NUMERICAL METHODS FOR CONSERVATION LAWS
WITH ROUGH FLUX
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ABSTRACT. Finite volume methods are proposed for computing approximate
pathwise entropy/kinetic solutions to conservation laws with flux functions
driven by low-regularity paths. For a convex flux, it is demonstrated that
driving path oscillations may lead to “cancellations” in the solution. Making
use of this property, we show that for a-Holder continuous paths the conver-
gence rate of the numerical methods can improve from O(COST~7), for some
v € /(12 = 8a),a/(10 — 6a)], with a € (0,1), to O(COST— min(1/4e/2)),
Numerical examples support the theoretical results.
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1. INTRODUCTION

The inclusion of random effects is important for the development of realistic
models of physical phenomena. Frequently such models lead to nonlinear stochastic
partial differential equations (SPDEs), whose solutions may possess singularities,
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reflecting the appearance of shock waves, turbulence, or other physical features.
Recently many researchers have targeted a wide range of questions relating to
mathematical analysis and numerical methods for stochastic conservation laws and
related SPDEs. Among the numerous questions addressed, we mention selection
principles for singling out “correct” generalized solutions, theories of well-posedness
(existence, uniqueness, stability of solutions), regularity and compactness properties
(sometimes improved by the inclusion of noise), existence of invariant measures, and
construction of convergent numerical methods.

Randomness can enter models in different ways, such as stochastic forcing or
uncertain system parameters as well as random initial and boundary data. For
example, a number of mathematical works [8, 1T, T4} 19, 20, 211 28] 48, 58, 55, 30,
7’0, [76] have studied the effect of It6 stochastic forcing on conservation laws,

(1.1) du+V - f(u)dt = o(u) dW (L),

where f,o are nonlinear functions and W (t) is a (finite or infinite dimensional)
Wiener process. Numerical methods, based on operator splitting [5, B0, (6] or
finite volume discretizations [7l [0, 23] 24 [60], have been proposed and successfully
analyzed for and similar equations.

In another direction, several works [2] [31], [69] [71] have explored linear transport
equations with low-regularity velocity coefficient b(x) and “transportation noise”,

(1.2) du+ b(x) - Vudt + Vuo dW (t) = 0,

where o refers to the Stratonovich differential (integral).
In this work we are interested in constructing numerical methods for a nonlinear

variant of (|1.2), namely

(1.3) du+V - f(u) odW(t) = 0.

Nonlinear SPDEs like this were suggested and analyzed recently by Lions, Perthame,
and Souganidis in a series of papers [62, 63], [64], where a pathwise well-posedness

theory was developed based on entropy/kinetic solutions. Informally, their notion
of solution is based on writing the kinetic formulation of ([1.3)):

m,

0
dx + f(§) - Vx o dW(t) = 9

for a bounded measure m(t, z,£) > 0 and a function u(t, ) (entropy solution) such
that x = x(¢,z,§) := x(&, u(t, ©)), where
+1 if0<¢<u,
X(&u) = -1 ifu<&<o,
0  otherwise.

The next step is to use a “transformation” to remove the noise term. This can be
achieved by the “method of characteristics” since the previous equation is linear in
x- The result is that the function

v=uv(t,z,€) = x(t,x+ f(E)W(t),&)

satisfies the following kinetic equation without a drift term:
ow=(2m) 2+ FOW0.0
(14) — g (it + FOW.0)
=W (o) (ot FOW.E).
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where the right-hand side is “nonstandard”. Informally, a weak solution to (|L.4]) is
taken as the definition of a pathwise (entropy /kinetic) solution to ([L.3)), since (1.4)
depends on the noise signal W in a nice way (dWW/dt is not entering the equation).
Various results concerning existence, uniqueness, and “continuous dependence on
the data” are found in the works [62] [64] by Lions, Perthame, and Souganidis (more
on this below). The theory of pathwise solutions has been further developed by
Gess and Souganidis in [36, 87], see also [49] and [4} 22] for a framework of intrinsic
weak solutions of PDEs driven by rough signals, without relying on “transformation
formulas” to remove the rough terms.

As alluded to above, we are interested in numerical solutions to conservation
laws with rough time-dependent flux (1.3). To the best of our knowledge, [35] is
the only work addressing numerical aspects of 7 but see Seeger’s recent work
[74] on monotone schemes for Hamilton-Jacobi equations. In the work [35], Gess,
Perthame, and Souganidis prove convergence of a semi-discrete method based on
Brenier’s transport-collapse algorithm and path characteristics.

The primary goal of our work is to develop and analyze fully discrete and thus
computable finite volume methods for solving the problem

(1.5) du+ 0 f(u)odz=0 1in (0,7] x R, u(0,-) = ug,

where 0 < T < oo is some fixed final time, z : [0,7] — R is an a-Holder continuous
driving path with o € [0,1], f € C?(R), and ug € (L' N BV)(R). The basic
numerical methods that we develop for consist of the following two steps: (1)
Approximate the driving path z by a piecewise linear interpolant z™ on a mesh
over [0,7T] with m — 1 degrees of freedom. (2) Solve (L.5)) with driving signal z™
using a traditional finite volume method for computing Kruzkov entropy solutions,
e.g., the Lax-Friedrichs, Godunov, or Engquist-Osher scheme [6I]. The second
step is justified by the observation that since z is uniformly continuous, =z will
be Lipschitz continuous for any fixed m € N, and for any Lipschitz path, classical
and pathwise entropy solutions coincide, cf. Lemma below. Several numerical
examples are presented to illustrate the finite volume methods.

A continuous dependence estimate (cf. Theorembelow ) can be used to derive
a convergence rate for the numerical methods. The result is a surprisingly slow rate
of convergence: for any a € (0,1] with [[2™|| > em!™® for some ¢ > 0, the final
time numerical error (measured in the L'-norm) is bounded by

@ @
1. T f .
(1.6) O(COST™), orsomewe[msa,m(ﬁa}
Here COST denotes the computational cost of solving (1.5)) with temporal and
spatial resolution parameters At and Az (that again are linked by the regularity
of the driving path through the CFL condition); in other words, if the problem is
solved numerically over the domain [0, 7] X [a, b], then

T b-a
COST(At, Azx) = O(At X AL ) .

A conceptually helpful way of seeing why the convergence rate deteriorates so
quickly as « decreases, justified by the CFL condition applied to the flux 2™ f, is
to think of as being integrated along the path z™ rather than along time t.
By that viewpoint the numerical error accumulates along the full path length of z™
and leads to the replacement of the factor T' by |2"™| gy, (o 77) in the standard error
estimates for numerical methods for conservation laws [51} 61] (cf. also Section [2).

For strictly convex flux functions, the theory of generalized characteristics and
Oleinik estimates can be used to derive a cancellation property due to path oscilla-
tions. We show that for any pathwise entropy solution «(7T") with piecewise linear
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path z, there exists a pathwise entropy solution @(7") with a constructively defined
“less oscillatory” path Z which is equivalent to z in the sense that u(T) = a(7T),
provided «(0) = @(0) = ug.

The total variation of a driving path enters as a factor in the error estimate for
the numerical methods (for details, see Section . In an effort to improve efficiency,
we develop a variant of the numerical methods which solves with z replaced
by the equivalent smoother path Z. The theoretical efficiency gain by doing so can
be significant. For instance, if the driving path is a realization of a standard Wiener
process, then we show that the final time approximation error is bounded by

o 1/4
) of (==55™) ).

As sample paths of a standard Wiener process almost surely are a-Holder con-
tinuous for any a < 1/2, the improvement from with o = 1/2 to is
near-optimal in the sense that for conservation laws with z(t) = ¢, the optimal
“cost versus accuracy” rate for finite volume methods is —1/4.

The cancellation property along with some of its theoretical consequences are
further investigated in the companion work [46]. Although this article studies
problem from a numerical perspective and the companion work [46] is more
focused on theoretical aspects, there are, in terms of results, some overlaps. Let
us therefore point out a few characteristic features of the approach taken in the
companion work [46] in relation to the one taken herein. Let u be the pathwise
entropy solution to (L5). The article [46] has the equivalence relation induced
by the map z — u(T) as its main object of study, and also as a fundamental
tool. Proofs via the mentioned equivalence relation make continuous paths the
natural objects of manipulation. In this work, a somewhat different approach is
taken. In the case of a piecewise linear map, the solution map wg — u(T) is
factorized as a product of solution operators, each associated to a straight line
segment of the path, cf. and . What amounts to manipulation of paths
via equivalence relations in [46] is replaced by manipulations on the product of
solution operators. The equivalent “less oscillatory” path Z is herein associated to
an “irreducible factorization” of solution operators.

Although it is not a venue we will explore in this work, let us mention that the
equation may be extended to stochastic versions which are amenable to various
forms of uncertainty quantification studies. To exemplify, let (2, F, (F)icjo,1], P)
denote a filtered probability space on which the standard Wiener process is defined,
and consider with the sampled driving path z = W. Then it follows from
Theorem that v € C([0,T); L*(R)), almost surely. For a given functional Q :
L'(R) — R, one may for instance seek to approximate the quantity of interest

E[Q(u(T, )] = /Q QUu(T, ) P(dw).

The numerical methods developed in this paper are directly applicable to non-
intrusive methods for approximating quantities of interest, e.g., Monte Carlo and
Multilevel Monte Carlo methods. We refer to [38, 40, [T, 67, 68, @, [73, B, [78] [15]
for recent developments on numerical methods for uncertainty quantification, and
note that the contributions of this work share similarities with pathwise adaptive
methods for conservation laws and stochastic differential equations, cf. [52] [44] [75]
42, [32, [47, [45] [39] 57, [79].

The remaining part of this paper is organized as follows: In Section 2] we collect
some preliminary material, including a precise definition of pathwise solutions as
well as relevant existence, uniqueness, and stability results. Section[3] presents finite
volume methods for solving (|1.5)) with a general flux function f. Section [4| studies
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properties of oscillatory cancellations (for convex fluxes f) which we use to develop
more efficient numerical methods in Section [5} Section [6] wraps the paper up with
some concluding remarks.

2. PRELIMINARY MATERIAL

If we assume that the path z is Lipschitz continuous (a = 1), then (1.5 reduces
to a standard conservation law of the form

(2.1) Ou+ 0, f(u)z2=0 1in (0,T] x R, u(0, -) = uo,

and, assuming for example that ug € (L' N BV)(R), well-posedness within the
framework of Kruzkov entropy solutions is a well-known result [I8]. Furthermore,
entropy solutions are equivalent to kinetic solutions [72].

However, if z is merely a-Holder continuous, for some a < 1, the well-posedness
of entropy/kinetic solutions does not follow from standard arguments. This very
fact motivates the following notion of solution [37} [62] [64], which can be viewed as
a suitable weak formulation of .

Definition 2.1. Assume z € C([0,T]), f € C*(R). Thenu € (L'NL>)([0,T] xR)
s a pathwise entropy solution to equation ([1.5) provided there exists a non-negative,
bounded measure m on R x R x [0,T] such that for all pg € C§°(R?) and p given by

p(xayvga 77775) = pO(y -+ fl(f)z(t),f - n)a
and all ¢ € C§°([0,T7]),

(2.2) /0 ep(r)(p * x)(y,m, r)dr + #(0)(p * x)(y,n,0) — ¢(T)(p * x)(y,n, T)

T
= A (;S(T)@gp(x,y,x,n,r)m(x,f,r)dxdfdr,

where the “convolution along characteristics” term p * x is defined by
pex(nr) = [ ol &), €or)dads

We note that for a continuous, piecewise Lipschitz path z(t), the notions of
entropy and pathwise entropy solutions coincide. We recall the following existence,
uniqueness, and stability results for pathwise entropy solutions [62, Theorem 3.2].

Theorem 2.1. Let ug € (L' N L>®)(R) and assume z € C([0,T]) and f € C*(R).
Then there exists a unique pathwise entropy solution u € C([0,T]; L*(R)) which
satisfies the following inequality for all p € [1,00]:

sup [[u(t)||zr®) < lluollzew)-
t€[0,7]

Furthermore, if u and u represent the pathwise entropy solution with respective paths
z and Z, then there exists a uniform constant C > 0 such that for all t € [0,T],

l[u(t) = u(t)]lr < [luo — tollr + C[||f’||(||U0||Bv + |laollBv)I (2 — 2)(t)]
(2.3) —— -
+ Jsittft) 1z = 2N luollz + llaoll2)|.

Remark 2.1. Theorem [2.1] is proved in two steps. First, the result is verified for
smooth paths z € C'([0,7]). Thereafter, the result is extended to z € C([0,T])
by utilizing an approximation sequence {z™},, C C*([0,T]) such that 2™ — 2 in
C([0,T]), using that solutions of depend continuously on the driving path.
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Remark 2.2. According to Theorem the pathwise entropy solution of de-
pends continuously on the rough path z(¢) in the supremum norm. It is also possible
to prove a variant of that includes continuous dependence with respect to the
flux f. Such estimates are relevant for some numerical methods [51), [65]. Suppose
@ is the pathwise entropy solution of with the “data” (ug,z, f) replaced by
(g, 2, f). Then the “continuous dependence” estimate is replaced by

lult, ) = a(t, Y oy < o — ol 1y

2.4 7l fl
(2.4) + (b= = Pl + /172 = Pl ),

for some constant C' depending on ||(ug, )| 25y We omit the (lengthy) proof
since the arguments are very similar to those found in [62]. Earlier “deterministic”
continuous dependence estimates can be found, e.g., in [I3] 54, [65].

The numerical methods presented later are based on replacing the driving path
z(t) by a piecewise linear, Lipschitz continuous approximation z(t). Suppose for
the moment that both paths z(t), Z(t) are Lipschitz continuous. Then, adapting
the arguments in [I3] [64] [65], one can prove the following stability estimate:

l[u(t, ) = alt, ) gy < lluo — tollpr ()
+ C( 1= Fll oo + 112 = Zll 21 0,09 )»

where the constant C depends on the data as follows:

C = € (a0, @)Ly [| (£ F) | o 12 Dl 0 ) -

At variance with , note that the estimate does not depend on the second
derivative of the flux, but it does depend on the derivative of the path (actually
the total variation of the path). Consequently, there is a trade-off between the
regularity of the nonlinear flux function and the regularity of the path.

(2.5)

3. THE FIRST NUMERICAL METHOD

In this section we describe numerical methods for . Convergence rates are
derived and a few numerical examples are presented to illustrate the qualitative
behavior of solutions.

Since solutions to depend on the differential of the driving path z, but
not on its initial value z(0), we may without loss of generality restrict ourselves to
driving paths in the function space

Co([0,T1) = {g € C([0,T1) | 9(0) = O}
Denote the set of a-Hélder continuous functions on [0,7] that are zero-valued at

t =0 by

wp 28 =200

Co([0,T]) = { = € Co([0,T]) -
s#tejo,r] |t — s

<oo}7 a € (0,1].

The set of Lipschitz continuous functions on [0, 7] that are zero-valued at t = 0 are
denoted by

Lipy ([0, T]) = 3" ([0, T)).
Given a mesh

O=m<n< - <1m=T, m > 2,



CONSERVATION LAWS WITH ROUGH FLUX 7

we introduce the set of functions which are Lipschitz continuous over [0,T] and
linear over each interval [7y, T41], i.e.,

10010, 7% 73 170) ={ 9 € Libo ([0, T olrs 1 () =m) + 1 (o) — 9(m)

forallk:O,l,...,mfl}.

We also introduce the operator Z[-](;;{7;}]1o) : Co([0,T]) — Io([0, TT; {7;}L0)
defined by

Tl (13)20) = T ) (90) + 52 0() = ()
(3.1)

thk

o) - s(m))).

m—1
+ Z 1("’kﬂ'k+1](t) (g(Tk) =+
k=1

for g € Cy([0,T7]). On some occasions we use the shorthand notations Ij*([0,T]) =
1o([0, Th; {m5}j20) and T[] = Z[)(5 {75 }jZo)-

3.1. Framework for numerical solvers. We propose the following numerical
method for solving (1.5):

(i) For an appropriately chosen mesh {7; }}”:0, approximate the driving path
z € Co([0,T]) by the piecewise linear interpolant z™ := Z™[z].

(ii) Solve with the driving path z replaced by the Lipschitz path 2™, using
a consistent, conservative and monotone finite volume method (for entropy
solutions).

With the purpose of studying properties of the entropy solution of with path
2™, we introduce the solution operator S'(-)- mapping R x [0, 00) x (L' N BV)(R)
into (L* N BV)(R). For k € R, s > 0 and v € (L' N BV)(R), 8%(s)v denotes the
solution at time t = s of

(3.2) Ou~+ kO f(u) =0 in (0,00) X R, u(0,-) = v.
Using the convention that for any k£ = 0,1,...,m — 1, 2" := limy ., 2™ (t) and
denoting A7y, = 7,41 — Tk, we define
(3.3)
Ug ift =0,
Sz.gn(t)uO ift e (T07T1],
um(t,) = SH (t —1)S%" (ATo)uo if t € (m1, 1),

. m

S*n-1(t — Ty 1)S*m—2(ATpy_s) ... 8% (Ao ug if t € (Tpp_1,T).

To justify step (ii) of the above algorithm, let us verify that ™ is a Kruzkov
entropy solution as well as a pathwise entropy solution.

Lemma 3.1. Assume that ug € (L' N BV)(R), f € C*(R), z € Co([0,T]) and
2™ € I™[z]. Then the function u™ defined by equation (3.3) is a Kruzkov entropy
solution of (2.1) with driving path 2™, such that

(34) u™ e C'([O,T‘]7 Ll(R» and |Um<t)|Bv(R) < |UO|BV(R) vVt € [O,T}
Moreover, u™ is also a pathwise entropy solution of (L.5|) with driving path z™.

Proof. Tt is enough to remark that ™ is a Kruzkov entropy solution of (2.1). By
[62] it is then also a pathwise entropy solution of ([1.5]), as the total variation of z™
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m

is finite. Indeed, by construction, on each time interval [7x, Tk+1], u™ satisfies the

following local Kruzkov entropy condition:
Tk+1
/ / U™ — clgy + sign (u — ) (™) — £(c))ds da dt
Tk R

+/ |u™ (T +, ) — c|d(Tr, ) — |u" (Thp1—, ) — ¢|d(Tk41,2) dz > 0,
R

for all ¢ € R and test functions ¢ > 0. Since u™ € Cy([0,T]; L'(R)), we have that
u(ti+) = u(ri—) in L'(R)-sense, and summing over k = 0,...,m — 1 gives that
u™ is a Kruzkov entropy solution on [0, T]. See [51] for verification of (3.4). O

3.2. Numerical schemes. Let U denote a finite volume method approximation
of ™ with uniform spatial and temporal mesh parameters Az and At such that

1 z;+Ax/2
U= A—/ u (tn,y) dy, t, = nAt, x; = jAz.
L Jrj—Ax)2
Although theoretical results will be stated in more generality, we have in the nu-
merical implementations restricted ourselves to two numerical methods: the Lax-
Friedrichs scheme

U +Uf 1 2" () A (o "
J+12 j-1 Q(A:)c (f( 1) — f( j—1)),

and the Engquist—Osher scheme

n+1 __
U, =

m (e A
U;LJrl:U;I—ZQ(tAa)le(f( ) — fUF)

U

__smn<anan>>(12511U”@»ds—14fT|f%s>ds)>.

n
Jj—1

If volume averages of ug are computable, both schemes are initialized by setting

1 IJ‘+AI/2
(35) v L
’ Az zj—Ax/2
otherwise each volume average of uy is approximated using a finite number of
quadrature points evaluating the cadlag modification of ug over each volume.

For a consistent treatment of 2™ at (possible) discontinuity points {7;}, we will
always assume that {7;} C {t,}, i.e., the interpolation points of 2™ constitute a
subset of the temporal mesh points used in the finite volume scheme.

We refer to [51) 61] for background material on numerical methods for conser-
vation laws.

3.3. Resolution balancing and convergence rates. Assuming that the mesh
{mj} C [0,T] consists of uniformly spaced points, the numerical solution U de-
fined above has three “resolution parameters”: the path interpolation step size AT,
and the temporal/spatial mesh sizes At and Az of the finite volume method. To
construct an efficient and stable (convergent) numerical method, these parameters
must be appropriately balanced. In this section, we derive a convergence rate ex-
pressed in terms of the resolution parameters, and determine the optimal balance
for minimizing the error in terms of computational cost.
The next lemma contains our first convergence rate result.

Lemma 3.2. Let u € C([0,T]; L*(R)) denote the unique pathwise entropy solution
of ([LB) for given ug € (L' N BV)(R), f € C%(R), and z € Cy*([0,T]) with
a € (0,1]. Assume that {7;}7, C [0,T] are uniformly spaced points with step
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size At = T/m, and that for the numerical solution U defined in Section the
following global CFL condition is fulfilled:

A2 [loo " llso
Az

where the constant Ccopr, > 0 depends on the scheme used. Then

(8.7) (™) = UMD < lluo = UO)]}1 + € (Ar°/2 + Ar21 (VAL + VAT) ),

(3.6) < Ccrr,

where C' > 0 is independent of the resolution parameters.

Proof. Recall that for the given initial data ug and flux f, ©™ denotes the pathwise
entropy solution with driving signal 2", and U denotes the corresponding numerical
solution with path 2™. By the triangle inequality and (2.3]),

(58) [(T) = U(D) [ < [[(T) = w™ (D)1 + [[u"™(T) = U(T) |1
' < CVlz = 2o + [[u™(T) = U(T)]1-

The error can thus be bounded by the sum of the path approximation error and
the finite volume discretization error. Since z € C5*([0,T]) and 2™ uses m + 1
uniformly spaced interpolation points with step size AT,

[z = 2"|o = O(AT®) and [[Z™ o = O(AT ).

To bound the second term, we repeat the proof of Kuznetsov’s lemma (see e.g. [51],
with f replaced by 2™ f) to derive that for some constant C, depending on || f/||c
and |ug|gy (r), the following error estimate holds for any consistent, conservative
and monotone finite volume approximation:

la™(T) = U(T) Il < Ilug' = UO)[l + CJl2™ oo (VAL + VAZ)

(39) < — U ()]s + CAr1 (VAT + VD)

O

Having obtained a convergence rate expressed in terms of the resolution pa-
rameters, we next seek to optimally balance these parameters for the purpose of
minimizing computational cost versus accuracy. Let us first discuss briefly how the
spatial support of the numerical solutions grows in time.

For any y € R, let [y] denote the smallest n € Z such that n > y. For two
functions g; and g2 we use the notation gi(m) = ©(g2(m)) to signify that there
exists two positive constants C; and Cy such that Cig1(m) < ga(m) < Cagi(m)
for all m, in particular gq(m) = ©(g2(m)) implies that gi1(m) = O(g2(m)) and
g2(m) = O(g1(m)). Let N = [T/At] denote the number of timesteps used in the
finite volume method (expressing that number by N rather than [T/At] simplifies
the transition to non-uniform timesteps At,, later on).

Suppose that at some time t,, € [0, — At], we have

—co<a=inf{x €R|U(ty,z) #0} and sup{x € R|U(tn,z)#0}=b< 0.
Computing U (tp4+1) from U(t,) by a k-stencil numerical scheme yields

—o0 < a—kAz <inf{z € R| U(tpy1,2) # 0}
and

sup{z € R| U(tpt1,2) # 0} < b+ kAz < cc.

Let Leb(-) denote the Lebesgue measure on (R,B) and for any g € L'(R) let
supp (g) denote the essential support of g. Based on the above observations, we
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will in the sequel assume that for any ug € (L' N BV )(R) with Leb (supp (ug)) > 0,
2™ =7T™[2] and f € C?(R), there exists constants ¢y, co > 0 such that

(3.10) ¢1 < Leb U supp(U(tr)) | <c2(1+ NAx)
ke{0,1,....N}

Note that in the classical setting o« > 1, the CFL condition (3.6)) allows for At =
O(Az). This yields N = @(Am‘l), and assumption (3.10)) becomes

Leb U swp@t) | =61,
ke{0,1,...,N}

indicating finite speed of propagation. If a < 1, however, then the CFL condition
imposes the constraint NAx > C||2™||s. So whenever lim,,  [|2™]|cc = 00, a
numerical solution generated by a scheme with artificial diffusion may attain infinite
speed of propagation in the limit as m — oo (although this is not an issue with the
numerical examples presented later).

Theorem 3.3. Let u € C([0,T]; LY(R)) be the unique pathwise entropy solution
of (L), for given ug € (L' N BV)(R) with Leb (supp (ug)) < oo, f € C*(R) with
[£loc >0, and z € CO*([0,T)) with a € (0,1]. For anym > 2, let {7} C 10,7
denote the uniform mesh with step size AT = T/m and assume the computational
cost of generating the interpolant z™ = I™|z] is ©(m?) for some 3 > 1, and that
there exists an m > 2 such that

2™ |00 > m{t=2)/3 Ym > 1.

Let U denote a numerical solution linked to the two-step algorithm in Section|3.1
satisfying the CFL condition

AT
mym—1 ’ '
. ([max({Aé,;FiZQ )IIf ﬂ ’ 1)

Assume that the spatial support of U([0,T]) is covered by an interval [am,, by] C R
that satisfies

(3.11) At =

1 <bpm — am < ca(1+ NAx),
for some ¢1,c2 > 0, c¢f. (3.10).

Then the optimal balance of resolution parameters for minimizing computational
cost versus accuracy is

Ax:@<|AT ) and Atz@( AT'),

12115 12712

and

(3.12) lu(T) = U(T) | = O(m~72)

is achieved at the computational cost

(3.13) e ([12™]15m> +mP) < Cost(U) < & (J|2™|Sm®™ +mP)
for some ¢é1,¢9 > 0.

Proof. Assume that m > . Then the CFL condition (3.11]) imposes the following

constraint on the timestep:
A
At =0 (ﬂf) :
12 [l
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Since u™(0) = ug € (L' NBV)(R), the approximation of the initial data (3.5) yields
that
[ug" = U(0)[lx = O(Az),
and by (3.8),
lu(T) = Ul = O(Ar*/2 4 |27 |ooV/A) .

The optimal balance of resolution parameters for minimizing the computational
cost versus accuracy is achieved through equilibration of error contributions:

ATY
Az — @() |
2™ 13

Az < AT

127113

At = @(min (,MAT)) = @(,ATB) .
1127 {loo 12713

The computational cost of the numerical solution U(T) is the sum of ©(m?) for
generating the piecewise linear interpolant 2™, and

T b — am
@(Atx Ax >

for solving U over [0,T] X [@m, bm]- O

Since m > 1h,

>O@ﬂ,

127l

and thus

Remark 3.1. Theorem provides a surprisingly slow convergence rate. For in-
stance, if z € COV2([0,T)) and ||5™]|0 = ©(m!/?), then implies that in
order to achieve the accuracy ||u(T) — U(T)||z: = O(e), one needs m > ce~* for
some ¢ > 0. By , this results in the astounding @(6_14 + 6_4’8) lower bound
on the computational cost. In some numerical experiments, however, we observe a

better convergence rate than predicted by (3.12), see Example [3.2]in Section

Remark 3.2. In Theorem we assume the computational cost of generating/sampling
the piecewise linear interpolant z™ is @(mﬂ) for some 8 > 1. If z is a realization

of a Wiener process, for instance, then 8 = 1, but to cover the more general Holder
continuous stochastic processes, we allow for g > 1.

We next consider the use of an adaptive mesh {t,})_, O {r}7, that have
uniform timesteps over each interpolation interval 7y, 7541] for k =0,1,...,m—1.
That is, to = 0 and given t,, € |7k, Tk+1), the next mesh point is set to

tpt1 =t + %, where

(3.14)

AZTTL r/
n(k) ::max{{ckcigﬂm-‘ , 1} for k=0,1,2,...,m— 1.

Here, the constant C'cpr, > 0 depends on the scheme used. We refer to (3.14)) as the
local CFL condition. The next theorem shows that adaptive timesteps can improve
the efficiency of the numerical methods.

Theorem 3.4. Let u € C([0,T]; LY(R)) denote the unique pathwise entropy solu-
tion of for given ug € (L*NBV)(R) with Leb (supp (ug)) > 0, f € C*(R) with
[f'lsc >0, and z € Co* ([0, T]) with o € (0,1]. For anym > 2, let {7; o C[0,T]
denote the uniform mesh with step size AT = T/m and assume the computational
cost of generating the interpolant 2™ = I™|z] is ©(m?) for some 3 > 1, and that
there exists an m > 2 and ¢ > 0 such that

(3.15) 12" [Bv(jo,77) > em(1=)/3 Ym > 1h.
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Furthermore, let U denote a numerical solution of the method in Section|3.1| satis-
fying the local CFL condition (3.14)) and assume that the spatial support of U([0,T1])

is covered by an interval [am, by] C R that satisfies
1 <bpm —apy < ca(1+ NAzx),

for some c1,¢c0 > 0, cf. (3.10). Then, the optimal balance of the resolution param-
eters for minimizing computational cost versus accuracy is

AT o |Zm‘3BV([O,T])
Az = @() and N = Z n(k) = @(M ,

2™ By (o)
and
lu(T) = U(T) | = O(m™e72),
is achieved at the computational cost
¢ (|Zm|%v([0,T])m2a + mﬁ) < Cost(U) < & (\Zm|%V([o,T})m2a + mﬁ) )
for some ¢é1,¢é9 > 0.

Remark 3.3. If |z | gy o.r)) = ©([2™[), then the computational cost results in
Theorems and are, up to constants, equivalent.

Proof. The local CFL condition (3.14)) implies that all timesteps At,, belonging to
the same interpolation interval [7;, 7j4+1] are of equal size and

ATAx
1AZ 1 f Nl
for any j € {0,1,...,m — 1} and all n € {0,1,..., N} such that ¢, € [1j,7j41).
By (3.16)) and the proof of Kuznetsov’s lemma (see e.g. [51], with the flux f replaced
by Z7* f ), the numerical error from one interpolation interval can be bounded by

[w™(7j11) = U(Tj40) < [lw™(75) = U(75) 11

+C|57| > At,(v/Aty, + VAz)
n€{0<k<NI|tx€[r;,m41)}

< ™ () = U(mj)]l1 + C ( Az + AT) VvV Az,

(3.16) At, < Cerr

for some C' > 0 that depends on || f'||eo, |uo|pyv®). Consequently, the error over
[0,T7] is bounded by

la™(T) = U(T)]l1 < luo = UO) 1 + (=™ oy + T)VAT.
By a similar argument as in the proof of the preceding theorem, we conclude that

la(T) = U(T) | = O( A7/ 4 2y 9y VAT )

where, by (3.15)), we have used that [2"|gy (o) + T = O<|Zm|BV([O,T])>' The
error contribution of the resolution parameters are balanced by

Ax:@<§r>.
2™ By (0,1)

Assume that m > . By (3.14),

1 llso |AZ}"]
CCFL Ax

< iy < W le 1857

1
(3 7) ~ Ccr1, Az

+1 vk € {0,1,...,m — 1},
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and (3.15]) implies that

m—1 m—1

- [/ oo Az )
N= > n(k)< +1
0<% (G o
m)3
! z
(3.18) < I.f ||oo| ‘BV([O,T]) ‘m
CerL AT

2™ By (0.1
()

From (3.17) and (3.18) we conclude that

|Zm\?f9v([o 7))
N=0| ———|.
( AT

The computational cost of U(T') is the sum of O(mﬂ ), for generating the piecewise
linear interpolant 2™, and
by —a
O|N x> ™™
(20 Pog)

for solving U over [0,T] X [@m,, by ]. O

Remark 3.4. In his recent work [74] Seeger proposes a general class of monotone
schemes and develops an accompanying error estimation theory for Hamilton-Jacobi
equations of the form du = H(Du) o dW, where W = (W' ... W) is a contin-
uous path and H = (H',..., H") is a given nonlinear Hamiltonian. Besides that,
a convergence theory is provided for a more general class of equations contain-
ing also a nonlinear degenerate elliptic operator F'(D?u, Du,u). Similar to our
approach, the approximation schemes of Seeger replace W by a regular path W,
defined over a partition P, = {0 = tg < t; < -+ < ty = T} with |P,] — 0
as h — 0. Also the temporal discretization of du utilizes the partition Pp,. The
approximating path and the corresponding partition are chosen carefully to ensure
that |Wh(t"+1;l_wh(t")| <1, where t, and t,,1 are two consecutive points in the
partition Pp, and h is the spatial discretization parameter of the schemes. In [74]
the theory of viscosity solutions is used to derive new L error estimates. The L*°
convergence rate depends, as in our case, on the exponent of the Holder continuity
of the driving path, and it is generally higher than the L' convergence rate we would
obtain by Theorem when using the same scalar driving path. As our problem
has less spatial regularity and is likely to be more sensitive to perturbations in the
driving path than Seeger’s (compare (2.3)) to [74, inequality (5.7)]), is it is not clear
what conclusions may be drawn from this rate comparison.

3.4. Numerical examples. To simplify the spatial discretization in our numerical
tests, we consider the following version of (|1.5)) with periodic boundary conditions:

du+ 0, f(u)odz=0 in (0,7] x T,
u(0,-) = ug € (L* N BV)(T).
Well-posedness and stability results for (3.19)) can be derived by a simple extension

of [62]. Lemma and the numerical framework of Section |3.1| extend trivially to
the periodic setting using the solution operator

Si(1)-: R x [0,00) x (L* " BV)(T) — (L* n BV)(T),

where, for ¢ € R, s > 0 and v € (L' N BV)(T), S%(s)v denotes the solution at time
t = s of the conservation law

Opu+ O f(u) =0 in (0,00) x T, u(0,-) = v.

(3.19)
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All problems are solved with the adaptive timestep method of Theorem [3.4] with
free/varying resolution parameter m > 2, linked parameters

(3.20) Ar=m™, Az = L ,

(o7 m2
[m |2 |BV([0,T})—‘

and At,, determined by (3.14) with Ccpr, = 1, for both the Lax—Friedrichs and the
Engquist—Osher scheme.

Ezample 3.1. We consider (3.19) with T = 1, f(u) = u?/2, uo(z) = 11/4,3/4)(2),
and the zigzag path z € C’g 1(10,1]) generated by piecewise linear interpolation of
the points {(;, 2(t;))}{_o with ¢; = i/8 and

0 i odd,
Z(ti) = (71)1'/2
4

1 even.

Thanks to Lemma [3.1] the solution can be represented as

L13/8,5/8) (%) if t =0,
SE(t)uo if £ € (o, 1],
(321)  u(t,) = { So7(t—t1)SE(1/8)ug it 1€ (t,ta),

SE(t — t7)Sp2(1/8) ... S2(1/8)uy if t € (t7,1].

Moreover, using the method of characteristics and the auxiliary function ¢ : A — R
defined on the domain A = {(a,b,c,d,z) € T° |a <b<c<d and a < d} by

0 0<z<a,
(x—a)/(b—a) a<zx<b,
Y(a,b,e,d,x) =141 b<z<eg,
(d=—x)/(d—c) c<z<d,
0 d<x<l,
we obtain the exact solution
(3.22)
$(3/8,3/8 + 2t,5/8 +,5/8 + t, 7) te0,1/8],
$(3/8,5/8 — 2(t — 1/8),6/8 — 2(t — 1/8),6/8, ) te(1/8,1/4],
Y(3/8—(t—1/4),3/8 — (t —1/4),4/8 —2(t — 1/4),6/8,x) t € (1/4,3/8],
ult. ) = (2/8,2/8 + 2(t — 3/8),2/8 + 2(t — 3/8),6/8, z) te (3/8,1/2],
’ (2/8,4/8 + 2(t — 1/2),4/8 + 2(t — 1/2),6/8, ) te(1/2,5/8],
$(2/8,6/8 — 2(t — 5/8),6/8 — 2(t — 5/8),6/8, ) t e (5/8,3/4],
¥(2/8,4/8 —2(t — 3/4),4/8 — 2(t — 3/4),6/8, x) te (3/4,7/8],
¥(2/8,2/84+2(t—7/8),2/8+2(t —7/8),6/8,x) te (7/8,1].

Figure (1| shows snapshots of the exact solution of u for the above problem, and
corresponding numerical solutions U computed with the Lax—Friedrichs and the
Engquist—Osher scheme. The free resolution parameter is set to m = 23 in first time
series and m = 2° in the second one. Since a = 1, || f'||oc = 1 and 2™ By (0,17 = 25
equations and yield Az = 27°%, N = 25 when m = 22 and Az = 278,
N = 2° when m = 20. As is to be expected from Theorem the numerical
solutions converge towards the exact solution as m increases, and the Engquist—
Osher approximations converges faster than the Lax—Friedrichs approximations.
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Observe further from and Figure [1| that for any s,t € [t3, 1] such that
z(s) = z(t), it holds that u(s) = u(t). In the next section we will explain this prop-
erty by showing that certain “oscillating cancellations” in z lead to corresponding
cancellations in the solution wu.

u(t, x)

t=0.0 t=0.125 t=0.25
1.0 A 1 1
X
£ 051 1 1
0.0 . g ! .
t=0.375 t=0.5 t=0.625
1.0 1 1 1
X
35 0.5 1 1 1
0.0 . 1 . 1 .
t=0.75 t=0.875 t=1.0
1.0 . .
=
£ 05+ . .
0.0 A 2 N i /. Q. i Ve ™~
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X
0.2 A
£ 0.0
—0.2 1
0.0 0.2 0.4 0.6 0.8 1.0

FiGURE 1. Top and middle: Time series snapshots of the exact
(solid line), the Lax—Friedrichs (dashed line) and the Engquist—
Osher (dash-dotted line) solutions of Example 3.1 with flux f(u) =
u?/2 and free resolution parameter m = 23 (top 3 x 3 subfigure)
and m = 2° (middle 3 x 3 subfigure). Bottom: The zigzag driving
path z. The dotted points correspond to the value of z at the
respective time series snapshots.



16 H. HOEL, K. H. KARLSEN, N. H. RISEBRO, AND E. B. STORROQSTEN

Figure [2| shows snapshots of numerical solutions of the above problem with the
only difference being that the flux function here is f(u) = u®/3. The free resolution
parameter is set to m = 23 for the first time series and m = 2% for the second one,
and an approximate reference solution is computed at resolution m = 2'2 using the
Engquist—Osher scheme. We observe that the numerical solutions converge towards
the reference solution, and a similar cancellation property as that for f(u) = u?/2
seems to hold at the snapshot times t;,¢; > t3 displayed here as well.

t=0.0 t=0.125
1.0 1 b b
= g
s
£ 051 1 ‘ 1
, ‘ -~ I
0.0 1 22 N
t=0.375 t=0.5 t=0.625
1.0 1 1
X N
§ 0.5 \ 4 ! A - / N\/\/\,
/ S _/ . X -
0.0 ke e L - L "o
t=0.75 t=0.875 t=1.0
1.0 1 b b
B [~ > A
s
5 0.5 2 MN N 1 ,I PSRN 1 VSN
LT D N/ ot
0.0 = . : .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X
t=0.0 t=0.125 t=0.25
1.0 . .
=
o
£ 051 . .
0.0 2 L >
t=0.375 t=0.5 t=0.625
1.0 1 1
X \
£ 051 1 1
0.0 ' N /] i \ | i N
t=0.75 t=0.875 t=1.0
1.0 1 b b
x
x \ V)
£ 0.5+ . . \
0.0 2 N 2 N v L
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

FIGURE 2. Example with flux f(u) = u3/3. Approximated
reference solution (solid), Lax—Friedrichs (dashed) and Engquist—
Osher (dash-dotted). The free resolution parameter is m = 23 in
the top 3 x 3 subfigure, and m = 2° in the bottom one.

Example 3.2. We study the problem with 7' = 1, initial function ug(z) =
1j3/8,5/8)(2), and flux f(u) = u?/2. As driving path z € Cy*([0,1]) we consider
realizations of a fractional Brownian motion (fBM) with Hurst indexﬂ a=1/4,1/2
and 3/4. We refer to [59] for details on fBM and the circulant embedding algorithm,

ITo be precise, a sample path of an fBM with Hurst index « € (0,1) is almost surely (o — §)-
Hoélder continuous for all 6 > 0, but it is almost surely not a-Hdlder continuous.
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which we use here to generate realizations on a uniformly spaced mesh {75} .
The cost of generating z™ with this method is O(mlog(m)).

1.0 t=0.0 ] t=0.125] | t=0.25
X
e | | |
tos \_/\ \/\
0.0 T T T
104 t=0375 | =05 | t=0.625
X
s o2 -\/\ -\/\ -\/\
0.0 T T T
104 =075 | t=0875 | t=1.0
X
B 0-3 -J\ -/\ -/\
0.0 T T

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

X X X
11
X 09
-1 A1
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 3. Top: Time series of numerical solutions with o = 0.25
for Example Lax—Friedrichs (red dashed line) and Engquist—
Osher (black line). Bottom: The driving path z. Red points cor-
respond to the value of z at the respective time series snapshots.

Figures and [5] show time series of “adaptive timestep” numerical solutions
for the respective Hurst indices a = 0.25,0.5 and 0.75. The free resolution param-
eter is set to m = 28. In Figure |§| we compare the final time numerical solutions
U(1) computed with the respective resolutions m = 2% and m = 28, and with an
approximate reference solution computed with resolution m = 2!° using the more
accurate numerical method developed in Section A link to the other resolu-
tion parameters is obtained through and the following property for fBMs:

E [|zm\Bv([0,1])} = O(m!'~®). At resolution m = 28, for instance, a typical realiza-

tion of an fBM sample path yields Az = 2719 and N = 2!2 for a = 3/4; Ax = 2712
and N = 216 for « = 1/2; and Az = 27 and N = 220 for a = 1/4. We observe
that the Engquist—Osher scheme introduces less artificial diffusion and therefore
produces more accurate approximations than the the Lax—Friedrichs scheme. (Note
that solutions for different values of a are not directly comparable, not least since
they are generated from independent fBM sample paths.)

Figure [7] shows the final time approximation error [|[U(1) — u(1)||; as a function
of the resolution parameter m for both numerical schemes. The error is averaged
over 10 fBM realizations for each of the considered Hurst indices. The convergence
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104 t=0.0 ] t=0.125| | t=0.25
x
Soe i i
£o05 /\
0.0 - - h .
1.0 t=0375 | t=05 ] t=0.625
x
S oe i i
£o5 /\ /\ /\
0.0 M , A , r
1.0 =075 | t=0.875 | t=1.0
X
S oe i i
£os
0.0 . ’ .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X
1.0
0.5
S 0.0
N
_05 N
_1'0 ) T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 4. Top: Time series of numerical solutions with o = 0.5
for Example Lax—Friedrichs (red dashed line) and Engquist—
Osher (black line). Bottom: The driving path z. Red points cor-
respond to the value of z at the respective time series snapshots.

rate decreases as « (and thus the regularity of z) decreases, but it is consistently
orders of magnitude faster than Theorem s possible worst case, O(m_o‘/ 2).

4. “OSCILLATORY CANCELLATIONS”

The numerical experiments in Example indicate that the convergence rates
obtained in Theorems and might not be sharp. In view of the more precise
adaptive timestep error analysis of the latter theorem where the factor [2™| gy (o 79
enters, one might suspect that the error bounds could be improved if one were able
to identify “driving path oscillations” resulting in “cancellations” in the flux term
™9, f(u). In this section we show that for settings with f € C?(R) strictly convex,
the path z™ € IJ"([0,T]) can be replaced by a “simpler” path y™ € Ij*([0,T]) (with
smaller total variation) that has the property that the solution of with path
y™ coincides with the corresponding solution with path 2™ at final time 7" (but not
necessarily at earlier times).

In Section we introduce some notation and give a definition of “oscillatory
cancellations”. Section puts forward a mapping for removing “oscillatory can-
cellations” (2™ + y™) and culminates with Theorem [4.5] which asserts the equality
of entropy solutions with the respective paths 2, y™ at final time 7'. In Section [£-3]
we study properties of cadlag paths with bounded total variation, cf. and
Theorem The purpose of this is twofold. Firstly Theorem [4.10| provides an
alternative stability result to that of Theorem [2.1] and, secondly, along the way a
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104 t=0.0 ] t=0.125 | t=0.25
X
) 4
Los5
0.0
1.0 t=0375 | =05 ] t=0.625
X
) 4
Los5
0.0
1.0 =075 | t=0.875 | t=1.0
X
) 4
Los5
0.0 ; , ,
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X
0.50 -
0.25 -
o 0.00 1
~
-0.25 A
-0.50 A
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 5. Top: Time series of numerical solutions with o = 0.75
for Example Lax—Friedrichs (red dashed line) and Engquist—
Osher (black line). Bottom: The driving path z. Red points cor-
respond to the value of z at the respective time series snapshots.

constructive definition of lim,, ., y™ is developed. The latter is useful in the study
of qualitative properties of Wiener paths, cf. Lemma [5.3] An efficient numerical
method making use of “oscillatory cancellations” is developed in Section

4.1. Preliminaries. Recall that for k € R, s > 0, and v € (L' N BV)(R), 8*(s)v
denotes the solution at time ¢t = s of

Opu+ KOy f(u) =0 in (0,00) X R, u(0,-) = v,

so the entropy solution at time ¢t = 7" of (2.1) with path 2™ € Io([0, TT; {7;}7X)
can be expressed by

(4.1) u™(T) = S*m-1(AT)S*n-2(AT) ... 8% (AT)u.

By a change of variables, the solution mapping can be simplified to only depend on
the path increments.

Lemma 4.1. For any A7 >0, k € R and v € (L' N BV)(R), S*(AT)v coincides
with the entropy solution at time t = |k|AT of

(4.2) Optu +sign (k) O, f (@) =0 in(0,00) X R, a(0) = v.

Proof. For k = 0 the result trivially holds as S°(-) = I. Otherwise, when |x| > 0,
we verify the result by showing that

a(t,x) = u(t|s|, x)
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00 02 04 06 08 10 00 02 04 06 08 10

FIGURE 6. Final time solutions for Example Reference solu-
tion (black line), numerical solutions at resolutions m = 26 (red
dashed line) and m = 2% (green dash-dot line). Left column:
Engquist—Osher scheme, Hurst index o = 0.25,0.5,0.75 from top
to bottom, respectively. Right column: Lax—Friedrichs scheme,
Hurst index « = 0.25,0.5,0.75 from top to bottom, respectively.

— EO
——= O(m~0.65)
10-1 4

|lu(1) =U@)]|x

,_.

o
N
L

—_— O(m—O.EB)

102
m m m

FI1GURE 7. Final time approximation error for Example[3.2] Hurst
indices a« = 0.25,0.5,0.75 from left to right, respectively. The
abbreviations EO and LF denote respectively the Engquist—Osher
and Lax—Friedrichs schemes.

is an entropy solution of
Ou+ KO, f(u) =0 in (0,00) x R, a(0) = v.
Let ¢ € C§°(R x R) be an arbitrary nonnegative test function and set
(4.3) B(t, z) = d(t}n], ).
By construction, for all ¢ € R, we have

|k|AT
| [ clono s = cpsign () (7(0) = f6))0,6 ot

—I—/ |@(0, ) — c|p(0,x) — |a(|k|AT, x) — c|p(|k|AT,z)dz > 0.
R
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Making the change of variables ¢ = ¢/|k|, we arrive at
AT
| [1a=d@) @)
o Jr ) )

+ sign (@ — ¢) k(f (@) — f(c))(029) (f]x], z) dz dE

+/ 1u(0,z) — c|p(0,2) — |a(AT, ) — c|p(AT,z) dz > 0.

R

Noting that
0 (t|sl, ) = O¢ (||, ) ||,
it follows that

AT
| [ 1= cioid + sien (0 = ) st - Fle)oda ar
+/ (0, 2) — el (0, 2) — |a(AT, ) — c|d(Ar, 2) dz > 0.
R

In view of (4.3)) and the invertibility of the mapping ¢ — t|x|, the above inequality

holds for arbitrary nonnegative ¢ € C§°(R x R). O
Let S(-) : R x (L* N BV)(R) — (L' N BV)(R) be the solution operator linked to
(4.4) Opti + sign (Az) O, f(u) =0 in (0,00) X R, a(0) = v.

That is, for Az € R and v € (L' N BV)(R), S(Az)v denotes the Kruzkov entropy
solution at time t = |Az| of (4.4)).
Lemma implies that for any 2™ € Io([0,T]; {7;}720), k € {0,1,...,m — 1},
s € [0,Ar] and v € (L' N BV)(R),
(4.5) S (s)v = S(z™ (1 + 5) — 2™ (11) )v.
In view of (4.5) and (3.3, the solution of (2.1)), for given ug € (L' N BV)(R),
f € C?(R) and driving path 2™ € IJ*([0,T7]), can be represented by
S(z™(t) — 2™(0))uo if t € [0, 7],
(4.6) W (t) = S(™M(t) — 2™(11))S (A= )ug if t € (1, 72),
SE™(t) — 2™ (Tm—1))S(Az o) - - S(Azf)ug  if t € (Tip—1,T).
To study how an entropy solution depends on the driving path, we introduce the
notion “oscillatory cancellations”.

Definition 4.1. For given ug € (L' N BV)(R), f € C*(R) and 2™ € I5*([0,T)),
we say there are “oscillatory cancellations” over an interval [rx, 7] C [0,T], with
ke {0,1,...,m—2} and 7 € (7p, Te41] for some k <€ <m —1, if it holds that

u™(r) = 8" () = 2" () - S(AZ U™ (k)

~

-1

(47) =S () =2 + Y A | ()

J

I
>

J
=S8 (2™(1) — 2" (1)) u™(T3)-
Recall from [51, Theorem 2.15] that the solution operator S fulfills the following
properties for all u,v € (L' N BV)(R) and s,t € R:
(4.8) 1S(s)u = S(s)vllLr) < llu—vllL1 ),
(4.9) 18(s)u = S@Oullzrzy < I1F 1= ulvie |t — sl

(4.10) IS(s)ulgvr) < |uolBv(r)-
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The spatial regularity of entropy solutions turns out to be strongly linked to the
running maximum/minimum functions of the driving path introduced below.

Definition 4.2. For any z € Cy([0,T1), let

(4.11)  MT[2](t) = Srél[%?%]z(s) and M7™[Z](t) == Sren[(i)r,lt]z(s) for t€[0,T)

denote the running maz/min functions of z.
See Figure (8| for an example illustrating the running max/min functions.

To identify intervals with oscillatory cancellations we make use of the following
regularity result:

Theorem 4.2. Let u™ € Cy([0,7]; L (R)) denote the unique entropy solution
of [2.1)), for given initial data ug € (L* N BV)(R), strictly conver fluz f € C?(R)
and driving path z™ € I§*([0,T)). If for some 0 < 81 < 59 < T,

2™(t) € (M~ [2™](s1), Mt[2™](s1)) Vt € (s1,52),
then for all t € (s1,s2), it holds that w™(t) € Lip(R) and
|7 0) = (1) | 1) e
arty y—a = min {z7(t) = M~ [27](s1), M*+[2™](s1) — 2 (8)}
where (as usual) the L™ norm is restricted to the interval [—||uo oo, ||to]oo)-

The theorem is a direct consequence of Lemma f € C*(R), and the mean-
value theorem. We refer to the companion work [46] for an in-depth theoretical
treatment of regularity and cancellation properties for (2.1)).

Remark 4.1. A regularity result similar to Theorem has been derived in [33].
There the authors investigate regularity properties of solutions to the stochastic
Hamilton-Jacobi equation

1
dU + §|.D/U|2 o dZ = F(.’L’,U,DU7D2’U)dt,

where z is a continuous path, and F is a nonlinear function meeting the standard
assumptions from the theory of viscosity solutions of fully nonlinear degenerate
parabolic PDEs. An L*>-bound on the second derivative D?v is derived, and in the
special case

u?

du + 0y <2>odz(), u = 0y,
this estimate reduces to the Lipschitz W1° bound

a6 7) — ult ) 1
e e RS I E RS

This regularity result is identical to Theoremn But the regularity result in [33] is,
in contrast to ours, restricted to the special case f(u) = u?/2 and the proofs differ:
[33] uses semiconvexity preservation properties of Hamilton-Jacobi equations, while
we (here and in [46]) argue at the level of conservation laws and use the method of
generalized characteristics.

For a given driving path z™ € I*([0,T]), the following lemma identifies intervals
with “oscillatory cancellations”.

Lemma 4.3. For an m > 2, let u™ € Co([0,T]; L*(R)) denote the unique entropy
solution of for some initial data ug € (L'NBV)(R), strictly convex f € C?*(R)
and driving noise z™ € IJ*([0,T]). Then property (4.7) holds over an interval
[k, 7] C [0,T] with k € {0,1,...,m—2} and T € (74, Te41] for some k < <m—1,
if at least one of the following conditions are met:
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(1) 2™(s4) :=limgyo 2™ (s + ) > 0 for all s € [14,7),
(i1) 2™(s+) <0 for all s € [13,7),
(i) 2™ ([7w, 7]) C [M™[2™](7x), MF[2™](73)]-

Remark 4.2. Figure [8| exemplifies the running max/min functions for a piecewise
linear function 2'0 € Io([0,T]; {7;}}2,), where [75, 77] is of type (i), [r7, 710 = T] is
of type (ii), and [r2,75] and [r7, 7] with 7 = 79 + 2A7/3 are of type (iii).

j=k,k+1,..., —1. By the definition of S, cf. ([4.4),

Proof. (i) & (ii): The condition Z™(-+)|(, ) > 0 implies that Az* > 0 for

SE™(1) — 2™ (1)) ... S(Az")u™ (1)

is equal to the entropy solution at time t = 2™ (1) — 2™ (1) + Zj;i Az of
Oyt + sign (2™(1) — 2" (15)) O f(0) =0,  @(0) = u"™ (7x).
But, by definition, we also have that
S (2™ () = 2™ (1)) u™ (i) = a(2" (1) — 2™ (7)),

and it is clear that holds. Part (ii) follows by a similar argument.

(iii): We assume M [2™](1) — M~ [2™](7k) > 0, as otherwise 2™ (-+)|(, -y = 0
and the cancellation property follows by (i) or (ii).

For a 6 € (0, (M T [2™](x) — M~ [2™](7x))/2) we define the approximation path
2™ ¢ Io([0,T); {7; o) by interpolating the values

2M(r;) =6 ifje{k+1,...,4} and 2" (1;) = M [2™](73),
20 (1) = 2™ () 40 ifj e {k+1,...,6} and 27 (1) = M~ [2"](1),
2™ (1) otherwise,

over the set of interpolation points {7;}}]L,. By construction, it then holds that

2™0(s) € (M™[2")(me), MY [2™](m)), s € (7, 7),

(4.12) ‘Az}”"; Az <25, forall je{kk+1,...,0—-1},

where Az;»n"s = Zm’é(Tj+1) — Zm’g(Tj)a and

(413)  |2™0(r) — 2™ () — (2™(7) — 2™ ()| < 2|20 (70) — 2™ (70)| < 26.

Let u™? denote the solution of (2.1)) with driving path 2™ and the same initial
data ug and flux f as the solution u™. Since z™? 0,7] = 2" lj0,7], (4.4) implies

u™(t) if t <7,
um,&(t) _ S(Zm’é(t) - Zm(Tk))um(Tk) ifte (Tk77—k+1]7
S(z™0(t) — 20 (1)) - - - S(Az Y (1), if t € (74, 7).

By Theorem it holds that u™?(s) € Lip(R) for all s € (73, 7). Consequently,
um"5|(7k’7)xR is a classical solution that is time invertible, as it can be obtained by
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the method of characteristics. By , we further obtain that
S (0 (r) = 2 (m) ) - S(A Y™ ()
=1im [§ (+™7(1) = 2" (r = 9) § (77 = ) = 2" (7)) S(A) -+
S(ANS (2™ (mesn) = 2™+ ) S (2™ (e + €) = 27 (7)) w™ ()
=lim [$ (7°(1) =™ (r = 9) § (=™ (r = ) = " (s + )
S (0 + €)= 2™ (m)) w™(m)
=8 (zm";(r) - zm’é(m)) u™ (k).
By [@.8), . - and -7

<20(£+1 = k)| fl|oo|uo|Bv-
Taking the limit § | 0, shows that ([4.7) holds in L!(R)-sense. O
4.2. The oscillating running max and min functions. Lemma[4.3]identifies a

class of intervals over which an entropy solution with driving path z™ € I§*([0,T])
experiences “oscillatory cancellations”. In this section we construct an operator

orm,, : Co([0,T]) — I5*([0,T1]), cf. (4.15), which yields a piecewise linear driving
path orm,,[z] that is free of Lemmatype (iii) “oscillatory cancellations”, has
smaller (or equal) total variation than 2™, and (under some assumptions) produces
the same entropy solution at final time as z™ does, cf. Theorem The further
removal of type (i), (ii) “oscillatory cancellations” is postponed to Section

Definition 4.3. For any z € Cy(]0,T]), we define the monotonically increasing
functions AT [z], A~ [z] : [0,T] — [0,T] by

AT[2](t) = min{s € [0,#] | 2(s) = M [2](t)},
A7 [2](¢) := min{s € [0,¢] | z(s) = M~ [2](¢)},

and the monotonically increasing cadlag functions AT [2], A=[2] : [0,T] — [0,T] by
_ hm ATZ)(t+6) if telo0,T),

A+ zI(t) =
0 AT[2)(T) if t=T,
(4.14) I '
A [2)(t) = mAZ[2](t+0) +f t€[0,T),
A™[](T) if t=T.

For a given set of points
O=mo<m<...<7n =T,
and 2™ = Z[2](;{m} ), define
AF[] = AT ({7 i) U AT [ ({7 i) € {7} 2o-
The set inclusion AX[z™] C {m}7-, is verified in Lemma .
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Note that 0 € AX[z™], and let {Tjx) Y7o = AE[z™]U{T}, with 0 =j(0) <--- <
j(m) = m, represent the subsequence of interpolation points in ascending order.
The operator orm : Co([0,T]) — IF*([0,T]) is defined by

orm |z (t; {7k } o)

) < t—Tjw) )
= Licr oo minan] | 2(T5 + (2(7; — 2(7; _— .
kZZO ety menn) (| A00) + (B0an) = 2(09)) T2

(4.15

We refer toorml[z] (+; {7 }1lo) as the piecewise linear oscillating running maz/min
(orm) function of z, and frequently use the shorthand o7,y [2] = orml[z] (+; {7j) }1lo)
when no confusion is possible.

See Figure [8| for an example illustrating AT [2™], A~[2™], and 6T, [2].

To T T3 T3 T4 Ts Tg T7 Tg Ty T

FIGURE 8. Top: The piecewise linear path 2™ € Io([0, T; {7;}720)
with m = 10 (black line) and the associated running maximum
M™[2™] (green dashed line) and running minimum M ~[2™] (red
dash-dotted line). Middle: A*[2™] (black line) and A~[z™] (blue
dashed line). Black and blue dots illustrate that the respec-
tive functions are right-continuous at jump-discontinuities. Bot-
tom: The piecewise linear path 2™ (black line) and the associ-
ated orm,, 2] (blue dash-dotted line). Blue dots mark the value of
oIy, (2] at its interpolation points {7;() -

For later reference we collect some properties of A%[z] in the following lemma:
Lemma 4.4. Assume that z € Cy([0,T]). Then, for allt € [0,T],
max(A"[2], A7 [2])(t) < ¢,
S(A*[(1) = MF)(A* [ (1) = MF[)(0),
=M [Z](A7[Z](t)) =

(4.16) - ~
2(A7[Z](1)) [ [2](t)) = M~ [2](2),
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(417)  AMRATE®) = AW, ATEAT ) = A7),

Furthermore, for any set of points that satisfies
O=mo<mn<...<7p =T, m > 2,

and 2™ = Z[2](-; {1k} 7). it holds that

(4.18) AF[™] C {mehito

and

(4.19) T=max {A*[z], A"[2]} (1) forallT € AE[zM].

Proof. By Definition
max(A*[z], A7 [2])(t) = lélﬁ)l max(A*[z], A7 [z])(t +6) < %iﬁ]l(t +0) =t

To verify (£.16), z € Co([0,T]) implies that MT[z] € Co([0,TY)),
(A1) = 2(lm AP +0)) = i =(AY 2] +9))

= §§M+[Z](t+5) = M[2](t),

and
M*)(AT[](t) = MY [Z](§$A+[Z](t +9)) = %igMJ’[Z](AJF[Z](t +9))
1 + — At
= %{rolM [2](t +6) = MT[2](¢t).
The second line of follows by a similar argument.
To verify (4.17), we begin by noting that for all ¢ € [0, 7],
AT [2)(A[2](1)) = min{s € [0, AT[2](t)] | 2(s) = MF[](AT[2](t))}
(4.20) =min{s € [0, AT[2](#)] | 2(s) = MT[2](t)}
= AT[Z](t).
By writing
Bf[z] ={te0,T)| %ﬁ]lA+[Z](t +0) = AT[Z](t) = 0} U {T}
and
Bylz]={te0,T)| §$A+[Z](t+5) — AT[Z)(t) > 0},
we see that for all t € B [z], A*[z](t) = At[2](t). Hence,
AT[Z(AT[Z](t) < AT[2](t) = AT[2](t)
and since AT [z] > AT[2],
AT (AT [2]() = AT[2)(AT[2](t) = AT[2](1).
We conclude that
AT (AT [](1) = AT[2](t) = AT [2](t) vt € B [2].
We claim that for all ¢ € Bf [z] and 6§ € (0,T — t), it holds that A*[z](t + &) > t;
supposing otherwise, and the monotonicity (increasing) of A*[z] leads to the
following contradiction
AT[Z(t +0) — AT [2](t) = AT [2)(AT[2](t +9)) — AT [2](t) < 0.
Hence, for all ¢ € By [z], it follows by the preceding observation and At [z](t) <t
that AT[2](AT[2](t)) = AT[2](t). The equality A~[z](A~[z](¢)) = A~ [z](¢) can be
verified by a similar argument.
To verify (4.18), observe that since 2™ is piecewise linear, it holds that

AT ({7 bio) U AT " ({me o) € {7t
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and for all k € {0,1,...,m},

I+ () — At[z™)(m) i 7 € B [2™],
A [ ]( k) - {Tk lf T c B;[Zm],
and
iy = JATEE) i e B
A7) {m if 7, € By [,
where
B[] = {t € [0.7) | im A~[="](¢ +8) — A™[z")(t) = 0} U {T}
and

By [ = {t € [0.7) [ lim A~["](t +6) = A7 [z"](1) > 0},

To verify (4.19)), equation (4.17) implies that
AFRT(r) =7 ¥ € AT ({m}ilo)-
O

The next definition is an extension of the solution representation (4.6 from
continuous to (jump-)discontinuous driving paths. This extension will come handy
in the study of asymptotic properties of orm,, when m — oco.

Definition 4.4. Let D([0,T]) denote the space of cadlag functions g : [0,T] — R.
For some m > 2, let {1,}7, be a set of points with0 =79 <71 < ... <Tp =T.
Given f € C%(R), up € (L' N BV)(R) and y € D([0,T)), we define
(4.21)
m U ifk=0
(713 Y, {Tk o) = { y

S(Aye1)8(Aye_s) ... S(Ayo o if ke {1,...,m},
where Ayr = y(Tr41) — y(71).
Note that for any f € C%(R), up € (L* N BV)(R), set of points

O=mp<n<...<Tm =T, m > 2,
and y € D([0,T]), it holds by (4.8), (4.10) and induction that
lo(resy, {mr o)l < Mluollr (s v Am o) gy < |uolsv  VE < m.

Moreover, cf. ,
u(T5 2, {7 }i0) = v(T5 2™ (2] {mk }ilo) = w™(T), 2 € Co([0, T]).

The next theorem shows that if the flux is strictly convex, then the driving paths
Z™(z] and orm,, [z] produce the same entropy solution at final time.

Theorem 4.5. Assume that f € C?(R) is strictly convez, ug € (L' N BV)(R)
and z € Cy([0,T]). For some m > 2, let {}, denote a set of points satisfying
O=10<T <...<Tp =T, 2™ =TI"[z], and let

OZTj(O) <Tj(1) < ... <Tj(m) =T

denote the associated interpolation points of orm|z] (-; {Tj(;@)};’lo), cf. Deﬁm'tion.
Then

v(T5 08 [2], {7k Himo) = v(T500mm (2], {7 }ilo) = 0(T3 2™, {7k }io)-
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Proof. Recall from the solution representations (4.6 and (4.21)) that
(T 2™ {mi}il) = u™(T) = S(Azpy ) -+ S(Azg"uo.
By writing y™ = orm,,[2] and introducing the shorthand

'Um(Tk) = U(Tk;yma{Tr Tzo), vk € {0,1,...,’[77,},

we have by (4.21)),
v™(T) =S(Ay_1) ... S(Ayy ) uo.

For any k € {0,...,m — 1}, ym\[,rj(k)y,rﬂkﬂ)] is a linear function. Therefore, either
ym(s—l-) >0, Vse [Tj(k:)a Tj(k+1))

or

ym(8+)<0, Vs € [Tj(k)aTj(k)+1))7
and Lemma |4.3(i-ii) and ym|ATi[zm]U{T} = Zm|A$[zm]u{T}v cf. (4.15)), yield
v™(T) =8 (v (Tjm) — ¥ (Tim-1))) --- S (¥ (1)) — ¥™ (Tj(0))) vo
=S (2™ (Tjm)) — 2" (Tjm-1)) - -- S (™ (151)) — 2™ (7j(0))) to-

Assume m > 1 (otherwise 2|, ,; = 0 and the lemma trivially holds). We
claim that for all k € {0,...,m — 1} such that j(k+ 1) — j(k) > 2,

(4.22)
S (Zm(Tj(k+1)) - Zm(Tj(k)))um(Tj(k)) =S (Azﬁk+1)—1> .S (Az?(’k)) u™ (Tj(k))

um(Tj(k+1)).

Define
ki =min{{k € {0,....m—1}j(k+1)—j(k) =2} U{m}}.
Then, since j(k + 1) — j(k) = 1 for all k& < ki, it follows from the solution
representations (4.6) and (4.21) that v™(7jk,)) = W™ (7). If ki = m, we
have v™(T) = u™(T). Otherwise, if k; < m, assumption (4.22) implies that
V"™(Tj(ky41)) = w" (Tj(k,41))- Let
ke =min{{k e {k1+1,...,m—1}ji(k+1)—j(k) >2}u{m}},

and argue as above to conclude that if ko = m, then v (T") = uv™(T'), and otherwise,
V" (Tj(ka+1)) = U™ (Tj(ko+1)). The lemma follows by induction once we have verified
the claim (4.22)

Suppose k € {0,...,m — 1} satisfies j(k + 1) — j(k) > 2. Consider two cases:
either 7;(41) & A¥[z™] or 7j(441) € AT[z™].

The case 7j(41) ¢ A*%[z™] is only possible if k = m — 1, i.e., if Titht1) = 1.
Then
2"(e) € [MT[")(Tj), M 2" (mja)], Ve € {i(m—1),j(m—1)+1,...,j(m)},
which implies that

2" ([, T1) € IM T[] (75000)s M2 (700)];

and (4.22)) follows by Lemma [4.3]

For the second case, 7j(x41) € A*[z™], then
2" (1) € M7 2" (Tj)), M [ ()], VE€ {G(R),5(k) + 1, 5(k +1) =1},

and there exists a unique 7 € (7j(r4+1)—1, Tj(k+1)] such that

2™ ([Tky» 7)) C IM T[T 00))s ML) (7500))]5
T e {AT[Z")(r), A7 [z™](T)}.

(4.23)
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To show (4.23), if 2™ (7;(r41)) € [M~[2" ](T](k ), M [2™](Tj()] then 7 = 7j(k11).

Otherwise, if 2 (7j(k41)) ¢ [M ™[z ]( k) Mt [2™](Tj(k)], then

2™ (Tithr1)—1) € [M™[2"(Tjr)), M [ ](Tj(k))] implies that [Az7, )| > 0.
v

This obbervatlon and 7j(41)—1 ¢ AE[2™] verifies statement (4.23).
By (4.23) and Lemma

S(Azﬁkﬂ)_l) S(Azj(k)) (7 J(k))

=S (A2™(Tj(h+1)) (1) S (= "(Tikr1)-1)) - - S(AZ ) Ju™ (i)

= S(AZ™(Tje41)) — 2™(7))S(2 (T) - (Tj(k)))um(Tj(m)-
If 7j6s1) = AT[z™](Tj(k+1)), then it must hold that Az7 M1 = 0, hence,
2™ (Tj(k41)) — 2™(7) > 0. The former inequality and 7 € {A*[2™](7), A~ [z"](7)}
imply that 2™ (7) = M*[z"](7), so that also 2™ (7) — 2™ (7)) > 0. If, on the
other hand, 7;(441) = A~ [2™](Tj(k+1)), then a similar argument yields

2"(Tjeg1)) —2"(7) <0 and  2™(7) — 2™(7;x)) < 0.
We conclude from the above that if 7,41y € AX[2™], then
("™ (Tj(e1)) — 2" (7)) (" (7) = 2™ (T5,))) 2 0.
Since both increments either are non-negative or non-positive,
S (2" (Tjrn) = 2"(1) S (2"(7) = 2" (mjk))) "™ (k)

equals the unique entropy solution at time

t=|2"™(Tyh)) — 2™ (1) + (™) = 2™(T))| = [ (Tiern) — 2" (i)
of

Oyt + sign (2™ (7j(kr1)) — 2" (Tjr))) Ouf (@) = 0, a(0) = w™(7j(x)),
cf. . However,
SE™(Tjhr1)) — 2™ (7)™ (k)
also equals @(|2™ (7;(k+1)) — 2™ (T(k))]). Hence,
u™ (Tj(kt1)) = S(A’Zj k+1)71) - 'S(Azmk))um(Tj(k))

S(AZ™(Tjge41)) — 2™(T))S (™ () — 2™ (700 ) )W (Tjia))
SE™(Tjern) = 2™ (T U™ (Tiry)-

O

4.3. The limit orm. The operator orm,, : Co([0,7]) — Io([0,T]; {7;}},) in-
troduced in Definition maps every driving path z € Cy([0,7]) to a less oscil-
latory driving path y™ = orm,,[z]. In Theorem it is shown that, provided
ug € (L* N BV)(R) and f € C*(R) is strictly convex, the paths 2™ = Z™[z] and
orm,, [z] are equivalent in the sense of preserving final time solutions:

o(T5ormy, 2], {7k }ilo) = o(T; 2™, {k }ilo) = w™(T),

for all z € Cy([0,T]) and meshes {73}, for m > 2.
We next introduce an operator orm : Cy([0,T]) :— D([0,T]) that may be viewed
as the “limit extension” of the orm,, operators in the sense that

o(Tsorm[z™), {7 }io) = o(T;0mmn[2], {7 }io),
cf. Theorem [£.7 and, under the more restrictive assumptions of Theorem [£.10]
lim o(T;orm[z], {Tx}1eo) = u(T).

m— o0
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Definition 4.5. We define the operator orm|-] : Cy([0,T]) — D([0,T]) by

orm[2](t) :i= MFI(01 4+ 10> a-1210) T MO a- 120> A+ 12 0) fff €10,7),
z(T) ift="T
and refer to orm[z] as the oscillating running maz/min (orm) function of z.

See Figure [J] for examples illustrating the orm[z] functions.

0.5 1.0 0.0 0.5 1.0

FIGURE 9. Illustration of a driving path z (black line) and orm|z]
(red dashed line). Left plot: z(t) = sin(4nt). Middle plot:

z(t) = Lot sin(w/(2t)). Right plot: z is a realization of a standard
Wiener process.

It remains to verify that the orm functions are cadlag.
Lemma 4.6. For all z € Cy([0,T1]), orm[z] € D([0,T).
Proof. Note first that if ¢t € A™[2]([0,T]) N A~[£]([0,T]), then by (4.16),
2(t) = MT[2](t) = M~ [2](t) = z(s) =0 for all s € [0,1].
By and Definition we have for all ¢t € [0,T),
orm[z](t) = M [2](6)1 g+ [ 0y> A- 20y + M [2)(H) 14—, ](t)>A+[z](t)

i
_ {M+[Z](t) = 2(AT[](1) if [Z]( ) = A7[2](t)
) i t) > AT [2](1),

and orm|[z](T) = z(T'). Hence
| z(max(AT[2], A [2])(t)) ifte0,T)
(4.24) orm[z](t) = {Z(T) g T
and, since z € Cy([0,7]) and
g(t) = Liepmax(AT[2], A7 [2])(t) + 1= T

is cadlag whenever A*[z], A=[2] € D([0,T]), it follows that also orm[z] = zog
belongs to D([0,T7).

O

The next theorem shows that the mapping orm[] is consistent in the sense that

all the driving paths 2™, orm[z™], and 67, [z] produce the same entropy solution
of (2.1) at the final time T
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Theorem 4.7. Assume that f € C*(R) is strictly convez, ug € (L*NBV)(R), and
z € Co([0,T]). For some m > 2, let {1}, be a set of points satisfying

O=m<n<...<7m =T,
=7I™[z], and let
OZTj(O) < Tj(1) <. < Tj(m) =T
be the associated interpolation points of orm|z](:; {Tj)}io), cf. Definition ,
Then
(4.25) o(T;orm[2™], {7 Fito) = 7J(T' orm[z"], {Tk}?—o) =u™(T).

Proof. Set y™ = orm,,[2] and §™ = orm|[z™]. By (4.19 - and -, it holds
for all k € {0,1,...,m — 1} that
(4.26) ﬂm(Tj(k)) = Zm (maX(z‘_lJ'_[Zm},A_[Zm])(Tj(k))) = Zm(Tj(k)) = ym(Tj(k)),
and

9" (jmy) = 2"(T) = y"™ (Tj(m))-
By Theorem

(4.27) S(Ayn ) S(Ay Juo

=S (Tim)) — Y™ (Tim=1))) - SW™ (1)) — ¥ (T0)))uo = w™(T);
so to verify (4.25)), it suffices to show that for all k € {0,1,...,m — 1},
(4.28)  S(ADr1y—1) - - SAGT )™ (7))

=S (1) = ¥ (0™ (7)) -
For k € {0,1,...,m — 1} suchthat](k+1 —j(k) =1, (4.28) holds by (4.26).
Assume next that & € {0,1,. — 1} is such that ](k +1)—4k) > 2 If
kE=m—1and 7j441) =T ¢ Ai[zm], then
2" ([Tjry, T1) € (ML (00 M (2" (78]
It follows that M T [2™], M~[z™], A*[z™] and A~[z™] are constant over [Tj(m_l), T),
which implies that §™ is constant over [, T). Hence §™(7jm)—1) = 4™ (Tj(m—1))>
(4.29) AYflmy—e =0 VLE{2,....5(m) —j(m — 1)},
and since S(0) = I,
S(A?Q;Y(Lm) ) S(ij(m 1)) " (Tjm-1))
=S(Ag);-’(‘m)71)u (Tj(m-1))
=Sy (Tj(m)) =y (T - U™ (Tj(m—1))-
Otherwise, if k € {0,1,...,m — 1} is such that j(k+1) —j(k) > 2 and 7j(;41) €

A*[z], then we recall from the proof of Theorem - 5| that there exists a unique
T € (Tj(k41)—15 Tj(k+1)] such that

2" ([, 7)) € [M*[zm]( ‘( W), M (), 7€ {AT(7), A7 ()}

This implies that §™(7) = 2™ (7), cf. (£.24), and that M*[z ] M~ [z™], At [z™],
A~ [2™] are constant over the 1nterval [Tj(k), 7). Consequently, §™ is constant over
[7j(k), T), and since T](k+1) 1 <7, P™(Titk+1)—1) = 97 (Tj(k)) and

Hence,

S(Aﬁ?(lkJrl)fl)"'S(Ag?(lk))um(Tj(k)) S(AG 1)) ™ (Ti(k))
SW™ (Tjr41)) — Y™ (700U (T 1) )-
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O

An immediate consequence of the preceding proof is that the total variation of
orm[Z™][z]] is equal to the total variation of 6rm,,[z].

Lemma 4.8. For any z € Cy([0,T]) and points 0 = 790 < 71 < ... < Tpp = T,
m > 2, it holds that

lorm[Z[2] (s {7 }o)] |BV([O,T]) = [orm{[z](-; {Tk}in:oﬂBv([o,T])'

Proof. Recall that y™ = orm,,[z] € Io([0,T]; {T%}}-,) is piecewise linear, with in-
terpolation points 0 = 7y < 7j1) < ... < Tj(m) = T. Hence, y™ is monotone
over each interval [7;(), Tjr+1)]. Since 2™ = TI™[z] is linear over every interval
[Tk, Tk+1], it follows by Definition that §™ = orm|[z™] is monotone over every
interval |7, Tk+1], and by the proof of Theorem for every interval [7; k), Tj(k+1)]
with j(k + 1) — j(k) > 2, it holds that §™ is constant over [7;(), Tj(k+1)—1). Con-
sequently, 4™ is monotone over each interval [7;(4), Tj(k+1)], Whereby

9" (Tj041) — 9™ ()| VR €{0,1,...,m —1}.

19"
BV ({7 k) Tike+1)])

By (§.26),

m—

9™ Bvior) = D2 15" BV )

=

k=0
m—1
=D 0" @) = 9" (Tw)]
k=0
m—1
=D " @) — v ()| = 1 sy o.m)-
k=0

Definition 4.6. For any mesh {73}, such that
O=1<m <-~-<Tm:T,
and g € D([0,T]) we define the total variation of g restricted to {1} by

m—1
191v (i) = D 19(me1) = g(m)l.
k=0

In settings with multi-layered notation, we will for the sake of readability employ
the alternative notation

TV(g: {mr o) = 19l (griym )

The next lemma shows that the approximation v(T; orm/[z], {7;}7.) converges to
a limit in L!'(R) as m — oo, and it provides an upper bound for the approximation

error. The upper bound depends on ormlz], the mesh {74}, |uo|pv((r)) and
I /]|, hence it differs from the stability result ([2.3).

Lemma 4.9. Let {{7]"}i7,}o5_, denote a sequence of nested meshes fulfilling £ >
2, and for allm >0,

O=7" <7 <. <7t =T, with lp <y < 2,

and the nested mesh property

lom J4
{m ey C {lenﬂ}kzgl
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with a strictly increasing mapping j™ : {0,1,..., L} = {0,1,..., €y y1} such that
Tty =T YRe {01, 0y},
and
1<™k+1)—53"(k) <2, Vke{0,1,...,4,—1}.

Assume f € C%(R) is strictly conver, ug € (L* N BV)(R), z € Cy([0,T]). Then,
for any m,m € NU {0} with m > m,

o(T;ormz], {7 HiZg) = o(T; orml2], {7}, )|

(4.31) Li®)

< 201# oo luolmy ey (TV(ormlz]; {77 }Zo) = TV (ormlz]; {7} 7)) -
Moreover, if

lorm([2]| gy (0, 77) < °©;

and
(4.32) i (lorml] |y o.27) = TV (orml2]: {7 i) ) = 0,
then
Vorm (T') == 77}iinoov(T; orm[2], {7 };m,) € L*(R)
and
[oorm (T) — v(T ormlz], {7 Vo) 1
(4.33)

< 2] flloo luolmv ) (|orm['z”BV([07T]) — TV (orm[z]; {7} )> :

Proof. For a fixed m > 0, set y = orml[z], Ay = y(77%,) — y(7"), and introduce
the shorthand
"™ () = v(T y, {ij}fﬁo), forall k € {0,1,...,¢,,}.
We have that
[0 HT) = 0™ ()| 12wy
= [[Scagzmt - Stau e - Sy ) -+ Sy uo
Z HASkuOHLl(R),
ke
where JJ* = {k € {0,1,...,¢,, — 1} | j™(k+1) — j7(k) = 2} and
ASpug =
0 it k ¢ Ji,
S(Ayzntll 1) S(Aymt}wl))
(S(aupit) ISy = S(Ay) v (7
(8<Ay;’;tﬁ,1>smyz':;ﬁ,2> - S(Ayz:z_n) V(T L)) k€ PO {l = 1},
Assume that k € J3*. Using {4 7 we obtain the following bound
|ASeuoll s < H( (A DS (AL = S(Ag)) v (i)

We recall from ([4.4]) that S( Ay"ﬁ(}c)H)S(Ay m(k)) ™ (1) is recursively defined by

m+1

(4.34) L1(R)

IN

if ke J5 N[0, b — 2],

L'(R)

being the solutlon at time ¢ = [Ay7, +1| of

Orii+ sign (Ayiih 0 ) 0 (@) =0, £> 0, @(0) = S(AYIL ™ (7).
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If Ay;’?,le) Ay"ff(}c) > 0, then

S(AYTL DS DYTEL Yo (ri7) = S(AYIL 1+ Ayl Yo (o)

(4.35) B
= S(Ay )™ (7).
This yields
(436) ||A5ku0||L1(]R) =0, Vke {E S J2 ‘ Aynz"_‘zllc)—i-lAyr?"—’Ellc) > 0}

Consider next the case Ay”%! (k) +1Aym+ < 0. In view of Deﬁmtlon y(rih,) €
{MF (), M2 (7)) T y(7hy) = M [2)(77 ), then

y(T;ﬁ(_;).;_n) < y(lerj,-l) = y(T;ran—i(_;i.:,_D))a
while if (7% ) = M ~[2](7;% ), then

y(T;:ﬁ(_;Hl) = y(m4) = y(7 m—~(_11+1)))

We conclude that regardless of whether y(/%,) = M™*[2](7]",) or y(r]’,) =
M~ [z](r77,), it holds that

(4.37) Ay Au = (y(ﬂi’il) - y(TﬁI;i)H)) (y(ri1) = y(7™) = 0.
And since
sign (Ay,’c" ( Ayrﬁ‘f(}c))) = sign (Ay AymH ) >0

m—+1

(in the currently considered case Ay (k) HAy k) < 0), we also have that

m +1
Ayk ( Ay"}n(k)> Z 0
Using the relationship

m+1 m+1
Ay ?k)+1 A Ay mtk

we obtain
S@y)S (~aupi ) S (Bupis) v e
=& Ay — Ayl ) 8 (Aypih) ) o)
=S (aypihy ) S (Bupih) o ().

By (4 and (4.10]), we derive the following bound for all & € J3* such that

Ay’ m(k)HAy ok <0,
1ASkuo| L1 (r) < HS‘(Ay;T) (5( Ay S(AYLG) - I) ”m(T’T)‘ L)
<|[(scavisuy) - )],
(139) <[ (scaupiiy - 1) s e,

+||(Saypin) 1) v )|

< 2| £ [lso|uo|Bv R)|Ayn}n+(;1€)|

L'(®)
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By (I31). (38 and (T39)

[ (D) = o™ (D iy € S0 208 e luolmye) | AL |

keJg®
(4.39) Cngr m
< 20f o luolmvee (D 1451 = 1Agg ).
k=0 k=0
For my > m1 we get
mao—1
[v™(T) =™ (T)|| 11 ) < Z H”mH(T) - ”m(T)HLl(R)
m=m1
mo—1 Lmt1 L
<20 f cluolevm o (0 185 =Y lAv)
m=m1 k=0 k=0

Ling+1

Ly
_2||f ||oo‘uO|BV R)( Z |Aym2+1 Z|Ay;€n1|)
k=0

By assumption (4.32)), both sums on the right converge to |orm[z]|gy (o 7)), thus
{v™(T)}m C L*(R) is a Cauchy sequence, and,
lim v™(T) = vorm(T) € L'(R).

m—r 00

Moreover, by (4.39)), (4.32) and a telescoping sum argument we obtain

orm(T) = o™ (1)1 8y < 211 llo olmv sy (lormi2] gy o7 Z|Aym|)

Inequality (4.31)) can be proved using a similar telescoping sum argument. (]

It remains to verify that verm (7"), under some assumptions, is equal to the unique
pathwise entropy solution of at final time ¢ = T. For strictly convex fluxes
f and driving paths z € Cy([0, T]) with orm[z] € BV (]0,T]), Theorem below
provides an error bound for approximations of pathwise entropy solutions which
is different from and shows a connection between the driving path z and
orm|z]. If one were to consider an extension of with orm|[z] given as the input,
then Theorem could serve as a basis for constructing numerical methods for
v(T;ormlz], {7 }1-,)- This would differ from the methods we propose in this work,
which compute approximations to v(T’; 2™, {7 }7-) or v(T;orm,, 2], {7k} 1)

Theorem 4.10. Let u denote the unique pathwise entropy solution of with
initial data ug € (L' N BV)(R), strictly conver flur f € C*(R) and driving path
z € Co([0,T]). Assume that lorm|z]|py g) < 00 and for some m > 2, let {Ti}}L,
denote a mesh satisfying 0 =19 <7 < ...< Ty =7T. Then

[w(T) = o(T; orm|[2], {Tk}km:o)HLl(R)
< 2[| oo luolBv(®) <|Orm[z]|Bv([o,T]) — TV(orm([z]; {Tk};cn:o)> )
where TV (orm|z]; {7 }7*_,) denotes the total variation of orm[z] restricted to {1} 7,

cf. Definition [4.6

Proof. Since |orm[z][ gy (o 77y < 00, there is a sequence of meshes (e 322,
such that

Tim TV (orm2]; {r{ 1) = orm[]lpy 0.7
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If necessary, we can add mesh points to get nested meshes {{7], }t,i"zo}i‘;o fulfilling
that {70}: o = {7} g, br < £y for all 7 > 0,

rlggo ke{O,{?i};m—l} Ther =7 =0,
and X
Tim TV (orm[z]; (7)) = lorm(=] sy 0.1
Let
(4.40) Af[2) = AT ({# ) VAT (), > 0.

As AF[2] C Aﬁl[z] for all » > 0, we may construct a new sequence of nested
meshes {{7], }i"zo}i‘;o defined by

~01 4, m .
(4.41) {Tr}fr _ {Tlg}kO:Q = {7, ifr=0,
. ETk=0 = \ (ap—_11lr_1 4 .
{Tk }k:O U AT71[2]7 ifr > 1.
Since {7}, D {71}, for all » > 0, it also holds that

4.42 lim max ., —1 =0
(4.42) P00 ke{0,1,.. b, —1} FTL TR T

and

Tli{go TV (orm[2]; {7 }_o) = |orm][2] | BV (jo,17)-

For any r > 1, we have that
[[o(T5 ormlz], {7k }5Zo) — w(T) | L2 (m)
< |[o(T; ormlz], {7} 7o) — o(T; ormlz], {7 }o) |1 )
+ o(T; ormle], {7 o) — w(T) 11wy
=1, +1II,.

(4.43)

Lemma {4.9| implies that for any pair of nested meshes {7}y C {77},
I < 20/l uolvey (TV(orm(z]: {rf }o) = TV(ormlz]: {7 i) )

< 20 f ooy (Jormlllpy 0,77y = TV(orml=; {7ibito) ) -
To bound II,., note first that by ,
+ - VY i _
ormlz](r]) = z(max(A [,‘z],A [2]) (1)) ?f ke{0,1,...,¢. — 1},
2(T) = 2(17) it k=4,

Recalling that S(0) = I and that max(A*[z], A~ [z])(*) is a monotonically increasing
function,

o(T; orm[z], {7 o)
(445) = S(orm[2)(77) — ormlz](f. 1)) - - S(orm[=](7]) — orm[2](7§))uo
= o(T; 2, max(A*[2], A [2]) ({rf }iy) U {T)).

By (@.17), o
max {A*[z], A7 [2]} (A7 []) = A7 [z,

and implies that
max(A* (2], A []) ({7] }o) = max(A* 2], A~ [2])(AF[2] U {7 o)
= max(A¥[2], A7 [2])(A7[2]) U max(A*[2], A7 [2) ({71 i)
= AF[2].
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Consequently,
(T 2, max(AT [2], A [ ({r Ve) ULTY) = o(T5 2, A7 [2] U{T})
= o(T; 2", A7 [] U{T}),

where 2" .= Z[2](-; A¥[z] U{T}). Introducing the function 2" = Z[2](~; {7} }\"_,), we
may bound the second term as follows

(4.46)
II, < HU( ) —o(Ts 2" {0 o H
= 10,1 +1L,.5.

Theorem [2.1] and the property z"(T') = z(T') for all » > 1 imply that there exists a
constant C' > 0 that is uniform in » > 1 such that

II,; < C\/ max |z —2"|(s), Vr>1.
s€[0,7]

o(T3 2" (M) = o(T5 27, AF VT

Since z is uniformly continuous on [0, T, it follows from (4.42]) that

(4.47) lim 1I,.; = 0.
T—>00
The term II, 5 is bounded by verifying that

(4.48) o(T5 2" {mi ) = o(T5 27, AF [ U {T}),
which actually means that 11,5 = 0. Note first that since AF[2]JU{T} C {T]:}f;rzo, we
may introduce the monotonically increasing function » : {0,1,...,4.} — {0,1,...,4,}
defined by

{s€{0,1,...,k} | 77 = max(AT[z], A" [2])(v])} ifk <l

MR =16 if k= ¢
- if k=14,

and write {Th(k)}f;r:o = AF[z]U{T}. Using this representation and that

agrorry = 2lagpomy = 2 lagpomy

we obtain

O(T5 2" { i Hig) = S (ZT(T;;(@,.)) - Zr(ﬁf(erq))) S (ZT(T}:(l)) - ZT(T;;(O))) Ug.
Recalling that

o(T5 2" A i) = 8 (27 (10,) = 2" (14,-1)) -+~ 8 (2" (1) — 2" (0)) wo,

equality (4.48)) follows by a straightforward induction argument if the following
equality holds for all k£ € {0,1,...,¢, — 1} such that h(k + 1) — h(k) > 2:

(4.49)

S (ZT(TZ(IH»I)) - ZT(TZ<1C+1>71)) -8 (ZT(TZ(IC)H) - ZT(TZ(k))) U(T;:(k); 2", {Tﬁ(k)}ir:o)

=S8 (2" (The+ ) — 2" (Thwy)) v(Thry; 27 {T;:(k)}i’;o)-

Assume k € {0,1,...,¢, — 1} is such that h(k + 1) — h(k) > 2. Then

{A7 (T eg1y 1) AT [Ty 1) 1)} C AF[2]
and
max (A~ [2], AT (7 e11)-1) = Thi-
This implies that for all s € {h( )y, h(E+1) — 1},
2 (rg) = M~ [z ](Th(k+1) 1) = M7 (Thg1)-1)

= z(A” ) (Thg1y-1)) = M~ [2"[(Th )
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and
2(r)) < M+[z7'](7—;;(k+1)71) < M+[z](7—}:(k+1)71)
= 2(AT[(Thrg1)=1)) < M T[T )
Consequently,
(4.50) 2 ([T Tk —1]) © (M (21T ), M 2" (T )]

Consider the following three cases: zr(rg(kﬂ)) — ZT(T}TL(k+1)—1) =0, ZT(T;;(k-s-l)) B
(Thyny—1) > 0y and 27 (754 1)) = 2" (T gy 1) 1) <0
IE 27 (75 (1)) = 27 (Theg)—1) = 0, then
(4.51) ZT([Th(k)7Th(k+1)]) c M~ [zr](r}’;(k)), M™[2] (T;L”(k))]’
and ([4.49) follows from Lemma

If z’“(T}’;(kH)) - zr(rg(kﬂ)_l) > 0, then, since 7j(441) € AF[2] U {T}, either
Thiky1) = T & AF[2] or Thp1y € AF[2] Wrpgyn) = T ¢ AF[2], then max(A*[2], A~ [2])(T) =
T}:(eril), and

2 (Thieny) 2 2(A7[(Th,0)) = M 21 (Th, —1y)
2" (Thee,)) < 2(AT [2)(Thie,)) < M+[Zr](7'}c(er—1))~
Hence holds and follows. If 2"(74 1)) = 2" (T (441)—1) > 0 and
Thik+1) € A*[z], then
2(Thesn)) = 2" (Thar1)—1) + 2" (Thaerr) — 2" (Thes1y—1)
> Z(A_[z](TI:(k+1) D)+ 2" (M) = 2 (T —1)
M~ 2| (Thiy) + 2" (Thes1y—1) — 2" (Thirg1)—1)
M~ [z ](Th(k))
This implies that 77 . ) = A*[2)(r Thk+1)) and we conclude from
M*[" ](Th(k+1)) < M*[z J(mh, k+1)) = Z(T}:(kJrl)) = ZT(Ti:(kH))

that M+[ZT](T]:(]€+1)) = 2"(Thj41y)- Moreover, by (4.50) and 27 (77, ;) ;+) >0,
there exists a unique 7 € [, |y, 7h(;. 1)) such that

2" (1) = M+[ZT](T}:(M) and AT [2](T) = T.
Consequently,
2" [Ty 1) © (ML (Th ), ML) (T )]

and Lemma [4.3] yields

S (ZT(Tz(k+1)) - ZT(Ti:(k+1)71)> -8 (ZT(TZ(k)H) - ZT(TZ(k))) U(ThT(k)é 2", {Tg(k)}ilo)

=8 (zr(ﬂ;(,@“)) — ZT(T)) S (zr('r) — Zr(’T;:(k))) ’U(T;:(k); 2", {T;:(k)}ir:o)

=8 (" (Thk+1) — 2" (Th)) v(Thiry; 2 {Tf:(k)}irzo):
where the last equality follows from

(=" i) ==0) (& (7) = i)

= (MF ") = MT 1 r) ) (ML) 7h) = 2" (i) ) 2 0

and the argument preceding .
Verifying for the case 2" (7} ;1)) — 2" (7744 1)_1) < 0 may be done simi-
larly. This yields
M,=0 Vr>1,
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and by (4.43), (4.44), (4.46) and (4.47)),
[o(T5 orml2], {7 }ilo) — w(T) |1 < lim (I, +1T;.5)

< 2 lloluo vy (Jormlz] py ) — TV(ormlz]: {7 i)

5. IMPROVED NUMERICAL METHOD

In this section we make use of the orm,,[-] operator to construct an improved
numerical method for with strictly convex fluxes f. To minimize the num-
ber of interpolation points in the driving path, thereby improving the efficiency of
the method, we first describe a procedure for removing Lemma type (i) and
(ii) “oscillatory cancellations” from paths of the form 61, [2], cf. Section The
improved method is described in Section[5.2] The main result, Theorem[5.2] reveals
that the possible efficiency gain is linked to the ratio [6Tm,, [2]|Bv ([0,77) /12" BV ([0, 1)) -
To verify that the efficiency gain is relevant for an important class of driving paths,
Section [5.3| shows that for a standard Wiener path z, [orm[z]|gy (o 77) < o0 almost
surely, whereas \z|BV([07TD = oo. Consequently, the improved method is asymp-
totically orders of magnitude more efficient than the original method. Section
presents numerical comparisons of the various methods and a numerical study of
the mean of [ormy, [2][gy (o 77) and [2™ By ((o,77) for a class of fractional Brownian
motions z.

5.1. Removal of Lemma [4.3-type (i), (ii) cancellations. Theorem [4.5]shows
that for strictly convex fluxes f and paths z € Cy([0,7]), the entropy solution
of at time ¢t = T with driving path z™ = Z"™[z] can be found by replacing 2™
with y™ = orm,, [2] and computing v(T;y™, {7jx) }i o), cf. [£21), or equivalently
using orm[z™], cf. Theorem One may view oI, [z] as a version of z™ with
Lemma type (iii) “oscillatory cancellations” removed. A further implication of
the lemma is that we may also remove Lemma type (i-ii) “oscillatory cancel-
lations” from orm,, [z] and still preserve the entropy solution at final time ¢t = T
The following algorithm describes the removal procedure:

Algorithm 1 Removal of Lemma [4.3] type (i-ii) “oscillatory cancellations”

Input: y™ = orm,, [2] and mesh {7},
Output: Reduced mesh {%k}ﬁi”g) CH{Tjm) o and ™ = Z[y™] (~; {%k}fgﬁ).
Set k =0 and 7 = 7j4) = 0.

while 7, < T do
Compute

7'k+ = max{t € {Tj(i)};ﬁzo n [7~']€,T} ‘ ’Ll'jm(S—l-) >0 Vse [7~']€,t>},

(5.1) Tk_ = max{t c {Tj(i)}iﬁéo N [%k,T} ‘ ym(5+) <0 Vse [%k,t)},
set
Tl = max(T,:,Tk_),
and k =k + 1.
end while
Set L(m) = k.

return {%j}fﬁ(?) and g™ = Z[y™](;; {%j}fgg))'

Figure illustrates the transition from y™ = orm,,[z] to §™ computed by
Algorithm [1]
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To T T2 T3 Ta Ts Te Ty Tg Tg T

FiGURE 10. Top: The piecewise linear path z™ with m = 10
(black line) and the associated y™ = orm,,[z] (blue dash-dotted
line). Blue dots mark the value of orm,,[z] at its interpolation
points {7 }iy. Bottom: The piecewise linear path 2™ (black
line) and the associated §™ computed by Algorithm [1| (blue dash-
dotted line). Blue dots mark the value of §™ at its interpolation

points {%k}fi’g).

For later reference, note that the output mesh of Algorithmsatisﬁes {7 }fi’g)*l C
A*[z™], and, using that for all k < L(m),

y" (A7) = M) (Fe) and y™ (AT [T (7) = M7 27 (),
cf. Definition and (£.16), it follows that {y™(AT[2™]()) ,fgg)‘l and

{y™ (A~ [z™](7)) 523)71 respectively are monotonically increasing and decreasing
sequences. For any 1 < k < L(m) — 2 such that 7, = A¥[2™](7), it must hold that
/" (Tk+) < 0. Consequently, 741 = 7, , and since

)
Y™ (Fer1) <™ (F) <y (AT (Fesa)
implies that 7xy; # A*[zm](fk+1), it must hold that 7,4, = A~ [2"](Fry1). By

similar reasoning, if 1 <k < L(m) — 2 is such that 7 = A~ [z™](7), then 7411 =
AT [z™](7k). We obtain that 7777, <0 for all k < L(m) — 2,

Ui'Uie 20 and |77 < |7 Vk < L(m) — 3,
and as g} # 0, if L(m) > 1,
(5:2) AGPATE, <0 and A < |AGT, | VE < L(m) - 3.

(For the last index, k = L(m) — 2, the properties (5.2) hold if T € A*[z™], but
may not hold if 7' ¢ A*[2™].)
Lemma 5.1. Assume f € C?(R) is strictly convex, ug € (L* N BV)(R) and z €
Co([0,T]). For any mesh 0 =19 <71 < ... < Ty =T, m > 2, let y™ = orm,,[2]
and g™ = Zy™](+; {%k}égg)), cf. Algorithm .

Then

(5.3) o(Tsy™ {m o) = o(T5 ™, {7} E0)
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and

(5.4) |ym‘BV([O,T]) = |?7m|BV([0,T])'

Proof. Equation (5.3)) follows directly by Lemma )
To verify (5.4, note by Algorithm || that for any & € {0,1,...,L(m) — 1}, it
either holds that

7™ (s+) >0 and §"(s+) >0 Vs € [Fr, Tos1),
or

g™ (s+) <0 and §™(s+)<0 Vs € [Fr, Tot1),
and it holds that

" () = y™ (k) Vke{0,1,...,L(m)}.

Consequently,
m—1
|ym|BV([0,T]) = ‘ym(Tj(k+1)) - ym(Tj(k))|
k=0
L(m)—1
= "™ (Fe1) = y™ ()| = 19" gy o,
k=0

O

5.2. Orm based numerical method. We now propose a numerical method that
makes use of the piecewise linear orm function of z and §™ to compute entropy
solutions at final time:
(i) Approximate the driving path z € Cy([0,77]) by the piecewise linear inter-
polant 2™ = Z™[z] on a uniform mesh {7}, with step size T'/m.
(ii) Compute y™ = oI, [2] and its interpolation points {7;()}ity, cf. Defini-
tion [£3] X
(iii) Compute §™ and its interpolation points {%kzo}égg) by Algorithm |1| with
y™ and {T;) }iL, as input.
(iv) Compute a numerical approximation of v(7T'; g™, {%k}ﬁgg)), cf. (4.21)), using
a consistent, conservative and monotone finite volume method.

The numerical approximation of v (T; g, {Tk}fgg)), denoted U(T), is obtained
by initializing U (0) using (3.5) and iteratively, for k = 0,1, ..., L(m) — 1, compute
the numerical solution of

(5.5) Optt + sign (A7) 0 f (@) =0 in (0, |AZ"[] x R,

and setting U (7xy1) = a(|AF|; U(7x)), where u(s; U(7)) denotes the numerical
solution of (5.5) with w(0) = U(7). We let (k) > 1 denote the number of uniform
timesteps used in the numerical solution of (5.5) over [0, |Ag}"|], and

L(m)—1
N= Y (k)
k=0

is the total number of timesteps used to obtain the final time solution U(T"). The
size of the uniform timesteps used in the numerical solution of the k-th prob-
lem (5.5), for k € {0,1,...,L(m) — 1}, is determined through the following CFL
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condition:

~m

Etk = %, where

(5.6)

n(k) = max ([7|Agﬂﬂ££m—‘ ) 1) .
In other words, the numerical solution of the k-th problem is computed on the
temporal mesh discretization

(5.7) 0=tro <tr1 < ... <tram = [AG',

where ty, = rAty for 0 <r < n(k).

For a given z € Cy*(R), o € (0, 1], Theoremshows that the factors |Zm|5Bv([o,T})
and |zm|%V([0’T]) respectively enter in lower and upper bounds of the computational
cost of solving v(T’; 2™, {7 }}i) by the adaptive time stepping method in Section

In comparison, the method considered here solves v(T’; g™, {%k}ﬁi’g)), and since

17" |Bv (o, = oM [2"]|Bv(0,1)) < 12" By (0,77 VM 22,

cf. Lemma [5.1] it is expected that this method is more efficient. The following
theorem states conditions ensuring efficiency gains.

Theorem 5.2. Let u € C([0,T]; L'(R)) denote the unique pathwise entropy solu-
tion of for given ug € (L* N BV)(R) with Leb (supp (ug)) > 0, strictly convex
f € C*R) and z € Cy*([0,T)) with a € (0,1]. For any m > 2, let {7; o Cl0,7]
denote the uniform mesh with step size AT =T /m and assume the computational
cost of generating the interpolant z™ = I™[z] is ©O(m”) for some B > 1. Set
y™ = ormy,[2], and let §™ = Z[y™] (~; {?k}lfg;)) denote the function generated by
Algorithm[1, Let U denote the numerical solution described in Section [5] satisfying
the local CFL condition and with spatial resolution constraint

AT®

max (Iymlévqo,ﬂ)’ 1)

Assume that the spatial support of U([0,T]) is covered by an interval [am,,by] C R
that satisfies

(5.8) Azr =0

c1 <bpm — am < ca(1+ NAzx),
for some c1,co > 0, cf. , and that at least one of the following conditions hold:
(a)
L(m) = O(m“ max (\ym%w[oﬂ), 1)) ,
(b) there exist m > 2 and ¢ > 0 such that

max (M [2"™)(Trme1), |M ™ [2™(T[me1)|) = ém™® Ym > m.

Then
L(m)—1 max ( [y™ %, 1
~ ([0,77)>
(5.9) N= Y ak=0 ( Ao ) ,
k=0
and

Ju(T) = U(T) | = O(m~/2)
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18 achieved at the computational cost
¢1 (max (\ym|5BV([O’T]), 1) m3* 4 mﬂ)
< Cost(U) <
62 (maX <|y"L|GBV([O,T])7 1) TnQUé + mﬂ) 5
for some é1,¢2 > 0.

Proof. By the CFL condition (5.6)), it holds for all m > 2 that

max &tk < C€FL Az.
ke{0,1,...,.L(m)—1} £/ lloo

Introducing the shorthand

f)m(%k) =v (%k’ gm’ {%k égg)) Vk € {Oa 17 ceey E(m)}7

and using Kuznetsov’s lemma, cf. [51, Example 3.15], the error of the numerical
method at time 741 can be bounded by

1™ (Frs1) = Uil < 187 (7) = UG |1+ CIAGE|(\ Aty + VAx)
< [o™(7x) = Ul + ClAG" |V Az,

for some C' > 0 that depends on || f'|| o, [uo| By (r) and the numerical scheme. Using
that 0™ (0) = ug, 0™(T') = w™(T) and |§™|gv 0,1y = [¥"|BV([0,17), Cf. Lemma
and Theorem we obtain

[u™(T) = U(T)|[x < [luo = U(0)|l1 + Cly™ | v (j0,17) V Az.

By Theorem [2.1] (5.10), and (5.8),
[w(T) = U(T)[lx < u(T) =™ (T) s + [[w™(T) = U(T)[lx

(5.10)

(5.11) = O<ATQ/2 +1y™ v o,V Ax)

= (’)(ATQ/Q) .
And by (5.6) and (5.8),

L(m)-1 L(m)-1 -
. | AT 1S Nz )
N = n(k) < —— +1
L
< w\y | Bv (0.7 + L)

~ CerLAz

= O(mo‘ max (|ym|i}v([07ﬂ), 1) + E(m)) .
In order to obtain (5.9)), it remains to verify that
(5.12) L(m) = o(ma max (|ym|§§v([07TD, 1)) .
Assume condition (b) holds and that m > m. Since {%k},fi’g)‘l C A*[z™] and
{\Ag,;ﬂ}ii?” is a monotonically increasing sequence, cf. (5.2)), it holds for any
7€ (A e 20 rrmey, T) that

|Ag| > max (M+[zm](ﬁn), |M7[zm](7~})|) > em” .

Moreover, the following function is well-defined for all m > m:

r(m) = min {k: € {0,1,...,[m} | |AG"| > 5m*a}.
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It is clear that r(m) = O(m*) and

L(m)—1 L(m)—2
" svory = Y. 1AGI> D mT = (L(m) — (r(m) +2))m~".
k=0 k=r(m)

We conclude that
L(m) = O(m® max (|y™|pv(o,17)> 1)) = @(m" max (|ym|?3v<[o’ﬂ>> 1)) :

and thus condition (b) is stronger than condition (a) (condition (b) is included in
the theorem as it might be easier to verify than condition (a)).

The computational cost of the numerical method is equal to the sum of @(mﬁ )
for generating the piecewise linear interpolant z™, and

b — am
N x 2m — %m
@( T >
for solving U over [0,T] X [@m, bm]- O

5.3. Efficiency gains and case study of Wiener paths. By comparing the
computational cost versus accuracy results in Theorems [3.4] and we see that if
the assumptions of both theorems hold,

B
lim sup —— "Tln5 =0,
m—yoo M|z ‘BV([O,T])
and
S 6
orm,, [z
(5.13) limsupl by ory _ 0,

m—00 ‘Zm|%V([O,T])
then it is guaranteed that the orm based numerical method will be asymptotically
more efficient than the adaptive timestep method.

The next two lemmas verify that [ormy, [2]| gy (o) < o0, for all m > 2, and
that assumption (b) in Theorem holds for almost all sample paths of a standard
Wiener process.

Lemma 5.3. Let (0, F,P) denote a probability space on which the standard Wiener
process W : [0,00) x @ — R with W(0) = 0, P-a.s. is defined. For every w € ,
let z := W(-,w) denote a sample path of the Wiener process. Then, for every
a€(0,1/2) and T >0

(5.14) zeC([0,T])), P-as.
Furthermore, for a fized T > 0, let
(5.15) QO ={weQ|W(,w) e Co([0,T])},

and for any m > 2, let {m}7, C [0,T] denote the uniform mesh with step size
AT =T/m. We define

(5.16) Mo [21(5 {7 o) z‘f weQ,
0 if weQ\Q,
and, as a consequence of that,
(5.17) OTM,y [2] = orm[z] (s {7 }{0) Zf w €, N
0 if weQ\ 0
Then
(5.18)  lmsup sup |z—2"|(t) /i < VT, Poas.

m—00 te[07T] IOg(m)
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/1 /
(5.19) lim sup [2™| 5y (0,77 og(m P-a.s.,
m— o0

and for P-almost all paths, there is a constant C'(w) > 0 such that

(5.20) lim sup [oFy [2]| gy 0,77y < C(w)-
m—r o0
Moreover,
(5.21) E [su>p2 ormm[z]BV([O’T])} <oo, E {|orm[2]|BV([O’T])} < 00.
m=

Proof. See [29)] for a proof of (5.14]).

Since ]P’(ﬁ) = 1, we restrict ourselves to w € Q in what follows. By Lévy’s

global modulus of continuity [53] Theorem 9.25] E|,

[2() — 2(s)]

lim sup sup — =T, P—a.s.,
510 0<s<t<T +/20log(1/4)
t—s<9§
and as
sup |z(t) — 2™ ()] < max sup  max (|z(t) — 2(1)], |2(t) — z(7%
te[0,T) ke{0,1,....m=1} te [y, mppa] ( | +1) |)

< osup [z(t) —2(8)l
0<s<t<T

t—s<T/m
inequality (5.18]) follows and so does

|Az" m> < V2T, P-a.s.

lim sup Tog(m)

< max
m—oo ke{0,1,....m—1}
We further recall from [25] that

m—1 m—1
lim sup Z |AZ")? = lim Z AP =T, P—a.s.
meee e
Hence,
m—1
= hrn sup Z |Az?
m—1
< limsu max Az Az
= nkﬁaf <Z€{Q1 11111 \ 0 |2£;\ k|>
< limsup | max max [Az L, VT
60 ke{0,1,...m—1} log(m)
log(m)
x li —_—
glnjuP (Z |BV([O T)) m
log( )
=V 2T11msup <|z \BV([O m\—— | P-a.s.,
and (5.19) follows.
Equations (5.20) and (5.21)) are proved in Appendix [B] d

2Theorem 9.25 in [53] is formulated for standard Wiener processes over the time interval [0, 1].
However, for any T > 0, the transform W(t) = VTW (t/T) yields a standard Wiener process
W :[0,T] x 2 — R and the result extends straightforwardly to the time interval [0, T7].
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The next lemma shows that assumption (b) in Theorem holds for almost all
sample paths of a standard Wiener process.

Lemma 5.4. For any m > 2, let {r}7-, C [0,T] denote the uniform mesh with
with step size AT =T/m. Let z = W(-,w) € Co([0,T]) denote a path realization of
the standard Wiener process with w € (~2 cf. Lemma and -, and let 2™ be
defined by (5.16 (5:16). Then, for any o € (2/5 1], there exists an m(w) > 2 for almost
all w € Q such tha

(5.22) max (M [2™](Trme1), [M ™ [2")(Tme1)|) = m™* Vm > m(w).

]
Proof. For y € R, let |y] denote the largest n € Z such that y > n and let r™
N — N be defined by r™ (k) = |[m®/?| k. For any natural number m > rh = [3%/<],
we introduce the set

- 2 a
D, = {w € Ql |Z(Trm(k+1)) - z(Trm<k))} < o for k=0,1,..., Lm /ZJ — 1}.

We claim that any w € Q for which (5.22) does not hold is contained in the set
(5.23) N U D
m>m >m

To verify this, observe that if w ¢ (<, Ussm De, then there exists an m(w)
such that w ¢ U, D¢. Since w ¢ D,, for every m > m, there exists a k,, €
{0,1,..., [m/2] — 1} such that |2(Tym (1 +1)) — 2(Tpm(k,))| = 2. This implies
that max(|z(7pm k. +1))|; [2(Trm k,))]) > m™, and, since r™(k,, +1) < [m*] b
construction, we conclude that
max (M [2™](Tme1), [M ™ [2")(Tma1)|) = m ™, Ym > m.
We will show that is a zero-measure set. Since the increments {2 (7,m (541))—

2(Tpm (k) }& are independent N (O’TL’”“ /2 J) distributed random variables,

B(D,) < (P(|z<w1)> —2(0)] < 2)) -

m(l/,

and since T|,m(1)] = @(mo‘/Q_l), there exists a C > 0 independent of m such that
for all m > m,

2 / e (=) de

me A /27TTrm(1 om—a 27}771(1)
/‘F”Zm(l

\/27r —2m <

VTrm (1)

IEI’(|Z(Ta»m(1)) —2(0)] <

—y /2dy

< Cml/25e/4,
Since 1/2 — 5a/4 < 0, there exists a m > m, such that
P(Dy) < m~2 forall m >,
and

P ﬂ UDZ <hm1nf]P’ UDz <1},?l}£onPDZ<hmi:0‘

T m—oom
m>m f>m {>m l=m

3By a slight modification of the proof, one may show that for almost all w € ﬁ, inequality (5.22))
holds for any « € (1/4,1].
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Equations (5.14]) and (5.15)) ensure that

rlay () Uo| =1

m>rm >m

and the proof follows. O

By the “Holder continuity” (5.18)), equations (5.19)) and (5.20)), and the fact that

B =1 for sampling a path of a standard Wiener processes, we conclude that under
the shared assumptions on ug in Theorems and and if f € C?(R) is strictly
convex, then the computational cost of achieving

Ju(T) ~ UD)lzs = o((l‘)g,flm))l/j ,

for a sample path z : [0,7] — R of the standard Wiener process admits for some
¢1(w) > 0 the following lower bound for the adaptive time stepping method (cf. The-

orem I

m \7/?
t(U(T)) > — P—a.s.
Cost(U(T)) > &1 <1og(m)> a.s.,
and, for some co(w) > 0, the following upper bound for the orm based method
(cf. Theorem [5.2)):

Cost(U(T)) < cam P—a.s.

Remark 5.1. In many cases (e.g. Brownian paths), [orm[2]| gy (o 77) < 2| gy (0,1))-
That is however not always the case. The second example in Figure [J] considers
the path z(t) = 1;sotsin(r/(2t)), which is a member of 08’1/2([O,T]) for which
lorm[2]| gy (j0.77) = 2| gy (jo, 7)) = 0©- This shows that even if f € C?(R) is strictly
convex, the orm based method will not always solve ([1.5) more efficiently than the
adaptive timestepping method.

5.4. Numerical tests.

Example 5.1. To investigate if properties similar to those in Lemma hold for
more general Holder continuous paths (beyond Wiener paths), we approximate

E |:|Zm‘BV([0 1])] and E [\ormm[zHBv([o 1})] for fBMs with respective Hurst indices
a =1/8,1/4,1/2 and 3/4 on uniform meshes of [0,1] with step sizes AT = 1/m
for m = 25,26,...,2'6, The expectations are approximated by the Monte Carlo
method using 105 sample realizations of 2™ gy (0,1 and [0TMm [2]| gy (0,17 Our
Monte Carlo estimates of the expectations are presented in Figure We ob-

serve that while E ['Zm‘BV([O,l])} = O(m!'~®), E|[ormu[z]| pv((0,1])] seems to stay

bounded as m increases for all of the considered fBMs. In the bottom row of
Figure [TI] we have computed the “BV increment ratio”

E [[orm, s+ [2]| pv(j0,1) — [0Tmax [2]| By (j0,1))]
E [[ormas[2]| sy (0,17 — (0725 [2]| By (f0,1))]

(5.24) G(k) =

)

for k > 5. The increment ratio seems to be geometric of the form G (k) = O(pk~5)
with p, &= 27% < 1. We interpret this as numerical support for

E klim |m2k [ZHBV([OJ]) < oo, Yae€ {1/8, 1/4, 1/2,3/4},
—00
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FIGURE 11. Top row: Example Monte Carlo computations
of E[‘zm|BV([O,1])} (solid line) and E[\orimm[zHBV([O,l])} (dashed

line), Hurst indices o = 0.125 (left), a = 0.25 (second left), « = 0.5
(third left), and o = 0.75 (right). Bottom row: plots of the BV
increment ratio G(k), cf. (5.24), corresponding to the respective
top row test cases.

since if G(k) < 1,

E [kli_g)lo |ormise [Z]|BV([O,1]):|

= E[[orms 2] pv (o)) + ZE [[orm+1 [2]] By (j0,17) — [OTT2x [2]] By (j0,1)]
k=5
oo
< C’Zpﬁ < 0.
k=0

Ezample 5.2. We consider problem ([3.19) over the time interval [0, 1] with periodic
boundary conditions, initial data

ug(w) = sign (x —1/2) 11 /65,6 z € [0,1],

strictly convex flux f(u) = u/2 4+ u%/4 and z = W(-,w), where W : [0,1] x @ —» R
denotes the standard Wiener process and Q is defined in . In Figure
we compare the performance of the adaptive timestep method and the orm based
method (cf. Section , both using the Lax—Friedrichs scheme. The driving path
2z is piecewise linearly interpolated on two uniform mesh resolutions, m = 28 and
m = 2'9 and the computational cost of the respective algorithms are equilibrated
through

Ax adaptive

b
Iz |Bv (o, 1))
[orm[z™]|gv (jo,11)

Axorm =
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(equilibrating either lower or upper bound costs in both of Theorems and .
The approximate reference solution is computed by the orm based method using
the Lax—Friedrichs scheme with piecewise linear interpolation of z on a uniform
mesh with much higher resolution (m = 21%). We observe that at comparable
computational budget, the orm based method approximates the reference solution
with better accuracy and produces less artificial diffusion than the adaptive timestep
method.

1.0
0.5
0.0

-0.5

-1.0
0.

0.6
0.5f
0.4
0.3f

= 0.2}
0.1f

0.0

-0.1

-0.2
0.0

FiGURE 12. Top row: Final time solutions for Example
computed with the orm based method (left figure) and adaptive
timestep method (right figure). The black solid line is the approx-
imate reference solution w(1), while the red dashed and the green
dash-dotted lines are the numerical solutions at the driving path
resolutions m = 2% and m = 219, respectively. Bottom: The driv-
ing path (black solid line) and the corresponding orm (red dashed
line).

6. CONCLUSION

In this work we have developed fully discrete and thus computable numerical
methods for solving conservation laws with driving paths of low regularity. For
strictly convex flux functions, we have identified a class of “oscillatory cancellations”
that can be removed from the driving path to produce numerical methods for
computing final time entropy solutions with improved efficiency. If the driving
path is realization of a Wiener process, for instance, the asymptotic efficiency gain
can be of orders of magnitude. An in-depth study of the driving path cancellation
property is found in the theoretical companion article [46].

An interesting follow up study, which we leave for future work, is to investigate
whether the methodology involving “oscillatory cancellations” may lead to efficient
methods for approximating not only the solution at final time t = T, but also its
time evolution on [0, T.
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There is a link between the theory developed in the recent preprint [34] and
our work here and in [46]. In [34] the authors use “oscillatory cancellations” (with
different terminology) to derive new qualitative properties for convex Hamilton-
Jacobi equations with low-regularity paths (in multiple dimensions). Although
several results are similar, the proofs are very different from ours.

APPENDIX A. REGULARITY OF SOLUTIONS
Lemma A.1. For a given set of points
O=mo<m<...<7p =T, m > 2,

let u™ € Cy([0,T); L*(R)) denote the cadlag version of the entropy solution of (2.1)
with initial data uo € (L' N BV)(R), driving path z™ € Io([0,T]; {7;}7,) and
strictly convez f € C?(R). For any x € R and t € [0,T], let

u™(t, z4) = lalg)lu (t,z+9) (=ult,z)) and u™(t,x—):= %igu (t,x —9),

Then, using the convention 0~! = oo, it holds for all x <y and t € [0,T)] that

(A1)
_ 1 o St yd) - [t at)) 1
M+[Zm](t)—zm(t) - y—x — Zm(t)_Mf[Zm](t)v

where the functions M~ [2™] and M [2™] are defined in ([4.11)).

To prove Theorem we will need the following intermediate result, which is
an adaptation of [46, Lemma 3.3].

Lemma A.2. For a given set of points
0:’7'0<7'1<...<Tm:T, m22,
let u™ € Co([0,T); L*(R)) denote the cadlag version of the entropy solution of (2.1)
with initial data ug € (L' N BV)(R), driving noise z™ € Io([0,T];{7;}2,) and
strictly conver f € C%(R). Assume that (A.1]) holds at some time T € {Tj}?:Bl,
Then, for all x <y and s € [Tk, Tht1],
(A.2)
B 1 < f (™ (s,yx)) — f(u(s,zx)) 1
M*[zm](s) — 2™(s) ~ y—a ~2m(s) = M~ [2m](s)

Proof. For some s € (7, Ti+1], let (+ be the maximal/minimal backward general-
ized characteristic emanating from (s, y) and £+ be the maximal/minimal backward
generalized characteristic emanating from (s,z), cf. [I8, § X]. The solution repre-
sentation

u™(s) = S(2™(s) — 2™ (1)) )u™ (1) = S (s — T )u™ (73),

cf. (3.2) and (4.4)), and [I8, Theorem 11.1.1] implies that the generalized character-
istics satisfies the following equations

@ =& (k) + (s = )2 f'(u" (s, 2£)) = Ex(me) + (27 (5) — 2™ (7)) f (u™ (5, 2%)),

Y= Ca(me) + (s = )& f (W (5,9%)) = G (i) + (27 (s) = 2™ (7)) f (w" (s, y%)),
where €1 (1) < (+(7%) and each equation holds using either the limit sign + or —
consistently in all terms with the appendage + (i.e., x4+ and £, (7%) etc.); and we
recall that 2" = 2™ (7,+). We will treat the cases £ > 0 and 2] < 0 separately
(the case 2" = 0 is trivial since then u™(t) = S°(t — 75)u™ () = u™(7) for all
t € [Tk, Tht1])-
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Assume ZJ* > 0. By [I8, Theorem 11.1.3],
u™ (T, §4 (k) =) S w™ (s, ) < u™ (7k, £+ (T0)+),
w™ (7, G () =) < (s, yE) < w7, G (Ti) ).
Under the assumption that f'(u™(s,y+)) — f/(u™(s,2%)) # 0 (otherwise (A.2)
holds trivially), we have
(A4)

fW™(s,y£)) — fluls, 2£)) 1

y—-z f/(wnc(f,(;i;)_ff&l’?)s,xi)) + (2™(s) — 2" (7x))
If f/(u™(s,yx)) — f'(u™(s,z%)) < 0, then the upper bound of (A.2)) holds trivially,
and inequalities (A.3)) and f’ > 0 imply that
0> f'(u™(s,y£)) = f'(u™(s,2£)) = f'(u™ (7, Cx(7r) =) — f'(u™ (5, € (k) +))-
Hence, either (4 (1) = &4(mk) or (x(7k) > &4 (7%). In the former case, the lower
bound of (A.2)) holds since
Cae(7h) — &x ()

frwm(s,y£)) — f'(uls, v£))
(as we assume 2}” > 0). In the latter case, since u™(7y) is cadlag, there exists a
sequence {&+,;(7k)}jen C [§4(7k), Ca(7x)) such that &4 ;(7k) 4 &4 (Th),

™ (i, &t (R) =) > f/ (™ (3, G () =) V) €N,

(A.3)

+(2"(s) = 2"(m)) = (2™ (s) — 2" (%)) > O,

and
Hm f(u"™ (g, E.5 (k) =) = (0™ (Th, € (T0)+).-

Jj—oo
By (A.1),
Cae(7h) — & () < lim Cae(7h) — &x,(Th)
frwm(s,y£)) — f'(uls, x£)) = d=o0 f/(u™ (1h, G (k) =) — f' (ulTh, €£.5 (k) —))
< 2™(1) = M [2™](7),
which in combination with shows that the lower bound of holds.
So far, we have verified the lemma in the following situations:
(i) " =0,
(i) f'(u™(s,y£)) = f'(u(s, z4)) =0,
(iil) f'(u™(s,y%)) — f'(u(s,zx)) < 0 and £* > 0.
To complete the proof it remains to verify the lemma for
(iv) f'(u™(s,yx)) — f'(u(s,z+)) < 0 and 2" <0,
(v) f'(w™(s,y%)) — f'(u(s,xz£)) > 0 and 2* # 0.
These cases can be proved in a similar fashion as (iii). We refer to [46, Lemma 3.3]
for further details. O

Proof of Theorem[].Z For an arbitrary ¢ € [0,7], let us assume that ¢ € 74, T441]
for some 0 < Kk < m —1. For any 0 < j < m, let P; be the statement: for all
—o<r <y <oo,

1
B ) ) S
oy, y) — (7 )

y—x

IN

2(15) — M~ [2™](75)
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The statement P,
f(uo(y)) — f'(uo(zt))

—o0 < <oo, forall —oco<a<y<oo,
y—z
is obviously true. Furthermore, if P; is true, Lemma implies that also Pjy; is
true. By induction, we conclude that Py is true and, using Lemma once more,

we conclude that (A.1]) holds for the considered ¢ € [r3, Ti11]. O

APPENDIX B. ORM, WIENER PATHS AND BOUNDED TOTAL VARIATION

Before proceeding with the proof of equations ((5.20) and (5.21)) of Lemma
we recall a few useful properties on downcrossings for standard Wiener processes.

Theorem B.1. Let a < m < b and consider a standard Wiener process W :
[0,00) x Q@ = R with W(0) = m, P-a.s. Set t* =min{t > 0| W(t) € {a,b}}. Then

b—m m—a

PW(E) —a) = 5o POV(E) =b) = T,

and
Elt*] = (m —a)(b—m).

For a proof of Theorem see [70, Theorem 2.49].

Definition B.1 (Downcrossing function). Let m > a and consider a standard
Wiener process W : [0,00) x Q@ — R with W(0) = m. Introduce the stopping times
Do =0 and for j > 1,

vy =inf{t > 0j_1; W(t) = a}, vy =inf{t > v;; W(t) =m}.
The function ij)(~,w) 110,75 — j_1] = R defined by
W (s) = Wiy () +5,w),
thus represents the jth downcrossing of [a,m] for the Wiener path W(-,wﬁ For
t > 0, we denote the number of downcrossings of [a,m] completed before time t by
D(a,m,t) :=max{j € N; v; <t}.

See [70l Section 6] for details on downcrossings for standard Wiener processes.
For a < m < b, a standard Wiener process W : [0, 00) x Q@ — R with W(0) = m,
P-a.s. and the stopping time
t =inf {t >0; W(t) = b},
it follows from Theorem [B.1] and Definition [B.1] that

(B.1) D(a,m, ) ~ Geo (7:__;) .

Here, Geo(p) denotes the geometric distribution with parameter p € (0, 1], which
for X ~ Geo(p) has probability mass function

P(X =k)=p(l-p)*, k=01,...,

and
(B.2) EX]=(1-p)/p. E[X’]=01-p2-p/p,
cf. [27].

4The time 9 is the first time W(-,w) equals m and i is the first time after 9y that W(-,w)
equals a. Thus W ([0o, 1], w) represents the first downcrossing of [a,m]. The time 2y is the first
time after 7y that W (-,w) equals m and o2 is the first time after 71 that W (-,w) equals a. Thus
W ([P1, 2], w) represents the second downcrossing of [a,m] ...
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Proof of equations and . Recalling (|5.15|), it suffices to consider Wiener
paths z = W(-,w) for w € Q. Moreover, since
|Orm[z]|BV([O7T]) < |max(orm|[z], O)'BV([O,T]) + |min(orm|z], 0)|BV([0,T])7
and, by symmetry, since the sample path z has the same probability as the sample
path —z and orm[z] = — orm[—z], cf. (4.24),
E [| max(orm([z],0)| sy (jo,r))] = E [| min(orm[z],0)| sy (jo,)) ]+

it suffices to verify that

E[‘y”Bvqo,T])} < %0

where yf = 1, .5 max(orm[z],0). Introduce the stopping times
=if{t>0;20t)=277}, jez

and note that D(0,277, gj—l - 5]) equals the number of z-downcrossings of [0,277]
completed in the time interval [§;,&;_1] (i.e., between the first time z equals 277
and the first time it equals 2771). By (B.1)), it follows that

. . 1
l)(O7 277, j—1 — fj) ~ Geo <2> .
Suppose that

(B.3) te{te[0,T)]y'(t-) >y' (1)}

Then, since M*[z] is a monotonically increasing function, y'(f) = 0 (assuming
otherwise,
y' () >0 = (1) = M*[£](D)
leads to a contradiction since yf(f) < yf(t—) < M*[z](f)). It therefore must hold
that
A7) > AT[](D),  AT[E(E-) < AT[H(E-)
and
y'(F-) — ' (B) = M),
cf. Definition [£.5] Hence,

yt(F=) — i () < 2lloe2(M [AD) |41,

and

orm[z](t—) = 2(AT[2](f-)) >0 and orm[z](f) = (A" [2](£)) < 0.

Consequently, any jump-discontinuity of the form with j = [logy (M T[2](t))]
must be preceded by a z-downcrossing of [0,277] within the time interval [£;, ;1]
and t € [fj,éj,l]. (For t < fj, jump-discontinuities in y of magnitude greater or
equal to 277 cannot happen, and at later times, ¢ > fj,h all jump-discontinuities of
y' will have magnitude greater than 277+ > M™*[2](t).) Consequently, the jump-
discontinuity £ may be associated uniquely to the latest z-downcrossing of [0,277]

in the time interval [gj, fj,l] that precedes t = ¢, and the mapping constituting this
association, from the set (B.3) to the set

(B.4) U {2-downcrossings of [0,27%] in time interval [, &x_1]}
kEZ

is thus injective.
Suppose next that

(B.5) tef{teo, )|y (t—) <y(t)}.
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Then, since z € Cy([0,T]), M T[2] is a continuous monotonically increasing function
and yf(t—) = 0,

AT[](t-) < A7[](E=),  AT[]() > A7 [ (D)

and
y'(f) — y(t—) = MT[2]().
Hence,
lyt(T=) — gt (D)] < 2lloe(MH @) |+1
and

orm[z](t—) = 2(A7[]((-)) <0,  orm[z](f) = 2(AT[z](£)) > 0
By the continuity of M™[z],
M*[z)(t=) = 2(AT[2](t-)) = M [2](D).
In other words, the time s = AT[2](t—) < A~ [2](t—) satisfies z(s) = M™T[2](¢).
By the same reasoning as above, this implies that any jump-discontinuity of the
form with j = Llogz(Mﬂ ](E))J is preceded by a z-downcrossing of [0,277]
in the tlme interval [€;,&;_1], and, in fact, € [{;,£;_1]. Consequently, the jump-
discontinuity £ may be associated uniquely to the latest z-downcrossing of [0,277]
in the time interval [fj, §J_1] that precedes t = ¢, and the mapping constituting this
association, from the set to the set is thus injective.
For any j € Z, let

L el
By ={te(0,T) |y (t-) —y'(t) e [277,2771)}
and
+ .= i T —Jj 9—j+1
B ={te[0,T)|y"(t) —y'(t-) € [277,2777)}.
It then follows that for any j €,

Z ly'(F y' (O] <2777D(0,277,§1 - é:J')1§VJ~<T
fe®B;

and ' o §
>y =y (O <277 D(0,277, 60 — )1, op
teB}

so that for B, = %-7 U %J-r
Z G y (D] <27772D(0,2779,&1 - gj)1£j<T'
=D

Including the possible jump-discontinuity of y' at ¢ = T, and the contribution to
the total variation of y' from [0,7]\ U;cz%B;, we obtain

ity . .
|yT|BV([O,T]) < Z {2 7ED(0,277, 65 _§J)1£_¢<T}
jez

+y"(T=) + [y"(T—) —y"(D)]

<> {200,279, 6 — €)1y |+ 2MHE(T).
JEL
Observe that for all j € Z,

Zj = D(O,Q_j,gj_l — gj) ~ Geo (;) R

E[Z;] =1 and E[Z?] = 3, cf. (B.2). By [53, eq. (8.3)],

2 2
P(M*[)(T) € dz) = ,/ﬁe—z /@1 dz, x> 0.
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It therefore holds for all j > 1 that

P <T) <POITEAM 2 2) == | et gy

[ 2 [ 8T? 12873 ,
e 7(:1 = 72_3]
< T /2]- x4 . 91
and
2 [ . 2T
(B.) B )] =\ [ e e 2.

By Hoélder’s inequality,

Z]E [Q*J‘“D(o, 279 &1 — f}-)lgja}

JEZ
<OE[2D0,270, &~ &)] Y E[27 D027, 61— )1

>0 j<o
_ Z2-j+2 + 22_j+2\/E UD(O, 2_j7gj71 - g])|2:| P(& < T)

7>0 J<0

12873\ '~ 5 :
—j/2 3/4

§8+( - ) 22 < 8+ 2577 =,

jz1
By and the preceding inequality,

00
E {|yT|BV([O,T]):| <E Z {27j+2D(07 27]"5],_1 - gj)1€7j<T} + 2M+[Z](T)
JEZL

> iy L . 8T
- ZE {2 IT2D0,277,&1 — €j)1£__7<T] + \/7

JEL
[8T
< 8+ 25734 4 8T
™

E |Orm[ZHBV([O,T])] < 2E[|yT|BV([O,T])} < 09,

and thus, [orm[z]| gy (o, 77) < 00, P-as.

This verifies that

A similar argument may be employed to verify that E [supng | orm[z™]| BV([O,T])] <
00. A short sketch of such an argument follows.

By symmetry, it suffices to verify that 3™ = 1, .5 max(orm[2™],0) has bounded
total variation, uniformly in m > 2, P-a.s. The only differing technicality from
the preceding argument is that for fixed m > 2, any positive/negative jump-
discontinuity of y©™ at time f may be associated uniquely to a z-downcrossing
of [0,2%] for some k > j = |logy(M*[2](#))], in the time interval [¢,&x—1] (ice.,
through an injective mapping from the set of positive/negative jump-discontinuities
of y™™ to the set (B.4))). Moreover |y"™ (t—)—y"™(f)| < 21 < 28+1. (The reason
for £ > j in the association is that z-downcrossings may be more frequent than z™-
downcrossings, and they may also happen at other times.) It consequently holds
that

sup 9" | sy oy < > {2_j+2D(07 277,651 — fvj)léj@} +2M T [](T),
m> jez

and the result follows. O
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