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Abstract. Capture-recapture methods are a common tool in ecological statistics, which have been
extended to spatial capture-recapture models for data accompanied by location information. However,
standard formulations of these models can be unwieldy and computationally intractable for large spatial
scales, many individuals, and/or activity center movement. We provide a cumulative series of methods
that yield dramatic improvements in Markov chain Monte Carlo (MCMC) estimation for two examples.
These include removing unnecessary computations, integrating out latent states, vectorizing declarations,
and restricting calculations to the locality of individuals. Our approaches leverage the flexibility provided
by the nimble R package. In our first example, we demonstrate an improvement in MCMC efficiency (the
rate of generating effectively independent posterior samples) by a factor of 100. In our second example, we
reduce the computing time required to generate 10,000 posterior samples from 4.5 h down to five minutes,
and realize an increase in MCMC efficiency by a factor of 25. These approaches can also be applied gener-
ally to other spatially indexed hierarchical models. We provide R code for all examples, an executable web-
appendix, and generalized versions of these techniques are made available in the nimbleSCR R package.
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INTRODUCTION

Capture-recapture methods are the primary
tools for estimating abundance and demographic
parameters in populations of wild animals (Wil-
liams et al. 2002). These methods rely on statisti-
cal modeling of longitudinal encounter histories
of individuals in a population, where repeated
observations (individuals seen or not seen)
within short (closed) periods provide informa-
tion about population density and structure, and
repeated observations over longer (open) periods
provide information about demographic rates
such as mortality, recruitment, and maturation.
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Spatial capture-recapture (SCR) models accom-
modate heterogeneity in capture probabilities by
modeling individual and trap-specific capture
probabilities depending on the individuals’ latent
centers of activity and space use in relation to the
explicit location of traps or other detectors (Efford
2004, Borchers and Efford 2008). Closed SCR mod-
els have proved to provide more precise and
robust estimates of population densities than non-
spatial models (Royle et al. 2014), and also enable
estimation of the distribution of individuals within
study areas and parameters relating to individu-
als” spacing behavior (Reich and Gardner 2014,
Sutherland et al. 2015, Royle et al. 2016).
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Further, by using spatially referenced cap-
ture-recapture data obtained from Pollock’s
robust sampling design with open SCR models
(Gardner et al. 2010), one may model dispersal
between primary sampling occasions (Ergon and
Gardner 2014, Royle et al. 2018). When dispersal
distance distributions are accurately identified in
such models, the process of emigration can be
disentangled from that of mortality (Ergon and
Gardner 2014). By estimating true survival, as
opposed to “apparent survival” which con-
founds mortality and emigration, these SCR
models can estimate life-history traits and other
population processes in a more mechanistic way
than non-spatial models.

Despite their popularity (Royle et al. 2018),
SCR models encounter numerous computational
challenges which pose serious obstacles for their
practical use (Gardner et al. 2018). For large
study areas with many detectors, determining
the probability of capture history records
involves calculations for all detectors, even those
extremely distant from any given individual
activity, which becomes very costly for large-
scale studies (Milleret et al. 2018b). Markov chain
Monte Carlo (MCMC) updating of activity center
(AC) locations may be done separately for x- and
y-coordinates when they could be done jointly.
Modeling the movement of ACs often induces
inefficient MCMC updating, as do methods for
constraining ACs to the valid study area. And
data augmentation of never-observed individuals
inherently leads to some unnecessary calculations
of observation probabilities when individuals
are deemed as not being a true member of the
population.

Bayesian hierarchical models, such as SCR
models, are often formulated using the BUGS
modeling language (Lunn et al. 2009) and esti-
mated using MCMC (Brooks et al. 2011). Main-
stream MCMC software includes WinBUGS,
JAGS (Plummer 2003), and Stan (Stan Develop-
ment Team 2014). Recently, the nimble R package
has been developed, offering new degrees of cus-
tomization for MCMC (de Valpine et al. 2017).
The use of custom-written distributions, and the
flexibility of nimble’s MCMC engine, has pro-
vided huge gains in areas of ecological statistics
(Turek et al. 2016) and the study of MCMC algo-
rithms (Turek et al. 2017). Here, for example, the
flexibility introduced by nimble allows us to
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work around the issue of calculating likelihood
of capture for all traps, providing significant
computational savings for fitting SCR models.

In this paper, we use nimble to demonstrate
several generally applicable techniques for
improving the MCMC sampling efficiency of (1) a
simple but computationally intensive SCR model
covering a large spatial extent (Milleret et al.
2019), and (2) an open robust-design SCR model
with nested sampling occasions of varying length
(Ergon and Gardner 2014). Focusing on these
examples, we demonstrate techniques to decrease
the overall algorithm runtime, while increasing
MCMC mixing to improve the accuracy of poste-
rior inferences. These techniques include vectoriz-
ing model calculations to reduce model size;
implementing model-specific likelihood functions
to remove latent states thus reducing the dimen-
sionality of MCMC sampling; disabling unneces-
sary model calculations for never-detected
individuals when using data augmentation;
applying joint MCMC sampling to correlated
model parameters to improve MCMC mixing;
and restricting trap calculations to the locality of
each individual. Using these techniques, we real-
ize efficiency gains by a factor of 100 in our first
example, and a factor of 25 in our second exam-
ple, the robust-design SCR model. Similar tech-
niques as those demonstrated would also apply
to other spatially indexed hierarchical models.

MATERIALS AND METHODS

We consider two example SCR models which
both present computational challenges. The first
(“Wolverine”) considers a simple closed SCR
model for data from noninvasive genetic sam-
pling of wolverines on a large spatial scale in
Norway (Gulo gulo, Milleret et al. 2019). The sec-
ond (“Vole”) is a more complex SCR model on a
smaller spatial scale, modeling an open popula-
tion of field voles with activity center movements
(Microtus agrestis, Ergon and Gardner 2014).
Functions and distributions implementing the
techniques described in this section are available
in generally applicable forms in the accompany-
ing nimbleSCR R package (Bischof et al. 2020).
We first describe each model, followed by the
strategies used to improve MCMC efficiency.
Finally, we describe the metric used to measure
MCMC efficiency.
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Wolverine model

This example has a spatial extent over
200,000 km?. The data, collected throughout
Norway, consist of 453 detections from 196 indi-
vidually identified female wolverines using non-
invasive genetic sampling and search encounter
methods (Milleret et al. 2019). The search area
was discretized to a detector grid with a 2 km
resolution, and only searched grid cells were
included in the analysis. This resulted in 17,266
unique detectors, with binary-valued detections
of individuals within grid cells. Data and addi-
tional details are available at the dryad reposi-
tory (Milleret et al. 2018a).

The Wolverine model combines a spatial
point process model of individual ACs, data
augmentation to model the true population
size, and an observation model for detection
probabilities and capture histories. Define the
AC of individual i as s; = (s},s!), where s¥ and s/
follow independent uniform prior dlstrlbutlons
spanning the study area. As some regions are
unsuitable habitat (i.e., water), AC locations
must be constrained. We use a habitat mask by
defining a binary matrix H over the study area,
where H,, = 1 indicates that cell (x, y) is suit-
able habitat. Activity center locations are then
constrained as w; ~ Bernoulli(H, o v), where each
w; is a data value specified as being equal to
one.

For data augmentation (Royle 2009), we add
Nayg virtual individuals. The augmented matrix
y has dimension (Ngps + Nayg) X R, with
R =17,266 detectors and Nyps = 196 unique
individuals. Define binary variables z; with inde-
pendent z; ~ Bernoulli(¢) prior distributions, rep-
resenting inclusion in the population. For the
Nobs sighted individuals, z; = 1 is observed data,
while the remaining z; is unobserved. Total I\;pop—
ulation size N is estimated as N=) NobortNaug’y
using the prior distribution ¢ ~ Uruform(O 1) to
induce a flat prior on N (Royle et al. 2007).

The probability of detecting individual i at
detector 7 is p;, = po exp(-lls; — x,1*/(26%)), where
x, is the location of detector r, and py and ¢ are
the maximal value and scale of decay for detec-
tion probability. Detections are modeled as y;, ~
Bernoulli(p; , z;). The complete Wolverine model
definition is given in Eq. 1, where indices r take
therangel, ..., R.
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¢ ~ Uniform(0,1)
po ~ Uniform(0,1)
6 ~ Uniform(0, 50)
N= Z 0b§+Naug
(N obs + N aug)

s} ~ Uniform (X min, Xmax )

? ~ Uniform (¥ pin, ¥ max) )
w; ~ Bernoulli (H S?,S?)

z; ~Bernoulli(¢)

si=(sis])

1 2
Pir =Po-exp( —55llsi — x|
y;, ~Bernoulli (pi,rz,-)

i=1,.

We use four refinements of the model and
MCMC sampling, with the goal to improve
MCMC efficiency: (1) Vectorize computations
and put the habitat mask into a custom distribu-
tion, (2) jointly sample AC location coordinates,
(3) restrict calculations to local detectors and
sparse representation of data, and (4) skip unnec-
essary calculations when z; = 0. We next describe
each of these techniques, and nimble code corre-
sponding to each cumulative refinement appears
in Appendix S1.

Vectorized computations.— Vectorization refers to
carrying out a set of matching model computa-
tions more efficiently, as is possible in nimble but
neither WinBUGS or JAGS. nimble supports vec-
torized model declarations, reducing the total
nodes in the model and potentially improving
MCMC efficiency. We vectorized both detection
probabilities and data likelihoods for each indi-
vidual across the R detectors. For the vector of
detection probabilities p;,.;, we used a vector-
ized model declaration. For the vectorized data
likelihood of y; ,.r, we used a custom likelihood
function for the entire (length-R) observation his-
tory of one individual.

This technique is only beneficial when the en-
tire joint likelihood of y; ,.x is always calculated
simultaneously, as is the case here for updates of
Po, ©, or z;. In a different model, this technique
could result in inefficiencies if any MCMC
updates require likelihood calculation for only a
subset of ¥, ; ..
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Joint sampling of AC locations.—We apply joint
(block) sampling of the s¥ and s! coordinates of
each AC. nimble allows the assignment of block
samplers to arbitrary variables, applying multi-
dimensional Metropolis-Hastings sampling. This
results in computational savings since an MCMC
update of s; requires only one calculation of all
(length-R) relevant detection probabilities and
data likelihoods. In contrast, independent
updates of the sf and s! components will require
two likelihood evaluations, one for each compo-
nent.

Local detector evaluations and sparse observation
matrix.—We move detection probability calcu-
lations inside the vectorized likelihood and
additionally restrict these calculations to
detectors within a maximum realistic radius
(dmax) of the AC s; In advance, we identify
the set of detectors located within d,,., from
each cell of the habitat matrix. The modified
distribution identifies the grid cell containing
s;, and the set of detectors within d,., from
it. Calculations of p; are then restricted to
this set of detectors.

We also convert to a sparse representation of
the detection matrix y. In this representation,
each row contains the detector identification
numbers (values of r) that detected the corre-
sponding individual. The number of columns is
therefore equal to the maximum number of
detections of any particular individual. This
sparse representation allows for a smaller model
and equivalent, but more efficient, likelihood cal-
culations.

Skip  unnecessary  calculations.—Calculations
can be avoided when any z; = 0, that is, an
augmented virtual individual is not currently
included in the population. In that case, nei-
ther the distances to each detector nor the
detection probabilities need be calculated. We
modify the custom likelihood again, to accept
z; as an argument. When z; = 1, the calcula-
tions take place as before. When z; =0, the
likelihood is one if the individual was never
observed—always the case for augmented
individuals—which can be calculated without
any distances or detection probabilities. This
modification can save substantial computa-
tion, especially when N, is large, that being
the conservative approach.
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Vole robust-design model

Our second example considers a robust-design
SCR model of field voles in the Kielder Forest of
northern England (M. agrestis, Ergon and Gard-
ner 2014), with four primary sampling occasions
and nested secondary trapping sessions. A total
of 158 unique individuals are considered to have
static ACs within primary occasions, but to dis-
perse between primary occasions. See Ergon and
Gardner (2014, Appendix S2) for further details,
(Ergon and Lambin 2013) for the data, and
Appendix S2 for the original JAGS code.

The Vole model contains individual survival
between primary sampling occasions, dispersal
of ACs between primary occasions, and spatial
capture-recapture histories. Define the AC of
individual i on primary occasion k as s;y=
(s¥est;)- On first capture, the components s}y
and s;p are given uniform prior distributions
spanning the mean location of captures for indi-
vidual i during that occasion. The dispersal
between primary occasions k and k + 1 uses a
uniformly distributed dispersal angle 6; and an
exponentially distributed dispersal distance dj
with rate parameter Ag, where G; is the sex of
individual i (1: female; 2: male), and A; and A, are
sex-specific parameters. Thus, the AC compo-
nents are related across primary occasions as
§Tip1 =Sy +dixcos(0y) and sly/kﬂ = sly/k + dysin(y).

The survival model uses binary indicator
variables, where z;x =1 indicates individual i is
alive on occasion k. We condition on the first
observation in primary occasion F;, as zjr, =1.
The suryival process follows as zjgyq~
Bernoulli((d)G’_)Tk zik |, where survival probability
depends on sex and temporal duration. G; gives
the sex of individual i, Ty is the time (in months)
between occasions k and k + 1, and ¢; and ¢, are
sex-specific survival rates. When ¢, is a function
of a continuous covariate, the model is only
invariant to the choice of time unit of T} when
using a loglog (log-hazard) link (Ergon et al.
2018).

The observation model uses hazard rates to
calculate trap capture probabilities specific for
each individual, trap, and secondary trapping
session. Individual voles can be captured in at
most one trap during any trapping session, and
we condition on the primary session of the first
capture of each individual. For individual 7, on
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secondary trapping session j of primary occasion
k, the capture hazard rate i, = b -exp
(= (IIsix —x+||/06,)""), where the location of trap
ris x,, and each k; and o; are sex-specific observa-
tion parameters. Baseline hazard is b=
Ao(By )/ (TOPH=2) (g yI(Gi=2), using indicator function I
(-), time of day TODj (1: evening; 2: morning),
and baseline hazard rate Ag. By is the effect of
morning trapping sessions, and p, is that of males.

Total capture hazard rate is hijj. = Zf,zlhijk,/.
Probability of “no capture” is mj=exp
(—hijszix), which is unity when z;; = 0. Proba-
blllty of capture is Tijkr = (1 — nijkO)hijkr/hijk* in trap
1, accounting for competing risks among traps
and satisfying Zf:on'ijkr =1.

We again use data values w;; = 1 along with a
Bernoulli distribution to induce likelihood calcu-
lations. Observation data y is a 3-dimensional
array, where y;; = 0 indicates that individual i
was not captured in trapping session j of primary
occasion k, and y;; = r indicates a capture in trap
7. The complete Vole model definition is given in
Eq. 2, where all indices j take the range of the
number of secondary trapping sessions in the rel-
evant primary occasion k, and all indices r
assume the range 1, ..., R.

B1, B, ~ Uniform(0.1,10)
p ~Uniform(0.01,0.99)
Mo =—log(1—p)
g=1,2:
K ~ Uniform(0,50)
o, ~ Uniform(0.1,20)
A¢ ~ Uniform(0,100)
¢g ~ Uniform(0,1)
i= 1,...,Nops:
sir, ~ Uniform (X, oy ) 2)
i, ~ Uniform (yonin Yimax)
zir, =1
k=F;,...,.L—1:
0ix ~ Uniform(0, 2x)
dix ~ Exponential (Ag, )
Siks1 = Six +dikcos(O)
siy,}ﬁq = Szy,k + diksin(eik)

Zik+1 ~ Bernoulli ( (d)Gi ) T"z,-,k)

ECOSPHERE % www.esajournals.org

TUREK ET AL.

k=F,,...,L:
Sik = (sjfk, s{,{)
bije = o (P )I(TOka:2) (B,)/C

R
Rijkr = 20— Hijir
Tijko = exp (—Hijkszi)

hijx

] T
Tijkr = (1 — Tijko

] ( ] >hijk*
wjjx ~ Bernoulli (Ttijkyifk)

We apply three cumulative refinements to the
model and MCMC sampling: (1) Jointly sample
correlated dimensions and marginalize over z;
indicator variables, (2) use a custom bivariate
dispersal distribution, and (3) restrict trap calcu-
lation to the vicinity of each AC. Next we
describe these techniques, and nimble code cor-
responding to each appears in Appendix S2.

Joint sampling and marginalization.—We apply
joint samplers for updating two pairs of parame-
ters: {ky, 01} and {ky, 62}, as these pairs each deter-
mine the trap hazard rates for one sex. Trial runs
confirm that these pairs exhibit high posterior
correlation, so we expect block samplers will
improve mixing.

Next, we integrate (marginalize) over the
latent z;; indicator variables to directly calculate
the unconditional likelihood of capture histories.
This reduces the model size and the dimension
of sampling, and can improve MCMC mixing
since parameter updates are no longer condi-
tional on the “current” values of each z;;. This is
done in nimble using a custom likelihood. This
calculation is a finite summation over the possi-
ble z; states, similar to the filtering employed in
Turek et al. (2016: Section 2.3.2). When individu-
als are known to be alive (up to the final cap-
ture), the likelihood is survival multiplied by the
probability of the observed capture history. Sub-
sequent to the final capture, forward filtering is
used to calculate the likelihood of the remaining
non-capture events, accounting for uncertainty in
survival.

Custom dispersal distribution.—We originally
modeled dispersal distances and angles as ran-
dom variables subject to MCMC sampling, a
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standard approach for movement models. This
results in high computational cost because any
proposed update to dispersal distance or angle
(especially for early primary occasions) results in
a large chain of calculations to determine the
updated ACs, detection probabilities, and detec-
tion likelihoods for all subsequent occasions. Specif-
ically, say we make an MCMC proposal
modifying d;;, the dispersal distance for the first
(i = 1) individual, between the first and second
primary occasions. This MCMC update will
require evaluating the entire chain of determinis-
tic AC location calculations, for the second
(k= 2) occasion  (sj,=s7; +dpicosty;  and
s1, =$1; +dusin6yy), then to update the AC loca-
tions in the third (k = 3) prlmary occasion
(5] 53 =57, +d12cos012 and s =57, +d1osindyy),
then to update the AC locations in the fourth
(k = 4) occasion, and so on. In total, parameter
updates under this formulation will require re-
evaluating each sip,s13,:-,51,, up through the
AC of the final primary occasion. Furthermore,
the deterministic calculations of all trap hazard
rates (hyj,) and detection probabilities () cor-
responding to the first individual must all be
recalculated, as well as the corresponding data
likelihoods (wj). For large values of L, this will
result in significant required computation.

We reparameterize this model using a custom
distribution of AC locations that is induced by
the distributions of turning angle and distance,
as S;jk41 ~ Dispersal(si, Ag,). This distribution is
centered around the current AC and is mathe-
matically equivalent to the original {d, 8} parame-
terization. Now, updates of s;; do not induce a
large chain of ensuing calculations, but rather,
only the likelihoods corresponding to s;;, and
S; k+1 must be calculated. The custom distribution
is given by p(si.1|si, Ac,) o (1/d) - Ag,e %, where
d=||si+1 —si||, and omitting constants of pro-
portionality which are not necessary for sam-
pling. We recognize Ace " as the exponential
density for the dispersal distance d. The factor of
(1/d) results from the Jacobian term in the
change-of-variables between polar and Cartesian
coordinates. From an implementation stand-
point, these density calculations take place on a
logarithmic scale. This technique can be similarly
applied when using other distributions for dis-
persal distance, by substituting in the density of
the alternate dispersal distribution.
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Local trap calculations.—During MCMC sam-
pling, the capture hazard rate h;j, and associated
likelihood terms are calculated for all traps,
regardless of an individual’s current AC. This is
inefficient, since when s;; is “far” from a trap 7,
then hvkr will be extremely low, and a capture in
trap 7 is exceedmgly unlikely. Its contribution to
hijs = Z 1hijke is negligible, as is the probability
of capture in trap r. The original BUGS modeling
language lacks the ability to conditionally disable
calculations, and hence all the capture hazard
rates must always be computed.

We introduce logic such that hjj, is only calcu-
lated for traps within a distance dpax of the indi-
vidual’s AC. For traps located further, we assign
hij a small positive value. This will not affect the
sum h;;+, but still allows for a nonzero probabil-
ity of capture. Here, we let h;, = 10~ !4 for traps
outside a radius d,,,,, = 40 from each individual’s
AC.

We introduce a discretized grid over the study
area, and pre-compute indices of traps within a
radius dmax from each grid cell. Using this, a cus-
tom nimble function returns the indices of “local
traps” nearest to any s, and subsequently calcu-
lates hazard rates only for the “local” traps. This
is similar to the local trap calculations used in the
previous example, but implementations are dif-
ferent on account of the discretized habitat mask
used there.

MCMC efficiency

We define MCMC efficiency as the number of
effectively independent posterior samples pro-
duced per second of MCMC runtime (excluding
upfront time of model building and compila-
tion). Distinct model parameters will typically
mix at different rates, thus having distinct poste-
rior effective sample sizes (ESS), and therefore a
distinct measure of efficiency. In addition to pre-
senting the MCMC runtimes and MCMC effi-
ciency of all model parameters, we also
summarize performance using the minimum and
mean efficiencies among all model parameters.
This definition of efficiency captures the tradeoff
between quality of mixing and computational
speed. Some algorithms may mix slowly (pro-
ducing a low ESS) but execute sufficiently fast
that they achieve high efficiency. Other algo-
rithms may mix quickly (producing a high ESS)
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but require significantly longer execution time
and thus achieve low efficiency.

REsuLTS

Here we describe the performance resulting
from each formulation or sampling strategy of
the Wolverine and Vole example models. All
algorithm runtimes, ESS estimates, and MCMC
efficiencies reflect independent chains of 10,000
posterior samples. We do not present the poste-
rior inferences (e.g., posterior mean and median),
as they are qualitatively identical to the original
published analyses.

Wolverine model

We assess performance of the Wolverine model
using total population size (N), probability of
detection (p), and scale factor (o). Results for the
four stages of iterative improvement described in
Materials and Methods: Wolverine model will be
denoted as Nimblel (vectorization), Nimble2
(joint sampling), Nimble3 (evaluating local detec-
tors), and Nimble4 (skipping unnecessary calcu-
lations).

As in Milleret et al. (2019), the JAGS model was
unable to complete, crashing after 30 d. Transi-
tioning to nimble considerably reduced memory
usage and runtime, as we fit the Nimblel model
in 26 h. Effective sample size values were in the
range of 100-200 for all parameters, indicating
high posterior autocorrelation. In combination
with the long runtime, this produced MCMC effi-
ciencies on the order of 107> for all parameters.
The addition of joint sampling in the Nimble2
version decreased runtime to 20 h. Parameter ESS
values were similar to the Nimblel model, giving
a small improvement in efficiency.

We observed major improvement in the Nim-
ble3 version, using the local trap evaluations and
a sparse representation of the observation matrix.
Markov chain Monte Carlo runtime reduced to
30 min, by a factor of 40 relative to the Nimble2
model. As we expected, ESS values were
unchanged, and the resulting MCMC efficiencies
were in the range of 0.1-0.3 (Fig. 1).

The Nimble4 version, disabling unnecessary
model calculations, reduced MCMC runtime by
an additional factor of 2, down to 16 min. Accord-
ingly, MCMC efficiencies increased by nearly a
factor of 2. Relative to the initial Nimblel
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formulation, we have achieved increases in both
the minimum and mean efficiencies of 100-fold.
Concretely, while it was not even possible to fit
the original version of this model using JAGS, the
initial Nimblel formulation would require 3.5 d
to generate 1000 ESS for all parameters, and the
final Nimble4 model can accomplish the same in
51 min.

Fig. 2 presents the minimum and mean effi-
ciencies across all model parameters for each for-
mulation of the Wolverine model, and all results
for the Wolverine example appear in Table 1. An
executable version of the Nimble4 Wolverine
model is available at the web-appendix http://
nimble-dev.github.io/nimbleSCR/wolverine_exa
mple.html.

Vole robust-design model

The Vole model contains a total of 11 hyper-
parameters, which we use to assess MCMC effi-
ciency. Results for the three stages of iterative
improvement described in Materials and Methods:
Vole robust-design model will be denoted as Nim-
blel (marginalization), Nimble2 (customizing
dispersal distribution), and Nimble3 (evaluating
local detectors). The original formulation of the
model, running in JAGS, required over 4.5 h to
generate 10,000 posterior samples, and resulted
in a minimum MCMC efficiency of 0.002, and a
mean efficiency of 0.04.

The Nimblel version introduced joint sam-
pling of correlated parameters, and a custom
likelihood to remove the z; latent states. This
reduced the total model size from 4460 nodes
down to 3562, while the number of unobserved
nodes undergoing MCMC sampling was
reduced from 1437 down to 1067. This model
yielded an MCMC runtime of 15 min. Effective
sample size values were higher than those of
JAGS, particularly for the jointly sampled o; and
k; parameters. Markov chain Monte Carlo effi-
ciency was therefore higher for all parameters
(Fig. 3), while the average efficiency increased by
a factor of 7.5 relative to JAGS.

The Nimble2 model introduced a custom
bivariate dispersal distribution for individual
AC:s. This reduced the total model size from 3562
nodes to 2452, and the number of nodes for
MCMC sampling from 1067 to 697. Runtime
decreased by a factor of 2, to seven minutes, and
all parameter MCMC efficiencies increased.
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Fig. 1. Markov chain Monte Carlo (MCMC) efficiency for the Wolverine example, for all parameters and model
formulations. Efficiency values are averaged over three independent chains, error bars showing standard

deviation.

Using local trap calculations in the Nimble3
model reduced MCMC runtime further, to five
minutes. Overall, relative to the initial analysis
appearing in Ergon and Gardner (2014), these
strategies reduced MCMC runtime by more than
a factor of 50 and increased both minimum and
mean MCMC efficiencies 25-fold. Concretely, the
original model fitted in JAGS would require over
seven days to produce 1000 ESS for all parame-
ters, whereas the Nimble3 formulation requires
less than 6 h to accomplish the same.

Fig. 4 presents the minimum and mean effi-
ciencies across all model parameters for each for-
mulation of the Vole model, and all results for
the Vole example appear in Table 2.

DiscussioN

Spatial capture-recapture models are now
commonplace given the abundance of geolocated
ecological data, but remain challenging from the
perspective of model fitting. Indeed, large num-
bers of individuals or expansive study areas can

ECOSPHERE ** www.esajournals.org

render some problems intractable, without
employing custom approaches. No less, incorpo-
rating more complex study designs (e.g., individ-
ual heterogeneity, nested sampling occasions,
non-uniform spatial structure, or environmental
covariates; Dorazio and Andrew Royle 2003;
Karanth et al. 2006; Gardner et al. 2009) only
exacerbates an already difficult problem.

The techniques demonstrated here produce
posterior results identical (within Monte Carlo
error) to the original versions, with the exception
of the local trap evaluations. This technique
attributed a small trap hazard rate for traps (or
probability of detection, for detectors) situated
outside a radius d,,,, from each individual AC.
The choice of dpax is important: Large values will
produce identical inferences but offer no compu-
tational gain, while small values offer a large
computational gain, but may introduce bias. In
the Voles example, we selected dp.x =40 as a
compromise which did not noticeably affect the
resulting inferences, while also providing useful
gains in computational efficiency. The choice of
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Fig. 2. Minimum and mean Markov chain Monte Carlo (MCMC) efficiency among the three model parameters
for the Wolverine example. Values are averaged over three independent chains, error bars showing standard

deviation.

Table 1. Markov chain Monte Carlo efficiency values
for the Wolverine example, for all parameters and
model formulations.

Parameter
Model N Po c
Nimblel 0.005 0.004 0.003
Nimble2 0.006 0.005 0.003
Nimble3 0.284 0.247 0.192
Nimble4 0.390 0.394 0.362

Note: Results are averaged over three independent chains.

dmax 15 subjective, and in general would involve
consideration of detector spacing, individual
home range characteristics, and model scale
parameters governing probability of detection or
trap hazard rates. The process of selecting dpax
should involve expert opinion (or trial runs) to
determine an appropriate value. In practice,
smaller values of d,,,x may be used for explora-
tory analyses, but a conservative higher value
should be used to minimize any biases in the
final inference.

ECOSPHERE % www.esajournals.org

We are aware that conditioning on the primary
occasion of first capture, as in the Vole example,
has the potential to induce bias into parameter
estimates (Efford and Schofield 2019, Appendix E).
Simulations presented in Ergon and Gardner
(2014) suggest minimal bias in mortality estimates,
although the scale parameter in the observation
model may be inflated. Thus, care should be taken
when applying this model to data from other sys-
tems. Alternatively, a full spatial robust-design
model (Bischof et al. 2016, Jiménez et al. 2018,
Gardner et al. 2018), including recruitment and
occasion-specific population size, may be fitted, in
which case no such bias is expected (Efford and
Schofield 2019). That said, our purpose has been to
investigate efficiency of estimation methods rather
than statistical properties (such as bias or goodness
of fit) of particular models. Indeed, the ability to
perform inference more efficiently will support a
deeper exploration of alternative models and
model validation steps.

Many software packages are available for fit-
ting SCR models, making these analyses faster
and more accessible to practitioners (e.g., secr or
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oSCR). The prevalence of specialized software
underscores the complex nature of SCR prob-
lems, and furthermore that no single software
package could be general enough to approach all
SCR problems. nimble does not attempt to pro-
vide “canned” algorithms for SCR models, or
any other particular application, but rather a flex-
ible programming environment suitable for cus-
tomized (and highly efficient) analysis of
complex data.
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We have made use of the nimble software
package for R, to demonstrate techniques for
improving the performance of SCR model fitting
using MCMC. The techniques demonstrated are
not exhaustive, but rather suggest the potential
performance gains made possible using nimble,
where we observed between one and two orders
of magnitude improvement. These approaches
can provide significant computational gain, per-
mitting large-scale spatial and temporal analyses
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for the Vole example. Values are averaged over five independent chains, error bars showing standard deviation.

Table 2. Markov chain Monte Carlo efficiency values for the Vole example, for all parameters and model formu-

lations.
Parameter
Model o1 b2 1 p2 Ao M Y3 K1 K2 61 G2
JAGS 0.23 0.05 0.11 0.003 0.002 0.02 0.03 0.002 0.004 0.002 0.003
Nimblel 2.21 0.99 0.74 0.033 0.017 0.16 0.21 0.013 0.065 0.010 0.050
Nimble2 4.49 1.09 1.55 0.054 0.034 0.28 0.25 0.032 0.097 0.022 0.091
Nimble3 5.70 1.43 224 0.096 0.062 0.39 0.28 0.055 0.162 0.048 0.140

Note: Results are averaged over five independent chains.

to support major conservation and management
decisions, and the ability to fit increasingly com-
plex models to large datasets. More broadly, sim-
ilar techniques are also applicable to the analysis
of general spatially indexed hierarchical model
structures.
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