
ON MODULES OVER MOTIVIC RING SPECTRA

ELDEN ELMANTO AND HÅKON KOLDERUP

ABSTRACT. We provide an axiomatic framework that characterizes the stable ∞-categories that are module
categories over a motivic spectrum. This is done by invoking Lurie’s ∞-categorical version of the Barr–Beck theorem.
As an application, this gives an alternative approach to Röndigs and Østvær’s theorem relating Voevodsky’s
motives with modules over motivic cohomology and to Garkusha’s extension of Röndigs and Østvær’s result to
general correspondence categories, including the category of Milnor–Witt correspondences in the sense of Calmès
and Fasel. We also extend these comparison results to regular Noetherian schemes over a field (after inverting the
residue characteristic), following the methods of Cisinski and Déglise.

1. INTRODUCTION

In [37] and [38], Röndigs and Østvær employed the technology of motivic functors developed in [18] to
prove an important structural result regarding motivic cohomology, namely that there is an equivalence of
model categories between motives and modules over motivic cohomology (at least over fields of characteristic
zero). In particular, this implies that Voevodsky’s triangulated categories of motives, introduced in [40], is
equivalent to the homotopy category of modules over the motivic Eilenberg–Mac Lane spectrum. This result
has been extended to bases which are regular schemes over a field in the work of Cisinski–Déglise on integral
mixed motives in the equicharacteristic case [9]. More recently, Röndigs–Østvær’s result was extended to
general categories of correspondences over a field by Garkusha in [16]. These theorems provide pleasant
reinterpretations of Voevodsky’s category of motives as modules over a highly structured ring spectrum. The
analog in topology is the result that chain complexes over a ring R is equivalent (in an appropriate model
categorical sense) to modules over the Eilenberg–Mac Lane spectrum HR. This result was first obtained by
Schwede and Shipley in [39] as part of the characterization of stable model categories in loc. cit.1

In the present paper, we aim to provide a general axiomatic approach to the above results. More precisely,
by making use of Lurie’s ∞-categorical version of the Barr–Beck theorem we derive a characterization of
those stable ∞-categories that are equivalent to a module category over a motivic spectrum. These categories
are instances of motivic module categories as defined in Definition 3.1. Examples include DM(k) in the sense of
Voevodsky [33] and D̃M(k) in the sense of Déglise–Fasel [17]. Our characterization then reads as follows:

Theorem 1.1 (See Theorem 5.2). Let k be a field of exponential characteristic e, and suppose that M (k) is a motivic
module category on k. Then there is an equivalence of presentably symmetric monoidal stable ∞-categories

M (k)
[

1
e

]
' Mod

RM

[ 1
e

](SH(k)),

where RM is a motivic E∞-ring spectrum in SH(k) corresponding to the monoidal unit in M (k). In particular, the
associated triangulated categories are equivalent.

In fact, we formulate a parametrized version of motivic module categories and, under further hypotheses,
we show that Theorem 1.1 extends to regular schemes over fields (see Theorem 5.5). The proof of the latter
follows the approach of Cisinski–Déglise [9], while the proof of Theorem 1.1 breaks down into three steps:

(1) Invoke the Barr–Beck–Lurie theorem to prove that a motivic module category M (k) on k is equivalent
to the category of modules over some monad on SH(k).

(2) Produce a functor from modules over the monad to modules over a corresponding motivic spectrum
(Lemma 3.6).

(3) Determine when this functor is an equivalence.
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1We remark that an ∞-categorical treatement of the Schwede–Shipley results can be found in [30, Theorem 7.1.2.1].
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2 ELDEN ELMANTO AND HÅKON KOLDERUP

After proving Theorem 1.1 we proceed to give a way to engineer several examples of motivic module
categories via the notion of correspondence categories, on which one can apply the usual constructions of
motivic homotopy theory.

1.1. Overview. Here is an outline of this paper:

• In Section 2 we collect some background material on the Barr–Beck–Lurie theorem, on compact rigid
generation in motivic homotopy theory, and on premotivic categories.
• In Section 3 we provide an axiomatic framework characterizing the stable ∞-categories that are

module categories over motivic spectra.
• In Section 4 we move on to discuss examples of categories satisfying the axioms of Section 3. The

most prominent example are those arising from some sort of correspondences.
• Finally, in Section 5 we prove that the axioms of Section 3 are satisfied for the correspondence

categories constructed in Section 4 in various situations.

1.2. Conventions and notation. We will rely on the language of ∞-categories following Lurie’s books [29]
and [30]. By a base scheme we mean a Noetherian scheme S of finite dimension. We denote by Sch the category
of Noetherian schemes, and by SmS the category of smooth schemes of finite type over S. The symbol T will
denote the Thom space of the trivial vector bundle of rank 1 over the base S. Thus we have the standard
motivic equivalences T ' A1/A1 \ 0 ' P1. We set Sp,q := (S1)⊗(p−q) ⊗ G⊗q

m and Σp,q M := Sp,q ⊗ M,
suitably interpreted in the category of motivic spaces or spectra. We reserve the symbol 1 for the motivic
sphere spectrum in SH(k) and write Σp,q1 for the (p, q)-suspension of 1. If τ is a topology on SmS, we write
Hτ(S) (resp. SHτ(S)) for the unstable (resp. the T-stable) motivic homotopy ∞-category. If τ = Nis we may
drop the decoration.

1.3. Acknowledgements. We would like to thank Paul Arne Østvær for suggesting to us the problem, and
Shane Kelly for useful comments and suggestions. We would especially like to thank Tom Bachmann for
very useful comments that changed the scope of this paper. Elmanto would like to thank John Francis for
teaching him about “Barr–Beck thinking”, Marc Hoyois for suggesting to him the alternative strategy to
deriving [38] a long time ago, and Maria Yakerson for teaching him about MW-motives. Kolderup would
like to thank Jean Fasel and Paul Arne Østvær for their patience and for always being available for questions.

2. PRELIMINARIES

2.1. The Barr–Beck–Lurie Theorem. Let us start out by recalling the Barr–Beck–Lurie theorem characteriz-
ing modules over a monad, in the setting of ∞-categories. We use the terminology of [26, §3.7].

Let F : C � D : G be an adjunction. Then the endofunctor GF : C → C is a monad, and the functor
G : D→ C factors as

D
Genh

−−→ LModGF(C)
u−→ C,

where u is the forgetful functor. Moreover, the functor Genh : D→ LModGF(C) admits a left adjoint

Fenh : LModGF(C)→ D.

2.1.1. The net result is that the adjunction F : C � D : G factors as

C

F

((

FreeGF ((

D
Goo

Genh

yy

LModGF(C).

u

ee

Fenh

HH

Here the functor FreeGF : C → LModGF(C) is simply the left adjoint to the functor u appearing in the
factorization of G above, and thus deserves to be called the “free GF-module” functor.
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2.1.2. The Barr–Beck–Lurie theorem provides necessary and sufficient conditions for the functor Genh : D→
LModGF(C) to be an equivalence. Before stating the theorem, recall first that a simplicial object X• : ∆op → D

is split if it extends to a split augmented object; in other words it extends to a functor U : ∆op
−∞ → D. Here

∆−∞ is the category whose objects are integers ≥ −1, and where Hom∆−∞(n, m) consists of nondecreasing
maps n ∪ {−∞} → m ∪ {−∞}. Every split augmented simplicial diagram is a colimit diagram so that the
map colim X• → X−1 is an equivalence. If G : D→ C is a functor, we say that a simplicial object X• in D is
G-split if G ◦ X• is split.

Theorem 2.1 (Barr–Beck–Lurie [30, Theorem 4.7.3.5]). Let G : D→ C be a functor of ∞-categories admitting a
left adjoint F : C→ D. Then the following are equivalent:

(1) The functor Genh and Fenh are mutually inverse equivalences.
(2) The functor Genh is conservative, and for any simplicial object X• : ∆op → D which is G-split, X• admits a

colimit in D. Furthermore, any extension X• : (∆op)B → D is a colimit diagram if and only if G ◦ X• is.

Any adjunction (F, G) satisfying the equivalent conditions above is called monadic.

2.2. Compact and rigid objects in motivic homotopy theory. We now recall some facts about compact-rigid
generation in motivic stable ∞-categories.

2.2.1. For now we work over an arbitrary base S. Denote by:
(1) SHω(S) the full subcategory of SH(S) spanned by the compact objects, and
(2) SHrig(S) the full subcategory of SH(S) spanned by the strongly dualizable objects.

The ∞-category SH(S) is generated under sifted colimits by Σq
TΣ∞

T X+, where X is an affine smooth scheme
over S and q ∈ Z [27, Proposition 4.2.4]. Furthermore, each generator is a compact object in SH(S) since
Nisnevich sheafification preserves filtered colimits (see, for example, [22, Proposition 6.4] where we set the
group of equivariance to be trivial). Hence the ∞-category SHω(S) is generated under finite colimits and
retracts by Σq

TΣ∞
T X+, where q ∈ Z and X is affine. In particular the unit in SH(S) is compact and we have an

inclusion
SHrig(S) ⊆ SHω(S). (2.1)

Over fields this inclusion is an equality—at least after an appropriate localization:

Lemma 2.2. Let k be a field and suppose that ` is a prime which is coprime to the exponential characteristic e of k. Let
L(`) : SH(k)→ SH(k) be the localization endofunctor at `. Then (2.1) induces equalities

SHrig(k)(`) = SHω(k)(`)

and
SHrig(k)

[
1
e

]
= SHω(k)

[
1
e

]
.

Proof. Since SHω(k) is generated as a stable subcategory which is closed under retracts by Σ∞
T X+, where X is

a smooth affine scheme, SHω(k)(`) is generated by the image of the same objects under L(`). Now, Σ∞
T X+ is

dualizable whenever X is smooth and proper by [35], hence it suffices to prove that L(`)(Σ∞
T X+) is a retract

of some L(Σ∞
T Y+), where Y is a smooth projective S-scheme. If k is perfect then this is [28, Corollary B.2]. We

note that this result is extended to the case of arbitrary fields in [14, Theorem 3.2.1]. The result for e-inverted
motivic spectra follows. �

Example 2.3. If S is a positive dimensional base scheme, we should not expect (2.1) to be an equality in
general even after localization; see [8, Corollary 3.2.7].

2.2.2. We adopt the following terminology:

Definition 2.4. Let k be a field and suppose that L : SH(k) → SH(k) is a localization endofunctor. We say
that L(SH(k)), or simply L, has compact-rigid generation if (2.1) is an equality after applying L.

Hence Lemma 2.2 tells us that SH(k)(`) and SH(k)
[

1
e

]
have compact-rigid generation.
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2.3. Premotivic categories and adjunctions. Lastly, we recall Cisinski and Déglise’s notion of a premotivic
category [7]. Suppose that S is a full subcategory of the category Sch of Noetherian schemes, and let P
denote a class of admissible morphisms [7, §1]. In fact, the only example we care about is when P is the
class of smooth morphisms. As in [7, §1] (see also [10, Appendix A] for a more succint discussion), a functor

M : S op → Cat∞

is called a P-premotivic category over S if for each morphism f : T → S in S , the induced functor
f ∗ : M (S) → M (T) admits a right adjoint f∗, and if f is admissible, it admits a left adjoint f#. The
left adjoints are furthermore required to satisfy the P-base change formula, i.e., the exchange morphism
Ex∗# : q#g∗ → f ∗p# is an equivalence whenever

Y
q
//

g
��

X

f
��

S
p
// T

is a Cartesian diagram in S such that p is a P-morphism. See [7, §1.1.9] for details.
We refer the reader to the thesis of Khan [27] for a detailed discussion of premotivic categories in the

∞-categorical setting. If the context is clear, we simply refer to M as a premotivic category. We may also
speak of premotivic categories taking values in other (large) ∞-categories such as Cat⊗∞, Cat∞,stab or PrL.

2.3.1. We also have the appropriate notion of an adjunction between premotivic categories (see [7, Definition
1.4.6], [10, Definition A.1.7]). Indeed, if M and M ′ are premotivic categories, then a premotivic adjunction is a
transformation γ∗ : M →M ′ such that

(1) for each S ∈ S , the functor γ∗S : M (S)→M ′(S) admits a right adjoint γS∗.
(2) For each morphism f : T → S ∈ S , the canonical transformation f#γ∗S → γ∗T f# is an equivalence.

Furthermore we say that a premotivic adjunction γ∗ is a localization of premotivic categories (or, simply, a
localization) if for each S ∈ S the functor γS∗ is fully faithful, i.e., a localization in the sense of [29, Definition
5.2.7.2]. We say that a localization of premotivic categories is smashing if γS∗ preserves colimits. Suppose
further that M takes values in Cat⊗∞. In particular, the functors f ∗ are strongly symmetric monoidal. Then
a localization L is symmetric monoidal if given any S ∈ S and any E ∈ M (S) that is L-local, then for any
F ∈M (S), E⊗ F is L-local as well. This last condition implies that the symmetric monoidal structure on
M (S) descends to one on the subcategory of L-local objects and that the localization functor is strongly
symmetric monoidal [30, Proposition 2.2.1.9].

2.3.2. We recall two conditions on M which will be relevant to us later. In order to formulate them, we will
now assume that M takes values in stable ∞-categories. Let S ∈ S be a scheme. Suppose that i : Z → S is a
closed subscheme, and let j : U → S be its open complement.

Definition 2.5. Let M : S op → Cat∞,stab be a premotivic category, and let Z i−→ S
j←− U be as above. We say

that M satisfies (Loci) if

M (Z) i∗−→M (S)
j∗−→M (U)

is a cofiber sequence of stable ∞-categories. We say that M satisfies (Loc) if (Loci) is satisfied for any closed
immersion i.

Now let c = (cα)α∈I be a collection of Cartesian sections of M (the only case we consider is {Σp,q1}p,q∈Z).
We denote by Mc(S) ⊆ M (S) the smallest thick subcategory of M (S) which contains f# f ∗cα,X for any
smooth morphism f : T → S. Following [9, Definition 2.3], we call objects in Mc(S) c-constructible. We say
that M is c-generated if for all X ∈ S the stable ∞-category M (S) is generated by Mc(S) under all small
colimits.

Definition 2.6. Let M : S op → Cat∞,stab be a premotivic category. Suppose that A ⊆ S ∆1
is a collection

of morphisms in S . We say that M is continuous with respect to A if the following holds. Suppose that
X : I → S is a cofiltered diagram in S whose transition maps belongs to A and whose limit X := limα∈I Xα

exists in S . Then the canonical map
Mc(X)→ lim

α∈I
Mc(Xα).
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is an equivalence.

3. MOTIVIC MODULE CATEGORIES

In this section we formulate the notion of motivic module categories and relate it to categories of modules
over a motivic E∞-ring spectrum.

3.0.1. Let S be a full subcategory of Sch. By [2, 7] we then have a premotivic category SH|S : S → PrL,⊗
stab

whose value at S ∈ S is the motivic stable homotopy category SH(S) over S.

Definition 3.1. Let S be as above, and suppose that L : SH|S → L(SH)|S is a localization which is
symmetric monoidal in the sense of §2.3.1. We then define the following:

(1) Let S ∈ S . An L-local motivic module category on S is a presentably symmetric monoidal stable
∞-category M (S) equipped with an adjunction

γ∗S : L(SH(S)) � M (S) : γS∗

such that the left adjoint γ∗S is symmetric monoidal, and the right adjoint γS∗ is conservative and
preserves sifted colimits.

(2) An L-local motivic module category over S (or, simply, a motivic module category if the context is clear) is
a premotivic category

M : S op → PrL,⊗
stab

valued in presentably symmetric monoidal stable ∞-categories, along with a premotivic adjunction

γ∗ : L(SH)|S →M ; S 7→ (γ∗S : L(SH(S))→M (S)),

which evaluates to an L-local motivic module category M (S) on S for each S ∈ S .
If L is the identity functor, then we simply say that M is a motivic module category. When the localization
L is clear, we may denote a motivic module category by a pair (SH|S , M ). Moreover, if the scheme S is
implicitly understood, we may drop the S from the notation (γ∗S, γS∗).

In §4 we will give a way to construct motivic module categories using very general inputs.

Lemma 3.2. Let S ∈ S , and let 1S ∈ SH(S) denote the motivic sphere spectrum over S. If M is an L-local motivic
module category, then the spectrum Lγ∗γ∗(1S) ∈ SH(S) is an E∞-ring spectrum.

Proof. As γ∗ is lax symmetric monoidal, it follows that γ∗ preserves E∞-algebras. Since γ∗ is symmetric
monoidal, γ∗(1S) is the unit object in M and is thus an E∞-algebra. As L is symmetric monoidal, we
conclude that γ∗γ∗(1S) is an E∞-ring spectrum. �

3.0.2. The Barr–Beck–Lurie theorem ensures that a motivic module category on S is always equivalent to
modules over a monad, as the following lemma records. We will subsequently investigate when we can
further enhance this equivalence to modules over the E∞-ring spectrum Lγ∗γ∗(1S).

Lemma 3.3. If M (S) is a motivic module category on S, then the induced adjunction

γ∗,enh : LModγ∗γ∗(L(SH(S))) � M (S) : γenh
∗

is an equivalence of ∞-categories.

Proof. By assumption, the conditions of Theorem 2.1 are satisfied. �

3.1. Motivic module categories versus categories of modules. The following definition will be essential in
relating a motivic module category to a category of modules over a motivic E∞-ring spectrum.

Definition 3.4. Let M be an L-local motivic module category over S and let S ∈ S . We say that the pair
(SH|S , M ) admits the projection formula at S if there is an equivalence

γ∗γ
∗(1S)⊗ (−) '−→ γ∗γ

∗

of endofunctors on L(SH(S)). If (SH|S , M ) admits the projection formula at any S ∈ S , we say that
(SH|S , M ) admits the projection formula.
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Theorem 3.5. Let M be an L-local motivic module category over S . Suppose that S ∈ S is a scheme such that
(SH|S , M ) admits the projection formula at S. Then there is an equivalence of presentably symmetric monoidal stable
∞-categories

M (S) ' ModLγ∗γ∗(1S)
(SH(S)).

Consequently, if (SH|S , M ) admits the projection formula, then we have an equivalence of premotivic categories

M ' ModLγ∗γ∗(1)(SH(−)).

3.1.1. In light of Lemma 3.3, we can prove Theorem 3.5 by means of relating modules over the monad γ∗γ∗

with modules over the motivic spectrum γ∗γ∗(1S). Thus, given S ∈ S our task is to formulate a relationship
between the two ∞-categories

LModγ∗γ∗(SH(S)) and LModγ∗γ∗(1S)⊗(−)(SH(S)).

To do so, it suffices produce a map of monads

c : γ∗γ
∗(1S)⊗ (−)→ γ∗γ

∗,

which will induce a functor

c∗ : LModγ∗γ∗(1S)⊗(−)(SH(S))→ LModγ∗γ∗(SH(S)).

For this, we appeal to a general lemma.

Lemma 3.6. Let C,D be symmetric monoidal ∞-categories and suppose that we have an adjunction F : C � D : G
such that F is symmetric monoidal (so that G is lax symmetric monoidal). Then there is a map of monads

c : GF(1)⊗ (−)→ GF, (3.1)

which gives rise to a commutative diagram of adjunctions

C

FreeGF
,,

GF(1)⊗(−) &&

LModGF(C)
uoo

c∗

vv

LModGF(1)⊗(−)(C).

u

ff

c∗

@@

Proof. Since F is monoidal and G is lax monoidal, the functor GF is lax monoidal. Hence GF(1) is an algebra
object of C, and thus GF(1)⊗ (−) is indeed a monad. We construct the map of monads c : GF(1)⊗ (−)→
GF(−) by letting c be the composite of the following maps of monads:

GF(1)⊗ (−) ' (GF(1)⊗ (−)) ◦ id
id ◦ε−−→ (GF(1)⊗ (−)) ◦ GF(−)
µ−→ G(F(1)⊗ F(−))
' GF.

Here ε is the unit of the adjunction (F, G). The transformation ε is a map of monads via the triangle identities,
and the map id ◦ε is a map of monads since we are ◦-tensoring two maps of monads. The map µ is given by
the lax monoidal structure of G; more precisely, we note that the endofunctor G(A⊗ F(−)) is a monad for
any algebra object A, and so G(F(1)⊗ F(−)) is in particular a monad. We have a canonical equivalence of
monads

(GF(1)⊗ (−)) ◦ GF(−) ' GF(1)⊗ GF(−).
The lax structure of G then provides a morphism of endofunctors

GF(1)⊗ GF(−)→ G(F(1)⊗ F(−)) ' GF(−),

and the lax structure also verifies that this is a map of monads. This gives rise to a functor c∗ : LModGF(C)→
LModGF(1)⊗(−)(C), which has a left adjoint by the adjoint functor theorem.
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To obtain the desired factorizations, we note that we have the following commutative diagram of forgetful
functors

C LModGF(C)
uoo

c∗

vv

LModGF(1)⊗(−)(C).

u

ff

Thus the left adjoints also commute. �

3.1.2. We can now apply Lemma 3.6 to prove Theorem 3.5.

Proof of Theorem 3.5. We claim that the adjunction of Lemma 3.6,

c∗ : LModγ∗γ∗(1S)
(SH(S)) � LModγ∗γ∗(SH(S)) : c∗,

is an equivalence. By the construction in the proof of Lemma 3.6, the above adjunction arises from a map of
monads given by c : γ∗γ∗(1S)⊗ (−)→ γ∗γ∗. Since (SH|S , M ) satisfies the projection formula, we conclude
that the adjunction (c∗, c∗) is an equivalence.

Now, note that Theorem 2.1 and Lemma 3.6 are phrased for E1-algebras and left modules. However,
as γ∗γ∗(1) is an E∞-ring spectrum by Lemma 3.2, the ∞-categories of left and right γ∗γ∗(1)-modules are
equivalent. We thus conclude that there is an natural equivalence

Modγ∗γ∗(1S)
(SH(S)) 'M (S)

of ∞-categories, which carries γ∗γ∗(1S) to the unit object γ∗(1S) of M (S). Finally, if M satisfies the
projection formula at any S ∈ S , then the naturality of the above equivalence furnishes the equivalence of
premotivic categories M ' Modγ∗γ∗(1)(SH(−)). �

Remark 3.7. In fact, the above reduction can be achieved using a more refined version of Lurie’s Barr–Beck
theorem [30, Proposition 4.8.5.8].

Remark 3.8. We were also informed by Niko Naumann that the above result is a consequence of [32,
Proposition 5.29].

In the following Sections 4 and 5 we will provide examples for which the hypotheses of Theorem 3.5 are
satisfied.

4. CORRESPONDENCE CATEGORIES

The prime examples of motivic module categories are built from various notions of correspondences.
In this section we will give an axiomatization of ∞-categories that behave like the category of framed
correspondences as in [12]; Suslin–Voevodsky’s category of finite correspondences [42], [33, Chapters 1
and 2]; Calmès and Fasel’s finite Milnor–Witt correpondences [6, 17]; Grothendieck–Witt correspondences
[15]; and, more recently, the categories of correspondences studied in [11] and [13]. These examples will
be discussed in §4.2. To begin with, consider the discrete category SchS+, whose objects are S-schemes
of the form X+ := X q S and morphisms which preserve the base point. We consider the subcategory
SmS+ ⊆ SchS+ spanned by smooth S-schemes of finite type. We will use heavily the nonabelian derived
∞-category PΣ(C) associated to an ∞-category C with finite products; more detailed treatments of this
construction can be found in [5, Chapter 1] and [29, §5.5.8].

Definition 4.1. A correspondence category (over a base scheme S) is a preadditive2 ∞-category C equipped
with a graph functor

γC : SmS+ → C (4.1)

satisfying the following conditions:

2Recall that a preadditive ∞-category is one that is pointed, has finite products and coproducts, and is such that the map X qY →
X×Y is an equivalence for all X, Y ∈ C.
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(1) The functor γC is essentially surjective and preserves finite coproducts,3 so that we get an induced
functor

γ∗ : PΣ(C)→ P(SmS); F 7→ F ◦ γC.
(2) The composite functor

SmS+ → C→ PΣ(C)
γ∗→ PΣ(SmS+) (4.2)

has a right lax SmS+-linear structure. We abusively denote the composite (4.2) by γC(−); the context
will always make it clear what is meant.

The ∞-category CorrCat of correspondence categories is defined as a full subcategory of the (large) ∞-
category PreAdd∞,SmS+/ of small preadditive ∞-categories and functors that preserve finite coproducts
equipped with a finite coproduct-preserving functor from SmS+.4

4.0.1. We begin with a couple of clarifying remarks and an example.

Remark 4.2. Informally, the SmS+-linear structure on γC(−) encodes, for any X, Y ∈ SmS, maps

X+ ⊗ γC(Y+)→ γC(X+ ⊗Y+)

in PΣ(SmS+) ' PΣ(SmS)∗ which are subject to various compatibilites. For example, if f : X+ → Z+ is a map
in SmS+ then we have a 2-cell witnessing the commutativity of

X+ ⊗ γC(Y+)

f⊗id
��

// γC(X+ ⊗Y+)

γC( f⊗id)
��

Z+ ⊗ γC(Y+) // γC(Z+ ⊗Y+).

Similarly, if g : Y+ → Z+ is a map in SmS+ then we have a 2-cell witnessing the commutativity of

X+ ⊗ γC(Y+)

id⊗g
��

// γC(X+ ⊗Y+)

γC(id⊗g)
��

X+ ⊗ γC(Z+) // γC(X+ ⊗ Z+).

These cells are required to satisfy an infinite list of coherences.

Remark 4.3. The SmS+-linearity assumption will be satisfied if C has a symmetric monoidal structure
and the functor γC is symmetric monoidal. In more detail, we denote by CorrCat⊗ the ∞-category of
preadditive ∞-categories with a symmetric monoidal structure such that the graph functor γC : SmS+ → C
is symmetric monoidal, essentially surjective and preserves finite coproducts. There is a forgetful functor
CorrCat⊗ → CorrCat; the second part of Definition 4.1 is obtained from the strong symmetric monoidality
of γC. This is the case in the examples considered in this paper, but we include it as an axiom to clarify
proofs of certain properties.

Example 4.4. Let CorrS denote the discrete category whose objects are smooth S-schemes and morphisms
are spans X ← Y → Z. This is a preadditive category by [5, Lemma C.3]. The graph functor witnesses CorrS
as a correspondence category.

4.0.2. We now provide some elementary properties of a correspondence category.

Proposition 4.5. Let C be a preadditive ∞-category equipped with an essential surjection

γC : Smk → C

which preserves coproducts, and let γC∗ denote the induced functor

γC∗ : PΣ(C)→ PΣ(SmS); F 7→ F ◦ γC.

Then the following properties hold:

3By requiring the functor γC to preserve finite coproducts we include also the empty coproduct, ensuring that γC preserves the base
point of SmS+.

4More succinctly, CorrCat is the pullback of ∞-categories PreAdd×Catq∞
{SmS+}, where Catq denotes ∞-categories with finite

coproducts and finite coproduct-preserving functors.
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(1) The ∞-category PΣ(C) is presentable and preadditive.
(2) The functor γC∗ preserves sifted colimits.
(3) The functor γC∗ is conservative.

Proof. Presentability of PΣ(C) is [29, Proposition 5.5.8.10 (1)], while PΣ applied to a preadditive ∞-category
is again preadditive by [21, Corollary 2.4]. The functor γC∗ preserves sifted colimits since sifted colimits are
computed pointwise (a direct consequence of parts (4) and (5) of [29, Proposition 5.5.8.10]), while γC∗ is
conservative since γC is essentially surjective. �

4.0.3. The composite of γC with Yoneda functor SmS+
γC→ C

y→ PΣ(C) has a canonical sifted colimit-
preserving extension γ∗C : PΣ(SmS+)→ PΣ(C). It is easy to check that γC∗ is the right adjoint to γ∗C and thus
γ∗C preserves all small colimits. As a result, we have an adjunction

γ∗C : PΣ(SmS+) � PΣ(C) : γC∗. (4.3)
It is also easy promote the SmS+-linear structure given by the second axiom of a correspondence category to
a PΣ(SmS+)-linear structure so that the functor

γC∗ ◦ γ∗C : PΣ(SmS+)→ PΣ(SmS+)

extends to a right lax PΣ(SmS+)-linear functor.

4.0.4. Now we would like to do motivic homotopy theory on C. Recall that if X, Y ∈ PΣ(SmS+), then X
is A1-homotopy equivalent to Y if there are maps f : X → Y, g : Y → X and A1-homotopies H : A1

+ ⊗ X → X,
H′ : A1

+ ⊗ Y → Y from g f and f g to the respective identity morphisms. We note that any A1-homotopy
equivalence is an LA1 -equivalence [34, §2 Lemma 3.6].

Lemma 4.6. The functor γC : PΣ(SmS+)→ PΣ(SmS+) preserves A1-homotopy equivalences.

Proof. Suppose that we have a homotopy H : A1
+ ⊗ X+ → Y between maps f , g : X → Y. We obtain, using

the right lax-structure, a homotopy

A1
+ ⊗ γC(X)→ γC(A1 × X)→ γC(Y)

between γC( f ) and γC(g). �

Lemma 4.7. The functor γC : PΣ(SmS+)→ PΣ(SmS+) preserves LA1 -equivalences.

Proof. By definition the class of LA1-equivalences is the strong saturation, in the sense of [29, Proposition
5.5.4.5], of the maps in PΣ(SmS+) by the (Yoneda image of) A1-projections πX : (A1×X)+ ' A1

+⊗X+ → X+

for X ∈ SmS. According to [5, Lemma 2.10] the class of LA1 -equivalences is then generated under 2-out-of-3
and sifted colimits by maps of the form πX q idY+ where Y ∈ SmS.

Since πX is an A1-homotopy equivalence, it follows from Lemma 4.6 that γC(πX) is an A1-homotopy
equivalence. Since γC preserves coproducts by assumption, the same is true for the morphism

γC(πX q idY+) ' γC(πX)q γC(idY+).

The functor γC clearly preserves the 2-out-of-3-property. Lastly, the functor γC preserves sifted colimits by
definition and sifted colimits are computed valuewise in PΣ(SmS+)

∆1
. Hence we conclude that γC preserves

LA1 -equivalences. �

4.0.5. Now we take into account a topology that we might want to put on SmS+, namely, the topology of
coproduct decomposition. This is a topology on SmS+ defined by a cd-structure, denoted by q, generated by
squares

S //

��

U+

��

V+
// X+

where U and V are clopen subschemes of X such that U q V = X. Sheaves with respect to the topology
generated by this cd-structure is precisely the nonabelian derived category on C. In other words we have

Shvq(SmS+) ' PΣ(SmS+)
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by [5, Lemma 2.4]. Hence all topologies τ considered in this paper satisfy Shvτ(SmS+) ⊆ PΣ(SmS+).

Definition 4.8. Let τ be a topology on SmS, and let C be a correspondence category with graph functor
γC : SmS+ → C. Then C is compatible with τ if for every τ-sieve U ↪→ X in SmS, the natural map

γC(U+)→ γC(X+)

is an Lτ-equivalence in PΣ(SmS+).

Lemma 4.9. Suppose that C is a correspondence category which is compatible with τ. Then the functor

γC : PΣ(SmS+)→ PΣ(SmS+)

preserves Lτ-equivalences.

Proof. By definition, the class of Lτ-equivalences is the strong saturation, in the sense of [29, Proposition
5.5.4.5], of the maps in PΣ(SmS+) by the (Yoneda image of the) maps i+ : U+ ↪→ X+ where X ∈ SmS and i is
a τ-sieve. According to [5, Lemma 2.10], the class of Lτ-equivalences is then generated under 2-out-of-3 and
sifted colimits by maps of the form πX q idY+ for Y ∈ SmS. By the same reasoning as in Proposition 4.7 we
need only check that γC(U+)→ γC(X+) is an Lτ-equivalence which is true by hypothesis. �

From now on, whenever we consider a correspondence category C we make the following assumption on
the topologies we discuss:

• The topology τ is at least as fine as the Nisnevich topology and is compatible in the sense of
Definition 4.8.

4.0.6. If C is a correspondence category, then we can construct its unstable motivic homotopy ∞-category in
the usual way, as we now do. We consider two full subcategories of PΣ(C) spanned by objects F satisfying
the following two axioms on homotopy invariance and τ-descent:

(Htpy): The presheaf F ◦ γC : Smop
S → Spc is A1-invariant. We denote the ∞-category spanned by such

F ’s by PA1(C).
(τ-Desc): The presheaf F ◦ γC : Smop

S → Spc is a τ-sheaf. We denote the ∞-category spanned by such
F ’s by Shvτ(C).

Since PΣ(C) is preadditive by Proposition (4.5), we have a canonical equivalence CMon(PΣ(C)) ' PΣ(C).
The ∞-category of unstable C-motives, denoted by Hτ(C), is then defined as PA1(C) ∩ Shvτ(C) ⊆ PΣ(C). As
usual we have localization functors LC

τ : PΣ(C) → Shvτ(C), LC
A1 : PΣ(C) → PA1(C) and LC

mot,τ : PΣ(C) →
Hτ(C). From the construction of these localizations and the assumption on τ, the adjunction (4.3) descends
to an adjunction

γ∗C : Hτ(SmS+) ' Hτ(S)∗ � Hτ(C) : γC∗ (4.4)

Lemma 4.10. The ∞-category Hτ(C) is preadditive. Hence we have a canonical equivalence CMon(Hτ(C)×) '
Hτ(C).

Proof. The ∞-category Hτ(C) is closed under finite products by checking that the conditions (Htpy) and
(τ-Desc) are preserved under taking products which are computed pointwise. The statement follows since
PΣ(C) is preadditive by Proposition 4.5. �

Definition 4.11. The ∞-category of effective C-motives Hτ(C)gp is defined to be the full subcategory of Hτ(C)
spanned by the grouplike objects, in the sense of [21, Definition 1.2].

4.0.7. The next proposition captures the main property of categories of correspondences from the point of
view of motivic homotopy theory.

Proposition 4.12. Suppose that C is a correspondence category which is compatible with τ. Then the functor

γC∗ : Hτ(C)→ Hτ(S)∗

preserves sifted colimits and is conservative. Furthermore, Hτ(C) is canonically an H(S)∗-module.
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Proof. For the first claim it suffices, after Proposition 4.5, to check that

γC∗ : PΣ(C)→ PΣ(SmS+) ' PΣ(SmS)∗

sends LC
mot,τ-equivalences to Lmot,τ-equivalences. This holds by Lemma 4.12 and Lemma 4.7. The assertion

that Hτ(C) is an H(S)∗-module follows from the right lax structure of γC∗. �

Remark 4.13. If τ is a topology finer than the Nisnevich topology, then the fully faithful functor Hτ(S)∗ →
H(S)∗ need not preserve colimits. Hence the composite Hτ(C)→ Hτ(S) need not preserve colimits.

4.0.8. From the above point of view, we see that γC∗ is very close to preserving all colimits—we need only
show that it preserves finite coproducts. The universal way to enforce this is to take commutative monoid
objects on both sides with respect to Cartesian monoidal structures. We can do this for Hτ(S)∗ since it has
finite products, and CMon(Hτ(C)×) ' Hτ(C) since it is preadditive [21, Proposition 2.3]. We remark that
the symmetric monoidal structure on PΣ(SmS+) given by Day convolution is not Cartesian.5

To see this, consider the left adjoint to γC∗, that is,

γ∗C : Hτ(S)∗ → Hτ(C),

which preserves all small colimits. According to the universal property of CMon [21, Corollary 4.9] we obtain
an essentially unique functor γ∗C : CMon(Hτ(S)×∗ )→ Hτ(C) since Hτ(C) is preadditive by Proposition 4.5.1.
This functor admits a right adjoint γC∗ : Hτ(C)→ CMon(Hτ(S)×∗ ) which fits into a commutative diagram

CMon(Hτ(S)×∗ )

��

Hτ(C)

γ∗C
77

γC∗ // Hτ(S)∗.

(4.5)

In other words, the functor γC∗ factors through the forgetful functor CMon(Hτ(S)×∗ )→ Hτ(S)∗.

Proposition 4.14. Suppose that C is a correspondence category which is compatible with τ. Then the functor

γC∗ : Hτ(C)→ CMon(Hτ(S)×∗ )

preserves all small colimits and is conservative.

Proof. By the diagram (4.5), the functor γC∗ preserves sifted colimits because the horizontal arrow preserves
sifted colimits by Proposition 4.12 and the vertical arrow preserves sifted colimits as a special case of [21,
Proposition B.4]. Since it is a right adjoint it preserves finite products, but since its domain and codomain are
preadditive it preserves finite coproducts as well and we are done by [5, Lemma 2.8]. The conservativity
statement follows from Proposition 4.12 and the fact that the forgetful functor from commutative monoid
objects is conservative. �

4.0.9. T-stability. We now introduce the notion of T-stability along with the weaker notion of T-prestability.
This is inspired by the treatement of [31, Appendix C] on prestable ∞-categories.

Definition 4.15. Let C be an H(S)∗-module in Cat∞. Then C is T-prestable if the endofunctor

T⊗ (−) : C→ C (4.6)

is fully faithful. The ∞-category C is T-stable if the endofunctor (4.6) is invertible.

Remark 4.16. The notion of a T-stable ∞-category is a familiar one in motivic homotopy theory; indeed, the
motivic stable homotopy category SH(S) is T-stable. In fact, T-prestability is a familiar concept as well:
it is inspired by Voevodsky’s cancellation theorem [41] which asserts that DMeff(k; Z) is T-prestable for any
perfect field k. The analogous statement holds for Milnor–Witt motivic cohomology as proved in [20]. For
the ∞-category of framed motivic spaces, cancellation holds by [12, Theorem 3.5.8], which in turn relies on
the cancellation theorem of Ananyevskiy, Garkusha and Panin [1]. Moreover, for any base scheme S, the
subcategory SH(S)eff ⊆ SH(S) of effective motivic spectra is T-prestable.

5On the other hand, the symmetric monoidal structure on PΣ(SmS) given by Day convolution is Cartesian, and the natural
sifted-colimit preserving functor PΣ(SmS)→ PΣ(SmS+) is symmetric monoidal.
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4.0.10. The thesis of Robalo [36] provides a way to invert T for any H(C)∗-module and obtain a symmetric
monoidal stable ∞-category—in fact one that is a module over SH(S). We define the stable ∞-category of
C-motives simply by

SHτ(C) := Hτ(C)[T⊗−1],
with notation as in [36, Definition 2.6]. We then have the basic adjunction

Σ∞
T,C : Hτ(C) � SHτ(C) : Ω∞

T,C.

The following summarizes the basic properties of SHτ(C):

Proposition 4.17. If C is a correspondence category, then the following hold:
(1) The ∞-category SHτ(C) is a presentably symmetric monoidal stable ∞-category, and
(2) is generated under sifted colimits by objects of the form {T⊗n ⊗ Σ∞

T,CX}n∈Z,X∈C.
(3) The ∞-category SHτ(C) is computed as the colimit in ModH(SmS)∗(PrL) of

Hτ(C)
T⊗(−)−−−−→ Hτ(C)

T⊗(−)−−−−→ Hτ(C)
T⊗(−)−−−−→ · · · . (4.7)

(4) The functor
γC∗ : SHτ(C)→ SHτ(SmS)

is conservative and preserves colimits.

Proof. Stability follows from the standard equivalence T ' S1 ⊗ Gm in SH(S), which remains true for
modules over SH(S). The second assertion follows from the third via [29, Lemma 6.3.3.7] and the fact
that Hτ(C) is generated under sifted colimits by representables which are smooth affine by the argument
of [27, Proposition 2.2.9] (which works for any topology τ finer than Nis), while the third comes from
[36, Corollary 2.22]. The last assertion follows from Proposition 4.14. �

4.0.11. The last part of Proposition 4.17 is the main point of our axiomatization: the adjunction SHτ(S) �
SHτ(C) is monadic. In particular, if τ = Nis, then SH(S) � SH(C) is monadic.

4.1. From categories of correspondences to motivic module categories. Suppose that we have a functor

C : S op → CorrCat⊗

which carries a morphism of schemes f : T → S to f ∗ : CS → CT . By naturality of the preceding construc-
tions6 we obtain a functor

SHτ ◦C: S op → PrL,⊗
stab

equipped with a transformation SH|S → SHτ ◦C. We impose an additional assumption on C, inspired by
[7, Lemma 9.3.7]:

• For each p : T → S, a smooth morphism in S , the functor p∗ admits a left adjoint p# such that the
transformation p#γCT → γCS p# is an equivalence.

In this case, we say that C is adequate.

4.1.1. We employ the following additional notation: if L : SH(S) → SH(S) is a localization, denote by
L(SHτ(CS)) the subcategory of SHτ(CS) spanned by objects X such that γC∗X is L-local. Since γC∗ preserves
limits, the inclusion L(SHτ(CS)) ↪→ SHτ(CS) is closed under limits and there is a localization functor (by
the adjoint functor theorem)

LCS : SHτ(CS)→ L(SHτ(CS))

rendering the following diagram commutative (since their right adjoints commute):

SH(S)

L
��

γ∗CS // SHτ(CS)

LCS
��

L(SH(S))
γ∗CS // L(SHτ(CS)).

Proposition 4.18. If C: S op → CorrCat⊗ is adequate, then the following hold:

6The most nontrivial of which is the universal property of T-stabilization for which we can appeal to [5, Lemma 4.1].
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(1) We have premotivic adjunctions SH|S � SHτ ◦ C.
(2) If L is smashing and a symmetric monoidal localization of SH|S , then we have a premotivic adjunction

L(SH)|S � L(SH ◦C).
(3) If τ is a topology such that for each S ∈ S , the functor L(SHτ(S))→ L(SH(S)) preserves sifted colimits,

then the premotivic adjunction L(SH)|S � L(SHτ ◦ C) is a motivic module category (in particular, this
holds when τ = Nis).

Proof. The proof of (1) follows as in the case of Grothendieck abelian categories [7, Corollary 10.3.11] and
Voevodsky’s C = Corr (in the sense of [7, §9]); we give only the main points. Since C is adequate, we get
that the equivalence p#γCT → γCS p# persists on the level of T-stabilizations. What we need to verify, just as
in [7, Proposition 10.3.9], is that the transformation LτγC∗ ' γC∗Lτ is an equivalence on the unstable level,
i.e., the “forgetful” functor Hτ ◦ C → H|S preserves τ-local objects. This is given by Lemma 4.9 under the
standing assumption that C is compatible with τ. The next two statements are then immediate from the
definition of motivic module categories and the last statement of Proposition 4.17. �

4.2. Examples. We now discuss examples of the above constructions and results.

Example 4.19. Let S = SchS and suppose that E is an E∞-ring spectrum in SH(S). Then ModE = (E⊗ (−)) ◦
SH furnishes the first examples of motivic module categories. We can also consider further localizations of
the premotivic category ModE, such as in [19] where S = Sch

Z[ 1
` ]

the localization functor is given by the

composite of `-completion and étale localization, and E is MGL; see loc. cit. for more details where results in
this paper is used to describe the ∞-category of modules over étale cobordism.

Example 4.20. Consider a localization L : SH|S → L(SH|S ). If L is smashing, then L(SH|S ) is a motivic
module category. Examples of these smashing localizations are given by periodization of elements; we refer the
reader to [23, Section 3] for an extensive discussion in our context. For example, a theorem of Bachmann [3]
proves that periodizing the element ρ yields real étale localization. Consider x : Σp,q1→ 1. Then the results
of [23, §3] (or apply [3, Lemma 15]) tell us that 1[x−1] is an E∞-ring and the projection formula holds, hence
the category of x-periodic motivic spectra are modules over 1[x−1].

Example 4.21. The basic example of a category of correspondences is Voevodsky’s category of finite cor-
respondences CorrS in the sense of [33, Appendix 1A] [7, §9], which is defined for any Noetherian scheme
S [7, §9.1]. When S is essentially smooth over a perfect base field, the category of finite Milnor–Witt cor-
respondences C̃orrS of Calmès and Fasel [6] is defined and is also a category of correspondences. Over a
perfect field (where both categories are defined), these categories are generalized by Garkusha’s axioms in
[16]. When defined, these categories are adequate in the sense of §4.1. All of these are examples of categories
of correspondences, and thus gives rise motivic module categories.

Example 4.22. Let k be a perfect field. Given any S ∈ Smk and any good cohomology theory A on SmS in
the sense of [11, §2], then [11, §3] defines an adequate category of correspondences CorrA

S on SmS.

Example 4.23. The ∞-category of framed correspondences of [12] is another example of a category of corre-
spondences and is defined for any qcqs scheme S. The main theorem of [24] asserts that the corresponding
motivic module category is equivalent to SH(S), relying on the “recognition principle” of [12].

Example 4.24. If E ∈ SH(S) is a homotopy associative ring spectrum, then [13] defines a hSpc-enriched
category hCorrES of finite E-correspondences, which the authors expect to be the homotopy category of an
∞-category CorrES whenever E is an A∞-ring. Setting C = CorrES , the ∞-category SH(C) in this paper
corresponds to DME(S) in loc. cit. We will return to this example in the next section.

5. MODULE CATEGORIES OVER REGULAR SCHEMES

In this section we show that the hypotheses of Theorem 3.5 are satisfied for module categories over a field
k, and more generally for module categories over regular k-schemes.

5.1. The case of fields. We start by verifying that the projection formula holds at a field k. In this case, we
can use the following computation to reduce to the case of compact-rigid generation:
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Lemma 5.1. Suppose that we have an adjunction of symmetric monoidal ∞-categories

F : C � D : G

such that F is strongly symmetric monoidal. Let 1 ∈ C denote the unit object of C. If E ∈ C is a strongly dualizable
object, then the map c : GF(1)⊗ E→ GF(E) is an equivalence.

Proof. This follows from a standard computation: let E′ ∈ C be arbitrary, then we have a string of equiva-
lences

MapsC(E
′, GF(1)⊗ E) ' MapsC(E

′ ⊗ E∨, GF(1))

' MapsD(F(E′ ⊗ E∨), F(1))

' MapsD(F(E′)⊗ F(E)∨, F(1))

' MapsD(F(E′), F(E))

' MapsC(E
′, GF(E)),

which shows the claim. �

5.1.1. Thus, if SH(S) is generated by strongly dualizable objects, it follows that the projection formula
holds:

Theorem 5.2. Let k be a field. Suppose that ` is a prime which is coprime to the exponential characteristic e of k and
let M be a motivic module category on k. Then we have the following equivalences of presentably symmetric monoidal
stable ∞-categories:

L(`)(M (k)) ' ModL(`)γ∗γ
∗(1S)

(SH(k)),

and
M (k)

[
1
e

]
' Modγ∗γ∗(1)[ 1

e ]
(SH(k)).

Proof. In light of Theorem 3.5 we need to verify the appropriate projection formulas. By assumption, the
functor γ∗ preserves sifted colimits and thus the functors γ∗γ∗(1S)⊗ (−) and γ∗γ∗(−) do as well. Now
Lemma 5.1 tells us that the projection formula holds for strongly dualizable objects in SH(k)(`). Thus we will
be done if we can prove that the inclusion of (2.1), SHrig(k)(`) ⊆ SHω(k)(`), is an equality. This amounts to
showing that SH(k)(`) is in fact generated by sifted colimits by strongly dualizable objects. But this follows
by Lemma 2.2, which also verifies the theorem for the e-inverted case. �

5.1.2. We now obtain the following extension of [38, Theorem 1], [25, Theorem 5.8], [16, Theorem 5.3] and
[4, Lemma 5.3]:

Corollary 5.3. Let k be a field of exponential characteristic e and let γC : Smk → C be a correspondence category over
k. Then there is an equivalence of presentably symmetric monoidal stable ∞-categories

SH(C)
[

1
e

]
' Mod

γC∗γ∗C(1)
[ 1

e

](SH(k)).

5.2. The case S = Regk. Following [9] we can extend the previous result to the category Regk of finite
dimensional Noetherian schemes that are regular over a field k, provided that we impose some additional
assumptions on M . For the rest of this section, we will therefore assume that M is a motivic module category
which in addition satisfies the following property:

• The premotivic category M satisfies localization (Definition 2.5) and continuity (Definition 2.6).

Lemma 5.4. Suppose that f : T → S is a morphism in Regk. In the following cases, the transformation

f ∗γ∗ → γ∗ f ∗

is an equivalence:
(1) The scheme T is an inverse limit lim←−α

Tα of S-schemes Tα such that the transition maps Tα → Tβ are dominant,
affine and smooth.

(2) The map f is a closed immersion and S ∼= lim←−α
Sα, where each Sα is a smooth, separated k-scheme of finite

type with flat affine transition maps.
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Proof. Under the continuity and localization assumption on M , the proof in [9, Lemma 3.20] for the case of
M = DM(−; R) applies verbatim. �

5.2.1. We now have the following extension of Theorem 5.2.

Theorem 5.5. Let k be a field of exponential characteristic e, and let M be a motivic module category on Regk. Then
the functor γ∗ : SH→M induces a canonical equivalence

Mod
γ∗γ∗(1)

[ 1
e

](SH(−)) '−→M
[

1
e

]
of premotivic categories on Regk.

Proof. After Theorem 3.5, our goal is to verify that (SH|Regk
, M ) satisfies the projection formula. Suppose

that S ∈ Regk, and let E ∈ SH(S). We claim that the map

γ∗γ
∗(1S)⊗ E→ γ∗γ

∗(E) (5.1)

is an equivalence. To show this, we follow closely the logic of [9, Theorem 3.1].
First, assume that S is an essentially smooth scheme over a field. For each x ∈ S, we write Sx for the

localization of S at x. Then the family of functors

{SH(S)→ SH(Sx)}

is conservative by [7, Proposition 4.3.9]. Hence we are reduced to proving that the map (5.1) is an equivalence
in the case S is furthermore local. In this case, let i : x ↪→ Sx be the closed point and write j : Ux → Sx for
the open complement. By our assumption on S, Ux has dimension < dim S. We consider the following
commutative diagram, where the rows are cofiber sequences:

j!(j∗γ∗γ∗(1S)⊗ j∗E) //

��

γ∗γ∗(1S)⊗ E //

��

i∗(i∗γ∗γ∗(1S)⊗ i∗E)

��

j! j∗γ∗γ∗(E) //

f1
��

γ∗γ∗(E)

=

��

// i∗i∗γ∗γ∗(E)

f2
��

j!γ∗γ∗ j∗E // γ∗γ∗E // i∗γ∗γ∗i∗E.

(5.2)

Now,
• The left vertical composite is an equivalence because (1) j∗ commutes with γ∗ by definition of a

morphism of premotivic categories, and (2) by the induction hypothesis.
• The right vertical composite is an equivalence using (1) Lemma 5.4.2 and (2) the case of fields,

Theorem 5.2.
It therefore remains to show that f1 and f2 are equivalences.

• The map f1 is an equivalence because j∗ commutes with γ∗.
• That f2 is an equivalence follows from Lemma 5.4.2.

Now, following the “General case” of [9], we explain how the bootstrap to regular k-schemes work. By
continuity (appealing to [7, Proposition 4.3.9] again), we may again assume that S is a Henselian local regular
k-scheme. As explained in loc. cit., there is a sequence of regular Noetherian k-schemes

T
f→ S′

q→ S

such that the following hold:

• The scheme S′ has infinite residue field and the functor q∗ : SH(S)
[

1
e

]
→ SH(S′)

[
1
e

]
is conservative.

• The scheme T is the ∞-gonflement of Γ(S′, OS′) [9, Definition 3.21] and the functor f ∗ : SH(S′)
[

1
e

]
→

SH(T)
[

1
e

]
is conservative.

• Both f and q satisfy the hypotheses of Lemma 5.4.1, and thus f ∗ and q∗ commute with γ∗.
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Hence, to check that the map (5.1) is an equivalence it suffices to check that it is an equivalence after applying
(q f )∗. Since T is, by construction, the spectrum of a filtered union of its smooth subalgebras we invoke
continuity of SH to conclude. �

5.2.2. Lastly, we provide the following class of examples of motivic module categories for which localization
and continuity holds. We will make the following assumption:

• for a base scheme S and an A∞-ring spectrum E ∈ SH(S), there exists an ∞-category CorrES such that
its homotopy category is the hSpc-enriched category hCorrES of [13].

With this assumption in play, any motivic A∞-ring spectrum E gives rise to the motivic module category
DME as explained in Example 4.24 and [13]. While this makes the next results conditional, we will explain
unconditional instances of these results in Example 5.9.

Proposition 5.6. Let S ⊆ SchS. Then, for anyA∞-ring spectrum E ∈ SH(S), the premotivic category DME : S op →
Cat∞ satisfies continuity for dominant affine morphisms.

Proof. We first claim the analog of [7, Proposition 9.3.9] for E-correspondences. Let (Xi)i∈I be a cofiltered
diagram of separated S-schemes of finite type with affine dominant transition morphisms. Let X = lim←−i

Xi,
which is assumed to exist in SchS and is assumed to be Noetherian. Then we claim that for any separated
S-scheme Y of finite type, the map

colim
i∈Iop

CorrES (Xi, Y)→ CorrES (X, Y) (5.3)

is an equivalence.
To do so, we use the dual of [12, Lemma 4.1.26]. Denote by cXi (resp. cX) the filtered poset of reduced

subschemes of Xi ×S Y (resp. X×S Y) which are finite and universally open over Xi (resp. X). Furthermore,
we denote by Sub(cX) the poset of full sub-posets of cX . We then have a functor K : I → Sub(cX) given by
i 7→ Ki := cXi , where cXi is regarded as a full sub-poset in the obvious way. By continuity of SH, the functor
EBM(−/X) : cX → Spc of Borel–Moore E-homology spaces [13, §2] restricts to a functor EBM(−/Xi) : cXi →
Spc. Hence the map (5.3) is, by [13, Definition 4.1.1], equal to the map

colim
Iop

colim
cXi

EBM(Zi/Xi)→ colim
Z∈cX

EBM(Z/X),

which we claim is an equivalence. The hypotheses of [12, Lemma 4.1.26] follow easily (under the hypotheses
that the transition maps are affine and dominant) by [7, Propositions 8.3.6, 8.3.9]. Hence the desired claim
follows. The rest of the proof follows as in the case of DM from [7, Theorem 11.1.24]. �

Proposition 5.7. Let k be a field and let E ∈ SH(k) be an A∞-ring spectrum. Then the premotivic category
DME : S op → Cat∞ satisfies (Loci) whenever i is a closed immersion of regular schemes.

Proof. Since DME is constructed from Nisnevich local objects, it is Nisnevich separated. By [7, Proposition
6.3.14], it has the weak localization property, i.e., it has (Loci) for any closed immersion with smooth
retractions. Arguing as in [7, Corollary 6.3.15], it has the localization property with respect to any closed
immersion between smooth schemes. The rest of the argument then follows as in [9, Proposition 3.12], which
uses the continuity results established in Proposition 5.6 as above. �

5.2.3. From this we conclude:

Corollary 5.8. Let k be a field of exponential characteristic e and let E ∈ SH(k) be an A∞-ring spectrum. Then we
have a canonical equivalence

DME
[

1
e

]
' Mod

γ∗γ∗(1)
[ 1

e

](SH(−))

of premotivic categories on Regk.

Example 5.9. As explained in [13, 4.1.19], the hypothetical ∞-category CorrES is equivalent to hCorrES whenever
S is essentially smooth over a perfect field k and E is pulled back from the heart of the effective homotopy
t-structure SH(k)eff,♥ over k. Hence Theorem 5.8 holds unconditionally whenever E is pulled back from the
prime subfield of k and lies in the heart of the effective homotopy t-structure there.
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Examples of such spectra include the motivic cohomology spectrum HZ and its Milnor–Witt counterpart
HZ̃. Furthermore, in [13, Proposition 4.3.6] (resp. [13, Proposition 4.3.19]) it is proved that DMHZ(S) '
DM(S) (resp. DMHZ̃(S) ' D̃M(S)) whenever S is essentially smooth over a Dedekind domain (resp.
essentially smooth over a perfect field) [13, Proposition 4.3.8] (resp. [13, Proposition 4.3.19]). By the
continuity result of Proposition 5.6 we can enhance the comparison results for DM to regular schemes over
fields. While D̃M(S) is not defined outside of smooth schemes over perfect fields, Corollary 5.8 promotes
the comparison results between D̃M and modules over HZ̃ of [16] and [4] at least to smooth schemes over
fields. We contend, however, that DMHZ̃(S) is a decent definition for D̃M(S) in general.
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