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Interactions of a stationary external magnetic field with the spin and orbital magnetic momenta

of a molecule are included in the quantum mechanical model where the Born–Oppenheimer approx-

imation is not assumed. The model is used to calculate some of the lowest-lying internal bound

states of the molecule for various strengths of the magnetic field. All-particle explicitly correlated

Gaussian functions are used in the calculations.

I. INTRODUCTION

In recent works [1–3], we have presented a quantum-mechanical model for calculating states of a molecule in strong

magnetic fields. In the model, the Born–Oppenheimer (BO) approximation was not assumed and all particles forming

the molecular system were treated on an equal footing. The wave functions representing the states of the system in

the model were expanded in terms of linear combinations of explicitly correlated Gaussian functions (ECGs) with

shifted centers. These functions explicitly depend on the squares of the inter-particle distances through the Gaussian

exponent. Only if such functions are used in the calculation, one can effectively describe the highly correlated

motion of the electrons contained in the molecule, as well as the correlated motion of the molecule’s nuclei and the

nucleus–electron correlated motion. The non-BO Hamiltonian used in the calculations of bound internal states of the

molecule is obtained in an effective way by subtracting the operator representing the kinetic energy of the motion

of the center of mass from the total laboratory-frame Hamiltonian of the system. This approach is different from

the conventional approach used to separate out the center-of-mass motion, which typically involves a coordinate

transformation resulting in the total Hamiltonian rigorously separating into a Hamiltonian representing the internal
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state of the system (the so-called internal Hamiltonian) and the center-of-mass Hamiltonian, which depends only on

the laboratory-frame coordinates of the center of mass. More discussion on the construction of the effective non-BO

Hamiltonian and on the ECGs is presented in the methodology section of this work.

The interest in quantum-mechanical calculations of ground and excited states of molecules exposed to strong

magnetic fields is related to the significant alterations of some their chemical and physical properties in conditions

where the magnetic interactions become comparable to the Coulombic interactions between the electrons and nuclei

forming the molecules. Such conditions exist, for example, in the atmospheres of rapidly rotating compact stellar

objects—white dwarfs (up to 100 kT), neutron stars (up to 100 MT), and magnetars (up to 100 GT) [4–6]. The

field strengths that exist on such stellar objects cannot be generated in laboratories on Earth. Since the changes

that occur in the chemical and physical properties of molecular systems in extremally strong magnetic fields cannot

be probed experimentally, quantum-mechanical modeling is the only possible way to elucidate this phenomenon.

An illustration of how strong magnetic fields affect chemical properties of molecules were given in Ref. [20]. The

calculations performed in that work, using an approach based on the BO approximation and involving the full-CI

electronic-structure method, showed that, as the strength of a perpendicularly applied magnetic field increases, the

strength of the bonding in the 3Σ+
u (1σg1σ∗u) triplet state of the H2 molecule also increases and its energy falls below

that of the singlet zero-field ground state 3Σ+
g (1σ2

g).

Over the years, many non-perturbative methods have been developed to study the behavior of molecules in a strong

magnetic field—see, for example, Refs. [7–16]. However, almost all these methods are based on the BO approximation,

assuming that the much faster motion of the electrons can be treated separately from the slower motion of the nuclei.

Although this assumption is usually sufficient for most studies of molecules at Earth-like conditions, it may fail in

conditions where the interactions with a very strong magnetic field cause the energy levels of the molecule to rearrange,

resulting in acceleration of the nuclear motion and deacceleration of the electronic motion. This, in turn, may cause

the two motions to couple more significantly, necessitating a departure from the BO approximation. We here present

a method that can address such increased electron–nucleus coupling.

In this work, we include the interactions of the magnetic field with the spin and angular magnetic momenta of

the electrons and the nuclei in the non-BO model for a molecule in a strong stationary magnetic field developed in

our previous works[1–3]. As in the non-BO calculations all particles are treated equivalently, the magnetic momenta

associated with the electrons appear in the calculations in the same way as the spin and angular magnetic momenta

of the nuclei.
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There are two types of motion of the nuclei and electrons in an isolated molecule that can be distinguished. The

first type is the synchronous translational motion of both nuclei and electrons of the molecule in space, which can

be quantum-mechanically represented by a wave function dependent on the coordinates of the molecule’s center of

mass in the laboratory coordinate frame. The second type of motion is the coupled motion of the particles forming

the molecule that does not cause the center of mass of the molecule to change its location. We call this motion the

internal motion of the systems; it can be approximately separated into rotational, vibrational, and electronic motions.

When the BO approximation is not assumed, the rotational motion includes the synchronous rotation of all particles

forming the molecule about the center of mass. Thus, the quantized bound states of the molecule corresponding

to this motion, apart from including states that are conventionally attributed to rotation of the nuclear frame of

the molecule, also include states corresponding to rotation of the electrons around the stationary nuclear frame and

mixed electron–nucleus rotational states. As the total internal Hamiltonian for the molecule obtained by subtracting

the center-of-mass translational Hamiltonian from the total laboratory-frame non-relativistic Hamiltonian commutes

with the square of the total angular-momentum operator, the calculation of the bound states of the molecule can

be separated into calculations each performed for a different total-angular-momentum quantum number. Each such

calculation is carried out in a basis set of functions that represent a different level of the rotation excitation of the

system. The functions can describe either angular excitations of different nuclei, or angular excitations of the electrons,

or simultaneous excitations of both electrons and nuclei.

As showed by Schmelcher and Cederbaum [12], the separation of the translational and internal motion cannot be

rigorously performed when a molecule is placed in a magnetic field. However, they also showed that, with the use

of the so-called pseudo-momentum, one can perform a pseudo-separation of the two motions. The properties of the

total pseudo-momentum expressed in terms of relative coordinates were also exploited to partition the Hamiltonian

operator of the system into an electronic part and a nuclear part.

The question of the validity of the BO approximation for the hydrogen atom [17] and the diatomic hydrogen

molecule [13, 14] in a stationary magnetic field was analyzed. There is also an investigation where the effect of a

magnetic field on the rotations and vibrations of neutral diatomic molecules has been considered [15]. However, to

our knowledge, our works [1–3] provided the first practical scheme for an effective separation of the center-of-mass

motion from the internal motion in calculations of molecular systems in the presence of a magnetic field.
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II. THE METHOD

The non-Born–Oppenheimer approach used in this work was introduced by Kozlowski and Adamowicz [18]. We

start from the standard total non-relativistic Hamiltonian of an isolated molecule without a magnetic field. We use

the laboratory Cartesian coordinate frame to describe the positions of particles forming the molecule (i.e., nuclei and

electrons) in space. The position vectors are denoted as Rl, l = 1, . . . , N , where N is the sum of the number of the

nuclei and the number of the electrons in the system. In atomic units, the laboratory-frame total Hamiltonian is the

sum of the kinetic-energy operators of the particles forming the system and the potential-energy operators describing

the Coulombic interactions between the particles:

Ĥ = T̂ + V̂ = −
N∑
l

1
2Ml
∇2

Rl
+

N∑
k>l

QkQl
Rkl

. (1)

Here T̂ and V̂ are the kinetic-energy and potential-energy operators, respectively, and Ml and Ql are the mass and

the charge, respectively, of particle l. The distance between particle k and particle l is given by Rkl = |Rl −Rk|.

Next, the kinetic energy of the center-of-mass motion is written in terms of the Rl, l = 1, . . . , N , coordinates. The

coordinates of the center of mass of the system are:

Rcm =
∑N
l MlRl

M
, (2)

with M =
∑N
l Ml is the total mass of the system. The operator representing the kinetic energy of the center-of-mass

motion in the laboratory coordinate frame is given by

T̂cm = − 1
2M
∇2

Rcm
=

1
2M

P̂2
cm =

1
2M

( N∑
l=1

p̂l
)2

, (3)

where P̂cm is the center-of-mass momentum operator and and p̂l the momentum of particle l. The effective laboratory-

frame Hamiltonian representing the internal energy of the system, Ĥint, called the internal Hamiltonian, is simply the

difference between the laboratory-frame Hamiltonian and the center-of-mass kinetic energy Hamiltonian:

Ĥint = Ĥ − T̂cm. (4)

The internal Hamiltonian is used in the present work to calculate internal bound states of the molecule.

We note that the effective internal Hamiltonian depends on the 3N laboratory coordinates of all particles (nuclei

and electrons) forming the system. In this respect, it differs from the usual internal non-BO Hamiltonian obtained by

expressing the laboratory-frame total Hamiltonian in a set of new coordinates and then separating the Hamiltonian

into a Hamiltonian representing the center-of-mass kinetic energy (dependent only on the center-of-mass coordinates)
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and an internal Hamiltonian (independent of the center-of-mass coordinates). One possible set of coordinates in such

an approach can consist of the three Cartesian laboratory-frame coordinates of the center of mass and 3N −3 internal

Cartesian coordinates that represent the positions of particles 2 to N relative to a reference particle 1 (usually the

heaviest nucleus) [19]. The axes of the internal coordinate system are parallel to the axes of the laboratory coordinate

system. The non-BO internal Hamiltonian then depends only on 3N − 3 coordinates, by three less than the effective

internal Hamiltonian, Ĥint. Thus, while the wave function depends on 3N (laboratory-frame Cartesian) coordinates

in the effective internal-Hamiltonian approach taken in this work, it depends only on 3N−3 (internal) in the approach

based on the coordinate transformation.

The calculations performed in this work concern internal states of hydrogen deuteride, HD, interacting with a

stationary magnetic field oriented along the Z-axis. We choose HD rather than H2 because proton and deuteron have

different masses and different spins, making HD more interesting than H2 for non-BO calculations, especially when

the Zeeman interactions of the magnetic field with the spin and angular magnetic momenta of the particles forming

the molecule are included.

The non-BO wave functions of the bound states of the effective internal Hamiltonian, which depend of spatial and

spin coordinates of all particles forming the molecule, must be properly symmetrized (for bosons) and anti-symmetrized

(for fermions). For the HD molecule, each wave function is a product of a spatial function and a spin function. As the

HD non-BO wave function must be antisymmetric with respect to the permutation of the electron labels, the spatial

part of the wave function can either be symmetric (electronic singlet state) or antisymmetric (electronic triplet state).

In this work we consider both types of states.

The total spatial wave functions representing singlet and triplet states of the HD molecule can be represented as

(1 + P̂ (1, 2))Ψ(Rd,Rp,R1,R2) and (1− P̂ (1, 2))Ψ(Rd,Rp,R1,R2), respectively, where indices d, p, 1, and 2 denote

the deuteron, the proton, and the two electrons, respectively, and the operator P̂ (1, 2) permutes the electron labels.

These spatial functions are multiplied by the corresponding spin wave functions, which are products of a deuteron

spin function, a proton spin function, and either antisymmetric electronic spin function (for the singlet) or symmetric

electronic spin function (for the triplet).

The most effective and accurate representation of a molecular non-BO wave function is obtained by expanding its

spatial part in terms of functions that explicitly depend on the distances between the particles. Here we use explicitly

correlated Gaussians (ECGs) with shifted centers of the form

φk(R) = exp [−(R− sk)′Ak(R− sk)] , (5)
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where prime denotes vector transposition, R is a 3N vector of laboratory-frame coordinates (for HD, concatenated

from Rd, Rp, R1, and R2), sk is a 3N vector of the Gaussian shifts, Ak = Ak ⊗ I3 is a 3N × 3N symmetric,

positive-definite Kronecker product of the 3× 3 identity matrix I and the N ×N symmetric positive-definite matrix

Ak of Gaussian exponential factors. Positive definiteness of Ak is imposed by representing it in the Cholesky-factored

form Ak = LkL′k with Lk being a lower triangular N ×N matrix. The ECGs in (5) were used in our previous works

[2, 3].

In the present calculations, we use the variational approach to optimize the non-linear parameters of the Gaussians

and the coefficients in the expansion of the spatial wave function in ECGs. The non-linear variational parameters are

the elements of the Lk matrices and the coordinates of the sk shift vectors of the Gaussians.

As shown by Lange at al. [20], the lowest-energy orientation of the bond axis of a diatomic molecule with re-

spect to the direction of the magnetic field is perpendicular for the electronic triplet state and parallel for the

singlet state. Thus, for the Z-direction of the magnetic field, the Gaussian shifts in the calculations for the triplet

state are restricted to the XY plane and in the calculations for the singlet state they are restricted to the Z axis.

In the first step, the Gaussians are optimized for the lowest electronic singlet and triplet states without the Zee-

man interactions included in the Hamiltonian. The optimizations are carried out for three different strengths of

the magnetic field oriented along the Z axis. For the triplet state, to approximately impose the axial symme-

try of the wave function expanded in terms of ECGs (i.e. making it approximately symmetric in terms of rota-

tions about the Z-axis), four ECGs are contracted to form a single basis function. The Lk matrices of all four

Gaussians are the same, but the sk shift vectors are different. In the first Gaussian, only the x-coordinates of

the shift vector sk are non-zero: sk1 = {Xk
d , 0, 0, X

k
p , 0, 0, X

k
1 , 0, 0, X

k
2 , 0, 0}. The shift vectors of the other three

Gaussians are: sk2 = {−Xk
d , 0, 0,−Xk

p , 0, 0,−Xk
1 , 0, 0,−Xk

2 , 0, 0}, sk3 = {0, Xk
d , 0, 0, X

k
p , 0, 0, X

k
1 , 0, 0, X

k
2 , 0}, and

sk4 = {0,−Xk
d , 0, 0,−Xk

p , 0, 0,−Xk
1 , 0, 0,−Xk

2 , 0}. The contraction coefficients of all four Gaussians are equal to +1.

The contracted ECG function, Φk, can be written as:

Φk = φk1(Xk
d , 0, 0, X

k
p , 0, 0, X

k
1 , 0, 0, X

k
2 , 0, 0)

+ φk2(−Xk
d , 0, 0,−Xk

p , 0, 0,−Xk
1 , 0, 0,−Xk

2 , 0, 0)

+ φk3(0, Xk
d , 0, 0, X

k
p , 0, 0, X

k
1 , 0, 0, X

k
2 , 0)

+ φk4(0,−Xk
d , 0, 0,−Xk

p , 0, 0,−Xk
1 , 0, 0,−Xk

2 , 0). (6)

In the variational optimization, the elements of Lk and the Xk
d , Xk

p , Xk
1 , and Xk

2 coordinates are optimized. No
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contraction is used in the basis functions for the singlet state and, as mentioned, the basis functions have shifts

located on the Z axis:

Φk = φk(0, 0, Zkd , 0, 0, Z
k
p , 0, 0, Z

k
1 , 0, 0, Z

k
2 ). (7)

Also, both parallel and antiparallel orientations of the HD bond axis with respect to the Z axis are represented in the

Gaussians used as a starting point for the optimization. This means that, if Φk (7) is included in the starting basis

set, the following Gaussian is also included as an idependent function:

Φk = φk(0, 0, Zkp , 0, 0, Z
k
d , 0, 0, Z

k
1 , 0, 0, Z

k
2 ) (8)

and its parameters are optimized independently of the parameters of (7).

Now, let us consider the potential generated by an external magnetic field oriented along the Z-axis. The gauge-

invariant kinetic momentum operator for particle l is:

π̂l = −i~∇l −QlA(Rl), (9)

where Ql is the charge of the particle and the magnetic vector potential A(R) represents the external magnetic field,

B = ∇×A(R). The vector potential for a stationary magnetic field may be written as:

A(Rl) =
1
2
B× (Rl − g), (10)

where g is the gauge origin. Without the spin Zeeman interactions, the total kinetic energy operator is then given by:

T̂ =
N∑
l=1

π̂2
l

2Ml
=

N∑
l=1

[
−~2∇2

l + i~QlB · ((Rl − g)×∇l) +Q2
l |A(Rl)|2

]
/2Ml. (11)

The masses of the proton and the deuteron used in the present calculations are 1836.15267245me and 3670.4829652me,

respectively. In (11), the first term in the parenthesis is the canonical kinetic energy and the second paramagnetic

term in the parentheses represents the orbital Zeeman interaction. Placing the gauge origin at the origin of the

laboratory coordinate system, g = 0, and the magnetic field vector along the z-axis B = (0, 0, BZ), we can rewrite

the kinetic-energy operator in the following form:

T̂ = −
N∑
l=1

~2

2Ml
∇2
l + Ĥorb

Zeeman + V̂ (12)

where the first term represents the canonical kinetic energy, the second term the orbital Zeeman interaction of the

particles with the magnetic field, and the third term the diamagnetic interaction of the particles with the field:

Ĥorb
Zeeman = −

N∑
l=1

Ql
2Ml

BZL̂Zl
, V̂ =

N∑
l=1

Q2
l

8Ml
B2
Z(X2

l + Y 2
l ). (13)
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Here L̂Zl
= −i~ (Xl∇Yl

− Yl∇Xl
) is the operator representing the Z coordinate of the angular momentum of particle

l. The diamagnetic operator, V̂ , takes the form of a quadratic (harmonic) well about the Z-axis; it is proportional

to the squared particle charge, the squared field strength, and the inverse particle mass. It squeezes the system and

raises its energy.

The paramagnetic orbital Zeeman operator Ĥorb
Zeeman is linear in the charge and the field strength and inversely

proportional to the mass of the particle; it may lower or raise the energy, reduce the symmetry of the wave function,

and split energy levels. It must be supplemented by the spin Zeeman operator, which arises more naturally from a

relativistic treatment. The total Zeeman operator then takes the form:

ĤZeeman = Ĥorb
Zeeman + Ĥspin

Zeeman = BZ

N∑
l=1

Ql
2Ml

L̂Zl
−BZ

N∑
l=1

glµlŜZl
(14)

where µl is equal to minus the Bohr magneton −µB = − e~
2me

for electrons, and µd = e~
2md

for the deuteron, and

µp = e~
2mp

for the proton, while gl is g factor of the particle: ge = 2.00231930436256, gp = 5.5856946893, and

gd = 0.8574382338. Therefore, in atomic units, the spin Zeeman interaction of electron l with the magnetic field

oriented along the Z-axis is BZ ŜZl
, while the proton and deuteron spin Zeeman interactions are about three orders

of magnitude smaller and of opposite sign: −(gp/2mp)BZ ŜZp and −(gd/2md)BZ ŜZd . The possible values of the

Z-component of the spin are + 1
2 and − 1

2 for an electron and the proton, and +1 and −1 for the deuteron.

In the calculations performed in this work, the Hamiltonian and overlap matrices with the ECGs (5) are constructed.

These matrices are subsequently used to solve the matrix secular equation problem and to determine the energy of the

considered state and the linear expansion coefficients of the ECGs in the corresponding wave function. The algorithms

for calculating the matrix elements with operators in the diamagnetic operator were published before [2, 21, 22]. The

algorithm for calculating this matrix elements of the orbital Zeeman operator is described in Appendix.

III. ILLUSTRATION CALCULATIONS

Our computer code is written in Fortran90 using MPI (message passing interface) to enable multiprocessor calcula-

tions. The integral algorithms for the Hamiltonian matrix elements are taken from our previous work [2, 3]. The code

contains a module for variational optimization of the non-linear parameters (Lk and sk) of the ECGs. The approach

is employed to perform calculations of low-energy states of the HD molecule. The total Hamiltonian representing the

internal energy of the molecule in an external magnetic field is a sum the field-free internal Hamiltonian Ĥint, the
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diamagnetic Hamiltonian V̂ , and the Zeeman Hamiltonian ĤZeeman:

Ĥ = Ĥint + V̂ + ĤZeeman. (15)

As mentioned, the illustration calculations are performed for the HD molecule. They involved the following steps:

1. In the first step, the Hamiltonian Ĥint + V̂ is used in the variational optimization of three basis sets for the

triplet electronic state and three for the singlet state. The three basis sets for each state are generated for the

following three different field strengths, BZ = 0.1B0, 0.2B0, and 0.3B0, where B0 ≈ 235kT (one atomic unit

field strength). For the triple state, the basis set consists of six contracted ECGs (6) with centers (Gaussian

shifts) located in the plane (i.e. the XY plane) perpendicular to the orientation of the field (i.e. the Z axis).

For the singlet state, the basis set consists of twelve uncontracted ECGs with the centers located on the Z axis.

2. Next, the electronic part of the spin Zeeman interaction Ĥel spin
Zeeman is added to the Hamiltonian and the energy

of the system is calculated. Two electronic spin states are considered: the singlet state with S = 0 and MS = 0

and the triplet state in the energetically most favorable orientation of electronic spin vector with respect to the

direction of the field, i.e. the S = 1 and MS = −1 state. While the spin Zeeman interaction vanishes for the

singlet, it stabilizes the chosen triplet component. The stabilization increases with the field.

3. Next, the nuclear spin Zeeman Hamiltonian, Ĥnuc spin
Zeeman , is included in the Hamiltonian and the energies of the

singlet and triplet states of the molecule are calculated for all possible orientations of the spins of the proton ( 1
2

and - 1
2 )) and the deuteron (−1 and 1) with respect to the direction of the field.

4. Finally, Ĥorb
Zeeman is added to the Hamiltonian and the total energies of the above described states are calculated

by again solving the secular equation (i.e., without reoptimizing the non-linear parameters of the Gaussians).

The energies obtained in the calculations now include the effect due to the interaction between the magnetic

field and the orbital momenta of the proton, the deuteron, and the electrons. As, in this case, the Hamiltonian

matrix becomes complex Hermitian, a complex secular-equation solver is used to obtain the energies and the

corresponding wave functions.

The basis sets are also not reoptimized in this case and the adjustment of the wave functions and the corre-

sponding energies due to the inclusion of the Zeeman orbital interaction with the field are only accounted for

by the reoptimization of the (now complex) linear expansion coefficients. We should note that the Zeeman or-

bital interaction manifests itself by coupling states with different angular momenta. For example, the zero-field
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ground state, which is fully symmetric and corresponds to a superposition of the HD ground electronic state,

the ground vibrational state, and the ground (fully symmetric) rotational state couples with states whose rota-

tional components correspond to non-zero angular momenta—for example, components of D symmetry. These

components give non-zero off-diagonal matrix elements of Ĥorb
Zeeman with the rotational component of the ground

state. The spherical symmetry of the field-free system, whose states are eigenstates of the L̂2 operator, is broken

by the diamagnetic term. In a non-zero field, the symmetry becomes cylindrical with respect to the Z-axis,

which is required because the L̂Z quantum number is a good quantum number. The gauge origin being placed

in the center of the coordinate system ensures that the proper symmetry of the internal Hamiltonian and the

wave function is maintained. The lowest-energy wave function obtained in the calculations is used to calculate

the expectation value of the Ĥorb
Zeeman operator in order to estimate the Zeeman orbital interaction.

In the calculations with the complete internal Hamiltonian (including Ĥorb
Zeeman), the non-linear parameters of

the Gaussians are not reoptimized and only the linear expansion coefficients of the wave function are adjusted

to reflect the orbital Zeeman interaction. To allow for the mixing of states of the different symmetries, the

contracted basis functions for the electronic triplet state are separated into individual components (note that

contraction is not used for the singlet state). These components are used as separate basis functions in the

calculation. As each contracted triplet Gaussian comprises four components, the size of the basis set upon

decontraction increases from six to 24. The 24 × 24 matrix of the Ĥorb
Zeeman operator constructed using the

uncontracted basis functions is Hermitian, but the off-diagonal matrix elements are very small. This is due to

very small overlap between any two components when their centers (shifts) are located on different axes. This

results in very small values of the Ĥorb
Zeeman matrix elements and in the Zeeman orbital interaction with the field

being negligibly small for the particular case being studied in this work.

The results of the calculations are shown in Table I. The above-described levels of including the Zeeman effects

are shown in the table. The results shown in the table correspond to the lowest singlet and triplet electronic states

of HD. The first set of results (level one) are obtained with Hamiltonian that does not include the Zeeman effects.

As one can see, the energies of both single and triplet electronic states of the system, as expected, increase with the

increasing value of BZ and, for all considered values of BZ , the singlet has lower energy than the triplet.

Adding the Zeeman interaction of the magnetic field with the spins of the electrons does not change the results for

the singlet state, as the Zeeman interaction in this case is zero. However, the energies obtained for the triplet state

(we only consider the most energetically favorable alignment of the electron spin with the field) decrease with the field
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strength. At BZ of 0.1 a.u. the energy of singlet state is still lower than the energy of the triplet, but that changes

when BZ is increased from 0.2 to 0.3 a.u. At BZ of 0.3 a.u. the triplet state becomes the ground state of the system

(this effect was observed before [20]). The addition of the Zeeman interaction that involves the spins of the proton

and deuteron (again, only the most energetically favorable orientation of the spins with respect to the orientation of

the field in considered) lowers the energy of both states. However, the relative order of the states remains the same,

i.e., between the BZ values of 0.2 and 0.3 a.u. the triplet energy dips below the energy of the singlet and the triplet

becomes the ground state.

The addition of the interaction of the spins of the proton and the deuteron with the field splits both singlet and

triplet energy levels into four levels corresponding to the possible combinations of the spZ and sdZ quantum numbers.

As expected, the splitting increases with the increasing field strength. The splitting due to the proton is almost by

an order of magnitude larger than the splitting due to the deuteron.

IV. SUMMARY

Our computational model for calculating bound states of molecular systems placed in a strong static magnetic field

is augmented to include the interaction of the magnetic field with the spin and orbital magnetic momenta of the

particles forming the system. In the model, the Born-Oppenheimer approximation is not assumed. The Hamiltonian

representing the internal states of the molecule is obtained by subtracting the operator representing the kinetic energy

of the center-of-mass motion from the laboratory-frame Hamiltonian. The wave functions of the molecule are expanded

in term of all-particle explicitly correlated Gaussian functions. The model is illustrated and tested in the calculations

concerning the HD molecule. As noted before [20], the model predicts that at strong fields the HD ground state

switches from a singlet state to a triplet state. Also, the calculations predict splitting of both singlet and triplet

energy levels into four sublevels resulting from the interactions of the magnetic field with different spin states of the

proton and the deuteron. As expected, the splitting increases with the strength of the field and it is significantly

higher for the proton than for the deuteron. The difference results from the different values of the proton and deuteron

g factors and from their different masses. Both of these factors make the proton splitting larger than the deuteron

splitting.
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V. APPENDIX

A. Algorithm for calculating the L̂Zj matrix element

The integral to be calculated is:

〈φk|L̂Zj
|φl〉

L̂Zj = (Rj × pj)Z = −i
(
RXj ∇YRj

−RYj ∇XRj

)
(16)

〈φk|L̂Zj |φl〉 = −i
{
〈φk|RXj ∇YRj

|φl〉 − 〈φk|RYj ∇XRj
|φl〉

}
≡ −i

{
〈φk|RTM∇R|φl〉 − 〈φk|RTN∇R|φl〉

}
(17)

If n=2 and j = 1 then:

RTM∇R = RTE12∇R =



X1

Y1

Z1

X2

Y2

Z2



T 

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





∇X1

∇Y1

∇Z1

∇X2

∇Y2

∇Z2



=
(

0 X1 0 0 0 0

)



∇X1

∇Y1

∇Z1

∇X2

∇Y2

∇Z2



= RX
1 ∇RY

1

RTN∇R = RTE21∇R =



X1

Y1

Z1

X2

Y2

Z2



T 

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





∇X1

∇Y1

∇Z1

∇X2

∇Y2

∇Z2



=
(
Y1 0 0 0 0 0

)



∇X1

∇Y1

∇Z1

∇X2

∇Y2

∇Z2



= RY
1 ∇RX

1
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If n=2 and j = 2 then

RTM∇R = RTE45∇R =



X1

Y1

Z1

X2

Y2

Z2



T 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0





∇X1

∇Y1

∇Z1

∇X2

∇Y2

∇Z2



=
(

0 0 0 0 X2 0

)



∇X1

∇Y1

∇Z1

∇X2

∇Y2

∇Z2



= RX
2 ∇RY

2

RTN∇R = RTE54∇R =



X1

Y1

Z1

X2

Y2

Z2



T 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0





∇X1

∇Y1

∇Z1

∇X2

∇Y2

∇Z2



=
(

0 0 0 Y2 0 0

)



∇X1

∇Y1

∇Z1

∇X2

∇Y2

∇Z2



= RY
2 ∇RX

2

Now we define some symbols used in the subsequent equations:

Ak + Ãl = Akl (18)

Aksk = ek (19)

Ãls̃l = ẽl (20)

ek + ẽl = e (21)

−sTkAksk − s̃Tl Ãls̃l = −η (22)

A−1
kl e = s (23)

eTA−1
kl e− η = sTAkls− η = γ (24)

−η = γ − sTAkls (25)

The ECG with shifted centers used in the present work can be written in the following form:

φk = exp
[
−RTAkR + 2RTAksk − sTkAksk

]
. (26)

Now the derivative of φk with respect to R is calculated:

∇Rφk ≡ ∂αφk = −2 [Ak (R− sk)]α φk, (27)
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and used to calculate expression (17):

〈φk|RTM∇R|φl〉 = −2〈φk|RTMAl (R− sl) |φl〉 ≡

≡ −2〈φk|RTW (R− sl) |φl〉,
(28)

We need integral of type 〈φk|RTW (R− sn) |φl〉, where W = MAl or W = NAl:

〈φk|RTW (R− sl) |φl〉 = 〈φk|
(
RTW R

)
|φl〉 − 〈φk|RTWsl |φl〉 =

= − exp [−η] ∂β
∫ ∞
−∞

d3R exp
[
−RT (Akl + βW ) R + 2

(
Aksk + Ãls̃l

)T
R
]
|β=0 +

− exp [−η] ∂α
∫ ∞
−∞

d3R exp
[
−RTAklR + 2

(
e +

α

2
W sn

)T
R
]
|α=0 =

= 〈φk|φl〉
{

1
2

RT
[
A−1
kl W

]
+
(
sTW s

)}
− 〈φk|φl〉

(
sTW sl

)
=

= 〈φk|φl〉
{

1
2

RT
[
A−1
kl W

]
+
(
sTW (s− sl)

)}
, (29)

where 〈φk|φl〉 is the overlap integral. This concludes the derivation.
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TABLE I: Total internal energies of the lowest electronic singlet and triplet states of the HD molecule in a magnetic

field oriented along the Z axis with the strength of BZ = 0.1, 0.2, and 0.3B0. The energies are calculated for

different levels of including the Zeeman effects. At the first level, no Zeeman effects are included, at the second level,

the interaction of the field with the electron spins are included, and at the third level the interaction of the field

with the spins of the proton and deuteron are included. At the latter level the total internal energy is calculated for

all possible spin orientations of the proton and the deuteron with respect to the direction of the field. The

orientations are designated by the proton and deuteron sZ quantum numbers, (spZ ,sdZ). The Hamiltonians used in

the different levels are shown in the first column. The energies are given in a.u.

Hamiltonian BZ singlet triplet

Ĥint + V̂

0.1 -1.14060347 -0.95555737

0.2 -1.12887841 -0.91542561

0.3 -1.11001969 -0.85673820

+ Ĥel spin
Zeeman

0.1 -1.14060347 -1.05567333

0.2 -1.12887841 -1.11078272

0.3 -1.11001969 -1.15708609

BZ (sp
Z ,sd

Z) singlet triplet

+ Ĥnuc spin
Zeeman

0.1 ( 1/2, 1) -1.14069122 -1.05576106

( 1/2, -1) -1.14066786 -1.05573770

(-1/2, 1) -1.14053912 -1.05560896

(-1/2, -1) -1.14051576 -1.05558560

0.2 ( 1/2, 1) -1.12905387 -1.11095818

( 1/2, -1) -1.12900715 -1.11091147

(-1/2, 1) -1.12874967 -1.11065398

(-1/2, -1) -1.12870294 -1.11060726

0.3 ( 1/2, 1) -1.11028289 -1.15734929

( 1/2, -1) -1.11021281 -1.15727921

(-1/2, 1) -1.10982658 -1.15689298

(-1/2, -1) -1.10975650 -1.15682290


