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Abstract: Operational flood control systems depend on reliable and 

accurate forecasts with a suitable lead time to take necessary actions 

against flooding. This study proposed a Long Short-Term Memory based 

Encoder-Decoder (LSTM-ED) model for multi-step-ahead flood forecasting 

for the first time. The Shihmen Reservoir catchment in Taiwan constituted 

the case study. A total of 12,216 hourly hydrological data collected from 

23 typhoon events were allocated into three datasets for model training, 

validation, and testing. The input sequence of the model contained hourly 

reservoir inflows and rainfall data (traced back to the previous 8 hours) 

of ten gauge stations, and the output sequence stepped into 1- up to 6-

hour-ahead reservoir inflow forecasts. A feed forward neural network-

based Encoder-Decoder (FFNN-ED) model was established for comparison 

purposes. This study conducted model training a number of times with 

various initial weights to evaluate the accuracy, stability, and 

reliability of the constructed FFNN-ED and LSTM-ED models. The results 

demonstrated that both models, in general, could provide suitable multi-

step ahead forecasts, and the proposed LSTM-ED model not only could 

effectively mimic the long-term dependence between rainfall and runoff 

sequences but also could make more reliable and accurate flood forecasts 

than the FFNN-ED model. Concerning the time delay between the time 

horizons of model inputs (rainfall) and model outputs (runoff), the 

impact assessment of this time-delay on model performance indicated that 

the LSTM-ED model achieved similar forecast performance when fed with 

antecedent rainfall either at a shorter horizon of 4 hours in the past 

(T-4) or at horizons longer than 7 hours in the past (> T-7). We conclude 

that the proposed LSTM-ED that translates and links the rainfall sequence 

with the runoff sequence can improve the reliability of flood forecasting 

and increase the interpretability of model internals. 
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Figure 1 Architectures of the LSTM-ED and FFNN-ED models. 
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Figure 2 Locations of the Shihmen Reservoir catchment area and rainfall gauge 

stations. 
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(c) NSE 

       FFNN-ED         LSTM-ED         Values of the best model 

Figure 3 Performance of FFNN- and LSTM-ED models (each was performed 20 

rounds). (a)-(c) RMSE, R
2
 and NSE at horizons T+1−T+6, respectively. The range of 

an evaluation indicator is presented by a bar, where the mean and the value 

corresponding to best model are marked by a dot (diamond: FFNN-ED, and square: 

LSTM-ED) and a cross “+”, respectively.  
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(a) FFNN-ED_training dataset 

 

(b) LSTM-ED_training dataset 

 

(c) FFNN-ED_validation dataset 

 

(d) LSTM-ED_validation dataset 

 

(e) FFNN-ED_test dataset 

 

(f) LSTM-ED_test dataset 

Figure 4 Scatter diagram of the best FFNN-ED and LSTM-ED models for T+6 

forecasting.  
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(a1) JELAWAT Event by FFNN-ED (a2) JELAWAT Event by LSTM-ED 

 
(b1) Typhoon FITOW by FFNN-ED (b2) Typhoon FITOW by LSTM-ED 

 
(c1) Typhoon DUJUAN by FFNN-ED (c2) Typhoon DUJUAN by LSTM-ED 

 
(d1) Typhoon MEGI II by FFNN-ED (d2) Typhoon MEGI II by LSTM-ED 

Figure 5 Comparison of observed and forecasted inflows obtained from the FFNN- 

and LSTM-ED models at horizons T+2, T+4 and T+6 for flood events corresponding 

to Typhoons JELAWAT, FITOW, DUJUAN and MEGI II. 
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■ FFNN-ED model    ■ LSTM-ED model 

Figure 6 Performance of 6-step-ahead inflow forecasting using FFNN- and 

LSTM-ED models based on different numbers of antecedent (input) data, where 0 

denotes data of the current time, and -n denotes data at horizon T-n (n=1-7, i.e. 

antecedent observed data). (a) RMSE. (b) R
2
. (c) NSE. 

100  150  200  250  300  350  

-7, -6, -5, -4, -3, -2, -1, 0 

-6, -5, -4, -3, -2, -1, 0 

-5, -4, -3, -2, -1, 0 

-4, -3, -2, -1, 0 

-3, -2, -1, 0 

-2, -1, 0 

-1, 0 

0 

(a) RMSE(m3/s) 

Input combination 

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

-7, -6, -5, -4, -3, -2, -1, 0 

-6, -5, -4, -3, -2, -1, 0 

-5, -4, -3, -2, -1, 0 

-4, -3, -2, -1, 0 

-3, -2, -1, 0 

-2, -1, 0 

-1, 0 

0 

(b) R2 

Input combination 

0.4 0.5 0.6 0.7 0.8 0.9 1 

-7, -6, -5, -4, -3, -2, -1, 0 

-6, -5, -4, -3, -2, -1, 0 

-5, -4, -3, -2, -1, 0 

-4, -3, -2, -1, 0 

-3, -2, -1, 0 

-2, -1, 0 

-1, 0 

0 

(c) NSE 

Input combination 



1 

 

Table 1 Typhoon events used in this study 

Dataset Typhoon Max. inflow (m
3
/s) Year Duration 

Training 

SEPAT 1,844 2007 08/07 - 09/12 

SINLAKU 3,447 2008 09/11 - 09/26 

JANGMI 3,292 2008 09/26 - 10/18 

MORAKOT 1,827 2009 08/04 - 08/24 

FANAPI 1,059 2010 09/17 - 10/07 

MEGI 1   843 2010 10/16 - 11/07 

MEARI 1,060 2011 06/23 - 07/30 

SOULIK 5,458 2013 07/12 - 07/26 

TRAMI 2,410 2013 08/20 - 09/18 

MATMO 1,180 2014 07/21 - 08/22 

FUNG-WONG II   323 2014 09/19 - 10/24 

CHAN-HOM   917 2015 07/09 - 08/06 

SOUDELOR 5,634 2015 08/06 - 09/12 

Validation 

WIPHA 2,788 2007 09/17 - 10/02 

KROSA 5,300 2007 10/03 - 10/24 

FUNG-WONG 2,040 2008 07/26 - 08/08 

PARMA   616 2009 10/03 - 10/31 

SAOLA 5,385 2012 07/29 - 09/03 

USAGI 1,195 2013 09/18 - 10/05 

Testing 

JELAWAT   439 2012 09/27 - 10/07 

FITOW 1,393 2013 10/05 - 10/24 

DUJUAN 3,786 2015 09/27 - 11/03 

MEGI II 4,227 2016 09/26 - 10/02 

 

 

  

Table
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Table 2 Performance of the FFNN- and the LSTM-based ED models at horizons 

T+1 T+6 for training, validation and test datasets.  

Model Dataset 
Time 

step 

 RMSE  R
2
  NSE 

 Mean (Max – Min)  Mean (Max – Min)  Mean (Max – Min) 

FFNN-ED Training T+1  48 (112 - 27)  0.99 (0.99 - 0.97)  0.97 (0.99 - 0.92) 

  T+2  49 (120 - 31)  0.99 (0.99 - 0.97)  0.97 (0.99 - 0.90) 

  T+3  53 (111 - 34)  0.98 (0.99 - 0.96)  0.97 (0.99 - 0.89) 

  T+4  57 (129 - 38)  0.98 (0.99 - 0.92)  0.97 (0.99 - 0.86) 

  T+5  65 (113 - 43)  0.97 (0.98 - 0.94)  0.96 (0.98 - 0.85) 

  T+6  85 (147 - 57)  0.95 (0.97 - 0.89)  0.93 (0.97 - 0.81) 

 Validation T+1  83 (194 - 54)  0.98 (0.99 - 0.94)  0.97 (0.99 - 0.93) 

  T+2  93 (137 - 69)  0.97 (0.98 - 0.94)  0.97 (0.98 - 0.93) 

  T+3  109 (156 - 83)  0.96 (0.97 - 0.92)  0.95 (0.97 - 0.91) 

  T+4  133 (182 - 106)  0.94 (0.96 - 0.89)  0.93 (0.96 - 0.87) 

  T+5  157 (212 - 129)  0.91 (0.94 - 0.85)  0.9 (0.94 - 0.83) 

  T+6  183 (295 - 144)  0.88 (0.92 - 0.78)  0.87 (0.92 - 0.75) 

 Testing T+1  83 (179 - 49)  0.97 (0.99 - 0.94)  0.96 (0.99 - 0.88) 

  T+2  99 (155 - 62)  0.96 (0.98 - 0.92)  0.95 (0.98 - 0.87) 

  T+3  120 (171 - 71)  0.94 (0.97 - 0.91)  0.92 (0.97 - 0.85) 

  T+4  139 (183 - 98)  0.92 (0.95 - 0.85)  0.9 (0.95 - 0.82) 

  T+5  171 (235 - 116)  0.87 (0.93 - 0.80)  0.84 (0.93 - 0.73) 

  T+6  208 (285 - 158)  0.81 (0.88 - 0.71)  0.77 (0.87 - 0.71) 

LSTM-ED Training T+1  59 (88 - 41)  0.97 (0.99 - 0.94)  0.97 (0.99 - 0.93) 

  T+2  61 (77 - 46)  0.97 (0.98 - 0.96)  0.97 (0.98 - 0.95) 

  T+3  74 (94 - 56)  0.96 (0.98 - 0.93)  0.95 (0.97 - 0.92) 

  T+4  89 (112 - 67)  0.93 (0.96 - 0.89)  0.93 (0.96 - 0.89) 

  T+5  108 (128 - 86)  0.9 (0.94 - 0.86)  0.9 (0.94 - 0.86) 

  T+6  129 (150 - 110)  0.86 (0.90 - 0.81)  0.85 (0.90 - 0.81) 

 Validation T+1  68 (107 - 52)  0.99 (0.99 - 0.98)  0.98 (0.99 - 0.96) 

  T+2  73 (106 - 56)  0.98 (0.99 - 0.97)  0.98 (0.99 - 0.96) 

  T+3  85 (135 - 68)  0.98 (0.98 - 0.96)  0.97 (0.98 - 0.93) 

  T+4  109 (165 - 89)  0.96 (0.97 - 0.94)  0.95 (0.97 - 0.9) 

  T+5  137 (205 - 116)  0.94 (0.95 - 0.91)  0.93 (0.95 - 0.84) 

  T+6  163 (226 - 143)  0.92 (0.92 - 0.89)  0.89 (0.92 - 0.8) 

 Testing T+1  64 (82 - 51)  0.98 (0.99 - 0.97)  0.98 (0.99 - 0.97) 

  T+2  68 (101 - 56)  0.98 (0.99 - 0.98)  0.97 (0.98 - 0.95) 

  T+3  78 (90 - 64)  0.97 (0.98 - 0.97)  0.97 (0.98 - 0.96) 

  T+4  98 (115 - 76)  0.95 (0.97 - 0.93)  0.95 (0.97 - 0.93) 

  T+5  123 (154 - 87)  0.92 (0.96 - 0.88)  0.92 (0.96 - 0.88) 

  T+6  153 (195 - 111)  0.88 (0.94 - 0.80)  0.87 (0.94 - 0.80) 
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Table 3 Performance of the FFNN- and the LSTM-based ED models for flood 

forecasting at horizons T+2, T+4 and T+6 in the test dataset based on four 

typhoon-induced flood events at different scales.  

Flood 

event 

Time 

step 
 

RMSE 

(m
3
/s) 

 R
2
  NSE  

Time shift in  

peak flow (hour) 
 

FFNN LSTM  FFNN LSTM  FFNN LSTM  FFNN LSTM  

JELAWAT
a
 

T+2  42 20  0.93 0.96  0.80 0.96  0 0  

T+4  34 29  0.89 0.91  0.87 0.90  4 2  

T+6  51 40  0.79 0.83  0.70 0.82  12 3  

FITOW
b
 

T+2  43 25  0.99 0.99  0.96 0.99  -1 -1  

T+4  52 31  0.97 0.98  0.95 0.98  1 -1  

T+6  57 40  0.94 0.97  0.94 0.97  3 0  

DUJUAN
c
 

T+2  100 64  0.96 0.98  0.94 0.98  1 1  

T+4  111 89  0.94 0.96  0.93 0.96  2 2  

T+6  175 140  0.83 0.90  0.83 0.89  4 4  

MEGI II
d
 

T+2  133 145  0.98 0.98  0.98 0.97  0 -1  

T+4  118 164  0.99 0.97  0.98 0.97  1 0  

T+6  327 203  0.89 0.96  0.87 0.95  2 0  

a
 Typhoon JELAWAT with total rainfall of 67 mm and maximal flow of 439 m

3
/s. 

b
 Typhoon FITOW with total rainfall of 255 mm and maximal flow of 1,393 m

3
/s. 

c
 Typhoon DUJUAN with total rainfall of 413 mm and maximal flow of 3,786 m

3
/s. 

d
 Typhoon MEGI II with total rainfall of 443 mm and maximal flow of 4,227 m

3
/s. 
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Abstract 12 

Operational flood control systems depend on reliable and accurate forecasts with a 13 

suitable lead time to take necessary actions against flooding. This study proposed a 14 

Long Short-Term Memory based Encoder-Decoder (LSTM-ED) model for 15 

multi-step-ahead flood forecasting for the first time. The Shihmen Reservoir 16 

catchment in Taiwan constituted the case study. A total of 12,216 hourly hydrological 17 

data collected from 23 typhoon events were allocated into three datasets for model 18 

training, validation, and testing. The input sequence of the model contained hourly 19 

reservoir inflows and rainfall data (traced back to the previous 8 hours) of ten gauge 20 

stations, and the output sequence stepped into 1- up to 6-hour-ahead reservoir inflow 21 

forecasts. A feed forward neural network-based Encoder-Decoder (FFNN-ED) model 22 

was established for comparison purposes. This study conducted model training a 23 

number of times with various initial weights to evaluate the accuracy, stability, and 24 

reliability of the constructed FFNN-ED and LSTM-ED models. The results 25 

demonstrated that both models, in general, could provide suitable multi-step ahead 26 
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forecasts, and the proposed LSTM-ED model not only could effectively mimic the 27 

long-term dependence between rainfall and runoff sequences but also could make 28 

more reliable and accurate flood forecasts than the FFNN-ED model. Concerning the 29 

time delay between the time horizons of model inputs (rainfall) and model outputs 30 

(runoff), the impact assessment of this time-delay on model performance indicated 31 

that the LSTM-ED model achieved similar forecast performance when fed with 32 

antecedent rainfall either at a shorter horizon of 4 hours in the past (T-4) or at 33 

horizons longer than 7 hours in the past (> T-7). We conclude that the proposed 34 

LSTM-ED that translates and links the rainfall sequence with the runoff sequence can 35 

improve the reliability of flood forecasting and increase the interpretability of model 36 

internals. 37 

Keywords: Flood forecast, Encoder-Decoder (ED) model, Recurrent neural network 38 

(RNN), Long short-term memory (LSTM), Sequence-to-sequence 39 

 40 

1. Introduction 41 

Floods are one of the most dangerous natural disasters that notoriously threaten 42 

human life and property. The International Centre for Water Hazard and Risk 43 

Management (ICHARM) reported that floods accounted for about 30% of the total 44 

natural disasters and affected more than 48% of people worldwide over the last 45 

century (ICHARM, 2009). Floods are always a major concern in inundation prone 46 

areas. This is especially true in Taiwan because there are, on average, three typhoons 47 

to invade this island each year, and typhoon-induced heavy rainfalls usually cause 48 

severe flood inundation in various cities near estuaries. Therefore, flood forecasting 49 

plays a pivotal role in flood mitigation, floodplain management, agricultural 50 

cultivation, and human life protection. The development of early warning systems for 51 
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flood defense encounters great challenges, which creates an outreach demand for 52 

reliable and accurate multi-step-ahead forecasts. This pinpoints the focus of scientific 53 

research for flood defense should be placed on increasing the reliability and accuracy 54 

of forecast models at longer horizons. 55 

Artificial neural networks (ANNs) can adequately mimic highly non-linear 56 

complex systems and are widely used to tackle the modelling of complex systems in 57 

hydrological fields (e.g. Dawson & Wilby, 2001; Chau, 2006; Kalteh et al., 2008; 58 

Nourani et al., 2014; Chandwani, et al., 2015). For instance, precipitation or 59 

evapotranspiration prediction (e.g., Shafaei et al., 2016; Shenify et al., 2016; Valipour 60 

et al., 2016; Nourani et al., 2017; Nourani et al., 2020, Nourani et al.,2019), flood 61 

forecasting (e.g., Chen et al., 2013; Chang et al., 2014; Lohani et al., 2014; Taormina 62 

et al., 2015; Chang & Tsai, 2016; Noori & Kalin, 2016; Humphrey et al., 2016; Tan et 63 

al., 2018), and rainfall-runoff modeling (e.g., Abrahart et al., 2007; Nourani & 64 

Komasi, 2013; Badrzadeh et al., 2015; Nourani, 2017; Shoaib et al., 2018; Nourani et 65 

al.,2018). Various studies also adopted ANNs for deploying hydrological prediction 66 

during typhoons and storm events in Taiwan. For example, Tsai et al. (2014) 67 

combined radar reflectivity and ground rainfall data to predict reservoir inflows using 68 

the adaptive-network-based fuzzy inference system (ANFIS), and Chang et al. (2014) 69 

used recurrent neural networks to make real-time multi-step-ahead flood forecasts for 70 

a sewerage system in Taipei City.  71 

The attractiveness of ANNs comes mainly from the remarkable characteristics of 72 

data mining, such as learning ability, noise tolerance, and generalizability. 73 

Nevertheless, different types of ANNs do have their own merits and limitations in 74 

modeling complex systems. For instance, the feed forward neural network (FFNN) 75 

fails to suitably manage time-series data because the state of the network is erased 76 
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after processing each data, i.e. information about the sequential order of the inputs is 77 

discarded, which is not desirable when handling inherently interrelated data points. 78 

Besides, the FFNN implements a fixed-sized sliding window protocol, which restrains 79 

the model from learning or capturing the long-term dependencies between input and 80 

output. On the other hand, recurrent neural networks (RNNs) are designed to capture 81 

temporal dynamics by sequentially processing the inputs for modelling the nonlinear 82 

relationship between input and output via cycles formed by the hidden nodes in the 83 

network. In recent years, Deep Learning (DL) has gained a lot of attention. Deep 84 

Neural Networks (DNNs) are powerful tools and achieve excellent performance on 85 

difficult tasks (e.g., Sainath et al., 2015; Liu et al., 2017; Zhou et al., 2019). The long 86 

short-term memory (LSTM) proposed by Hochreiter and Schmidhuber (1997) is a 87 

type of DNNs configured with an RNN architecture. The LSTM is used to deal with 88 

the exploding and vanishing gradient problems that may occur when training 89 

traditional RNNs with long-term lags. Recently, LSTMs have been implemented to 90 

explore its capability in time series forecasting of river flood (Le et al., 2019) and 91 

water table depth (Zhang et al., 2018; Jeong & Park 2019) as well as to learn 92 

long-term dependencies, e.g., storage effects within hydrological catchments (Kratzert 93 

et al., 2018) and model rainfall-runoff processes (Sezen et al., 2019).  94 

For neural networks, the sequence-to-sequence learning trains models by 95 

converting sequences from one domain into another domain (Sutskever et al., 2014). 96 

Sequence-to-sequence models have recently achieved significant performances on 97 

complex tasks like machine translation, video to text, and question answering (Bengio 98 

et al., 2015; Venugopalan et al., 2015; Wiseman et al., 2016; Chiu et al., 2018). 99 

Sequence-to-sequence models configured with a LSTM unit have gained marvelous 100 

achievements in various fields, like anomaly detection (Fengming et al., 2017), image 101 
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segmentation (Marmanis et al., 2018), video recognition (Zhu et al., 2017; Zhu et al., 102 

2018), machine translation (Audhkhasi et al., 2017; Malinowski et al., 2017; 103 

Costa-Jussa, 2018), and air pollution forecasting (Freeman et al., 2018; Zhou et al., 104 

2019). From the perspective of data science, hydrological analyses involve many 105 

physical processes similar to sequence-to-sequence problems. For instance, 106 

rainfall-runoff processes can be considered as the conversion of rainfall sequences 107 

into watershed discharge sequences. This provides merit to explore in-depth how the 108 

rainfall sequence can be mapped onto a runoff sequence through DNN models for 109 

reliably and accurately making multi-step-ahead flood forecasts. 110 

This study proposes a LSTM-based Encoder-Decoder (LSTM-ED) model that 111 

integrates a sequence-to-sequence learning, two LSTM units, and an 112 

Encoder-Decoder scheme to make reliable and accurate multi-step-ahead flood 113 

forecasts for the first time. In the beginning, the sequence-to-sequence learning is 114 

employed to establish a multi-input and multi-output model structure. Then, the two 115 

LSTM units and the sequence-to-sequence learning are fused into the 116 

Encoder-Decoder scheme for constructing a multi-output deep learning neural 117 

network (i.e., LSTM-ED). To demonstrate the applicability of the LSTM-ED model in 118 

multi-step-ahead flood forecasting, this study utilizes an inflow series of the Shihmen 119 

Reservoir in Taiwan as a case study. The remainder of this study is organized as 120 

follows. Section 1 introduces the study background and makes a literature review. 121 

Section 2 presents the framework of the proposed model. Section 3 introduces the 122 
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case study and materials. Section 4 presents the results and discussion of the methods 123 

applied to multi-step-ahead flood forecasting. Conclusions are then drawn in Section 124 

5. 125 

 126 

2. Methodology  127 

This study proposes a LSTM-ED model to improve the reliability and accuracy of 128 

multi-step-ahead flood forecasts. For comparison, a feed-forward neural 129 

network-based Encoder-Decoder (FFNN-ED) is also constructed. Fig. 1 illustrates the 130 

architecture of the LSTM-ED and FFNN-ED models, where Fig. 1(a) presents the 131 

sequence-to-sequence learning, Fig. 1(b) presents a prototype of an ANN neuron, Fig. 132 

1(c) presents the LSTM unit, and Figs. 1(d) and 1(e) present the frameworks of the 133 

LSTM-ED and FFNN-ED, respectively. The methods adopted in this study are briefly 134 

introduced as follows. 135 

2.1 Sequence-to-sequence learning  136 

Sequence prediction is commonly centered on forecasting the succeeding value in an 137 

observed sequence. Time series prediction problems usually concern either of the two 138 

frameworks: 1) a sequence of one input time step converted to a sequence of one 139 

output time step, or 2) a sequence of multiple input time steps converted to a sequence 140 

of one output time step. It will be more challenging to make a sequence prediction 141 
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when taking a sequence as the input, which is termed as a sequence-to-sequence 142 

prediction problem. A sequence-to-sequence prediction problem involves an input 143 

sequence (  ) and an output sequence (  ). The input sequence contains known 144 

information, and the output sequence is the prediction target. Fig. 1(a) illustrates the 145 

sequence-to-sequence learning. Input and output sequences generally have different 146 

lengths, and the implementation process will require the entire input sequence as soon 147 

as the prediction of the target start. This study establishes a prediction model M to 148 

convert the input sequence into the output sequence. A sequence (S) is defined as a set 149 

of vectors (  ) with time series relationship. 150 

Definition 1: Sequence 151 

               (1) 

                       (2) 

where n is the length of the input time series (the lookback length of time) and p is the 152 

number of elements (variables) in a vector.  153 

Definition 2: Prediction model 154 

         (3) 

In this study, the input sequences contain hourly data of ten rainfall gauge 155 

stations and the inflow data of the Shihmen Reservoir collected from the horizon t-n 156 

to the current time t. The output sequence is the multi-step-ahead reservoir inflow. 157 

That is to say, this study intends to establish a rainfall-runoff model for making 158 

reservoir inflow forecasts based on antecedent rainfall and inflow data. 159 

Definition 3: rainfall-runoff model 160 
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                           (4) 

                                        (5) 

                      (6) 

          (7) 

where I denotes a vector of the input sequence   , O denotes a vector of the output 161 

sequence   , t is the current time, n is the lookback length of time, m is the forecast 162 

horizon, and p is the number of gauge stations (rainfall or inflow in this study). 163 

2.2 Long short-term memory (LSTM) unit 164 

The LSTM units have several architectures. A common architecture comprises a core 165 

unit (the memory part) and three gate units (input, output and forget gates) that direct 166 

the information flow inside the LSTM unit (Fig. 1(c)). The computation steps of the 167 

LSTM are shown in Eqs. (8)-(16), referred from Hochreiter and Schmidhuber (1997). 168 

(1) Combine the antecedent output vector with the input vector. 169 

           (8) 

where    is the merged input vector that combines the antecedent output vector 170 

     with the input vector   . 171 

(2) Calculate the output vector of the core unit.  172 

                (9) 

where    and    are the output vector and the activation function of the core 173 

unit, respectively,    is the connection weight, and    is the bias of the core 174 

unit. 175 

(3) Calculate the output vectors corresponding to the units of the input gate, the 176 

forget gate and the output gate. 177 

                (10) 
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                (11) 

                (12) 

where   ,    and    are the output vectors (gate values) obtained from the 178 

input gate, forget gate and output gate units, respectively. The weights (  ,   , 179 

  ) and bias (  ,   ,   ) are the parameters corresponding to the three gate 180 

units.    denotes the activation function of a gate unit, and its output value falls 181 

between zero and one. 182 

(4) Calculate the new cell state vector of long-term memory. 183 

          (13) 

            (14) 

           (15) 

where     is the raw output of the LSTM unit, and     is the antecedent cell 184 

state vector (    ) that is finely tuned by the forgot gate value (  ).    is the 185 

new cell state vector of long-term memory, and it will return to the LSTM unit 186 

when being reused. In this step, the cell state vector of long-term memory gains 187 

new information but forgets some old information. 188 

(5) Calculate the output vector of the LSTM unit. 189 

             (16) 

where    is the output vector of the LSTM unit, and    is the same activation 190 

function as the one used in the core unit. The activation function can stabilize the 191 

output value after the LSTM unit are reused many times. The output gate value 192 

(  ) can control whether the LSTM unit should produce an output or not. In 193 

addition, the cell state vector is not affected by    in this step such that it is 194 

much easy to keep the raw output (   ) of this LSTM unit for the next reuse. 195 
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2.3 Encoder-Decoder model  196 

Encoder-Decoder (ED) models have been developed to effectively tackle the challenging 197 

sequence-to-sequence prediction problems lately. From the perspective of model 198 

architecture, an ED model has two implementation phases: the first is to read the input 199 

sequence and encode it into a fixed-length vector, and the second is to decode the 200 

fixed-length vector and output the predicted sequence. The innovation of the ED 201 

model is that the model facilitates a fixed-sized internal representation such that input 202 

sequences are read to and output sequences are read from. It was noticed that an ED 203 

model configured with LSTM was developed to cope with natural language 204 

processing problems and achieved state-of-the-art performance in the text translation 205 

field. This study intends to implement the ED architecture for translating the rainfall 206 

sequence into the runoff sequence, where the lengths of the input sequence and the 207 

output sequence are fixed. The two ED models with different encoders and decoders 208 

are introduced as follows.  209 

2.3.1 FFNN-ED model 210 

Fig. 1(d) illustrates the structure of the FFNN-ED model, which uses the FFNN in the 211 

encoder and decoder schemes. The input sequences are reshaped to a 1-dimensional 212 

vector before entering the encoder. Then the encoder generates a 1-dimensional 213 

encoded vector (error vector) and feeds it to the decoder. Finally, the decoder 214 

produces a 1-dimensional vector of the output sequence. It is noted that the FFNN-ED 215 

model servers as a comparative model in this study.  216 

2.3.2 LSTM-ED model  217 

The structure of the proposed LSTM-ED model is shown in Fig. 1(e). This study 218 

utilizes the LSTM unit in the encoder and decoder schemes for improving the learning 219 

of the continuity in input and output sequences. The LSTM unit will be reused many 220 
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times for “reading” the input sequence and “writing” the output sequence sequentially. 221 

The numbers of times to reuse the LSTM units in encoding and decoding schemes 222 

depend on the lengths of the input sequence and the output sequence, respectively. For 223 

the encoding phase, the LSTM unit serves as a “collector” for accumulating rainfall 224 

information. The LSTM unit can well simulate the physical mechanism of the 225 

rainfall-runoff process, as shown in the previous studies (e.g., Kratzert, et al., 2018). 226 

The process of reading a vector in the input sequence one-by-one is similar to the way 227 

that rain falls to the ground sequentially. Integrating information through the recurrent 228 

architecture is similar to the concentration of river flow with a time lag. Discarding 229 

the previous input information by the forget gate (i.e., the LSTM computation step (4) 230 

in Section 2.2) is similar to the hydrological phenomenon of precipitation loss and 231 

infiltration during the rainfall-runoff process. When the encoder reads a vector, the 232 

LSTM unit will generate a temporary encoded vector. The encoding process will 233 

repeat n times so that all the input vectors enter the LSTM to produce their 234 

corresponding encoded vectors. For the decoding phase, the LSTM unit generates the 235 

output value of forecasted discharge (i.e., the reservoir inflow) sequentially. The input 236 

to the LSTM unit during the decoding phase is a vector that merges the final encoded 237 

vector and the output value (reservoir inflow) of the previous LSTM. It is noted that 238 

the currently observed reservoir inflow is used to produce the output value of the 239 

LSTM at horizon of 1 hour ahead (T+1) because there is no antecedent forecasted 240 

reservoir inflow at the beginning of the decoding phase. The recurrent and sequential 241 

processes (features) of the decoding phase that generates the output sequence is 242 

similar to the continuity of river flow in a watershed. The LSTM unit fed with the 243 

previous flow information can maintain the continuous feature of flows, which is not 244 

available in the FFNN unit of the FFNN-ED model. The advantage of the LSTM-ED 245 
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model is that it can produce more stable and less fluctuated output values. Therefore, 246 

This study expects the LSTM-ED model can perform better than the FFNN-ED 247 

model. 248 

2.4 Evaluation of model performance 249 

This study adopts the root mean square error (RMSE), the coefficient of 250 

determination (R
2
), and the Nash–Sutcliffe model efficiency coefficient (NSE) to 251 

evaluate the forecast results of the two ED models. The RMSE value represents the 252 

error between the forecasted and the observed values, and its unit is the same as the 253 

output value of the model. The RMSE value ranges from 0 to infinity. A model with 254 

its RMSE value closer to 0 implies that it can produce more accurate forecasts. The 255 

RMSE can be calculated by the following equation.  256 

      
 

 
         
 

   

 (17) 

where N is the number of samples,    is the target output value, and    is the model 257 

output value.  258 

The R
2
 value is the proportion of the variance in the dependent variable that is 259 

predictable by the independent variable(s), and it is commonly used to evaluate the 260 

linear correlation between model outputs and target outputs. The R
2
 value ranges from 261 

0 to 1. A model with its R
2
 value closer to 1 implies it can predict more accurately.  262 

The R
2
 value can be calculated by the following equation. 263 

   

 
 
 
 

                
   

           
             

    
 
 
 
 

 (18) 

where    is the mean of target outputs, and    is the mean of model outputs. Other 264 

symbols are consistent with those of Eq. (17). 265 
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The NSE is commonly used to evaluate hydrological prediction models. The 266 

NSE value ranges from negative infinity to 1. A model with NSE value closer to 1 267 

implies it can predict more accurately. A model with its NSE value less than 0 reveals 268 

it performs worse than a model that produces mean values only. The NSE value can 269 

be calculated by the following equation. 270 

      
        

  
   

          
   

 (19) 

where all the symbols are consistent with those of Eqs. (17) and (18). 271 

 272 

3. Case study and materials 273 

3.1 Study area 274 

The Shihmen Reservoir basin with an area of 763.4 km
2
 is located in northern Taiwan 275 

(Fig. 2). It has an annual average rainfall of 2,504 mm and an annual inflow of 1.47 276 

billion m
3
. In this basin, 76% of rainfall occurs within six months (May-October), 277 

with a high incidence of typhoon events (Water Resources Agency, Taiwan, 2016). 278 

This is consistent with typical rainfall-runoff characteristics in Taiwan.   279 

3.2 Observational data 280 

This study collected the monitoring records associated with 23 typhoon events 281 

occurring from 2007 to 2016, including hourly rainfall data of ten rainfall gauge 282 

stations and the inflow data of the Shihmen Reservoir. Table 1 shows the information 283 

of typhoon events used in this study. A total of 12,216 hourly data were allocated into 284 

three datasets for model training (8,232 from 13 events), validation (2,688 from 6 285 

events), and testing (1,296 from 4 events). The training dataset was used to adjust 286 

model parameters such as the weights and bias of the neural network. The validation 287 

dataset was used to verify whether a model is undertrained or overfitting. The test 288 

dataset was used to evaluate model performance. 289 
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3.3 Model construction 290 

After data pre-processing, the observational data were organized into an input 291 

sequence and an output sequence. According to historical rainfall-runoff data of this 292 

basin, the longest flood propagation time was 8 hours. Therefore, the input sequence 293 

contained reservoir inflows and hourly data (traced back to the previous 8 hours of the 294 

current time) of ten rainfall gauge stations. Considering the demand for the flood 295 

control of the Shihmen Reservoir, the output sequence stepped into 1- up to 6- 296 

hour-ahead reservoir inflow. 297 

The FFNN-ED model behaved in a similar way to the BPNN model with 30 298 

neurons in the hidden layer (i.e., the length of the encoded vector), and it was trained 299 

by the Levenberg-Marquardt optimizer using MATLAB 2018b. The number of 300 

neurons was determined by trial and error. For comparison purposes, the length of the 301 

encoder vector for the LSTM-ED model was also set as 30. The LSTM-ED model 302 

was implemented in Python, where the Python library Keras and the Adam optimizer 303 

compiling were used in the training stage, and the dropout regularization was adopted 304 

to avoid overfitting.  305 

 306 

4. Results and discussion  307 

Three evaluation indicators were conducted to evaluate the performance of the 308 

LSTM-ED and FFNN-ED models. To verify model reliability, this study also 309 

evaluated the model performance of four test flood events. Finally, the impacts of the 310 

number of antecedent observed data (model inputs) on model performance were 311 

investigated. 312 

4.1 Evaluation of model performance 313 

It was worth mentioning that the structures of LSTM-ED and FFNN-ED models were 314 
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different, so as their training algorithms. Therefore, this study investigated the 315 

effectiveness and reliability of both models. Considering the FFNN-ED model had no 316 

recurrent structure, the Levenberg-Marquardt optimizer with the second-order training 317 

characteristics was implemented because it could reduce errors faster than the 318 

gradient descent optimizer with the first-order training characteristics. In contrast, the 319 

LSTM-ED model has a complex recurrent structure, an optimizer (such as Adam) 320 

with the first-order training characteristics can reduce the complexity of the training 321 

algorithm and make the model easy to train. The first-order training algorithm, 322 

however, required more iterations, and therefore the training time of the LSTM-ED 323 

model was much longer than the FFNN-ED model. It is noticed that the computation 324 

time of the LSTM-ED model is, on average, about 20 times longer than that of the 325 

FFNN-ED model (Computer specifications: Intel i7-6700 CPU, 16GB Memory, and 1 326 

TB Storage. FFNN-ED: Matlab 2018b, Levenberg-Marquardt Optimizer, and 3-5 327 

minute training time per round. (2) LSTM-ED: Python 3.6 with Keras 2.2.4, Adam 328 

Optimizer, and 60-100 minutes training time per run). The training time, however, is 329 

not the main issue to prohibit the utilization of these models. According to the runtime 330 

records of the test case, the computation time of the two constructed Encoder-Decoder 331 

models (FFNN-ED and LSTM-ED) for on-line forecasting is less than 1 minute. This 332 

study raised more concerns about the accuracy, stability, and reliability of the 333 

constructed models instead. Therefore, both models were trained 20 rounds (with 334 

different initial weights) using the training datasets, and then model performances 335 

were evaluated by validation and test datasets. The best model of each framework was 336 

determined as the model that produced the highest R
2
 value averaging over six time 337 

steps in the validation stages. Finally, the best FFNN-ED model was compared with 338 

the best LSTM-ED model.  339 
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The results (maximum, minimum, and mean values over 20 rounds) of the 340 

FFNN-ED and the LSTM-ED models at each of the six horizons in all three stages are 341 

shown in Table 2 and Fig. 3. It appears that both models, in general, could be trained 342 

almost perfectly, in terms of very small RMSE values and very high R
2
 and NSE 343 

values at each horizon in the training stages. In addition, the forecast errors of both 344 

models increased as the forecast horizon increased, which was caused by the lack of 345 

future rainfall information in the long forecast horizons. The results of performance 346 

show that the FFNN-ED models, in general, perform better than the LSTM-ED 347 

models in the training stages, but this is not the case in validation and testing stages 348 

(in fact, their performances are quite the opposite). The FFNN-ED models produced 349 

much larger error ranges than the LSTM-ED models in all three stages. For the 350 

FFNN-ED models, their mean values of the RMSE in the validation and testing stages 351 

at the six horizons are 50%−250% higher than those of the training stages. For the 352 

LSTM-ED model, the RMSE values are only slightly higher in the validation and 353 

testing stages than in the training stage. The results of performance showed that the 354 

LSTM-ED model reduced forecast errors (RMSE) by 3% up to 38% in the testing 355 

stages at horizons 1 to 6 hours ahead (T+1−T+6), as compared to the FFNN-ED 356 

model. Fig. 3 explicitly presents the detailed results (maximum, mean, and minimum 357 

over 20 rounds) of both models at each of the six horizons in all three stages. The 358 

results (20 rounds) of the constructed LSTM-ED models are much more consistent 359 

than those of the constructed FFNN-ED models. The results of performance also 360 

showed that the LSTM-ED model produced higher R
2
 and NSE values than the 361 

FFNN-ED model, especially true at long horizons (> 2 hours) in the validating and 362 

testing stages. These results support that the LSTM-ED model outperforms the 363 

FFNN-ED model, in terms of model stability, reliability, and accuracy.  364 
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Fig. 4 shows the scatter diagrams of the best FFNN-ED and LSTM-ED models 365 

for T+6 forecasting in the training, validating, and testing stages, respectively. The 366 

results of T+6 forecasting show that both models, in general, fit well to the observed 367 

data in all three stages, and the LSTM-ED model has better performance (in terms of 368 

higher R
2
 and NSE values and narrowly dispersed points) than the FFNN-ED model 369 

in the validating and testing stages. This is especially true in the testing cases, as the 370 

study can easily conclude that the LSTM-ED model can make more accurate T+6 371 

forecasting, especially under the conditions of high flow (>2000 cms), than the 372 

FFNN-ED model. 373 

4.2 Evaluation of model reliability  374 

According to the flood forecast results of the four test events shown in Table 3, the 375 

LSTM-ED model is superior to the FFNN-ED model with respect to RMSE, R
2
, and 376 

NSE values. The hydrographs (near the peak flow) of observations and model 377 

forecasts at horizons T+2, T+4, and T+6 are illustrated in Fig. 5. The first flood event 378 

induced by Typhoon JELAWAT (total rainfall < 67 mm, maximal inflow=439 m
3
/s) 379 

had the smallest magnitude. The performances of both models for this event, however, 380 

are the worst, as compared to those of the other three test events. As shown in Figs. 381 

5(a1) and 5(a2), both models under-estimated peak flows. 382 

The second flood event induced by Typhoon FITOW was also a small-scale 383 

flood event, which was considered less hazardous to the Shihmen Reservoir. Its 384 

maximal flow was 1,393 m
3
/s, and the accumulated rainfall in the basin during the 385 

first 48 hours of the typhoon period was 255 mm. Figs. 5(b1) and 5(b2) indicate that 386 

the LSTM-ED model performs better in flow peak at horizons T+2, T+4, and T+6. 387 

Besides, the LSTM-ED model maintains similar performance at all the three forecast 388 

horizons, yet the forecast error of the FFNN-ED model increases significantly. 389 
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Moreover, the LSTM-ED model can accurately forecast the peak flow, whereas the 390 

FFNN-ED model underestimates the peak flow.  391 

The third flood event induced by Typhoon DUJUAN was a large-scale flood 392 

event, and it was considered moderately hazardous. Its maximal flow reached 3,225 393 

m
3
/s, and the accumulated rainfall in the basin during the first 48 hours of the typhoon 394 

period achieved 389 mm. Because there were multiple peaks in the rainfall 395 

distribution, the forecasts obtained from both models were unstable and undulate in 396 

the rising limb of the flood. The forecast results of both models at horizons T+2, T+4, 397 

and T+6 illustrated in Figs. 5(c1) and 5(c2) display unstable forecasts and multiple 398 

peaks. The results of this flood event forecasting show that the forecasting at horizons 399 

T+4, unexpectedly, performs better than the forecasting at horizons T+2 and T+6. It is 400 

observed from Figs. 5(c1) and 5(c2) that the interval between peaks in the rainfall 401 

distribution spans approximately 4 hours. This information may be the key to solving 402 

flood forecasting problems suffering from multi-peak rainfall distribution, which will 403 

be investigated in future research. 404 

The fourth flood event caused by Typhoon MEGI II was a large-scale flood event, 405 

and it was considered highly hazardous. Its maximal flow reached 4,227 m
3
/s, and the 406 

accumulated rainfall in the basin during the first 48 hours of the typhoon period 407 

achieved 443 mm. Table 3 indicates that the LSTM-ED model is superior to the 408 

FFNN-ED model at horizons T+2, T+4 and T+6. The RMSE value of the LSTM-ED 409 

model was about 50% smaller than that of the FFNN-ED model at each horizon. In 410 

addition, the R
2
 and NSE values of the LSTM-ED model still exceeded 0.95 for all 411 

the three horizons. Figs. 5(d1) and 5(d2) clearly show that the LSTM-ED model 412 

produces more accurate forecasts of peak flow than the FFNN-ED model.  413 

Overall, the LSTM-ED model not only can produce more accurate forecasts on 414 
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high flow, especially true for flood events induced by single-peak rainfall 415 

distributions (e.g., MEGI II, FITOW), but also can produce more stable forecasts on 416 

flood events of multi-peak rainfall distributions (e.g., JELAWAT, DUJUAN), as 417 

compared with the FFNN-ED model. The FFNN-ED model could easily learn the 418 

linear correlation exhibiting in the rainfall-runoff process but failed to simulate the 419 

dynamics of the system effectively. Therefore, the FFNN-ED model either seriously 420 

over-estimated or under-estimated peak flow and had an obvious time-delay (time 421 

shift) problem. As for the LSTM-ED model, the output flow value (e.g., T+i) of a 422 

LSTM decoder is recurrently fed into the same decoder unit for making the forecast at 423 

the next horizon (e.g., T+i+1). Therefore, the flow forecasts correlate with their 424 

previous output flow. As described in Section 2.3, the process of information flow of 425 

the LSTM structure is similar to the rainfall-runoff process. The forecast reliability of 426 

the LSTM-ED model is significantly higher than that of the FFNN-ED model 427 

throughout the rising limb, peak flow, and the recession limb of a flood. In short, the 428 

LSTM-ED model not only achieves a better outcome than the FFNN-ED model in 429 

simulating complex rainfall-runoff processes but also improves the reliability and 430 

accuracy of multi-horizon forecasting of flood events.  431 

4.3 Impact assessment of input combination on model performance 432 

This study reduced the length of the input sequence and identified the impact of the 433 

length reduction on the two ED models. Fig. 6 illustrates the T+6 forecast 434 

performance of the FFNN-ED and LSTM-ED models with different input 435 

combinations. The results show that the two models experience a continuous decrease 436 

in performance as the length of the input sequence decreases, and this situation is 437 

notably worse for the FFNN-ED model. The results of impact assessment show that 438 

there is no significant difference in the performances of the LSTM-ED model with 439 
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input information spanning 8 (T-7, ..., 0) down to 5 (T-4, ..., 0) continuous hours. 440 

Besides, the FFNN-ED model performs inferior to the LSTM-ED model under the 441 

same scenarios. Comparing input information spanning 4 (T-3, …, 0) and 8 (T-7, …, 0) 442 

continuous hours, the RMSE value increases by 20% while the R
2
 and NSE values 443 

decreases by 10% for the FFNN-ED model. In contrast, the RMSE value decreases by 444 

10% while the R
2
 and NSE values make no significant changes for the LSTM-ED 445 

model. The results indicate that the LSTM-ED model is able to achieve similar 446 

forecast performance with less input information while the FFNN-ED model does 447 

have difficulty in making such achievement. This study speculates that this is because 448 

the recurrent architecture of the LSTM unit feeds the next input vector with the output 449 

vector of the previous unit such that the model can learn the temporal pattern in a 450 

continuous way. 451 

 452 

5. Conclusions 453 

This study proposes a LSTM-based Encoder-Decoder (LSTM-ED) framework to 454 

model multi-step-ahead flood forecasting. The results reveal that fusing the LSTM 455 

unit with sequence-to-sequence learning into the ED model not only can improve the 456 

accuracy and reliability of flood forecasting but also increase the interpretability of 457 

the framework through translating the rainfall sequence to the runoff sequence. 458 

Besides, the LSTM-ED model can better learn the rainfall-runoff process and provide 459 

more reliable and accurate multi-step ahead forecasts than the FFNN-ED. The 460 

findings of this study are summarized below.  461 

(1) The FFNN-ED model can produce a small error and consume less time in 462 

convergence during model training, but it suffers from unstable (wide variability) 463 

and overfitting problems. The LSTM-ED model can reduce multi-step-ahead 464 
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forecast error and significantly mitigate the overfitting problem to provide more 465 

stable performance. Still, it demands more time in training the model. 466 

(2) In the flood forecasting of four test events, the time-delay at the horizon of 6 467 

hours ahead (T+6) for the LSTM-ED model is much shorter than that of the 468 

FFNN-ED model. The LSTM-ED model not only can make more accurate 469 

forecasts on high flow of flood events induced by single-peak rainfall 470 

distribution but also can make more stable forecasts on flood events induced by 471 

multi-peak rainfall distribution, taking the FFNN-ED model as the benchmark. 472 

(3) The LSTM-ED model plays an important role in modeling the rainfall-runoff 473 

process for multi-step ahead flood forecasts, where the LSTM unit in the encoder 474 

can effectively integrate sequential rainfall patterns with watershed discharge 475 

while the LSTM decoder can systematically and precisely forecast the flow 476 

sequence in a continuous way. 477 

(4) According the impact assessment of the length of the input sequence on model 478 

performance, the LSTM-ED model can produce much better performances than 479 

the FFNN-ED model, especially when being fed with less input information. 480 

This study speculates that this is because the architecture of the LSTM unit feeds 481 

the next input vector with the output vector of the previous unit such that the 482 

model can learn the temporal pattern in a continuous way. 483 

A barrier to applying the ANNs (or DNNs) is their black-box nature that could 484 

not provide explicit internal representation of hydrologic processes. In this study, the 485 

input sequence was translated into the output sequence by configuring them into the 486 

LSTM-based Encoder-Decoder learning framework and the implementation process 487 

of the LSTM-ED model was linked with hydrological processes (i.e. the 488 

rainfall-runoff process), as discussed briefly in Sect. 2.3.2. We believe that improving 489 
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the reliability and accuracy of model performance and increasing the interpretability 490 

of the network internals would increase the trust in data-driven approaches and lead to 491 

more practices in hydrologic sciences. 492 

There are quite many sequence-to-sequence problems encountered in 493 

hydrological fields. This study is only a case that applies the LSTM-ED to modeling 494 

the rainfall-runoff problem. More extensive research on hydrological disasters (e.g., 495 

regional flooding or drought) and water resources management (e.g., inflow 496 

forecasting and groundwater estimation) using the proposed methods can be explored 497 

in the future. 498 
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