claim follows. �

Lemma 3.5.5. Let C, Z, p and f be as in (3.5.3) and suppose that Z = Z1 q Z2 with both Z1

and Z2 finite over U . Then divA(f)µ,gZ = divA(f)µ,gZ1
+ divA(f)µ,gZ2

.

Proof. The claim follows from the definition and Remark 2.0.3. �

Definition 3.5.6. Let C, U , µ, Z, X, p, f and g be as above and suppose that U ′ ⊆ U
and X ′ ⊆ X are open subschemes such that Z ×U U ′ ⊆ g−1(X ′). Write f ′ := f

∣∣
C×UU ′

and

g′ := g
∣∣
C×UU ′

. This data defines a correspondence of pairs(
divA(f)µ,gZ ,divA(f ′)µ,g

′

Z×UU ′

)
∈ CorA,pair

k ((U,U ′), (X,X ′)).

Suppose furthermore that π : (C′, Z ′)→ (C, Z) is an étale neighborhood (see Definition A.0.6)
satisfying Z ′×U U ′ ⊆ v−1(X ′), where v := g ◦π. Then this data defines a finite A-correspondence
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of pairs divA(f̃)µ̃,vZ ∈ CorA,pair
k ((U,U ′), (X,X ′)), where f̃ := π∗(f) and µ̃ := π∗(µ). If the

morphism π is implicitly understood from the context, we may sometimes abuse notation and
write simply divA(f)µ,gZ for this A-correspondence.

Lemma 3.5.7. Let C, U , µ, Z, X, p, f and g be as above and suppose that U ′ ⊆ U and X ′ ⊆ X
are open subschemes. If Z ∩ g−1(X \X ′) = ∅, then divA(f)µ,gZ = 0 ∈ CorA,pair

k ((U,U ′), (X,X ′)).

Proof. The correspondence divA(f)µ,gZ ∈ CorAk (U,X ′) defines the diagonal in the diagram

X ′ X

U ′ U.

Moreover, the vertical arrows in the above diagram define the correspondence of pairs divA(f)µ,gZ ∈
CorA,pair

k ((U,U ′), (X,X ′)); it follows that divA(f)µ,gZ factors through (X ′, X ′) and is therefore
zero. �

Definition 3.5.8. Let U ∈ Smk and suppose that λ is an invertible regular function on U . We
can then consider the morphism (id, λ) : (U × U, ωU )→ (U × U, ωU ) in SmOpL

k . We denote by

〈λ〉 ∈ CorAk (U,U)

the image of idU ∈ CorAk (U,U) under the corresponding pushforward map (id, λ)∗. In particular,

if λ = −1, we will write ε for the finite A-correspondence ε := −〈−1〉 ∈ CorAk (U,U).

Example 3.5.9. Suppose that A∗ = C̃H
∗
, so that CorAk is the category of finite Milnor–Witt

correspondences. Then 〈λ〉 ∈ CorAk (U,U) is the Milnor–Witt correspondence 〈λ〉·idU ∈ C̃ork(U,U)
given by multiplication with the quadratic form 〈λ〉 ∈ KMW

0 (U). In particular, the finite A-
correspondence ε coincides with the usual ε defined in Milnor–Witt K-theory.

Lemma 3.5.10. Let U , C, p, f and g be as in (3.5.3). Suppose also that p induces an isomorphism
Z(f) ∼= U , so that Z(f) defines a section s : U → C of p. Then the following hold:

(a) There is an invertible regular function λ on U such that divA(f)µ,gZ(f) = g ◦ s ◦ 〈λ〉 in

CorAk (U,X).
(b) If moreover µ|Z(f) = df , where df denotes the trivialization of the normal bundle NZ(f)/C

defined by f , then divA(f)µ,gZ(f) = g ◦ s.

Proof. (a) Let j : Z(f)→ Γf , jf : Z(f)→ C and if : Γf → C × A1 denote the closed embeddings.
Consider the following diagram consisting of two squares of varieties equipped with compatible
sets of line bundles (in which we have also included the relevant line bundles in the notation):

(Z(f),OZ(f)) (Z(f), ωZ(f)/U ) (C, ωC/U )

(Γf ,OΓf ) (Γf , ωΓf/U ) (C × A1, ωC×A1/U ).

(id,µ)

j

jf

j i0

(id,µ) if

The first square is evidently transversal (and strongly transversal). To prove that the second one
is (strongly) transversal, it is enough to note that the homomorphism k[C][T ] = k[C ×A1]→ k[C]
given by T 7→ 0 takes the function f − T to f and induces an isomorphism

NΓf/C×A1 ⊗ k[C × 0] = (f − T )/(f − T )2 ⊗ k[C][T ]/(T ) ∼= (f)/(f)2 = NZ(f)/C .
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Hence the base change axiom gives us the following commutative diagram:

A0(Γf ,OΓf ) A0(Γf , ωΓf/U ) A1
Γf

(C × A1, ωC×A1/U )

A0(Z(f),OZ(f)) A0(Z(f), ωZ(f)/U ⊗ ωj) A1
Z(f)(C, ωC/U ⊗ ωi0)

A1
Z(f)(C, ωC/U ).

µ

j∗ j∗

(if )∗

i∗0

µZ(f)

(jf ,ν)∗

(jf )∗

−dT

Here j∗ and i∗0 are defined via the canonical isomorphisms j∗(ωΓf/U ) ∼= ωZ(f)/U ⊗ ωj and
i∗0(ωC×A1/U ) ∼= ωC/U ⊗ ωi0 induced by the short exact sequences of vector bundles

0→ TZ(f) → j∗(TΓf )→ NZ(f)/Γf → 0

and

0→ TC×0 → i∗0(TC×A1)→ NC×0/C×A1 → 0.

Moreover, the homomorphism µZ(f) is given as the composition of µ|Z(f) and the isomorphism
j∗ωΓf/U

∼= ωZ(f)/U ⊗ ωj ; the homomorphism (jf )∗ is defined via the isomorphism j∗f (ωi0) ∼= ωj
induced by the canonical isomorphism Γf ∼= C; and the diagonal homomorphism (jf , ν)∗ is
induced by some trivialization ν : OZ(f)

∼= ωZ(f)/U .

It follows from the construction that divA(f)µZ(f) = −dT (i∗0(if )∗µ(1)). Since the diagram is

commutative we thus obtain divA(f)µZ(f) = (jf , ν)∗j
∗(1) = s◦〈λ〉, where λ is given as the fraction

of ν and the canonical isomorphism ωZ(f)/U
∼= OU induced by the isomorphism p : Z(f)

∼=→ U .
(b) A straightforward computation with isomorphisms of line bundles shows that (jf )∗ is

given as the product of the canonical isomorphism OZ(f)
∼= ωZ(f)/U with the invertible function

µ
∣∣
Z(f)
⊗ df−1, where df : OZ(f)

∼= ωZ(f)/U denotes the trivialization induced by the choice of the

generator −f of the ideal (f) = I(Z(f)). So λ = 1, and the claim follows. �

3.6. Some homotopies. We now give a computation with A-correspondences that will come in
handy later on, especially in the proof of Lemma 8.0.5.

Lemma 3.6.1. Suppose that the base field k is infinite. Let U be an essentially smooth local
scheme over k and let λ ∈ Γ(U,O×U ). Suppose that λ = w2 for some invertible section w on U .

Then 〈λ〉 ∼A1 idU ∈ CorAk (U,U). Similarly 〈λ〉 ∼A1 id(U,V ) ∈ CorA,pair
k ((U, V ), (U, V )) for any

open subscheme V ⊆ U .

Proof. Assume first that V = ∅ and λ(x) 6= 1, where x ∈ U is the closed point. Let α := (λ−1)−1,
and define the regular function

h := (1− ν)α(t− λ)(t− 1) + να(t− w)2 ∈ Γ(
t

Gm ×U×
ν

A1,O).

Keeping the notation of (3.5.3) in mind, consider the following diagram:

Gm × U × A1 A1

U × A1 U.

p pr

h

Here the morphisms p and pr are the projections. We aim to apply Construction 3.5.2 to this
diagram. To this end, notice that h is a polynomial in t with leading term α, which is invertible
on U . Moreover, the substitution t 7→ 0 takes h to (1−ν)αλ+ναw2 = αλ, which is invertible too.
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Hence Z(h) ⊆ Gm × U × A1 is finite over U × A1. Using the trivialization tdt of the canonical
class of Gm, we get from Construction 3.5.2 a finite relative A-correspondence

Θ := divAU (h)tdt,pr ∈ CorAU (U × A1, U).

Let i0, i1 : U → U × A1 denote the zero-, and unit sections. We then have

Θ ◦ i0 = divAU (α(t− λ)(t− 1))tdt,pr

= divAU ((λ− 1)−1(t− λ)(t− 1))tdt,pr
Z(t−λ) + divAU (−(1− λ)−1(t− λ)(t− 1))tdt,pr

Z(t−1)

= 〈λ〉+ 〈−1〉.
On the other hand,

Θ ◦ i1 = divAU (α(t− w)2)tdt,pr = divAU (αw−1(t− w)2)dt,pr,

where the second equality follows from Lemma 3.5.4. Thus we see that

〈λ〉+ 〈−1〉 ∼A1 divAU (αw−1(t− w)2)dt,pr ∈ CorAU (U,U).

We now construct yet another homotopy similar to the one in the proof of [GP18b, Lemma 13.15],
which is in turn inspired by [Nes18, Lemma 7.3]. Put α′ := αw−1. Consider the regular function

h′ = (1− ν)α′(t− w)2 + να′(t− α′−1
)t ∈ Γ(

t

A1 ×U×
ν

A1,O),

along with the diagram

A1 × U × A1 A1

U × A1 U

p′ pr′

h′

in which p′ and pr′ are the projections. As h′ is a polynomial in t with leading term α′, which is
invertible on U , it follows that Z(h′) ⊆ A1×U ×A1 is finite over U ×A1. Using the trivialization
dt of the canonical class of A1, we then get from Construction 3.5.2 a finite A-correspondence

Θ′ := divAU (h′)dt,pr′ ∈ CorAU (U × A1, U).

By definition of h′, the A-correspondence Θ′ satisfies

Θ′ ◦ i0 = divAU (α′(t− w)2)dt,pr′ ,

Θ′ ◦ i1 = divAU (α′(t− α′−1
)t)dt,pr′

= divAU (α′(t− α′−1
)t)dt,pr′

Z(t−α′−1)
+ divAU (α′(t− α′−1

)t)dt,pr′

Z(t)

= 〈1〉+ 〈−1〉.
Thus we see that

divAU (α′(t− w)2)dt,pr′ ∼A1 〈1〉+ 〈−1〉 ∈ CorAU (U,U).

Now, since divAU (α′(t− w)2)dt,pr′ = divAU (α′(t− w)2)dt,pr, we get

〈λ〉+ 〈−1〉 ∼A1 〈1〉+ 〈−1〉 ∈ CorAU (U,U).

Thus the claim follows from the fact that 〈1〉 = idU .
We have now proved the claim in the case λ(x) 6= 1. In the general case when λ ∈ Γ(U,O×U ),

consider a function u ∈ Γ(U,O×U ) such that u(x) 6= w(x)−1 and u(x) 6= 1. Such a function exists,
since the base field is infinite by assumption. Then we have by the above that 〈λu2〉 ∼A1 idU and

〈u2〉 ∼A1 idU in CorAU (U,U). Thus, since 〈λu2〉 = 〈λ〉 ◦ 〈u2〉, the claim follows.
So the claim of the lemma is done for V = ∅. The case of a pair (U, V ) with V 6= ∅ follows,

since all the constructed homotopies are relative homotopies over U , i.e., they are elements of
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CorAU (U × A1, U). Consequently all the homotopies defined are elements in CorA,pair
U ((U, V )×

A1, (U, V )) as well. �

4. Connection to framed correspondences

Using similar techniques as in Construction 3.5.2 we can define a functor Υ: Fr∗(k)→ CorAk
from the category of framed correspondences [GP18a] to the category CorAk . See also [Elm+20]
for an alternative approach using Thom classes [Elm+20, Lemma 4.3.24].

Construction 4.0.1. Let Φ = (Z,V, φ; g) ∈ Frn(X,Y ) be an explicit framed correspondence.
Thus Z is a closed subset in An ×X = AnX ; (V, Z)→ (AnX , Z) is an étale neighborhood of Z in
AnX ; φ = (φi), where the φi’s are regular functions on V such that Z = Z(φ); and g is a morphism

g : V → Y . For any unit λ ∈ k× we define a finite A-correspondence Υλ(Φ) ∈ CorAk (X,Y ) in the
following way.

Let dt : ωA1 ∼= OA1 denote the standard trivialization of the canonical class, and consider
further two trivializations µ1, µ2 : ωAn ∼= OAn given by µ1 = (dt)∧n and µ2 = λnµ1. Let Γ denote
the graph Γ ⊆ AnX ×X V = An × V of the relative morphism V → AnX over X. Then there is a
canonical projection Γ → AnX . Denote by iX : X → AnX and iV : V → An × V the embeddings
given by the zero sections. Let furthermore g′ : V → X × Y denote the product of g and the
projection to X. The following diagram summarizes the situation:

Y

An × V V AnX

An ×X X.

Γ

iV

g

iX

(4.0.2)

We then define Υλ(Φ) := g′∗(i
∗
V(Γ∗(1))), where we use the trivialization µ1 of the canonical class

ωAn , and the trivialization of ωV/X defined by the pullback of µ2 along the étale morphism
V → An ×X.

In other words, the finite A-correspondence Υλ(Φ) is obtained as the image of i∗V(Γ∗(1)) ∈
AnZ(V, ωV/X) under the composition

AnZ(V, ωV/X)→ CorAX(X,V)
resX−−−→ CorAk (X,V)

g∗−→ CorAk (X,Y )

in which the last map is given by composition with g.

Theorem 4.0.3. For each unit λ ∈ k×, Construction 4.0.1 defines a functor Υλ : Fr∗(k) →
CorAk that carries the framed correspondence σ = (0,A1, t,pr: A1 → pt) ∈ Fr1(pt,pt) to 〈λ〉 ∈
CorAk (pt,pt). Moreover, Υλ factors through the category ZF∗(k) of linear framed correspondences.

Proof. Construction 4.0.1 gives rise to a map Υλ depending on the fraction λ ∈ k× of the two
trivializations of the canonical classes. To show that Υλ is in fact a functor, we need to check the
following:

(1) Equivalent explicit framed correspondences give rise to the same finite A-correspondence.
(2) Let idX ∈ Fr0(X,X) be the identity morphism in the graded category Fr∗(k). Then

Υλ(idX) is equal to the identity morphism in the category CorAk .
(3) For any Φ1 ∈ Frn1(X1, X2) and Φ2 ∈ Frn2(X2, X3), we have Υλ(Φ2 ◦ Φ1) = Υλ(Φ2) ◦

Υλ(Φ1).
(4) For any Φ = (Z,V, φ; g) ∈ Frn(X1, X2) such that Z = Z1 q Z2, we have Υλ(Φ) =

Υλ(Z1,V, φ; g) + Υλ(Z2,V, φ; g).
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All points are straightforward from the properties of the cohomology theory A∗. �

Remark 4.0.4. Note that Theorem 10.2.1 on strict homotopy invariance of presheaves on CorAk
follows from the existence of a functor from framed correspondences to CorAk along with the fact
that this theorem holds for framed correspondences by work of Garkusha–Panin [GP18b]. Below
we will however give an explicit proof not relying on framed correspondences.

5. Injectivity on the relative affine line

In this section we prove the following theorem, which is the first in a series of ingredients
necessary to establish strict homotopy invariance (Theorem 10.2.1):

Theorem 5.0.1. Let U be an affine smooth k-scheme, and suppose that V1 ⊆ V2 ⊆ A1
U are two

open subschemes such that A1
U \ V2 and V2 \ V1 are finite over U . Let i : V1 ⊆ V2 denote the

inclusion. Then, for any homotopy invariant presheaf with A-transfers F ∈ PShΣ(CorAk ;Z), the
restriction homomorphism i∗ : F (V2)→ F (V1) is injective.

5.0.2. We deduce Theorem 5.0.1 from the following result, which ensures the existence of a left
inverse to i∗:

Lemma 5.0.3. Suppose that V1 ⊆ V2 ⊆ A1
U are open subschemes as in Theorem 5.0.1. Then

there is a finite A-correspondence Φ ∈ CorAk (V2, V1) such that [i ◦ Φ] = [idV2
] ∈ Cor

A

k (V2, V2).

Proof. To prove the claim we must construct a finite A-correspondence Φ ∈ CorAk (V2, V1) along

with a homotopy Θ ∈ CorAk (A1 × V2, V2) satisfying Θ ◦ i0 = i ◦ Φ and Θ ◦ i1 = idV2
. To do this,

we will make use of the following functions:

f ∈ k[
y

A1 ×
(x,u)

V2 ] h ∈ k[
y

A1 ×
(x,u)

V2 ×
λ

A1] g ∈ k[
y

A1 ×
(x,u)

V2 ]
f = yn + a1y

n−1 + · · ·+ an h = yn + b1y
n−1 + · · ·+ bn g = yn−1 + c1y

n−2 + · · ·+ cn−1

h
∣∣
A1×V2×0

= f h
∣∣
A1×V2×1

= (y − x)g

f
∣∣
(A1
U\V1)×UV2

= 1 h
∣∣
(A1
U\V2)×UV2

= 1 g
∣∣
(A1
U\V2)×UV2

= (y − x)−1

g
∣∣
(V2\V1)×UV2

= 1

g
∣∣
Z(y−x)

= 1

The functions f and g can be constructed for any n big enough by using the Chinese remainder
theorem A.0.4. Having f and g we then put h := (1− λ)f + λ(y − x)g. We now aim to apply
Construction 3.5.2 to the regular functions f and h. Keeping the notations as in (3.5.3), consider
the following diagrams:

y

V1 ×U
x

V2 A1
y

V2 ×U
x

V2 A1
y

V2 ×U
x

V2 ×A1 A1

x

V2

y

V1,
x

V2

y

V2,
x

V2 ×A1
y

V2 .

f

pr121 pr222

(y−x)g h

pr2

Here pr12
1 ,pr22

2 and pr2 are projections. Since f , (y − x)g and h are monic polynomials in the
variable y, it follows that Z(f), Z((y− x)g) and Z(h) are finite over V2 and A1 × V2, respectively.
Hence Construction 3.5.2 yields finite A-correspondences

Φ′ := divA(f)
dy,pr121
Z(f) ∈ CorAk (V2, V1),

Θ′ := divA(h)
dy,pr2
Z(h) ∈ CorAk (A1 × V2, V2).
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The properties of f and h above imply that

Θ′ ◦ i0 = i ◦ Φ′,

Θ′ ◦ i1 = divA((y − x)g)
dy,pr222
Z(y−x) + divA((y − x)g)

dy,pr222
Z(g) .

Now, according to Lemma 3.5.10, the first summand in the last equality is equal to 〈ν〉 ∈
CorAk (V2, V2) for some invertible function ν. Therefore, if we let Φ := Φ+ − Φ−, where

Φ+ := Φ′ ◦ 〈ν−1〉, Φ− := divA((y − x)g)
dy,pr222
Z(g) ◦ 〈ν−1〉,

it follows that

[idV2
] = divA((y − x)g)

dy,pr222
Z(y−x) ◦ 〈ν

−1〉 = [i ◦ Φ] ∈ Cor
A

k (V2, V2),

as desired. �

5.0.4. We will need the following two particular cases of Theorem 5.0.1:

Corollary 5.0.5. Suppose that F is a homotopy invariant presheaf with A-transfers over a
field k. Then, for any pair of open subschemes V1 ⊆ V2 ⊆ A1

k, the restriction homomorphism
F (V2)→ F (V1) is injective.

Corollary 5.0.6. Suppose that F is a homotopy invariant presheaf with A-transfers over a field
k, and let U be an open subscheme of Gm × Gm such that the complement (Gm × Gm) \ U is
finite over the first copy of Gm. Then the restriction homomorphism F (Gm ×Gm)→ F (U) is
injective.

6. Excision on the relative affine line

The aim of this section is the prove the following excision result for open subsets of a relative
affine line:

Theorem 6.0.1. Suppose that U ∈ Smk is an affine scheme, and let V1 ⊆ V2 ⊆ A1
U be a pair of

open subschemes such that 0U ∈ V1. Let i : V1 ⊆ V2 denote the inclusion. Then, for any homotopy
invariant presheaf with A-transfers F ∈ PShΣ(CorAk ;Z), the restriction homomorphism i∗ induces
an isomorphism

i∗ : F (V2 \ 0U )/F (V2)
∼=−→ F (V1 \ 0U )/F (V1).

Remark 6.0.2. By Theorem 5.0.1, the restriction maps F (Vi)→ F (Vi\0) are injective for i = 1, 2,
which justifies the notation F (Vi \ 0U )/F (Vi).

6.0.3. To prove the above theorem, we will show that i∗ is injective and surjective, which amounts
to constructing appropriate correspondences of pairs up to homotopy. Let us first show that i∗ is
injective:

Lemma 6.0.4. Suppose that i : V ⊆ A1
U is an open subscheme with 0U ∈ V . Then there is a

finite A-correspondence of pairs Φ ∈ CorA,pair
k ((A1

U ,A1
U \ 0U ), (V, V \ 0U )) such that [i ◦ Φ] =

[id(A1
U ,A1

U\0U )] ∈ Cor
A,pair

k ((A1
U ,A1

U \ 0U ), (A1
U ,A1

U \ 0U )).

Proof. We need to construct a finite A-correspondence of pairs Φ ∈ CorA,pair
k ((A1

U ,A1
U \0U ), (V, V \

0U )) along with a homotopy Θ ∈ CorA,pair
k (A1×(A1

U ,A1
U\0U ), (A1

U ,A1
U\0U )) such that Θ◦i0 = i◦Φ

and Θ ◦ i1 = id(A1
U ,A1

U\0U ). To do this, we will make use of the following sections:
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s ∈ Γ

(
[t0 : t∞]

P1

U×
x

A1
,O(n)

)
s̃ ∈ Γ

(
[t0 : t∞]

P1

U×
x

A1×
λ

A1
,O(n)

)
s′ ∈ Γ

(
[t0 : t∞]

P1

U×
x

A1
,O(n− 1)

)
s̃
∣∣
P1×U×A1×0

= s s̃
∣∣
P1×U×A1×1

= (t0 − xt∞)s′

s
∣∣
((P1×U)\V )×A1 = tn0 s̃

∣∣
∞×U×A1×A1 = tn0 s′

∣∣
∞×U×A1 = tn−1

0

s
∣∣
0×U×A1 = tn−1

∞ (t0 − xt∞) s̃
∣∣
0×U×A1×A1 = tn−1

∞ (t0 − xt∞) s′
∣∣
0×U×A1 = tn−1

∞
s′
∣∣
Z(t0−xt∞)×U = tn−1

∞

Since U is affine, it follows that O(1) is ample on P1 × U × A1 and P1 × U × A1 × A1. Hence,
for n big enough, Serre’s theorem A.0.3 ensures the existence of the sections s and s′ as above.
Having s and s′, we then put s̃ := (1− λ)s+ λ(t0 − xt∞)s′.

It follows by Lemma A.0.11 that Z(s) and Z(s̃) are finite over U × A1 and U × A1 × A1

respectively. Let y := t0/t∞ be the coordinate on the affine line A1 ⊆ P1, and consider the
trivialization dy of the canonical class of A1. Let moreover p : A1×V → A1

U denote the composition
of the projection onto V followed by the inclusion V ⊆ A1

U , and let p′ : A1×A1×U×A1 → A1
U×A1

be the projection onto the last two coordinates. Applying Construction 3.5.2 to the diagrams

y

V ×
x

A1 A1
y

A1 ×U×
x

A1 ×
λ

A1 A1

x

A1
U

x

V ,
x

A1
U ×

λ

A1
x

A1
U ,

p pr

s/tn∞

p′ pr2

s̃/tn∞

we thus obtain finite A-correspondences

Φ′ := divA(s/tn∞)dy,pr ∈ CorA,pair
k ((A1

U ,A1
U \ 0U ), (V, V \ 0U )),

Θ′ := divA(s̃/tn∞)dy,pr2 ∈ CorA,pair
k (A1 × (A1

U ,A1
U \ 0U ), (A1

U ,A1
U \ 0U )).

It then follows from the properties of s and s̃ above that

Θ′ ◦ i0 = i ◦ Φ′,

Θ′ ◦ i1 = divA((y − x)g)Z(y−x) + divA((y − x)g)Z(g),

where g := s′/tn−1
∞ ∈ k[A1 ×A1 × U ]. By Lemma 3.5.10 the first summand in the last equality is

equal to 〈ν〉 for some ν ∈ k[A1
U ]×. The second summand, divA((y−x)g)Z(g), is zero by Lemma 3.5.7

since Z(g) ∩ (0 × A1 × U) = ∅. Now we define Φ := Φ′ ◦ 〈ν−1〉 and Θ := Θ′ ◦ (〈ν−1〉 × idA1).
Then Θ′ ◦ i1 = id(A1

U ,A1
U\0U ), and the claim follows. �

6.0.5. The next step is to show surjectivity of i∗:

Lemma 6.0.6. Suppose that i : V ⊆ A1
U is an open subscheme with 0U ∈ V . Then there is a

finite A-correspondence of pairs Ψ ∈ CorA,pair
k ((A1

U ,A1
U \ 0U ), (V, V \ 0U )) such that [Ψ ◦ i] =

[id(V,V \0U )] ∈ Cor
A,pair

k ((V, V \ 0U ), (V, V \ 0U )).

Proof. To prove the claim we need to construct a finiteA-correspondence of pairs Ψ ∈ CorA,pair
k ((A1

U ,A1
U\

0U ), (V, V \ 0U )) along with a homotopy Θ ∈ CorA,pair
k (A1 × (V, V \ 0U ), (V, V \ 0U )) such that

Θ ◦ i0 = Ψ ◦ i and Θ ◦ i1 = id(V,V \0U ). We do this via the following sections:
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s ∈ Γ

(
[t0 : t∞]

P1

U×
x

A1
,O(n)

)
s̃ ∈ Γ

(
[t0 : t∞]

P1
x
V×

λ

A1
,O(n)

)
s′ ∈ Γ

(
[t0 : t∞]

P1
x
V
,O(n− 1)

)
s̃
∣∣
P1×V×0

= s s̃
∣∣
P1×V×1

= (t0 − xt∞)s′

s
∣∣
D×A1 = tn0 s̃

∣∣
D×V×A1 = tn0 g

∣∣
D×A1 = tn0 (t0 − xt∞)−1

s
∣∣
0×U×A1 = t0 − xt∞ s̃

∣∣
0×V×A1 = t0 − xt∞ s′

∣∣
0×V = tn∞

s′
∣∣
Z(t0−xt∞)

= tn−1
∞

Here D := (P1 × U) \ V denotes the reduced closed complement, g := s′/tn−1
∞ ∈ k[A1 × V ], and

Z(t0 − xt∞) ⊆ P1 × V denotes vanishing locus of the section

t0 − xt∞ ∈ Γ(P1 × V,O(1)),

with [t0 : t∞] being coordinates on P1, and x the one on V . Since U is affine, it follows that
O(1) is ample on P1 × A1 × U and P1 × A1 × U × A1. Hence Serre’s theorem A.0.3 ensures the
existence of the sections s and s′ as above, provided n is big enough. Having s and s′, we then
put s̃ := (1− λ)s+ λ(t0 − xt∞)s′.

Next, it follows by Lemma A.0.11 that Z(s) and Z(s̃) are finite over U × A1 and V × A1,
respectively. Let y := t0/t∞ be the coordinate on the affine line A1 ⊆ P1, and let us use the
trivialization dy of the canonical class of A1. Consider the diagrams

y

V ×
x

A1 A1
y

V ×U
x

V ×
λ

A1 A1

x

A1
U

y

V,
x

V ×
λ

A1
y

V .

s/tn∞

pr pr′

s̃/tn∞

Here the map pr: A1 × V → V is the projection, while the map pr′ : A1 × V × A1 → A1
U

is the composition of the projection onto V followed by the inclusion V ⊆ A1
U . Applying

Construction 3.5.2 to these diagrams we get finite A-correspondences of pairs

Ψ′ := divA(s/tn∞)dy,pr ∈ CorA,pair
k ((A1

U ,A1
U \ 0U ), (V, V \ 0U )),

Θ′ := divA(s̃/tn∞)dy,pr′ ∈ CorA,pair
k (A1 × (V, V \ 0U ), (V, V \ 0U )),

The properties of s and s′ above imply that

Θ′ ◦ i0 = Ψ′ ◦ i,

Θ′ ◦ i1 = divA((y − x)g)Z(y−x) + divA((y − x)g)Z(g).

By Lemma 3.5.10, the first summand in the last equality is equal to 〈ν〉 ∈ CorA,pair
k ((V, V \

0U ), (V, V \ 0U )) for some ν ∈ k[V ]×. The second summand is zero by Lemma 3.5.7, since
Z(g) ∩ (0× V ) = ∅. Hence the A-correspondences Ψ := 〈ν−1〉 ◦Ψ′ and Θ := 〈ν−1〉 ◦Θ′ have the
desired properties. �

Proof of Theorem 6.0.1. Lemma 6.0.4 and Lemma 6.0.6 immediately imply the claim for the case
of V2 = A1

U . In general, it follows that we have natural isomorphisms

F (V2 \ 0U )/F (V2) ∼= F (A1
U \ 0U )/F (A1

U ) ∼= F (V1 \ 0U )/F (V1),

which shows the claim. �
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6.0.7. Arguing similarly as in the proof of Theorem 6.0.1, we obtain also an excision result for a
nonrelative affine line:

Theorem 6.0.8. Consider the function field K := k(U) of some integral scheme U ∈ Smk. Let
z be a closed point in A1

K , and let i : V1 ⊆ V2 be an inclusion of two open subschemes of A1
K such

that z ∈ V1. Then, for any homotopy invariant presheaf with A-transfers F ∈ PShΣ(CorAk ;Z),
the restriction homomorphism i∗ induces an isomorphism

i∗ : F (V2 \ z)/F (V2)
∼=−→ F (V1 \ z)/F (V1).

Proof. The proof is parallel to the proof of Theorem 6.0.1. All we need to do is to replace the
line bundle O(1) by O(d), where d := degK k(z); the section t0 ∈ Γ(P1

A1
K
,O(1)) by a section

ν ∈ Γ(P1
A1
K
,O(d)) such that Z(ν) = z × A1

K ; and the section t∞ by td∞. �

7. Injectivity for semilocal schemes

In this section we will assume that the base field k is infinite.

Theorem 7.0.1. Let X be a smooth k-scheme and let x1, . . . , xr ∈ X be finitely many closed
points. Let U := SpecOX,x1,...,xr and write j : U → X for the canonical inclusion. Let Z ↪→ X
be a closed subscheme with x1, . . . , xr ∈ Z, and let i : U \ Z → U be the immersion of the open
complement to the semilocalization of Z at the points x1, . . . , xr. Then, for any homotopy invariant
presheaf with A-transfers F ∈ PShΣ(CorAk ;Z), the homomorphism i∗ : F (U) → F (U \ Z) is
injective.

7.0.2. Theorem 7.0.1 is an immediate consequence of the following moving lemma:

Lemma 7.0.3. Assume the hypotheses of Theorem 7.0.1. Then there exists a finite A-correspondence
Φ ∈ CorAk (U,X \ Z) such that the diagram

X \ Z

U X

i
Φ

j

commutes up to homotopy.

7.0.4. We prove Lemma 7.0.3 by constructing an appropriate relative curve C over U along with
a good compactification C of C. The desired finite A-correspondence will then be defined by using
certain sections on C.

Lemma 7.0.5. Assume the hypotheses of Theorem 7.0.1. Then there exists a diagram

X
v←− C j−→ C p−→ U

in EssSmk, satisfying the following properties:

(1) p : C → U is a relative projective curve, j : C → C is an open immersion, and the
composition p ◦ j is smooth.

(2) The map p ◦ j admits a section ∆: U → C. By abuse of notation, we write ∆ also for the
image of the morphism ∆.

(3) Let Z := v−1(Z) ⊆ C. Then Z is finite over U .
(4) D := C \ C is finite over U .
(5) The relative curve C has an ample line bundle OC(1).

(6) There is a trivialization µ : OC
∼=−→ ωC/U .

Proof. We apply Lemma A.0.7 with π = id: X → X. �
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Proof of Lemma 7.0.3. First of all we apply Lemma 7.0.5. Then it follows from Serre’s theorem
A.0.3 that there is an integer l� 0 and a section d ∈ Γ(C,O(l)) such that D ⊆ Z(d), Z(d)∩Z = ∅
and Z(d) is finite over U . For notational simplicity, let us redenote O(l) by O(1), and redenote
D := Z(d). Now our aim is to construct the following sections:

s ∈ Γ(C,O(n)) s̃ ∈ Γ(C×
λ

A1,O(n)) s′ ∈ Γ(C,O(n)⊗L (∆)−1) δ ∈ Γ(C,L (∆))

Z(s|ZqD) = ∅ s̃|C×0 = s Z(s′|ZqDq∆) = ∅ Z(δ) = ∆
s̃|C×1 = s′ ⊗ δ
s̃|D×A1 = s

To do this, let δ be a section of L (∆) with Z(δ) = ∆, and choose, using Lemma A.0.3, an integer
n� 0 such that the restriction maps

Γ(C,O(n)⊗L (∆)−1)→ Γ(Z qD q∆,O(n)⊗L (∆)−1),

Γ(C,O(n))→ Γ(Z qD,O(n))

are surjective. We can then find a global section s′ of O(n) ⊗L (∆)−1 such that s′|ZqDq∆ is
invertible. Let s be a lift of s′δ|ZqD ∈ Γ(Z qD,O(n)), and define s̃ := (1− λ)s+ λs′ ⊗ δ. We
now aim to apply Construction 3.5.2 to the diagrams

C A1 C × A1 A1

U X, U × A1 X.

s′⊗δ/dn

s/dn

p◦j
v

(p◦j)×A1

s̃/dn

v◦pr

Here pr : C × A1 → C is the projection. By Lemma A.0.11, the vanishing loci Z(s) and Z(s̃) are
finite over U and U × A1, respectively. Hence we obtain finite A-correspondences

Φ′ := divA(s/dn)µ,vZ(s) − divA(s′ ⊗ δ/dn)µ,vZ(s′) ∈ CorAk (U,X \ Z),

Θ′ := divA(s̃/dn)
µ,v◦prC×A1

C
Z(s̃) − divA(s′ ⊗ δ/dn)µ,vZ(s′) ◦ prU×A

1

U ∈ CorAk (U × A1, X).

Then the properties of the sections above imply that Θ′ ◦ i0 = i ◦ Φ′, and Lemma 3.5.10 implies
that Θ′ ◦ i1 = j ◦ 〈ν〉 for some ν ∈ k[U ]×. Now let Φ := Φ′ ◦ 〈ν−1〉. Then Θ := Θ′ ◦ 〈ν−1〉 gives
the required homotopy, satisfying Θ ◦ i0 = i ◦ Φ and j = Θ ◦ i1. �

8. Étale excision

In this section we assume that the base field is infinite. The main result of the section is the
following étale excision result for homotopy invariant presheaves with A-transfers:

Theorem 8.0.1. Let X ∈ Smk and suppose that π : (X ′, Z ′)→ (X,Z) is an étale neighborhood
of Z in X. Assume also that z ∈ Z and z′ ∈ Z ′ are two closed points such that π(z′) = z. Write
U := Xz = SpecOX,z for the corresponding local scheme, and similarly U ′ := X ′z′ . Then, for

any homotopy invariant presheaf with A-transfers F ∈ PShΣ(CorAk ;Z), the map π∗ induces an
isomorphism

π∗ : F (Xz \ Zz)/F (Xz)
∼=−→ F (X ′z′ \ Z ′z′)/F (X ′z′).
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8.0.2. The proof of Theorem 8.0.1 relies on some geometric input. Our main tool for this is
Lemma A.0.7; we refer the reader to the appendix for details around this construction.

Having Lemma A.0.7 at hand, we start out by showing that the map π∗ is injective:

Lemma 8.0.3. Under the assumptions of Theorem 8.0.1 there is a finite A-correspondence
Φ ∈ CorAk (U,X ′) satisfying π ◦ Φ ∼A1 i, where i : U → X denotes canonical embedding.

Proof. Applying Lemma A.0.7 we obtain a morphism of relative curves $ : C′ → C over U , with
compactification $ : C′ → C, and subschemes D,∆,Z ⊆ C, D′,∆′Z ,Z ′ ⊆ C′ as in Lemma A.0.7.

Let δ ∈ Γ(C,L (∆)) be a section such that Z(δ) = ∆. Our first aim is to prove that there is an
integer N such that for all n ≥ N , there exist sections satisfying the following conditions:

s ∈ Γ(C,O(n)) s̃ ∈ Γ(C×
λ

A1,O(n)) s′ ∈ Γ(C,O(n)⊗L (∆)−1)

s̃
∣∣
C×0

= s s̃
∣∣
C×1

= δ ⊗ s′
Z(s

∣∣
D

) = ∅ Z(s̃
∣∣
D×A1) = pr∗(s)

s
∣∣
Z = δ ⊗ s′ s̃

∣∣
Z×A1 = δ ⊗ s′ Z(s′

∣∣
Z) = ∅

Z(s̃) ∩ Z(d) = ∅

In addition, we will require that Z(s) = Z0 q Z ′0 and that there exists a regular map l : Z0 → C′
satisfying $ ◦ l = idZ0

. Here pr : C × A1 → C is the canonical projection.
To do this we start the following preparations. Let OC′(1) := $∗(O(1)). Then, since $ is

finite, OC′(1) is an ample bundle on C′. Since $ induces isomorphisms Z ′ ∼= Z and ∆′Z
∼= ∆×C Z,

there is a section δ′ ∈ Γ(Z ′,L ′) such that Z(δ′) = ∆′Z for some line bundle L ′ on Z ′. Since
Z ′ is a finite scheme over a local scheme U , Z ′ is semilocal and any line bundle on Z ′ is trivial.
Hence there is an isomorphism L ′ ∼= OC′(m)

∣∣
Z′ for any m ∈ Z. Similarly, since the subscheme

D′ ⊆ C′ is finite over U , for any m ∈ Z, the line bundle OC′(m)
∣∣
D′

is trivial. Now, applying

Lemma A.0.10 to the morphism $ : C′ → C and the subschemes D′ and Z we construct, for some
m ∈ Z, a section ξ ∈ Γ(C′,OC′(m)) such that there is a closed embedding Z(ξ) → C, and such
that Z(ξ

∣∣
$−1(Z)

) = ∆′Z . Define Z0 := $(Z(ξ)) ⊆ C ⊆ C and put L := L (Z). Let ζ ∈ Γ(C,L )

be a section with Z(ζ) = Z. Then Z(ζ
∣∣
Z) = ∆Z .

Using Serre’s theorem A.0.3 we can choose an integer N ∈ Z such that for all n ≥ N , the
restriction homomorphisms

Γ(C,O(n)⊗L −1)→ Γ(Z qD,O(n)⊗L −1)

Γ(C,O(n))→ Γ((Z ∪∆)qD,O(n))

are surjective. Then, since Z qD is semilocal, there is a section ζ ′ ∈ Γ(C,O(n)⊗L −1) such that
ζ ′
∣∣
ZqD is invertible. Define s := ζ ⊗ ζ ′ ∈ Γ(C,O(n)).

Now choose a section s1 ∈ Γ(C,O(n)) such that s1

∣∣
∆

= 0 and s1

∣∣
Z = s. We then put

s̃ := (1 − λ)s + λs1. Since s1

∣∣
∆

= 0, there is a section s′ ∈ Γ(C,O(n) ⊗ L (∆)−1) such

that s1 = δ ⊗ s′, where δ ∈ Γ(C,L (∆)) satisfies Z(δ) = ∆. Moreover, since by construction
Z(s1

∣∣
Z) = ∆Z = Z(δ

∣∣
Z), it follows that s′

∣∣
Z is invertible and so Z(s′

∣∣
Z) = ∅. Hence the desired

sections s, s̃, and s′ are constructed. Moreover it follows by Lemma A.0.11 now that Z(s) and
Z(s̃) are finite over U and U × A1 respectively.

By construction, the morphism $ induces an isomorphism between the closed subschemes

l(Z0) ⊆ C′ and Z0. Since $ is étale, it follows that $−1(Z0) = l(Z0)q Ẑ0. Hence we can define

an étale neighborhood $+ : (C′ \ Ẑ0, l(Z0))→ (C, Z0) such that $+(Z0) = l(Z0). Consider the
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diagrams

C′ A1 C × A1 A1

U X ′, U × A1 X,

p◦j◦$

$∗(s/dn)

v′
(p◦j)×A1

s̃/dn

v◦pr

where pr : C ×A1 → C is the projection. Applying Construction 3.5.2 to these diagrams we obtain
finite A-correspondences

Φ′ := divA($∗(s/dn))
$∗(µ),v′

Z0
∈ CorA,pair

k ((U,U \ Z ×X U), (X ′, X ′ \ Z ′)),

Θ′ := divA(s̃/dn)v◦pr ∈ CorA,pair
k (A1 × (U,U \ Z ×X U), (X,X \ Z)).

It follows from the list of properties above, Lemma 3.5.10, and Lemma 3.5.7 that Θ′ ◦ i1 = i ◦ 〈ν〉
for some invertible function ν ∈ k[U ]×. If we let Φ := Φ′ ◦ 〈ν−1〉 and Θ := Θ′ ◦ 〈ν−1〉, it follows
that Θ ◦ i1 = i. So to prove the lemma it is enough to show that Θ ◦ i0 ∼A1 π ◦ Φ.

Since $ is finite, it is affine. Hence for some Zariski neighborhood V ′ of l(Z0) in C′ \ Ẑ0, the
restriction $

∣∣
V

is affine. Then, for some Zariski neighborhood V of Z0 in C, there is a closed

embedding c : V ′′ ⊆ Ar × V , where V ′′ := V ′ ∩$−1(V ), which is such that c(l(Z0)) = 0 × Z0.
Let f1, . . . , fr ∈ k[Ar × V ] be functions satisfying fi

∣∣
c(V ′′)

= 0 and fi
∣∣
Ar×Z0

= xi, where the xi’s

denote the coordinate functions on Ar. For i = 1, . . . , r, let f̃i := (1− λ)fi + λxi and consider the

closed subscheme Z(f̃1, . . . , f̃r) ⊆ Ar × V × A1. Then the projection pr : Z(f̃1, . . . , f̃r)→ V × A1

is étale over Z0 ×A1. Let W ⊆ Z(f̃1, . . . , f̃r) be a Zariski neighborhood of 0×Z0 ×A1 such that
the restriction of the projection prW : W → V ×A1 is étale. Furthermore, let t be the pullback of
s/dn from V to W , and let iV : V → C denote the open embedding. Applying Construction 3.5.2
to the diagram

W A1

U × A1 X,

t

v×A1 v◦iV ◦prW

we obtain a homotopy

divA(t)
pr∗W (ω),v◦iV ◦prW
0×Z0×A1 ∈ CorA,pair

k (A1 × (U,U \ Z ×X U), (X,X \ Z))

connecting π ◦ Φ′ = divA($∗(s/dn))$
∗(ω),v◦$ and Θ ◦ i0 = divA(s/dn)ω,v. �

8.0.4. Before we move on to the surjective part of étale excision, we need the following lemma:

Lemma 8.0.5. Suppose that char k 6= 2, and let X ∈ Smk. Let Z ⊆ X be a closed subscheme
and z ∈ X a closed point. Write U for the essentially smooth local scheme U := Xh

z = SpecOhX,z,

and let λ ∈ k[U ]× be an invertible regular function satisfying λ
∣∣
Z×XU

= 1. Then

i ◦ 〈λ〉 ∼A1 i ∈ CorA,pair
k ((U,U \ Z ×X U), (X,X \ Z)),

where i denotes the canonical morphism i : U → X.

Proof. Lift λ to an invertible section on some affine Zariski neighborhood V ⊆ X of the point
z ∈ X. Then λ

∣∣
Z×XV ′

= 1 for some other Zariski neighborhood V ′ ⊆ V of z; shrinking X to V ′

we may assume that λ ∈ k[X]× with λ
∣∣
Z

= 1.

Consider the étale covering π : X ′ → X, whereX ′ = Spec k[X][w]/(w2−λ). Let Z ′ be the closed
subscheme of X ′ given by Z ′ := Spec k[Z][w]/(w − 1), so that Z ′ ∼= Z. Then (X ′, Z ′)→ (X,Z)
is an étale neighborhood. By Lemma 8.0.3 there exists a finite A-correspondence of pairs

Φ ∈ CorA,pair
k ((U,U \ Z ×X U), (X ′, X ′ \ Z ′))
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such that π ◦ Φ ∼A1 i in CorA,pair
k ((U,U \ Z ×X U), (X,X \ Z)). On other hand, Lemma 3.6.1

implies that

〈λ〉 ◦ π = π ◦ 〈π∗(λ)〉 = π ◦ 〈w2〉 ∼A1 π ∈ CorA,pair
k ((X,X \ Z), (X,X \ Z)).

Hence i ◦ 〈i∗(λ)〉 = 〈λ〉 ◦ i ∼A1 〈λ〉 ◦ π ◦ Φ ∼A1 π ◦ Φ ∼A1 i. �

Lemma 8.0.6. Let i′ : U ′ = X ′z′ → X ′ denote the canonical embedding. Then under the

assumptions of Theorem 8.0.1, there exists Φ ∈ CorAk (U,X ′) such that Φ ◦ π ∼A1 i′.

Proof. Using Lemma A.0.7 we construct relative projective curves p′ : C′ → U , p′′ : C′′ → U ′,
along with the other data related to the first two rows of the diagram (A.0.8).

Since U ′ is essentially smooth, we have ∆′′ ∼= U ′. Moreover, since p′′ : C′′ → U ′′ is a smooth
morphism with fibers of dimension one, it follows that ∆′′ is a smooth divisor on C′′. Hence it

is a smooth divisor on C′′ as well and there is an invertible bundle L (∆′′) on C′′ and a section

δ ∈ Γ(C′′,L (∆′′)) such that Z(δ) = ∆′′.
Since Z ′ is finite over the local scheme U , Z ′ is semilocal. Let δ′ ∈ k[Z ′] be a regular function

such that δ′
∣∣
∆′Z

= 0, and such that δ′ is invertible on the closed points of Z ′ outside ∆′Z . Then

the closed fibers of Z(δ′) and ∆′Z coincide. Now Z(δ′) is finite over U since it is a closed subset
in Z ′. Moreover, ∆Z is finite over U since ∆Z is isomorphic to the closed subscheme U ×X Z in
U . Hence Z(δ′) = ∆Z by Nakayama’s lemma.

Using the notations of Lemma A.0.7, define OC′(1) := $′∗(O(1)) and OC′′(1) := $∗$′∗(O(1)).
Then, since O(1) is ample and $,$′ are finite, it follows that OC′(1) and OC′′(1) are ample.
Serre’s theorem A.0.3 then tells us that there is an integer n ∈ Z such that the restriction
homomorphisms

Γ(C′,O(n))→ Γ(Z ′′ qD′′,O(n)⊗L (∆′′)), (8.0.7)

Γ(C′′,O(n)⊗L (∆′′))→ Γ(Z ′′ qD′′,O(n)⊗L (∆′′)) (8.0.8)

are surjective. As mentioned above, Z and D are finite over U , so it follows that Z ′ and D′

are semilocal, and moreover that there are trivializations ξZ : OZ′
∼=→ OC′(1)

∣∣
Z′ and ξD : OD′

∼=→
OC′(1)

∣∣
D′

. Now using surjectivity of the map (8.0.7) we find a section

s ∈ Γ(C′,O(n)), s
∣∣
Z′ = δ ⊗ ξ⊗nZ , s

∣∣
D′

= ξ⊗nD .

By the same reason as above there is some trivialization ξ′Z : OZ′′
∼=→ L (∆′′)

∣∣
Z′′ . Then

b1 = $∗(δ′) and b2 = δ ⊗ ξ′Z
−1

are two regular functions on Z ′′ such that Z(b1) = Z(b2) = ∆′′Z .

Hence there is an invertible function ν ∈ k[Z ′′]× such that $∗(δ′)ν = δ ⊗ ξ′Z
−1
. Indeed, ν is

uniquely defined by the equality b1ν = b2 on the closed subscheme Z(I) ⊆ Z ′′. Here I := ker(mb1),
where mb1 ∈ End(k[Z ′′]) is defined as multiplication by b1. Moreover, the equality b1ν = b2
implies that ν is invertible on Z(I), and any lift of ν to a regular function on Z ′′ satisfies the
equality b1ν = b2 as well. So it is enough to choose a lift such that ν is nonzero at the closed
points of Z ′′ \ Z(I).

Using surjectivity of the second map (8.0.8), we find a section

s′ ∈ Γ(C′′,O(n)⊗L (∆′′)−1), s′
∣∣
Z′′ = $′

∗
(ξZ)⊗nν, s′

∣∣
D′′

= $∗(ξ⊗nD )⊗ δ
∣∣−1

D′′
.

Note that the section δ
∣∣−1

D′′
is well defined since ∆′′ ∩D′′ = ∅. Now define s̃ := (1− λ)s+ λs′.

Then we have:
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s ∈ Γ(C′,O(n)) s̃ ∈ Γ(C′′×
λ

A1,O(n)) s′ ∈ Γ(C′′,O(n)⊗L (∆′)−1)

s̃
∣∣
C′′×0

= $′
∗
(s) s̃

∣∣
C′′×1

= δ ⊗ s′
Z(s

∣∣
D′

) = ∅ Z(s̃
∣∣
D′′

) = pr∗($′
∗
(s))

s
∣∣
Z′×UZ

= δ′ ⊗ s′ s̃
∣∣
Z′′×A1 = δ ⊗ s′ Z(s′

∣∣′′
Z) = ∅

We now aim to apply Construction 3.5.2 to the diagrams

C′ A1 C′′ × A1 A1

U X ′, U ′ × A1 X ′.

p′◦j′
v′

s/dn

(p′′◦j′′)×A1 v′′◦pr

s̃/dn

Here pr : C′′ ×A1 → C′′ is the projection. By Lemma A.0.11, Z(s) and Z(s̃) are finite over U and
U ′ × A1, respectively. Hence Construction 3.5.2 yields finite A-correspondences

Φ′ := divA(s/dn)µ
′,v′ ∈ CorAk (U,X ′),

Θ′ := divA(s̃/dn)$
∗(µ′),v′′◦pr ∈ CorAk (U ′ × A1, X ′).

Then, by construction,

Θ′ ◦ i0 = Φ′ ◦ π,

Θ′ ◦ i1 = divA(δ ⊗ s′/dn)
$∗(µ′),v′′

∆′′ + divA(δ ⊗ s′/dn)
$∗(µ′),v′′

Z(s′) .

By Lemma 3.5.7 we have

divA(δ ⊗ s′/dn)
$∗(µ′),v′′

Z(s′) = 0 ∈ CorA,pair
k ((U ′, U ′ \ Z ′ ×X′ U ′), (X ′, X ′ \ Z ′)).

Furthermore, Lemma 3.5.10 tells us that divA(δ⊗ s′/dn)
$∗(µ′),v′′

∆′′ = i′ ◦ 〈λ′〉 for some λ′ ∈ k[U ′]×.
Let ω ∈ k[U ]× be an invertible function on U satisfying π∗(ω)(z) = λ′(z)−1. Define Φ := Φ′ ◦ 〈ω〉
and Θ := Θ′ ◦ 〈π∗(ω)〉. Then Θ ◦ i1 = i′ ◦ 〈λ′ · π∗(ω)〉 and so Lemma 8.0.5 yields the claim. �

Proof of Theorem 8.0.1. Lemmas 8.0.3 and 8.0.6 establish respectively injectivity and surjectivity
of the map π∗. �

8.0.9. We finish this section with a result on the interplay between Zariski excision, étale excision
and homotopy invariance for the cohomology theory A∗.

Corollary 8.0.10. Suppose that A∗ is a graded presheaf of abelian groups that satisfies all
properties of a good cohomology theory except the étale excision axiom. Instead, assume that
A∗ satisfies Zariski excision and homotopy invariance. In other words, for any X ∈ Smk, any
line bundle L on X, any open subscheme j : U ⊆ X and any closed subscheme Z ⊆ X such that
Z ⊆ U , the maps

pr∗ : An(X,L )
∼=−→ An(X × A1,pr∗L ),

j∗ : An(X,X \ Z,L )
∼=−→ An(U,U \ Z, j∗L )

are isomorphisms.
Then A∗ satisfies the étale excision axiom on local schemes. In other words, for any X ∈ Smk,

Z ⊆ X, π : (X ′, Z ′)→ (X,Z), z ∈ Z and z′ ∈ Z ′ as in Theorem 8.0.1, the morphism π induces
an isomorphism

π∗ : A∗(Xz, Xz \ Zz)
∼=−→ A∗(X ′z′ , X

′
z′ \ Z ′z′).
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Proof. Consider the category CorAk of correspondences built from A∗ in the sense of Definition 3.0.1.
First of all we see that the proofs of Lemmas 8.0.3 and 8.0.6 (as well as Construction 3.5.2) do

not use the étale excision axiom for A∗. Thus we have morphisms Φl,Φr ∈ CorAk (U,X ′) such that
π ◦Φr = i, and Φr ◦π = i′. Then Φl induces a right inverse A∗(X ′z′ , X

′
z′ \Z ′z′)→ A∗(Xz, Xz \Zz)

to π∗, and Φr induces a left inverse. �

9. The cancellation theorem

In this section we show the cancellation theorem for A-correspondences by suitably adapting
Voevodsky’s proof for the case of Cork [Voe10]; see Theorem 9.0.17. For the sake of brevity we
will omit the steps that are identical to Voevodsky’s original proof, and rather focus on the details
that are specific to our situation. We refer the interested reader to [Voe10] for the remaining
formal aspects of the proof.

Definition 9.0.1. The Karoubi envelope of CorAk is the preadditive category whose objects are

pairs (X, p) with X ∈ Smk and p ∈ CorAk (X,X) an idempotent. The morphisms are given by

CorAk ((X, p), (X ′, p′)) = im

(
CorAk (X,X ′)

p′◦(−)◦p−−−−−−→ CorAk (X,X ′)

)
.

Any object X ∈ Smk can be considered as an object of the Karoubi envelope of CorAk by

X 7→ (X, idX). By abuse of notation, we will write CorAk also for the Karoubi envelope of CorAk .

Definition 9.0.2. Define X∧G∧1
m := ker(pr1 : X×Gm → X) as an object of the Karoubi envelope

of CorAk . Let pr∧ : G×2
m → G∧2

m denote the canonical projection, and let ι∧ : G∧2
m → G×2

m denote
the canonical injection. Note that pr∧ ◦ι∧ = idG∧2m . The external product on A-correspondences

defines a functor (−)∧G∧1
m : CorAk → CorAk given by X → X ∧G∧1

m , α 7→ α× idG∧1m . Furthermore,

for any X ∈ Smk we let cA(X) ∧G∧1
m denote the presheaf U 7→ CorAk (U ∧Gm, X ∧Gm).

Lemma 9.0.3. Let τ× : G×2
m → G×2

m denote the twist automorphism given by τ(x1, x2) := (x2, x1),
and let

τ∧ := pr∧ ◦τ× ◦ ι∧ : G∧2
m → G∧2

m .

Then τ∧ is A1-homotopic to ε = −〈−1〉 ∈ CorAk (G∧2
m ,G∧2

m ).

Proof. Let (x1, x2) denote the coordinates on G×2
m . Denote by ∆ ⊆ G×2

m the diagonal, and by

∆̂ ⊆ G×2
m the anti-diagonal, i.e.,

∆ := Z(x1x
−1
2 − 1), ∆̂ := Z(x1x2 − 1) ⊆ G×2

m .

Let us first show that pr∧ ◦τ× ◦ j ∼A1 ε ◦ j, where j : G×2
m \ (∆∪ ∆̂)→ G×2

m denotes the inclusion

and ε = −〈−1〉 ∈ CorAk (G×2
m ,G×2

m ). To do this, consider the diagram

t

Gm ×((
x1

Gm ×
x2

Gm) \ (∆ ∪ ∆̂)) A1

(
x1

Gm ×
x2

Gm) \ (∆ ∪ ∆̂) Gm ×Gm

f

p g

in which g(t, x1, x2) := (t, x1x2t
−1). Then p is a smooth relative curve whose relative canonical

class is trivialized by dt. Applying Construction 3.5.2 to this diagram we obtain a finite A-
correspondence

divA(f)dt,gZ ∈ CorAk (G×2
m \ (∆ ∪ ∆̂),G×2

m )
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for any regular function f whose vanishing locus Z is finite over G×2
m \ (∆ ∪ ∆̂). For simplicity,

let us skip dt and g in the notation. Then the required A1-homotopy is given as follows:

(τ× + 〈−1〉) ◦ j

=
(

divA((t− x1)(t− x2))Z(t−x2) + divA((t− x1)(t− x2))Z(t−x1)

)
◦ j ◦ 〈(x2 − x1)−1〉

= divA((t− x1)(t− x2)) ◦ j ◦ 〈(x2 − x1)−1〉

∼A1 divA((t− x1x2)(t− 1)) ◦ j ◦ 〈(x2 − x1)−1〉

=
(

divA((t− x1x2)(t− 1))Z(t−1) + divA((t− x1x2)(t− 1))Z(t−x1x2)

)
◦ j ◦ 〈(x2 − x1)−1〉

= (ν1 + ν2) ◦ i ◦ 〈(1− x1x2)(x2 − x1)−1〉 ∈ CorAk (G×2
m \ (∆ ∪ ∆̂),G×2

m ).

Here ν1 : G×2
m → G×2

m is the morphism (x1, x2) 7→ (x1x2, 1), while ν2 : G×2
m → G×2

m is defined by

(x1, x2) 7→ (1, x1x2). Since pr∧ ◦ν1 = 0 and pr∧ ◦ν2 = 0 in CorAk (G×2
m \ (∆ ∪ ∆̂),G∧2

m ), it follows
that

pr∧ ◦(τ× + 〈−1〉) ◦ j = 0 ∈ Cor
A

k (G×2
m \ (∆ ∪ ∆̂),G∧2

m ).

Now Corollary 5.0.6 yields that

pr∧ ◦(τ× + 〈−1〉) = 0 ∈ Cor
A

k (G×2
m ,G∧2

m ), (9.0.4)

since Cor
A

k (−,G∧2
m ) is a homotopy invariant presheaf with A-transfers. Finally, since

ε = − pr∧ ◦〈−1〉 ◦ ι∧ ∈ CorAk (G∧2
m ,G∧2

m ),

we get the claim upon composing (9.0.4) with ι∧. �

Definition 9.0.5. Let Gm ×Gm have coordinates (t1, t2). For any n ≥ 1, define the functions
g+
n , g

−
n ∈ k[Gm ×Gm] by

g+
n := tn1 + 1, g−n := tn1 + t2.

Moreover, let Z±n denote the support of the principal divisor Z(g±n ) on Gm ×Gm defined by g±n .

Remark 9.0.6. The functions g+
n /g

−
n differ by a sign from Voevodsky’s functions gn defined in

[Voe10, §4]. However, the same proof as that of [Voe10, Lemma 4.1] goes through to show that
for any closed subset T of Gm × X × Gm × Y finite and surjective over Gm × X, there is an
integer N such that for all n ≥ N , the divisor of g+

n /g
−
n intersects T properly over X, and the

associated cycle is finite over X. The only reason for our choice of functions is to make the finite
A-correspondence in Lemma 9.0.9 homotopic to 〈1〉, and not 〈−1〉. Of course, in the situation of
[Voe10] this choice does not matter, as Voevodsky’s correspondences are oriented.

Definition 9.0.7. Let Y ∈ Smk, and recall from Definition 9.0.2 the definition of the presheaf
cA(Y ) ∧G∧1

m . Given any integer n ≥ 1, we will construct maps of presheaves

cA(Y ) cA(Y ) ∧G∧1
m

θ

ρn

as follows.
Let X ∈ Smk, and let T be any admissible subset of X × Y . Then the homomorphism

θ : AdimY
T (X × Y, ωY )→ AdimY+1

T×∆(Gm)(X ×Gm × Y ×Gm, ωY×Gm)

is defined by

θ := (−)× idGm = (−)×∆∗(1),
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where ∆: Gm → Gm × Gm is the diagonal. Since for any admissible T in X × Y the subset
T × ∆(Gm) is admissible in X × Gm × Y × Gm, the map θ is well defined. It follows that θ
induces a map of presheaves θ : cA(Y )→ cA(Y ) ∧G∧1

m . On the other hand, the map

ρn : AdimY+1
T (X ×Gm × Y ×Gm, ωY×Gm)→ AdimY

T∩(Z+
n ∪Z−n )

(X × Y, ωY )

is defined in the following way. By applying Construction 3.5.2 to the diagram

t1
Gm ×

t2
Gm A1

t2
Gm

t1
Gm

g±n

pr2 pr1

we obtain finite A-correspondences divA(g±n ) ∈ CorAk (Gm,Gm). We then define ρn by the formula

ρn := p∗

(
(−) ^ q∗

(
divA(g+

n )− divA(g−n )
))
,

where p and q are the projections

p : X ×Gm × Y ×Gm → X × Y, q : X ×Gm × Y ×Gm → Gm ×Gm.

Thus ρn is defined whenever the subset T ∩ (Z+
n ∪ Z−n ) is admissible in X × Y . Now, note

that for any f : X ′ → X and Φ ∈ AdimY+1
T (X ×Gm × Y ×Gm, ωY×Gm), the element ρn(f∗(Φ))

is defined whenever ρn(Φ) is defined, and ρn(f∗(Φ)) = f∗(ρn(Φ)). Secondly, for any Φ,Ψ ∈
AdimY+1
T (X × Gm × Y × Gm, ωY×Gm) the element ρn(Φ + Ψ) is defined whenever ρn(Φ) and

ρn(Ψ) are defined and ρn(Φ + Ψ) = ρn(Φ) + ρn(Ψ). In this regard we refer to ρn a partially
defined map of presheaves.

9.0.8. The maps ρn form an exhausting sequence of partially defined homomorphisms in the
sense that for any finite subset F ⊆ CorAk (X∧Gm, Y ∧Gm), there is an integer N(F ) such that for
all n ≥ N(F ), ρn(α) is defined for all α ∈ F . Indeed, this condition is satisfied by Remark 9.0.6.

Lemma 9.0.9. Let q′ : Gm ×Gm → Spec k denote the projection, and let ∆: Gm → Gm ×Gm
be the diagonal. Then there is an A1-homotopy

q′∗

(
∆∗

(
divA(∆∗(g+

n ))− divA(∆∗(g−n ))
))
∼A1 〈1〉 ∈ A0(Spec k,OSpec k).

Proof. We deduce the claim from the following computation:

q′∗

(
∆∗

(
divA(∆∗(g+

n ))− divA(∆∗(g−n ))
))

(9.0.10)

= divA(∆∗(g+
n ))prGmpt − divA(∆∗(g−n ))prGmpt (9.0.11)

= divA(∆∗(g+
n ))prA

1

pt − divA(∆∗(g−n ))
prA

1

pt

Z(g−n |Gm )
(9.0.12)

= divA(tn + 1)prA
1

pt − divA(tn + t)
prA

1

pt

Z(tn−1+1) (9.0.13)

∼A1 divA(tn + t)
prA

1

pt

Z(tn+t) − divA(tn + t)
prA

1

pt

Z(tn−1+1) (9.0.14)

= divA(tn + t)
prA

1

pt

Z(t) = 〈1〉. (9.0.15)

Here the homotopy (9.0.14) is given by tn + λt+ (1− λ) ∈ k[A1 × A1]. �
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9.0.16. We are now ready to prove the cancellation theorem for A-correspondences.

Theorem 9.0.17. For any X,Y ∈ Smk, the map θ = (−) ∧G∧1
m induces a quasi-isomorphism

of complexes of presheaves with A-transfers

C∗(θ) : CorAk (∆• ×X,Y ) ' CorAk ((∆• ×X) ∧G∧1
m , Y ∧G∧1

m ).

Here ∆• denotes the standard cosimplicial scheme over k, whose n-simplices ∆n are given by
Spec k[x0, . . . , xn]/(

∑
i xi − 1).

Proof. The proof follows the same approach as Voevodsky’s cancellation theorem for the category
Cork [Voe10]. Thus many aspects of the proof will be the same as those of Voevodsky’s proof,
and we will therefore focus on the details that are specific to our context.

To prove that C∗(θ) is a quasi-isomorphism it is enough to show that the maps ρn and θ are
inverse to each other up to natural A1-homotopy. To this end, first note that the functions g+

n

and g−n enjoy the following properties:

(1) g+
n

∣∣
∆

= tn + a1t
n−1 + · · ·+ an−1t+ 1, and g−n

∣∣
∆

= tn + b1t
n−1 + · · ·+ bn−2t

2 + t (in fact,

g+
n

∣∣
∆

= tn + 1 and g−n
∣∣
∆

= tn + t);

(2) g+
n

∣∣
Gm×1

= g−n
∣∣
Gm×1

6= 0.

Let p and q be the projections

p : X ×Gm × Y ×Gm → X × Y, q : X ×Gm × Y ×Gm → Gm ×Gm.
Moreover, denote by p′ : X × Y → Spec k and q′ : Gm ×Gm → Spec k the structure maps. Thus
we have a pullback square

X ×Gm × Y ×Gm Gm ×Gm

X × Y Spec k.

q

p q′

p′

Property (1) along with Lemma 9.0.9 then implies that the composition ρn ◦ θ is A1-homotopic
to the identity, by the following computation:

p∗

(
(α×∆∗(1)) ^ q∗

(
divA(g+

n )− divA(g−n )
))

(9.0.18)

= p∗

(
p∗(α) ^ q∗

(
∆∗(1) ^

(
divA(g+

n )− divA(g−n )
)))

(9.0.19)

= α ^ p∗

(
q∗
(

∆∗(1) ^
(

divA(g+
n )− divA(g−n )

)))
(9.0.20)

= α ^ (p′)∗
(
q′∗

(
∆∗(1) ^

(
divA(g+

n )− divA(g−n )
)))

(9.0.21)

= α ^ (p′)∗
(
q′∗

(
∆∗

(
divA(∆∗(g+

n ))− divA(∆∗(g−n ))
)))

(9.0.22)

∼A1 α ^ (p′)∗(〈1〉) (9.0.23)

= α. (9.0.24)

Here the equality (9.0.20) follows from the projection formula, (9.0.21) follows from base change
applied to the diagram above, and the homotopy (9.0.23) is given by Lemma 9.0.9.

Similarly, property (2) implies that for any α ∈ CorAk (X,Y ), the classes ρn((α× idGm) ◦ iX),
ρn(iY ◦ (α× idGm) ◦ iX) and ρn(iY ◦ (α× idGm)) are equal to 0 up to natural homotopy, where
iX : X → X × Gm and iY : Y → Y × Gm denote the morphisms given by the rational point
1: Spec k → Gm. Thus we see that ρn ◦ θ ∼A1 idcA(Y ).

Finally, Lemma 9.0.3 implies that ρn is also right inverse up to A1-homotopy by the same
argument as [Voe10, Theorem 4.6] (see also [AGP18, Lemma 7.5]). �
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10. The category of A-motives

In this section we assume that the base field k is infinite, perfect and of characteristic different
from 2.

10.1. Nisnevich localization.

Theorem 10.1.1. The category of Nisnevich sheaves with A-transfers is abelian. The Nisnevich
sheafification FNis of any presheaf with A-transfers F is equipped with A-transfers in a unique
and natural way, and there is a natural isomorphism

ExtiShvNis(CorAk ;Z)(ZA(X),FNis) ∼= Hi
Nis(X,FNis).

Proof. By [Dru18b, Theorem 3.1] it is enough to show that CorAk (U,X) ∼=
⊕

x∈X CorAk (U,Xh
x ),

where x ∈ X ranges over the set of all (not necessary closed) points. Let dX denote the dimension
of X. Then we have

CorAk (U,X) = lim−→
T∈A0(U×X/U)

AdXT (U ×X,ωX)

∼= lim−→
T∈A0(U×X/U)

⊕
x∈X

AdX
Thx

(U ×Xh
x , ωXhx )

=
⊕
x∈X

lim−→
T∈A0(U×Xhx/U)

AdXT (U ×Xh
x , ωXhx ) ∼=

⊕
x∈X

CorAk (U,Xh
x ),

where the isomorphism in the second row is given by Lemma 3.4.2, and the isomorphism in the
last row follows from Lemma 3.4.3. �

Remark 10.1.2. The category of finite A-correspondences CorAk is a strict V-category of correspon-
dences in the sense of [Gar19, Definition 2.3], and a V-ringoid in the sense of [GP14, Definition
2.4]. So, alternatively, Theorem 10.1.1 can be proved by using the technique of [GP14]. Note also
that the proof of Theorem 10.1.1 could be obtained by following the original approach of Suslin
and Voevodsky [Voe00a], that is, showing that the cone of the morphism cA(U•) → cA(U) is
acyclic. Here cA(U•) is the Čech complex associated to a Nisnevich covering U → U of a smooth
k-scheme U .

10.2. Strict homotopy invariance.

Theorem 10.2.1. Let F ∈ PShΣ(CorAk ;Z) be a homotopy invariant presheaf with A-transfers.
Then the associated Nisnevich sheaf FNis is strictly homotopy invariant, i.e., the projection
p : X × A1 → X induces an isomorphism

p∗ : Hn
Nis(X,FNis)

∼=−→ Hn
Nis(X × A1,FNis)

for all X ∈ Smk and all n ≥ 0.

Proof. The theorem is a consequence of the injectivity and excision theorems proved in Sections
5, 6, 7 and 8. The deduction of strict homotopy invariance from these results is formal; see for
example [GP18b] or [Dru18c]. �

10.3. Effective A-motives.

Definition 10.3.1. The ∞-category DMeff
A (k) of effective A-motives is the localization of the

derived category D−(ShvNis(CorAk ;Z)) with respect to the morphisms of the form X × A1 →
X. Let Meff

A : Smk → DMeff
A (k) be the functor defined as the composition of the localization

D−(ShvNis(CorAk ;Z)) → DMeff
A (k) with the functor Smk → D−(ShvNis(CorAk ;Z)) given by
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X 7→ ZA(X)[0]. For any X ∈ Smk, we refer to Meff
A (X) as the effective A-motive of X. If

X = Spec k, we abbreviate Meff
A (Spec k) to ZA. Finally, we define the Tate object ZA(1) as

ZA(1) := cofib(ZA → Meff
A (Gm))[−1],

where ZA → Meff
A (Gm) is the map induced by the rational point 1: Spec k → Gm.

10.3.2. Note that there is a symmetric monoidal structure on DMeff
A (k) inherited from that on

ShvNis(CorAk ;Z), satisfying Meff
A (X) ⊗Meff

A (Y ) ' Meff
A (X × Y ). The motive of a point, ZA, is

then the unit for this monoidal structure. For any n ≥ 1, we can use the monoidal structure to
define ZA(n) := ZA(1)⊗n.

Theorem 10.3.3 (cf. [MVW06, Theorem 14.11]). The ∞-category DMeff
A (k) of effective A-

motives is equivalent to the full subcategory of D−(ShvNis(CorAk ;Z)) spanned by motivic complexes,
i.e., complexes whose cohomology sheaves are strictly homotopy invariant.

Theorem 10.3.4 (cf. [MVW06, Proposition 14.16]). Let X ∈ Smk, and let F • be a motivic
complex. Then there is a natural isomorphism

[Meff
A (X),F •[i]]D−(ShvNis(CorAk ;Z))

∼= HiNis(X,F
•)

for each i ≥ 0.

10.4. The category of A-motives. As in the classical case, we obtain the category DMA(k)
of A-motives via a stabilization process with respect to tensoring with the Tate object.

Definition 10.4.1. The ∞-category DMA(k) of A-motives is obtained from DMeff
A (k) by ⊗-

inverting ZA(1). There is then a canonical functor Σ∞ : DMeff
A (k) → DMA(k), and we define

the functor MA : Smk → DMA(k) as the composition of Meff
A and Σ∞.

10.4.2. It follows similarly as in [DF17a] that DMA(k) is a presentably symmetric monoidal

stable ∞-category equipped with an adjunction Σ∞ : DMeff
A (k) � DMA(k) : Ω∞.

10.4.3. The following result is a consequence of the cancellation theorem for A-correspondences:

Theorem 10.4.4. The canonical functor Σ∞ : DMeff
A (k)→ DMA(k) is fully faithful, and for any

X ∈ Smk and any motivic complex F • ∈ D−(ShvNis(CorAk ;Z)), there is a natural isomorphism

[MA(X),Σ∞F •]DMA(k)
∼= HiNis(X,F

•).

Definition 10.4.5. Let X ∈ Smk. For any pair of integers p, q ∈ Z, we define the A-motivic
cohomology of X in bidegree (p, q) as Hp,q

A (X,Z) := [MA(X),ZA(q)[p]]DMA(k).

10.4.6. The adjunction γ∗A : PShΣ(Smk) � PShΣ(CorAk ;Z) : γA∗ descends to an adjunction

γ∗A : SH(k) � DMA(k) : γA∗ (10.4.7)

of stable ∞-categories, which allows us to compare DMA(k) with the motivic stable homotopy
category SH(k).

Definition 10.4.8. Denote by 1 ∈ SH(k) the motivic sphere spectrum. In the adjunction
(10.4.7) above, let HZA ∈ SH(k) denote the Eilenberg–Mac Lane spectrum HZA := γA∗ γ

∗
A(1).

Lemma 10.4.9. The spectrum HZA is an E∞-ring spectrum in SH(k).

Proof. As the right adjoint γA∗ is lax symmetric monoidal, it follows that it preserves E∞-algebras.
Now the left adjoint γ∗A is symmetric monoidal, so γ∗A(1) is the unit in DMA(k) and hence an
E∞-algebra. We conclude that HZA = γA∗ γ

∗
A(1) is an E∞-ring spectrum. �
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10.4.10. The cancellation theorem for A-correspondences implies that HZA is an ΩT-spectrum
in SH(k) which represents A-motivic cohomology. More precisely, for any X ∈ Smk and any pair
of integers p, q, there is a natural isomorphism [Σ∞T X+,Σ

p,qHZA]SH(k)
∼= Hp,q

A (X,Z).

10.4.11. The combination of Lemma 3.0.5 and [EK19, Theorem 5.2] shows moreover that in the
above adjunction (10.4.7), the right adjoint is monadic:

Theorem 10.4.12. Let e denote the exponential characteristic of k. Then there is an equivalence
of presentably symmetric monoidal stable ∞-categories

ModHZA[1/e](SH(k)) ' DMA(k,Z[1/e]),

where ModHZA[1/e](SH(k)) denotes motivic spectra equipped with an action from HZA[1/e].

Remark 10.4.13. Recall that the category SHeff(k) of effective spectra is the stable subcategory
of SH(k) generated under colimits by P1-suspension spectra of smooth k-schemes. We note that
Bachmann and Fasel’s effectivity criterion [BF18, Theorem 4.4] applies in our setting, showing
that the spectrum HZA ∈ SH(k) is effective. G. Garkusha and I. Panin communicated to us
orally that they proved this result independently using the category ZF∗(k) of linear framed
correspondences.

Appendix A. Geometric ingredients

In this section we summarize the geometric facts and constructions used in the text. In
particular, we formulate a version of Serre’s theorem on the existence of sections satisfying
relevant properties, which is used in the proofs in Sections 6, 7 and 8. We then provide the
construction of the relative curves used in Sections 7 and 8. Finally, we formulate a few lemmas
that imply the finiteness conditions on the vanishing loci of the functions constructed in Sections
6, 7 and 8.

All schemes considered in this appendix are assumed to be noetherian and separated.

Proposition A.0.1. For any étale morphism e : U → Y there is a decomposition U
u−→ X

p−→ Y
with p ◦ u = e, in which u is a dense open immersion and p is finite.

Proof. This follows Zariski’s Main Theorem [Har77, III Corollary 11.4]. �

A.0.2. Serre’s theorem. The following lemma is a consequence of [Har77, III Theorem 5.2], and is
used in Sections 6, 7 and 8. In the text we refer to this result simply as Serre’s theorem.

Lemma A.0.3 (Serre). Let O(1) be an ample invertible sheaf on a scheme X, and L be an
invertible sheaf on X. Then there is, for any closed subscheme Z ⊆ X, an integer N ∈ Z such
that the restriction homomorphism Γ(X,L (l)) → Γ(Z,L (l)) is surjective for all l ≥ N . Here
L (l) := L ⊗O(l).

Example A.0.4 (Chinese remainder theorem). Let U be an affine scheme. Suppose that Z ⊆ A1
U

is a closed subscheme, and that v ∈ OZ is a regular function on Z. Then, for all large enough n
there is a monic polynomial f ∈ OU [t] = OA1

U
of degree n such that f

∣∣
Z

= v.

A.0.5. Construction of relative curves. We now formulate the construction of relative curves used
in the proofs of the étale excision theorems. For the proof we refer to [Dru18c, Lemma 3.7].
Before stating the result, let us first recall the notion of an étale neighborhood:

Definition A.0.6. Let X be a scheme and suppose that Z ⊆ X is a closed subscheme. If
π : X ′ → X is an étale morphism and Z ′ ⊆ X ′ is a closed subscheme such that π induces an

isomorphism Z ′
∼=−→ Z, then we say that π : (X ′, Z ′)→ (X,Z) is an étale neighborhood of Z in X.
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Lemma A.0.7 ([Dru18c, Lemma 3.7]). Let k be a field and let X be a smooth k-scheme. Suppose
we are given a closed subscheme Z ⊆ X along with an étale neighborhood π : (X ′, Z ′)→ (X,Z) of
Z in X. Let moreover z ∈ Z and z′ ∈ Z ′ be closed points such that π(z′) = z, and write U := Xz

and U ′ := X ′z′ for the corresponding local schemes. Then there is a commutative diagram

U ′

��

C′′
p′′
oo

$′

��

C′′
j′′
oo v′′ //

$′

��

X ′

U C′
p′

oo

$
��

C′
j′
oo v′ //

$

��

X ′

π

��

U C
p

oo C
j

oo v // X

(A.0.8)

in Smk, such that the following properties hold:

(1) p, p′, p′′ are relative projective curves; j, j′, j′′ are open immersions; $, $′ are étale;
$, $′ are finite; and p ◦ j, p′ ◦ j′, p′′ ◦ j′′ are smooth. Moreover, C′′ = C′ ×U U ′;

C′′ = C′×U U ′; and there are trivializations of the relative canonical classes µ : OC ∼= ωC/U
and µ′ : OC′ ∼= ωC′/U .

(2) The schemes Z := v−1(Z), Z ′ := v′−1(Z ′) and Z ′′ := v′′
−1

(Z ′) are finite over U and U ′,
respectively.

(3) There are closed subschemes ∆Z ⊆ Z, ∆′Z ⊆ Z ′ and ∆′′Z ⊆ Z ′′ such that p, p′ and p′′

induce isomorphisms w : ∆Z
∼= Z ′ ×X U , w′ : ∆′Z

∼= Z ×X U and w′′ : ∆′′Z
∼= Z ′ ×X′ U ′.

Moreover, v
∣∣
Z ◦ w

−1 = prZ×XUZ , v′
∣∣
Z′ ◦ w

′−1
= π

∣∣
Z′
◦ prZ

′×XU
Z′ , and v′′

∣∣
Z′′ ◦ w

′′−1
=

pr
Z′×X′U

′

Z′ .
(4) There are closed subschemes ∆ ⊆ C and ∆′ ⊆ C′′ such that ∆×UZ = ∆Z , ∆′×U ′Z ′ = ∆′′Z

and such that p and p′′ induce isomorphisms p
∣∣
∆

: ∆ ∼= U and p′′
∣∣
∆′

: ∆′ ∼= U ′. Moreover,

the compositions v ◦ p
∣∣−1

∆
and v ◦ p′′

∣∣−1

∆′
are equal to the canonical morphisms U → X and

U ′ → X ′, respectively.

(5) The schemes D := C \ C, D′ := C′ \ C′ and D′′ := C′′ \ C′′ are finite over U and U ′

respectively. Furthermore, D′′ ∼= $′
−1

(D′), and D′ ⊇ $−1(D).
(6) There is an ample line bundle O(1) on C and a section d ∈ Γ(C,O(1)) such that Z(d) = D.

A.0.9. Finiteness of vanishing loci. The following lemmas are used to prove that the zero loci of
the functions constructed in Sections 6, 7 and 8 are finite over the relevant schemes.

Lemma A.0.10 ([Dru18c, Lemma 4.1]). Let U be a local scheme, and let x ∈ U denote the
closed point. Suppose that the residue field k := k(x) is infinite. Let

D′
� � i //

  

C′ π //

p′

��

C

p
��

U

be a commutative diagram such that

• p′ and p are projective morphisms of relative dimension one;
• i is a closed immersion, and
• π and p′ ◦ i are finite.

Suppose furthermore that we are given the following data:

• an ample line bundle O(1) on C′;
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• a section d ∈ Γ(C′,O(1)) such that Z(d) ⊆ D′;
• an invertible section s∞ ∈ Γ(D′,O(1));
• a closed subscheme Z ⊆ C satisfying Z ′ ∩D′ = ∅, where Z ′ := π−1(Z) ⊆ C′;
• a section sZ′ ∈ Γ(Z ′,O(1)) such that π induces an isomorphism Z(sZ′) ∼= π(Z(sZ′)).

Then there is an integer L ∈ Z such that for all l ≥ L, there is a section s ∈ Γ(C′,O(l)) satisfying

(1) s
∣∣
D′

= sl∞, s
∣∣
Z′ = sZ′d

l−1;

(2) π induces an isomorphism Z(s) ∼= π(Z(s)).

Lemma A.0.11. Let U be a scheme and suppose that C → U is a projective morphism of pure
dimension one. Let L be an ample line bundle on C. Then, for any pair of sections d, e ∈ Γ(C,L )
such that Z(d) ∩ Z(e) = ∅, the vanishing loci Z(e) and Z(d) are finite over U .

Proof. We prove that Z(e) is finite over U ; the case of Z(d) follows by symmetry. Since C is
projective over U , the same holds also for the closed subscheme Z(e). As C is of pure dimension
one, it follows that Z(e) is finite over U unless Z(e) contains at least one irreducible component
C of the fiber C ×U x for some point x ∈ U . But since L is ample, L

∣∣
C

is nontrivial and hence

Z(d
∣∣
C

) 6= ∅. So Z(e) cannot contain an irreducible component of the fiber C ×U x. �
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