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Abstract
We introduce a model for recurrent event data subject
to left-, right-, and intermittent-censoring. The obser-
vations consist of binary sequences (along with covari-
ates) for each individual under study. These sequences
are modeled as generated by latent Ornstein–Uhlenbeck
processes being above or below certain thresholds. Fea-
tures of the latent process and the thresholds are taken
as functions of covariates, allowing the researcher to dis-
tinguish factors that have an effect on the frailty, from
those that have an effect on the variability, of the obser-
vational unit. Inference is achieved by a quasi-likelihood
approach, for which consistency and asymptotic nor-
mality is established. An advantage of our model is that
particularities regarding the censoring need not be taken
actively into account, and that it is well suited for situa-
tions where the individuals under study are irregularly
and asynchronously observed. The motivation for our
model came from a dataset pertaining to the incidence of
diarrhoea among Brazilian children growing up under
rather harsh conditions. We analyze these data with our
model and contrast the results with an intensity-based
counting process analysis of the same data.
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1 INTRODUCTION

Many phenomena, in the biosciences, epidemiology, engineering, and the social sciences, are
recorded over time as being in one of two states, “on or off.” An epidemiologist has follow-up
data on the health history of a number of individuals; an engineer on the stress level of a
given component over time; an economist has data on the employment status of group of
individuals surveyed at various points in time. Such data are often binary (sick/healthy, over-
heated/temperate, employed/unemployed), and the data gathering is not performed continuously
in time, but irregularly with differing lengths between the observation times. Observational
schemes of this kind abound in many fields of science, and have in common that they generate
sequences of zeros and ones where the state of the observational unit between the observation
times is unknown (i.e., censored). The statistical modeling and analysis of this kind of data can
be quite challenging because one needs to tend to the dependence in time as well as account for
rather complicated patterns of censoring. An appealing feature of the model we introduce in this
paper is that both the temporal dependence, as well as all types of censoring, are accommodated
in a straightforward and neat manner requiring minimal statistical ingenuity on the part of the
applied researcher doing the analysis.

The data that inspired the present study have previously been analyzed in Borgan, Fiaccone,
Henderson, and Barreto (2007), and is shown in Figure 1. The plot shows the health status of a
sample of Brazilian children living in the metropolitan area of Salvador, observed at discrete and
irregular times over a period of 455 days. In the figure the children are plotted according to their
identification number (the y-axis), with the color of the dots indicating whether the child suffered
from diarrhoea (black dots) or were in good health (grey dots) at the time of observation. The
blank dots are times at which no observation was made, thus we see that the data are left-, right-,
and intermittently censored. That the observations took place at discrete and irregular times,
means that the data consist of a time stamp and an indicator of the state of the child (sick/healthy)
at that time, along with covariates. (In Figure 1 we have only included every 10th child in the
sample of 925, because the resolution becomes problematic when the entire dataset is included.)
The pattern depicted among the 93 children in the plot is characteristic for the entire sample.

Approaches to data such as those in Figure 1 include intensity-based counting-process meth-
ods, renewal processes, and models for the time between events (Andersen, Borgan, Gill, &
Keiding, 1993; Borgan et al., 2007). A comprehensive overview of recurrent event methods is given
by Cook and Lawless (2007). Borgan et al. (2007) developed a recurrent event version of Aalen's
additive hazard model, and fitted such models to the Brazilian data.

In this paper we introduce a class of models where the sequences of zeros and ones are gen-
erated by latent and independent Ornstein–Uhlenbeck processes being below or above certain
thresholds. Differences between the observational units are accounted for by letting features of
the Ornstein–Uhlenbeck processes as well as the thresholds be governed by covariates. Each
covariate might enter into one or both of the regression structures of the model, thus allowing for
inference on the effect of each covariate on the temporal correlation of the underlying process, its
effect on the level of the process, or its effect on both these features. In the setting of the Brazilian
data, this means that our model enables us to say something about how different factors affect the
fluctuation of a child's health, and on how these same or other factors affect the frailty of a child.

These two features of the model are rather different, and subject matter knowledge on a case to
case basis is required to decide which covariates should enter where. Given that such knowledge
is available, the fact that our model allows the covariates to affect the data generating process in
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F I G U R E 1 Observation pattern and actual observations for diarrhoea data (for every 10th child in the
sample of 925). The grey dots indicate that the child was healthy at the observation time, and the black dots
indicate that the child was sick. The white areas are time points at which no observations were made

two different ways is appealing as it potentially permits for a more detailed understanding of the
phenomenon under study. As already mentioned, another appealing property of our method, and
one which sets it apart from the above-mentioned approaches, is that by explicitly modeling the
mechanism generating the zeros and ones, all three types of censoring are taken care of without
further efforts.

The paper proceeds as follows. In Section 2 we introduce the latent processes ticking in
the background as well as the observational scheme, based on which we derive our model.
The complexity of the likelihood of the model presented in Section 2 makes it computationally
infeasible to maximize; in Section 2.2 we therefore present what we call the quasi-likelihood
method of estimation. This and related estimation methods are variably called quasi-, pairwise-
and composite-likelihood (Cox & Reid, 2004; Hjort & Omre, 1994; Hjort & Varin, 2008; Nott &
Rydén, 1999; Varin, 2008; Varin, Reid, & Firth, 2011; Varin & Vidoni, 2005). A lucid review paper
of quasi/composite-likelihoods methods is Varin et al. (2011). In Sections 3.2–3.3 we prove consis-
tency of the maximum quasi-likelihood estimator, and derive its limiting distribution. Section 3.4
contains a study of the maximum quasi-likelihood estimator when the chosen parametric model
is misspecified, a model selection criterion is derived, and we introduce a goodness of fit measure
based on the ratio of two nested quasi-likelihoods. In Section 3.5 we conduct a small simulation
study to assess the asymptotic results in a finite-sample setting. Finally, in Section 4 we analyze
the Brazilian data using clipped Ornstein–Uhlenbeck process models, and contrast the results
with those obtained by the linear hazard model of Borgan et al. (2007). Most of the proofs are
deferred to Appendix.
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2 DATA AND MODEL

2.1 A clipped Ornstein–Uhlenbeck process

The data consist of n children observed at various points in time over a finite interval [0,T]. Associ-
ated with each of the i = 1,… ,n children there is a latent stochastic process {𝜉i(t) ∶ 0 ≤ t ≤ T}
governing the health condition of the child. The child is sick if the process is above a certain
threshold, and in good health otherwise, and it is only this zero-one version of the latent process
that is actually observed. Moreover, the sample is not continuously monitored, and the health
status of a child is only ascertained at certain points in time. These time points might be fixed
and different for each of the children, they need not be equidistant, or they might be generated
according to a stochastic process independent of the underlying latent processes.

The observation times are denoted by

0 ≤ ti,0 < ti,1 <… < ti,ki ≤ T, i = 1,… ,n.

Let 𝜏i = {ti,0,… , ti,ki} be the set of observation times of the ith child. The zero-one sequences
available for analysis are given by

Yi,j = I{𝜉i(ti,j) ≥ ci(ti,j)}, j = 0,… , ki,

for i = 1,… ,n, where ci(t) is the possibly time-varying child specific threshold above which the
child is sick. Let Yi = (Yi,0,Yi,1,… ,Yi,ki) be the zero-one vector of the ith child.

In this paper we take the 𝜉1(t),… , 𝜉n(t) to be independent Ornstein–Uhlenbeck processes.
More precisely, the health process of the ith child is a mean zero Gaussian process with covariance
function Cov(𝜉i(t), 𝜉i(s)) = exp(−ai|t − s|), for a nonnegative parameter ai. The children may differ
among each other and over time with regard to how prone they are to falling ill (frailty), and
they may also differ in how fast their health is changing. Our model captures differences in frailty
among the children and over time through the thresholds c1(t),… , cn(t). Differences in oscillation
of the child-specific health processes are accounted for by the parameters a1,… , an. If covariates
are available, say xi = (1, xi,1,… , xi,r1 )

t and zi(t) = (1, zi,1(t),… , zi,r2 (t))
t, both ai and ci(t) can be

modeled as functions of these. We propose a model with

ai = exp(xt
i𝛽), ci(t) = zt

i(t)𝛾, (1)

where the vectors xi and zi(t) can be identical, overlapping or disjoint, and the vector zi(t) might
contain time-varying elements. In particular, in this model the probability of the ith child being
ill at time t is 1 − Φ(ci(t)), with Φ(x) the standard normal distribution function. Notice that there
is no loss in generality by letting the marginal variance of the 𝜉i(t) processes be 1 and by not
explicitly introducing a drift parameter. In effect, the introduction of such parameters would lead
to an overparametrization of the model: A drift parameter would be indistinguishable from the
time-varying thresholds, while the introduction of a variance parameter would just result in a
scaling of the 𝛾 coefficients. Finally, let

Di = (Yi, 𝜏i, {zi(t)}t∈𝜏i , xi), i = 1,… ,n,

be the observed data, and D = (Y, 𝜏, {z(t)} t∈𝜏 , x) denote a generic such observation vector.
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F I G U R E 2 A sample path of a stationary Ornstein–Uhlenbeck process with the values of Yi,0,… ,Yi,ki

superimposed. The red sine-curve is one realization of the time-varying threshold used in the simulations of
Section 3.5. The grey ticks on the x-axis are the times at which observations were made [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 2 displays one sample path of the process defined in this section. The wiggly line is a
sample path of a stationary Ornstein–Uhlenbeck process, the sampling times are indicated by the
ticks on the time axis, and the values of Yi,j (the zeros and ones) are superimposed on the plot.

The true likelihood contribution of the ith child is the multivariate normal probability,

Li(𝛽, 𝛾) = Pr𝛽,𝛾 (Yi,0 = yi,0,Yi,1 = yi,1,… ,Yi,ki = yi,ki ), (2)

which is, for moderate ki and n, computationally burdensome to compute. Moreover, contrary to
an Ornstein–Uhlenbeck process itself, a clipped Ornstein–Uhlenbeck process is no longer Markov
(Slud, 1989), so the likelihood contribution in (2) cannot be factorized. In other words, likelihood
inference based on

∏n
i=1 Li(𝛽, 𝛾) is, excluding the trivial cases, for example, ki ≤ 4, infeasible. To

deal with this issue we propose what we call the quasi-likelihood approach for inference on the
parameters governing the underlying Ornstein–Uhlenbeck processes as well as on the parameters
determining the varying frailties of the individuals under study. The quasi-likelihood is the topic
of the next section.

2.2 The quasi-likelihood approach

Define the (r1 + r2 + 2) × 1 vector 𝜃 = (𝛽t, 𝛾 t)t, and the probabilities

puv(𝜃, i, j) = Pr𝜃{(Yi,j−1,Yi,j) = (u, v)},

http://wileyonlinelibrary.com
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for (u, v) in the set {(0, 0), (0, 1), (1, 0), (1, 1)}. Throughout the article we write “
∑

(u,v)” for sums
over this set, and follow the same convention for “

∏
(u,v),” “min(u,v),” and so on. The bivariate

normal probabilities puv can easily be computed with the formulas presented in Appendix. To not
overburden the notation, we may drop some of the arguments from puv(𝜃, i, j) when it is clear
from the context what probability we are referring to.

The quasi-likelihood approach consists of approximating the true likelihood in (2) with the
pairwise construction

Qn(𝜃) =
n∏

i=1

ki∏
j=1

∏
(u,v)

puv(𝜃, i, j)I{(Yi,j−1,Yi,j)=(u,v)}. (3)

We define the functions q and qj via Qn(𝜃) =
∏n

i=1 q(𝜃,Di) =
∏n

i=1
∏ki

j=1 qj(𝜃,Di), where the jth
quasi-likelihood contribution of the ith child, that is qj(𝜃,Di), is given by

qj(𝜃,Di) = p00(𝜃, i, j)(1−Yi,j−1)(1−Yi,j)p11(𝜃, i, j)Yi,j−1Yi,j p01(𝜃, i, j)(1−Yi,j−1)Yi,j p10(𝜃, i, j)Yi,j−1(1−Yi,j).

The quasi-maximum likelihood estimator �̂�n is the value of 𝜃 maximizing Qn(𝜃). Notice that
qj(𝜃,Di) is the probability mass function of a multinomial experiment with four outcomes, hence
it is a proper likelihood contribution for such an experiment, and the Bartlett identity

E𝜃0

𝜕

𝜕𝜃
log qj(𝜃0,Di)

(
𝜕

𝜕𝜃
log qj(𝜃0,Di)

)t
= −E𝜃0

𝜕2

𝜕𝜃𝜕𝜃t log qj(𝜃0,Di), (4)

holds, where 𝜃0 denotes the true parameter value. In a similar manner, the quasi-score func-
tion Un(𝜃) = 𝜕Qn(𝜃)∕𝜕𝜃 and its contributions u(𝜃,Di) and uj(𝜃,Di) are defined by Un(𝜃) =∑n

i=1 u(𝜃,Di) =
∑n

i=1
∑ki

j=1 uj(𝜃,Di). The jth quasi-likelihood score contribution of the ith child is

uj(𝜃,Di) =
(
−xiai(ti,j − ti,j−1)e−ai(ti,j−ti,j−1)Ai,j(𝜃)

zi(ti,j)Bi,j(𝜃) + zi(ti,j−1)Ci,j(𝜃)

)
, (5)

in terms of the random variables

Ai,j(𝜃) =
∑
(u,v)

I{(Yi,j−1,Yi,j) = (u, v)}
𝜕puv(𝜃, i, j)∕𝜕𝜌

puv(𝜃, i, j)
,

Bi,j(𝜃) =
∑
(u,v)

I{(Yi,j−1,Yi,j) = (u, v)}
𝜕puv(𝜃, i, j)∕𝜕ci(ti,j)

puv(𝜃, i, j)
,

Ci,j(𝜃) =
∑
(u,v)

I{(Yi,j−1,Yi,j) = (u, v)}
𝜕puv(𝜃, i, j)∕𝜕ci(ti,j−1)

puv(𝜃, i, j)
, (6)

where all three derivatives are bounded as long as the correlations 𝜌(𝜃, i, j) are bounded away from
1. Note also that the derivatives appearing in Bi,j and Ci,j are not the same function evaluated in
different time points, but derivatives with respect to differentarguments of puv.

Remark 1. The pairwise quasi-likelihood we consider in this paper can of course be extended
to involve triplets of observations, that is, (Yi,j−1,Yi,j,Yi,j+1), quadruples, and so on. Such strate-
gies were pursued in Hjort and Varin (2008) for the Markov Chain case. Quasi-likelihood
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constructions of this type are likely to yield more efficient estimators, at the cost, however, of a
larger computational burden. Another pairwise construction not considered in this paper is to let
the quasi-likelihood involve all pairs of child-specific observations, that is (Yi,l,Yi,j) for all l ≠ j,
and not only the adjacent ones.

3 LARGE-SAMPLE PROPERTIES

3.1 Assumptions and notation

For a vector x, ||x|| is the Euclidean norm, while for a function z, ||z||∞ = sup{|z(t)| ∶ t ∈
[0,T]} is the uniform norm. For the covariance function on the observation grids we write
𝜌(𝜃, i, j) for j = 1,… , ki, i = 1,… ,n, that is 𝜌(𝜃, i, j) = Cov𝜃(𝜉i(ti,j), 𝜉i(ti,j−1)) = exp(−ai|ti,j −
ti,j−1|). Throughout the paper we assume that the following hold: (i) the vectors (xi, zi, ki)
for i = 1,… ,n are i.i.d. from a distribution 𝜈 independent of the latent Ornstein–Uhlenbeck
processes; (ii) 𝜈 is such that with probability one (xi,1,… , xi,r1 ) ∈ [−K,K]r1 , zi is continuous
on [0,T], the number of observations is 2 ≤ ki ≤ kmax < ∞ for all i, and that given ki, the
observation times ti,0 < ti,1 <… ti,ki are generated from a distribution that is continuous on
[0,T]; (iii) the matrices n−1 ∑n

i=1 (xi, zi(ti,j−1) + zi(ti,j))t(xi, zi(ti,j−1) + zi(ti,j)) become positive def-
inite with probability one under 𝜈 for all j; and (iv) the parameter space Θ ⊂ Rr1+r2+2 is
compact.

We note that assumption (ii) entails that none of the processes 𝜉1(t),… , 𝜉n(t) are degenerate,
in particular, the correlation function 𝜌(𝜃0, i, j), evaluated in the true parameter value, is strictly
smaller than one with 𝜈-probability one for all i and j. This implies that none of the probabili-
ties p00, p01, p10, p11 approaches zero, ensuring that the random variables Ai,j(𝜃0),Bi,j(𝜃0),Ci,j(𝜃0)
are bounded when evaluated in 𝜃0. In particular, for any 𝜈-integrable real valued function
g we have n−1 ∑n

i=1 g(xi, {zi(t)}t∈𝜏i , 𝜏i) → ∫ g(x, {z(t)}t∈𝜏 , 𝜏) d𝜈 as n → ∞, by the law of large
numbers. The compactness assumption on the parameter space is used in the consistency
proof below.

3.2 Consistency

Define the Kullback–Leibler divergence KL(𝜃) of the quasi-likelihood by

KL(𝜃) = ∫ KL(𝜃, 𝜏, x, z) d𝜈, (7)

where KL(𝜃, 𝜏, x, z) = E𝜃0 log{q(𝜃0,D)∕q(𝜃,D)} =
∑k

j=1 E𝜃0 log{qj(𝜃0,D)∕qj(𝜃,D)}. Since Qn con-
sists of proper multinomial likelihood elements, standard techniques (e.g., Ferguson, 1996,
chapter 17) can be applied to prove that KL(𝜃) is nonnegative and equals zero if and only if 𝜃 = 𝜃0.
This is the content of Lemma 1 in Appendix. We have the following result.

Theorem 1. The value �̂�n maximizing Qn(𝜃) is consistent for 𝜃0.

Proof. The function q(𝜃,D) is continuous in 𝜃 for all D, and log{q(𝜃,D)∕q(𝜃0,D)} is bounded
above by the integrable function −

∑k
j=1 log qj(𝜃0,D). By compactness of Θ, it follows from

Theorem 16(b) in Ferguson (1996, p. 109) that sup𝜃∈Θ |log(Qn(𝜃)∕Qn(𝜃0)) + KL(𝜃)| = op(1). By
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Lemma 1, the function KL(𝜃) attains its maximum in the unique point 𝜃0. Theorem 5.7 in van der
Vaart (1998) then gives the result. ▪

3.3 Asymptotic normality

Due to the Bartlett identity in (4), the variance of the quasi-score function given the covariates
(xi, zi, ki)i≤n is given by

Var𝜃 Un(𝜃) =
n∑

i=1

{ ki∑
j=1

E𝜃 uj(𝜃,Di)uj(𝜃,Di)t + 2
∑
j<l

E𝜃 uj(𝜃,Di)ul(𝜃,Di)t

}
.

Under the assumptions imposed above, this variance is finite, and assumption (i) ensures the
existence of matrices

H(𝜃) = ∫ H(𝜃, x, z, 𝜏) d𝜈 = ∫
k∑

j=1
E𝜃 uj(𝜃,D)uj(𝜃,D)t d𝜈;

C(𝜃) = ∫ C(𝜃, x, z, 𝜏) d𝜈 = ∫
∑
j<l

E𝜃 uj(𝜃,D)ul(𝜃,D)t d𝜈, (8)

such that

1
n

Var𝜃 Un(𝜃) =
1
n

n∑
i=1

Var𝜃0 u(𝜃0,Di)
𝜈

→H(𝜃0) + 2C(𝜃0),

in probability under 𝜈. When evaluated in the true parameter values, we write H = H(𝜃0) and
C = C(𝜃0).

Theorem 2. The sequence n−1/2Un(𝜃0) converges to a mean zero normal distribution with covari-
ance matrix H + 2C.

Proof. By assumption (i) and (ii), n−1Var𝜃0 Un(𝜃0) converges to H + 2C. From Lemma 2 we have
that ||uj(𝜃0,Di)|| is bounded by something that is proportional to ||xi|| + 2||zi||∞ (see Lemma 2 for
details). Hence, for all i

||u(𝜃0,Di)|| ≲ ki(||xi|| + 2||zi||∞) ≤ kmax(||xi|| + 2||zi||∞),
where the right-hand side is finite with 𝜈-probability one. The u(𝜃0,D1),… ,u(𝜃0,Dn) are then
i.i.d. and bounded random variables, and the central limit theorem yields the result. ▪

In order to get the limiting distribution of the estimator �̂�n we need to prove that√
n(�̂�n − 𝜃0) = H−1n−1∕2Un(𝜃0) + op(1). (9)

By theorem 5.23 in van der Vaart (1998, p. 53) the equality in (9) holds if the quasi-likelihood
functions log q(𝜃,X) are Lipschitz in a neighbourhood of the true 𝜃0 and H is invertible. That this
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is indeed the case is proved in Theorem 4. To summarize, we have that at the model, the estimator
�̂�n is consistent for the true value 𝜃0, and that n1∕2(�̂�n − 𝜃0) converges to a mean zero normal
distribution with covariance matrix H−1(H + 2C)H−1. In the next section we consider the state of
affairs when the model on which the quasi-likelihood is based is misspecified, and derive a model
selection criterion and a goodness-of-fit test.

3.4 Model selection

Suppose that the observed sequences of zeros and ones are generated by Ornstein–Uhlenbeck
processes 𝜉i(t) with covariance functions Cov(𝜉i(t), 𝜉i(s)) = exp(−a0(xi)|t − s|) for some continu-
ous, non-negative and bounded function a0(x); and that the thresholds are c0(zi(t)), i = 1,… ,n,
with c0(z(t)) a bounded function. Otherwise, both functions are unknown. In this situation the
parametric models of the form given in (1) can be viewed as parametric approximations to the
true model, perhaps lying out of reach of the parametric models employed for estimation. The
quasi-likelihood estimator �̂�n then aims at the least-false parameter value 𝜃lf minimizing the
distance

KL(𝜃) = ∫ E0 log
q0(𝜏, x, z)

q(𝜃, 𝜏, x, z)
d𝜈, (10)

where q0(𝜏, x, z) is the hypothetical quasi-likelihood based on the true underlying distribution,
and the expectation is taken with respect to the true distribution.

Theorem 3. The estimator �̂�n is consistent for the least-false parameter value 𝜃lf; and

n1∕2(�̂�n − 𝜃lf)
d
→N(0,H−1(K + 2C)H−1),

where H = ∫ ∑k
j=1 E0 𝜕uj(𝜃lf,D)∕𝜕𝜃 d𝜈 and C = ∫ ∑k

j<l E0 uj(𝜃lf,D)ul(𝜃lf,D)t d𝜈, and K =
∫ Var0(

∑k
j=1 uj(𝜃lf,D)) d𝜈.

Proof. Follows, with minor modifications, from the results given in Sections 3.2 and 3.3. ▪

If the parametric model we are employing happens to be the correct one, then K = H, since
the Bartlett identity is then back in force.

The model presented in display (1) contains two regression models, one on the covariance of
the Ornstein–Uhlenbeck processes and one on the thresholds. Since each covariate available for
analysis might enter into one, the other, or both of these, we are left having to choose between
4r1+r2 different models. Without subject matter knowledge, this quickly becomes a insurmount-
able task, as exploring all models would quickly exhaust the computing power at one's disposal.
Given that there are only a handful of models that are deemed plausible, however, the model selec-
tion criterion and the test statistic that we now introduce can assist in choosing the best among
these.

(1) The quasi-likelihood information criterion (qlic) is a special case of the composite likeli-
hood information criterion introduced in Varin and Vidoni (2005). It is given by

QLIC = log Qn(�̂�n) − tr {Ĥ−1
n (K̂n + 2Ĉn)}, (11)
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where Ĥn, K̂n, Ĉn are consistent estimators of H, C, K. Among the candidate models, the model
with the highest value of the qlic is to be preferred. The derivation of the qlic follows the
same principles as the derivation of the Akaike information criterion in the standard likelihood
case (e.g., Claeskens & Hjort, 2008, chapter 2.3), and can thus be viewed as an aic-type cri-
terion for the quasi-likelihood method of inference. Consistent estimators of the matrices H,
C and K are Ĥn = n−1 ∑n

i=1
∑ki

j=1 𝜕uj(�̂�n,Di)∕𝜕𝜃, Ĉn = n−1 ∑n
i=1

∑
j<luj(�̂�n,Di)ul(�̂�n,Di)t, and K̂n =

n−1 ∑n
i=1

∑ki
j=1 uj(�̂�n,Di)uj(�̂�n,Di)t, respectively.

(2) The quasi-likelihood ratio test. The adequacy of different models whose parameters have
been estimated by the quasi-likelihood methods can also be assessed by the likelihood ratio
inspired statistic

Mn = 2{log Qn,wide(�̂�1, �̂�2) − log Qn,narrow(�̃�1, 0)}. (12)

Here we have partitioned the (r1 + r2 + 2) parameter vector 𝜃 = (𝛽, 𝛾) as (𝜂1, 𝜂2), with 𝜂1 and 𝜂2 of
dimension p and q, respectively. We are interested in testing whether the subset 𝜂2 of parameters
is equal to zero. Here, Qn,wide(�̂�1, �̂�2) and Qn,narrow(�̃�1, 0) are the quasi-likelihoods of the model
including the full parameter vector (𝜂1, 𝜂2), and a narrow model where 𝜂2 = 0; both evaluated in
their respective maximizers (�̂�1, �̂�2) and (�̃�1, 0). For a given choice of (𝜂1, 𝜂2), corresponding to a
wide and a narrow model, write

H =
(

H00 H01
H10 H11

)
,

for the (p + q) × (p + q) matrix where H00, H01 = Ht
10, and H11 are the probability lim-

its of n−1 ∑n
i=1

∑ki
j=1 𝜕

2qj(𝜂1, 𝜂2,Di)∕(𝜕𝜂1𝜕𝜂
t
1), n−1 ∑n

i=1
∑ki

j=1 𝜕
2qj(𝜂1, 𝜂2,Di)∕(𝜕𝜂1𝜕𝜂

t
2), and

n−1 ∑n
i=1

∑ki
j=1 𝜕

2qj(𝜂1, 𝜂2,Di)∕(𝜕𝜂2𝜕𝜂
t
2), respectively, all evaluated in (𝜂1, 𝜂2) = (𝜂1, 0). Provided the

conditions of Theorem 2 are satisfied, we have

log Qn(𝜂1, 0) = log Qn(�̂�1, �̂�2) −
1
2

n
(
�̂�1 − 𝜂1
�̂�2 − 0

)t

H
(
�̂�1 − 𝜂1
�̂�2 − 0

)
+ op(1),

for estimation in the wide model, as well as

log Qn(𝜂1, 0) = log Qn(�̃�1, 0) −
1
2

n(�̃�1 − 𝜂1)tH00(�̃�1 − 𝜂1) + op(1),

for estimation in the narrow model. Coupling this with

n1∕2
(
�̂�1 − 𝜂1
�̂�2 − 𝜂2

)
= H−1n1∕2

(
Un
Vn

)
+ op(1), and n1∕2(�̃�1 − 𝜂1) = H−1

00 n1∕2Un + op(1),

we find that under the null hypothesis 𝜂2 = 0,

Mn
d
→M =

(
U
V

)t

H−1
(

U
V

)
− U tH−1

00 U, (13)

where (U,V) is mean zero multinormal with covariance matrix H + 2C, with C the probability
limit of n−1 ∑n

i=1
∑

j<luj(𝜂1, 0,Di)ul(𝜂1, 0,Di)t. Contrary to the standard likelihood case, the limiting
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random variable M will not be a chi-square (e.g., chapter 22 of Ferguson, 1996 for Wilks theorem),
but can relatively easily be simulated, via multinormal realizations of (U,V) from the Np+q(0,H +
2C) distribution, inserting the consistent estimators for H and C, similar to those introduced
above.

3.5 A simulation study

In this section we assess the asymptotic results in a finite-sample setting. To do so, we simu-
lated data of the form presented in Section 2 for n = 1, 000 individuals. Specifically, exploiting
the Markovian property of the Ornstein–Uhlenbeck processes, we simulated these over a fine
partition of the unit interval according to

𝜉i(jΔ) = 𝜌i(Δ)𝜉i((j − 1)Δ) + (1 − 𝜌i(2Δ))1∕2𝜀i,j, for j = 1,… , 1∕Δ,

with Δ = 1∕103; the 𝜀i,j, j = 0,… , 1∕Δ, i = 1,… ,n being independent standard normals; and
𝜉i(0) = 𝜀i,0. The correlation and threshold functions were set to

𝜌i(Δ) = exp(− exp(−0.55 + 1.23 xi)Δ), and ci(jΔ) = 1.04 − 0.70 zi,1 + 1.55 zi,2(jΔ),

with zi,2(jΔ) = zi,2 sin(2𝜋jΔ), j = 0, 1,… , 1∕Δ, and xi, zi,1, zi,2, i = 1,… ,n taken as independent
standard normals. The time points, say Ji ⊂ {tj ∶ j = 0, 1,… , 1∕Δ}, at which observations were
made, were determined by independent Bernoulli sampling with success probability 1∕60, which
means that the number of observations per individual is about 17. Finally, the observed zero-one
processes were generated by taking Yi,ji = I{𝜉i(jiΔ) ≥ ci(jiΔ)}, ji ∈ Ji, for i = 1,… ,n.

To these data, we fit three models; one small, one correctly specified, and one big; with the
misspecification in both the small and the big model taking place in the threshold function. In
the small model the time varying covariate is excluded, that is, csmall,i = 𝛾0 + 𝛾1 zi,1; while the big
model contains an extra covariate zi,3, also taken as independent standard normal, independent
from the three other covariates; thus cbig,i(t) = 𝛾0 + 𝛾1 zi,1 + 𝛾2zi,2(t) + 𝛾3zi,3.

In Figure 3 we display quantile–quantile plots of the estimates from the correctly specified
model, that is, for n1∕2(𝛽j − 𝛽j)∕�̂�j,j, j = 1, 2 and n1∕2(�̂�j − 𝛾j)∕�̂�j+2,j+2, j = 1, 2, 3, with �̂�2

j,j being the
jth diagonal element of Ĥ−1

n (Ĥn + 2Ĉn)Ĥ−1
n . The estimators Ĥn and Ĉn are the consistent plug-in

estimators introduced at the end of Section 3.4.
The simulations and the estimation were conducted in the R programming language (R Core

Team, 2013). Implementing the quasi log-likelihood functions only requires computing bivari-
ate normal probabilities of the type Pr𝜌{𝜉i(tj−1) ≤ ci(tj−1), 𝜉i(tj) ≤ ci(tj)}, which can be done by
numerical integration using the formula displayed in (A2). The remaining three probabilities
are then taken care of by the identities in (A3). Note, however, that these probabilities may dif-
fer for each individual and for each time point. The quasi log-likelihoods were then maximized
using the nlm()-function in R. With the amount of data used for the simulations, that is about
n × (n−1 ∑n

i=1 ki) ≈ 1,000 × 17 individual data points, the optimization took about 10 min on a
standard portable computer.

For each simulation we computed the qlic score for each of the three models. In 86 of 100
simulations, the qlic selected the true model above the big model, and it always chose the true
model over the smaller model.
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F I G U R E 3 Quantile–quantile plots of
√

n(�̂�j − 𝜃j)∕�̂�j,j, j = 1,… , 5, for the estimated parameters of the
model presented in Section 3.5 [Color figure can be viewed at wileyonlinelibrary.com]

When studying the quantile–quantile plots in Figure 3, it should be kept in mind that the
number of observations per individual is small (i.e., low sampling frequency), and that the under-
lying truth, involving the time varying covariate zi,2(t) = zi,2 sin(2𝜋t), is quite complicated. The
estimates and the qlic do, however, appear to be behaving as expected.

Remark 2. Sampling frequency. In Section 3.3, consistency and limiting normality were derived
under the n → ∞ regime. One could, however, consider other types of asymptotic regimes, either
of the infill-variety where n is held constant and the kis tend to infinity; or where a ratio of maxi≤nki
and n tends to some constant. Even in the n → ∞ setup of this paper, a pertinent question is
whether the sampling frequency (the size of the kis) affects the precision of the quasi-likelihood
estimates. As a first stab at this question, we estimated the asymptotic relative efficiency of the esti-
mates of the true model estimated above, compared to the same model but with higher sampling
frequency. Recall that in the former, we sampled the 1001 equidistant time points partitioning
the unit interval, with probability 1∕60. In a new set of simulations, we sampled them with
probability 1∕40. This means that the expected number of observations per child increases from
about 17 to about 25. Looking at the average over 100 simulations of estimated ratios of the type
Var(low freq. estimate)∕Var(high freq. estimate), for the estimates of 𝛽0, 𝛽1, 𝛾0, 𝛾1, and 𝛾2 in the
correctly specified model, we got 1.164, 1.340, 1.047, 1.007, and 1.057, respectively. These num-
bers indicate that the variance decreases as the sampling frequency increases, notably, the rather
modest increase in sampling frequency appear to have a large effect on the precision with which

http://wileyonlinelibrary.com
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we are able to estimate the parameters entering the covariance function, that is, 𝛽0 and 𝛽1. These
results merit further investigation.

4 THE BRAZILIAN DATA

4.1 The data and previous modeling strategies

The data analyzed in this section have previously been studied in Borgan et al. (2007) using a ver-
sion of Aalen's linear hazard regression model. A more elaborate discussion of the data is found
in that paper. For comparative purposes, we briefly present the model of Borgan et al. (2007)
and fit one such to the data, thereafter, we fit three different latent Ornstein–Uhlenbeck pro-
cess models. The adequacy of the Ornstein–Uhlenbeck process models compared to the linear
hazard models may be evaluated using the focused information criterion introduced in Jullum
and Hjort (2017), and extended to regression models in Cunen, Walløe, and Hjort (2020)
and Claeskens, Cunen, and Hjort (2019). Since such comparisons must be rather elabo-
rate and would lead us too far afield, we do not pursue such a study of different model
classes here.

As part of a sanitation program in the metropolitan area of Salvador, Brazil, the Institute of
Public Health at the Federal University of Bahia conducted several studies and data gathering
efforts. One of these consisted of surveying the extent to which infants in the Salvador area suf-
fered from episodes of diarrhoea. Data collectors were assigned to households and conducted
home visits over a period of 455 days from October 2000 to January 2002. One child aged under
3 years at entry was monitored from each household. A major challenge with these data is the
different types of missingness, clearly visible by the white rectangles in Figure 1. Some 16% of
the children entered late into the study and about 21% of the children dropped out of the study
before the completion date. In addition, there are the intermittent missingness, whereby observa-
tion was interrupted but later resumed. According to Borgan et al. (2007), this type of missingness
was mainly due to data collectors not being available. Cases where the child was not available for
a home visit are more problematic as they can invalidate our assumption of the observation times
being independent of the underlying processes. Such breaches of the independence assumption
occur if the children could not be visited, or were not at home, because of their health condi-
tion. The data do not contain information about the reasons for which censoring occurs, and in
our analysis we have assumed that censoring is independent of the underlying health processes.
See Remark 5 for further discussion of this point. The data collectors were assigned contiguous
identification numbers, which explains the white rectangles visible in Figure 1. The periods dur-
ing which there are no observations are due to periods of vacation and a strike among the data
collectors.

Borgan et al. (2007) studied a class of counting process models for recurrent events data in
discrete time with linear hazard rates

𝛼i(t) = 𝛽0(t) + 𝛽1(t)xi,1(t) +… + 𝛽p(t)xi,p(t), i = 1,… ,n, (14)

and used martingale methods to derive the limiting distribution of the estimators of the cumu-
lative coefficients Bk(t) =

∑t
s=1 𝛽k(s), k = 0,… , p. Due to the three forms of censoring they had

to introduce a ‘missingness process’ indicating whether a child was observed, not observed, or
had dropped out of the study (Borgan et al., 2007). The value of this process at a given time must
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T A B L E 1 Estimated cumulative regression coefficients,∑228
s=1 𝛽j(s) for the model in (14), along with standard errors (SEs)

Estimates SEs
Baseline 3.46 0.28

≥ 3 bedroom 2.56 0.30

≤ 12 months 3.49 0.29

> 24 months −3.86 0.22

Contaminated water storage −0.99 0.25

Standing water 0.48 0.30

Contaminated water source 1.80 0.27

Other children ≤ 5 years 0.90 0.22

Male 0.67 0.21

Rain-affected accommodation 2.10 0.25

Mother < 25 years 1.65 0.22

Open sewerage 4.16 0.38

Poor street quality −0.58 0.24

Low social economic class 0.03 0.23

be assumed known prior to this time (i.e., it must be predictable), and it is assumed condition-
ally independent of the counting process, given the past. This latter assumption is similar to our
assumption of the observations times being independent of the latent Ornstein–Uhlenbeck pro-
cesses, while the former is immaterial for our model. In our model, the reason for which a value
is missing is irrelevant, as long as it is independent of the state of 𝜉i(t).

Table 1 displays estimated cumulative regression coefficients for a model of the form (14),
along with standard errors (SEs). Estimators have approximately normal distributions, so Wald
ratio tests may be read off from the table, pointing to those cumulative coefficients which are
significantly present.

4.2 Fitting clipped Ornstein–Uhlenbeck process models

We fitted three clipped Ornstein–Uhlenbeck process models to the Brazilian data. The results are
shown in Table 2. This table contains the parameter estimates and the estimated standard errors,
along with the Wald statistics; the latter are the parameter estimates divided by their approximate
standard errors, that is, the statistic testing the null-hypothesis of no effect against its two-sided
alternative. For illustrative purposes we also include the qlic score of the three models, along
with the Mn statistics of (12), comparing a big model to a medium model, and a medium model
to a small model. As the three models in Table 2 are arrived at in a rather ad hoc fashion, the two
model selection criteria should not be taken too seriously. In the big model we see that six of the
estimated coefficients are not significant at the 0.05 percent level, removing these we obtain the
medium model, with a somewhat superior qlic score. The small model, that only includes the
two intercepts and the log of time since the start of the study, appears to be too parsimonious as
its qlic score is inferior to the two bigger models. The Mn-statistic of (12) comparing the big and
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the medium model does not lead to rejection of the null-hypothesis of the medium model being
true; the Mn-statistic pitting the medium against the small model does reject the hypothesis of the
small model being true.

The linear hazard model and the clipped Ornstein–Uhlenbeck process models are very dif-
ferent models, so one should be careful in comparing the two. It is, however, interesting to
note that some of the covariates seem to have an effect in the linear hazard model of Table 1,
but not in the big model of Table 2, while the converse is only true for one of the covariates.
Two possible reasons for this could be the efficiency loss due to the quasi-likelihood estima-
tion, or the fact that four of the insignificant coefficients in the big clipped Ornstein–Uhlenbeck
model enter the covariance function of the Ornstein–Uhlenbeck process and thereby play a dif-
ferent role in this model compared to the linear hazard model, where they work directly on the
hazard.

This brief discussion highlights the importance of meticulously thinking through which
covariates should enter what regression part of the clipped Ornstein–Uhlenbeck process model,
a task that, admittedly, requires a certain intuition for the phenomenon under study.

According to the qlic, the medium model provides a better fit to the data than the big and the
small models. The negative estimate of the coefficient on the binary age variable (> 24 months)
indicates that children older than 2 years tend to have less oscillating health than those below
2 years. The effects of consuming water from a contaminated water storage and living in the
proximity of standing water seem to work in the same direction, that is, by attenuating the
oscillation of the underlying health processes, but it is likely that they do so for rather differ-
ent reasons. Older children are less prone to falling sick and have longer streaks of good health,
while children exposed to polluted water are likely to stay ill for longer periods of time when they
fall ill.

In Figure 4 we have plotted the medium model quasi-likelihood estimate of the ratio

Pr𝜃(ill at t|open sewerage)
Pr𝜃(ill at t|no open sewerage)

=
1 − Φ(𝛾0 + 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4 + 𝛾5 log t)

1 − Φ(𝛾0 + 𝛾1 + 𝛾2 + 𝛾3 + 𝛾5 log t)
.

This is the ratio for boys whose mothers are below 25 years old and that are living in rain-affected
accommodation, in the proximity or not to open sewerage. The upward sloping curve indicates
that the sanitation program had a larger effect in the areas that were not plagued by open sew-
erage at the start of the program. The estimate displayed in the plot was obtained by plugging in
the quasi-likelihood parameter estimates, and then using the delta method to obtain a pointwise
confidence band.

5 CONCLUDING REMARKS

In this section some possible extensions of the clipped Ornstein–Uhlenbeck process model are
briefly introduced, along with some complementing remarks.

Remark 3. Dependency/Contagion. Since diarrhoea is a highly contagious disease, a shortcoming
of the model introduced in this paper is that possible dependencies between the children is not
taken into account. An extension of our model that accounts for dependency between the children
is obtained by taking the zero-one processes Yi(t) = I{𝜉i(t) ≥ ci(t)} as above, but with 𝜉i(t) a spatial
Gaussian process {𝜉i(t) ∶ i = 1,… ,n, 0 ≤ t ≤ T}. In the case of the Brazilian data, such a model
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F I G U R E 4 The estimated ratio of the probability of being sick when living and not living in the proximity
of open sewerage, for boys whose mothers are below 25 years old living in rain affected accommodation.
Estimates are based on the Medium model of Table 2. Pointwise 95% confidence intervals

demands information about the geographical proximity of the children to each other. Given that
such information is available, one could take

Cov(𝜉i(t), 𝜉j(s)) = exp(−a1|t − s| − a2d(i, j)),

for nonnegative constants a1 and a2 and some distance d. The child-specific covariates would then
enter the threshold functions. One extension of the quasi-likelihood appropriate for this model is
to consider pairs of observations horizontally and vertically, so to speak, thus letting the extended
quasi-likelihood consist of probabilities of the type Pr𝜃{(Yi,j−1,Yi,j) = (u, v)}, for j = 1,… , ki, i =
1,… ,n, as above, but also

Pr𝜃{(Yi,j,Yi+1,j) = (u, v)}, for i = 1,… ,nj − 1, j = 0, 1,… , max
1≤i≤n

ki,

where nj is the number of children with a jth observation. Other constructions along the lines of
Hjort and Omre (1994) and Nott and Rydén (1999) could also be worked with. Other applications
where this type of extension of our model is of interest include random effects type models, where
the zero-one sequences are clustered in subgroups of various sizes, and associated with each indi-
vidual in a group there is an unobservable threshold, ci,k say, centered around a group specific
threshold ck; or in genomics, where the assessment of genomic co-occurrence—which comes
down to assessing the similarity of genome-wide binary vectors—is an active field of research.
See the recent PhD thesis of Rand (2019), and in particular Salvatore et al. (2019), where it is
argued that genome-wide binary vectors ought to be regarded as generated by correlated Gaussian
processes, clipped at various thresholds.
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Remark 4. Focused inference for the quasi-likelihood. The qlic introduced in (11) assesses overall
goodness-of-fit issues of the model. In many situations the research question concerns a clearly
specified statistical quantity, and the statistical model works as a vehicle in providing inference
about this specified quantity. The focused information criterion (fic) (Claeskens et al., 2019;
Claeskens & Hjort, 2003, 2008; Cunen et al., 2020; Jullum & Hjort, 2017) takes this into account
and aims at selecting the optimal model in terms of mean squared error for a prespecified statis-
tical quantity. fic-theory can be developed for the quasi-likelihood worked with in this paper, as
well as for the general composite likelihood case (Varin et al., 2011), thus yielding the possibility
of focused model selection in cases where the full likelihood is computationally infeasible.

Remark 5. Endogenous observation times. As noted in Section 4.1 the assumption of the observa-
tions times being independent of the underlying process 𝜉i(t) is in many application untenable. An
interesting future research project is the development of methods of inference, for example, the
quasi-likelihood approach, for clipped Ornstein–Uhlenbeck processes when the observation
times are endogenous. As an example, consider the following modification of the model studied
in this paper: For the ith child, the process 𝜉i(t) defined in Section 2.1 can be characterized as
the solution to the stochastic differential equation d𝜉i(t) = −ai𝜉i(t) dt + (2ai)1/2 dBi(t), where Bt is
a standard Brownian motion. Let B′

i(t) be a Brownian motion correlated with Bi(t) and suppose
that the observation times are generated by a point process whose intensity 𝜆i(t) is the solution to
d𝜆i(t) = 𝜇i(𝜆i − 𝜆i(t)) dt + 𝜈i𝜆i(t)1∕2 dB′

i(t), for positive parameters 𝜆i, 𝜇i and 𝜈i satisfying the Feller
condition.

Remark 6. Multistate data and several thresholds. Consider multistate data where the states are,
at least, on the ordinal level of measurement. Data on the stages of a disease might be of this
type. Pursuing the idea of this paper, one could consider models where the indicator function
Yi(t) takes on more than two values, and where the different states correspond to the level of an
underlying continuous process. For example, a three-state model takes Yi(t) = I{ci,1(t) < 𝜉i(t) ≤
ci,2(t)} + 2I{ci,2(t) < 𝜉i(t)}, where ci,1(t) < ci,2(t), and these are possibly time-varying thresholds,
and 𝜉i(t) is an Ornstein–Uhlenbeck process of the type introduced in Section 2.1.

Remark 7. Crossings data. Suppose that what we observe are the times at which the underlying
process crosses the thresholds in either direction. Such data would for example arise if each of
the children in the Brazil data were continuously monitored. The true likelihood would in this
situation consist of probabilities of the type

Pr[{𝜉i(t) ≥ ci(t), t ∈ [0, ti,1)},… , {𝜉i(t) ≤ ci(t), t ∈ [ti,ki−1, ti,ki )}],

with ti,1,… , ti,ki the times of the crossings. This is a rather different object from the likelihood
given in (2), and the quasi-likelihood of (3) would in this situation incur a larger efficiency loss
than when the true likelihood is that of (2). Since likelihoods consisting of probabilities such as the
one above are computationally burdensome, quasi-likelihood techniques ought to be developed
for this kind of data. Note that the model we sketch here is closely related to first hitting time
models in survival analysis, see Caroni (2017) for a booklength treatise such models.
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APPENDIX A

Let

f𝜌(x, y) =
1

2𝜋(1 − 𝜌2)1∕2 exp
{
−
(x2 − 2𝜌xy + y2)

2(1 − 𝜌2)

}
, (A1)

be the bivariate normal density we are working with. Since {𝜉i(ti,j), 𝜉i(ti,j−1)}, as defined in
Section 2.1, has the density f(x, y) with 𝜌 = 𝜌(i, j) = exp(−ai|ti,j − ti,j−1|), standard facts about the
multivariate normal distribution give that

p00(𝜃, i, j) = ∫
ci(ti,j)

−∞ ∫
ci(ti,j−1)

−∞
f𝜌(x, y) dx dy = ∫

ci(ti,j)

−∞
Φ
(ci(ti,j−1) − 𝜌(i, j)y

{1 − 𝜌(i, j)2}1∕2

)
𝜙(y) dy, (A2)

where 𝜙(x) and Φ(x) are the standard normal density and distribution function, respectively.
Moreover,

p01(𝜃, i, j) = Φ(c(ti,j−1)) − p00(𝜃, i, j),
p10(𝜃, i, j) = Φ(c(ti,j)) − p00(𝜃, i, j),
p11(𝜃, i, j) = 1 − Φ(c(ti,j−1)) − Φ(c(ti,j)) + p00(𝜃, i, j). (A3)

These identities are used in some of the proofs below.

Lemma 1. The function KL(𝜃) in (7) is nonnegative, and KL(𝜃) = 0 if and only if 𝜃 = 𝜃0.

Proof. Since the function log x is concave,

KL(𝜃, 𝜏, x, z) = −E𝜃0

k∑
j=1

log
qj(𝜃,D)
qj(𝜃0,D)

≥ −
k∑

j=1
log E𝜃0

qj(𝜃,D)
qj(𝜃0,D)

= 0, (A4)

where we have used that E𝜃0 qj(𝜃,D)∕qj(𝜃0,D) =
∑

(u,v)puv(𝜃, j) = 1. This establishes that
KL(𝜃, 𝜏, x, z) is nonnegative, and so is KL(𝜃). Clearly, if 𝜃 = 𝜃0 then KL(𝜃) = 0. Assume that
KL(𝜃) = 0. The inequality in (A4) entails that KL(𝜃) = 0 implies ∫ E𝜃0 log{qj(𝜃0,D)∕qj(𝜃,D)} =
0 for each j. That 𝜃0 is the unique maximizer of the limiting multinomial likelihood func-
tion ∫ E𝜃0 log qj(𝜃,D) d𝜈 follows from assumption (iii), which ensures the concavity of this
function. ▪

Lemma 2. Let pmin(𝜃) be the smallest of all the probabilities puv(𝜃, i, j) that enter the quasi
log-likelihood function. Then, for all i and j

||uj(𝜃,Di)|| ≤ K
||xi|| + 2||zi(t)||∞

pmin(𝜃){1 − 𝜌(i, j)2}1∕2 ,

where the constant K does not depend on i, j, or n. The right-hand side of this equality is finite with
𝜈-probability one when evaluated in the true value.

Proof. An expression for uj(𝜃,Di), the jth quasi-score contribution of the ith individual, is given
in (5). We have that

||uj(𝜃,Di)|| ≤ ||xi|||aiΔi,je−aiΔi,j Ai,j| + ||zi(ti,j)|||Bi,j| + ||zi(ti,j−1)|||Ci,j|.
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Since aiΔi,je−aiΔi,j ≤ e−1 and the covariates are bounded by assumption, we need bounds on
Ai,j,Bi,j, and Ci,j as defined in (6). From (A3) we see that the absolute values of the derivates
of p00, p01, p10, and p11 with respect to 𝜌, are all equal to |𝜕p00∕𝜕𝜌|. We now derive a bound on
𝜕p00(𝜃, i, j)∕𝜕𝜌.

|𝜕p00(𝜃, i, j)∕𝜕𝜌| = |||||∫
ci(ti,j)

−∞

ci(ti,j−1)𝜌 − z
1 − 𝜌2 f𝜌(i,j)(ci(ti,j−1), z) dz

|||||
≤ ∫

ci(ti,j)

−∞

|||||ci(ti,j−1)𝜌 − z
1 − 𝜌2

||||| f𝜌(i,j)(ci(ti,j−1), z) dz

≤ ∫
∞

−∞

|||||ci(ti,j−1)𝜌 − z
1 − 𝜌2

||||| f𝜌(i,j)(ci(ti,j−1), z) dz = (2∕𝜋)1∕2𝜙(ci(ti,j−1))
(1 − 𝜌2)1∕2 . (A5)

To justify the interchange of differentiation and integration taking place here: Fix 𝜌 and let
h1, h2,… be a sequence decreasing to 0, with h1 < 1 − 𝜌. With 𝜁hj a value in (𝜌, 𝜌 + hj),

Φ
( c − (𝜌 + hj)z
(1 − (𝜌 + hj)2)1∕2

)
− Φ

(
c − 𝜌z

(1 − 𝜌2)1∕2

)
=

c 𝜁hj − z

(1 − 𝜁2
hj
)3∕2

𝜙

⎛⎜⎜⎝
c − 𝜁hj z

(1 − 𝜁2
hj
)1∕2

⎞⎟⎟⎠ hj.

The right-hand side divided by hj converges pointwise to (c𝜌 − z)∕(1 − 𝜌2) f𝜌(c, z) as 𝜁hj → 𝜌,
and |||||||

c 𝜁hj − z

(1 − 𝜁2
hj
)3∕2

𝜙

⎛⎜⎜⎝
c − 𝜁hj z

(1 − 𝜁2
hj
)1∕2

⎞⎟⎟⎠
||||||| ≤

|c| + |z|
(1 − (𝜌 + h1)2)3∕2𝜙(0),

where the right-hand side is integrable w.r.t. 𝜙(z) dz. The first equality in (A5) then follows from
dominated convergence. This means that in a neighborhood of the true 𝜃0 we have that for all i
and j,

||||𝜕p00(𝜃, i, j)
𝜕𝜌

|||| ≤ (2∕𝜋)1∕2 𝜙(ci(ti,j−1))
{1 − 𝜌(i, j)2}1∕2 ≤ 1

𝜋

1
{1 − 𝜌(i, j)2}1∕2 .

The derivatives of 𝜕puv∕𝜕ci(ti,j) and 𝜕puv∕𝜕ci(ti,j−1) appearing in Bi,j and Ci,j can all be expressed
in terms of the standard normal density 𝜙(⋅) and the functions 𝜓1(i, j) and 𝜓2(i, j) given by

𝜓1(i, j) = Φ
{ci(ti,j−1) − 𝜌(i, j)ci(ti,j)

(1 − 𝜌(i, j)2)1∕2

}
𝜙{ci(ti,j)},

𝜓2(i, j) =
1

{1 − 𝜌(i, j)2}1∕2 ∫
ci(ti,j)

−∞
𝜙

{ci(ti,j−1) − 𝜌(i, j)x
(1 − 𝜌(i, j)2)1∕2

}
𝜙(x) dx, (A6)

where for 𝜓2 the interchange of differentiation and integration can be justified by an argument
similar to that above. Note that |𝜓1(i, j)| ≤ 𝜙(0), and that

|𝜓2(i, j)| ≤ Φ(ci(ti,j))𝜙(0)
(1 − 𝜌(i, j)2)1∕2 ≤ 𝜙(0)

(1 − 𝜌(i, j)2)1∕2 . (A7)
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By several applications of the triangle inequality, this gives

||uj(𝜃,Di)|| ≤ K
||xi|| + ||zi(ti,j)|| + ||zi(ti,j−1)||

pmin(𝜃){1 − 𝜌(i, j)2}1∕2 .

Since ||zi(t)|| ≤ ||z(t)||∞ the first claim follows. Moreover, by assumption (ii), pmin(𝜃0) is bounded
away from zero, and the 𝜌(i, j, 𝜃0) are bounded away from one with probability one under 𝜈. ▪

Lemma 3. The matrix H of Theorem 2 is invertible.

Proof. The Hessian of KL(𝜃) evaluated in 𝜃0 equals H. Let v be an arbitrary non-zero vector of
the same dimension as 𝜃, and 𝛼 a scalar. Since 𝜃0 is the unique minimizer of KL(𝜃) (as proven in
Lemma 1), we have that

0 = KL(𝜃0) < KL(𝜃0 + 𝛼v) = KL(𝜃0) +
1
2
𝛼2vtHv + o(𝛼2) = 1

2
𝛼2vtHv + o(𝛼2),

hence vtHv∕2 > o(𝛼2)∕𝛼2, which shows that vtHv > 0 for every nonzero vector v. ▪

Theorem 4. The quasi-likelihood contributions log q(𝜃,D) are Lipschitz in a neighborhood B𝜀(𝜃0)
of the true value. Consequently, (9) holds.

Proof. By the mean value theorem there exists a 𝜃 in B𝜀(𝜃0) such that for 𝜃1, 𝜃2 ∈ B𝜀(𝜃0),

| log q(𝜃1,D) − log q(𝜃2,D)| ≤ |u(𝜃,D)t(𝜃1 − 𝜃2)| ≤ ||u(𝜃,D)||||𝜃1 − 𝜃2||,
where the second inequality is the Cauchy–Schwarz inequality. Moreover, the quasi-score func-
tion ||u(𝜃,D)|| ≤ sup𝜃∈B𝜀(𝜃0)||u(𝜃,D)||, and by Lemma 2 the right-hand side is bounded. Theorem
5.23 in van der Vaart (1998, p. 53) in combination with Lemma 3 then give the result. ▪


