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Lagrangian drift in a permeable bottom layer induced
by internal gravity waves

By JAN ERIK H. WEBER�, Department of Geosciences, University of Oslo, Oslo, Norway

(Manuscript Received 3 August 2020; in final form 13 January 2021)

ABSTRACT
The mean drift in a permeable homogeneous bottom layer caused by internal gravity waves in an overlying
stratified fluid, is investigated theoretically. We apply a Lagrangian formulation, together with the long-wave
approximation, for the motion in the fluid and the fluid-saturated permeable layer. In the stratified fluid, we
assume a constant Brunt-V€ais€al€a frequency and inviscid flow. In the permeable bed, the density is constant.
Here we apply a simple macroscopic version of Darcy’s law. For internal waves with frequency x, a
fundamental small parameter in the permeable bed is R ¼ xK=�2: Here K is the effective permeability, and
�2 is the overall eddy viscosity, representing the small-scale turbulence of the interstitial fluid. The
Lagrangian mean flow in each layer is weakly damped, with a damping rate proportional to R, and
composed of contributions from an infinite, but discrete set of eigen-modes. For each mode the mean drift in
the permeable bed is an order R2 smaller than the Stokes drift in internal waves at the bottom of the fluid
layer. For spatially damped waves, it is particularly interesting that the wave-induced Eulerian mean current
in the permeable bed may exceed the Stokes drift if the bed thickness is smaller than the upper layer
thickness. It is suggested that the explored wave-induced particle drift in the permeable bottom layer could
provide a physical model for the slow net transport of bio aerosols and smoke particles in the
tropical rainforest.

Keywords: Lagrangian wave-induced drift, nonlinear internal gravity waves, permeable bottom layer flow

1. Introduction

In a pioneering paper (Reid and Kajiura, 1957), the linear
interaction between surface wave motion in a fluid layer of
finite depth and the motion in an underlying saturated por-
ous medium of infinite depth, is investigated. The fluid is
inviscid, and the flow in the porous medium is governed by
Darcy’s law (Bear, 1972). It is found that the exchange of
fluid between the porous bed and the overlying fluid causes
the waves to become spatially attenuated.

In the present paper we consider internal gravity waves
in the fluid layer, which is situated above a permeable
bottom layer of finite thickness. The waves become atte-
nuated due to the interaction with the lower layer. In the
nonlinear analysis we consider temporally damped
internal waves (real wave number and complex frequency)
as well as spatially damped waves (real frequency and
complex wave number). The interesting physics in this
problem is that although the fluid layer is inviscid, the
interaction with the frictional permeable bed causes
damping in the inviscid fluid through vertical motion at

the common boundary; see e.g. Reid and Kajiura (1957)
for surface waves. This phenomenon is of course well-
known in rotating fluids where the horizontal divergence
in a frictional Ekman layer may change the vorticity in
the interior inviscid fluid by Ekman pumping, leading to
damping in time; see for example the classic paper by
Charney and Eliassen (1949). However, we do not con-
sider the effect of the Earth’s rotation, so here the perme-
able layer acts a sink of wave energy.

The main emphasis of the present investigation is on
the mean particle drift in the system. For this purpose we
apply a Lagrangian description of the wave motion, and
of the motion in the permeable layer. The advantage here
is that the pressure gradient becomes nonlinear in the
Lagrangian formulation, yielding directly the wave-forc-
ing terms in the equation for the mean drift in the perme-
able bed.

Internal waves are generated by phenomena like flow
over topography, convective storms, imbalance of large-
scale circulation, gravity currents, river plumes
(Sutherland, 2010). Existing literature on various aspects
of internal gravity waves is quite extensive. For a classic�Corresponding author. e-mail: j.e.weber@geo.uio.no
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account in the ocean; see Phillips (1976), while
Sutherland (2010) covers both the atmosphere and the
ocean. For a review of the wave-mean flow interaction in
internal waves using generalized Lagrangian-mean theory,
the reader is referred to B€uhler (2014).

A pioneering paper on the Stokes drift in internal
coastal Kelvin waves with constant Brunt-V€ais€al€a fre-
quency N is that of Wunsch (1973). Later Al-Zanaidi and
Dore (1976) calculated the Stokes drift in internal waves
in the case of a thin thermocline with constant N: The
Stokes drift results were generalized to arbitrary stable
stratification by Weber et al. (2014), with application to
equatorial internal Kelvin waves.

In Lagrangian form nonlinear internal waves with zero
mean drift was first studied by Sanderson (1985), while in
Weber (2019a) it was pointed out that internal waves
with no mean drift (Gerstner-type waves) and waves with
a mean forward drift (Stokes-type waves) were both pos-
sible solutions in the Lagrangian formulation.

The novel approach in this paper is that the internal
wave layer is bounded below by a permeable bed, which is
modelled as a macroscopic porous medium of finite thick-
ness. As pointed out by Webber and Huppert (2020), sur-
face wave motion over a porous (coral) bottom leads to a
slow Stokes drift in the coral. In a similar way we show
that the presence of internal waves above a permeable bed
leads to a slow Lagrangian mean drift in the interstitial
fluid. The present problem has some interesting parallels to
other processes in the natural environment, such as wave-
induced flow in aquatic vegetation. For example, Luhar
et al. (2010) have found mean currents induced by surface
waves in a seagrass meadow. This is of course a more com-
plicated problem, since the fibrous porous matrix is not
rigid, but is moving in the oscillatory current.

2. Mathematical formulation

We study internal gravity waves in a horizontal fluid
layer of undisturbed depth H1 overlying a fluid-saturated
permeable bed of thickness H2; see Fig. 1,

The fluid in the upper layer is incompressible and stably
stratified, while the interstitial fluid in the permeable bed
has constant density. We assume inviscid motion in the
fluid layer, while in the bottom layer the flow is dominated
by friction. The effect of the Earth’s rotation is neglected in
this problem (we comment on that in Section 6).

For the mathematical analysis we apply Lagrangian
coordinates. Let a fluid particle ða, cÞ initially have coordi-
nates ðX0,Z0Þ: Its position ðX ,ZÞ at later times will then be
a function of a, c and time t: Here the X-axis is horizontal,
and situated at the interface between the permeable layer
and the fluid layer, while the Z-axis is vertical, and positive
upwards. Velocity components and accelerations are given
by ðXt,ZtÞ and ðXtt,ZttÞ, respectively, where subscripts
denote partial differentiation. The pressure is P, and the
density is q:Upper and lower layer variables are referred to
by subscripts 1 and 2, respectively. Furthermore, in the
Lagrangian formulation the impermeable bottom bound-
ary of the lower layer is given by c ¼ �H2, the permeable
interface between the layers by c ¼ 0, and the upper
boundary of the fluid layer by c ¼ H1:

We assume that the internal wave in the fluid layer has
a wavelength k that is much larger than the thickness of
both layers, i.e. k � H1,H2: Then we can assume that the
pressure is hydrostatic in the vertical. In the fluid layer
we thus have for the momentum balance

X1tt ¼ �P1X=q1, (2.1)

0 ¼ �P1Z=q1 � g, (2.2)

where g is the acceleration due to gravity.
The transformation of X ,Z from independent variables

in the Eulerian description to dependent Lagrangian vari-
ables Xða, c, tÞ,Zða, c, tÞ is trivial; see Lamb (1932). The
conservation of mass can be written

q1J X1,Z1ð Þ ¼ q10JðX10,Z10Þ, (2.3)

where subscript 10 denotes initial values in the upper
layer, and J F,Gð Þ � FaGc � FcGa is the two-dimensional
Jacobian. We assume that the fluid is incompressible,
that is

q1ða, c, tÞ ¼ q10ða, c, 0Þ, (2.4)

so (2.3) reduces to

J X1,Z1ð Þ ¼ JðX10,Z10Þ: (2.5)

Utilizing (2.4), (2.1) and (2.2) now become in Lagrangian
terms

X1ttX1a þ gZ1a ¼ �P1a=q10, (2.6)

X1ttX1c þ gZ1c ¼ �P1c=q10: (2.7)

In this problem we assume that q10 c ¼ 0ð Þ ¼ q2, where
q2 is a constant. Using the bottom layer density as a ref-
erence density, we apply the Boussinesq approximation.
Introducing the Brunt-V€ais€al€a frequency N by

Fig. 1. A diagram showing the configuration, with internal waves
above a permeable bottom layer.
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N2 ¼ �ðg=q2Þ dq10=dcð Þ, (2.8)

the momentum balance in the fluid layer becomes

X1ttX1a þ gðq10=q2ÞZ1a ¼ �P1a=q2, (2.9)

X1ttX1c þ gðq10=q2ÞZ1c ¼ �P1c=q2: (2.10)

We assume that N is constant in this problem. Hence, in
(2.9) and (2.10)

gðq10=q2Þ ¼ g� cN2: (2.11)

A treatise in Lagrangian coordinates of internal waves
with constant N, was first done by Sanderson (1985),
without assuming the long-wave approximation.

For laminar slow fluid motion in a porous medium with
narrow pores (the microscopic scale), like sand or sand-
stone, Darcy’s law applies (Bear, 1972). For a macroscopic
permeable medium with a much coarser solid matrix, we
take the fluid motion in the voids is turbulent. Actually,
the modelling of turbulent flows in porous media is an
open-end field; see the comprehensive review by Wood
et al. (2020), and references therein. In the present study we
apply a rather simple flow model, assuming that the
Reynolds-averaged Navier-Stokes (RANS) equations are
valid in the voids. By averaging the RANS equations over
a representative elementary volume of the porous medium
domain, a macroscale equation for the momentum balance
is obtained, with an effective permeability K and an overall
eddy viscosity �2; see for example Masuoka and Takatsu
(1996) for details on how to define the eddy viscosity.

In the present paper we consider a thin horizontal
macroscopic porous layer, and assume that the balance
of forces in the vertical direction is hydrostatic. The
motion in the permeable layer is forced by long internal
waves with typical frequency x and wavelength k: Then
we find that if the parameter xK=�2 is small, the local
acceleration in the macroscopic momentum equation can
be neglected compared to the macroscopic Darcy friction
term. Similarly, if the typical horizontal velocity in the
macroscopic medium is U, the convective acceleration
can be neglected if UK=ðk�2Þ is small. Finally, the
Laplacian eddy viscosity term is negligible if K=k2 is
small. In summary, our application of Darcy’s law in a
macroscopic porous medium is valid when

xK=�2 � 1,
UK=ðk�2Þ � 1,
K=k2 � 1:

9=
; (2.12)

In the permeable layer we have for the momentum bal-
ance, when (2.12) is fulfilled,

0 ¼ �P2X=q2 � �2=KÞX2t,ð (2.13)

0 ¼ �P2Z=q2 � g, (2.14)

where (2.13) is the 0-equation by Masuoka and Takatsu
(1996). Since q2 is constant, we get from (2.14) that

P2=q2 ¼ �gZ2 þQ2, (2.15)

where Q2 is independent of Z2: Hence, by transforming
into Lagrangian coordinates, (2.13) and (2.14) become

0 ¼ �Q2a � �2=KÞX2tX2a,ð (2.16)

0 ¼ �Q2c � �2=KÞX2tX2c:ð (2.17)

Here, since Q2 is independent of Z2, and thereby Q2c ¼
0, the last equation implies that X2 ¼ X2ða, tÞ:

Even though ða, cÞ is not the initial particle position, it
is convenient to write the displacements and pressure as
(Pierson, 1962),

X1 ¼ aþ x1 a, c, tð Þ
X2 ¼ aþ x2 a, tð Þ

Z1, 2 ¼ cþ z1, 2 a, c, tð Þ
P1 ¼ P10 cð Þ þ p1 a, c, tð Þ
P2 ¼ �q2gcþ p2 a, c, tð Þ

9>>>>=
>>>>;
, (2.18)

where dP10=dc ¼ �q10g: Applying (2.11), we find, when
we put an insignificant constant equal to zero

P10 ¼ �q2g½c�N2c2= 2gð Þ�: (2.19)

The deviations (x1, 2, z1, 2, p1, 2Þ in (2.18) can subse-
quently be expanded in series after a small parameter
proportional to the wave steepness; see for example
Weber (2019b). Using (2.18), we can write (2.9) and
(2.10) in the fluid as

x1ttð1þ x1aÞ þ gðq10=q2Þz1a ¼ �p1a=q2, (2.20)

x1ttx1c þ gðq10=q2Þð1þ z1cÞ ¼ �p1c=q2: (2.21)

In the permeable layer, the momentum equation
becomes from (2.16)

�2=KÞx2t 1þ x2að Þ ¼ �Q2a:
�

(2.22)

The conservation of mass (2.5) is the same in both
layers. Hence

x1, 2ta þ z1, 2tc þ ðx1, 2az1, 2cÞt � ðx1, 2cz1, 2aÞt ¼ 0: (2.23)

Although our governing equations (2.20)-(2.23) are non-
linear, it is seen that the hydrostatic approximation sim-
plifies the problem considerably.

3. Linear analysis

We linearize our governing equations (2.20)-(2.23), and
denote the linearized variables by a tilde. From the curl
of the linearized versions of (2.20) and (2.21), we obtain

x
�
1ttc �N2z

�
1a ¼ 0: (3.1)

Applying (2.23), from which x
�
1a ¼ �z

�
1c, we find

z
�
1ttcc þN2z

�
1aa ¼ 0: (3.2)

We assume that the variables separate, and write

z
�
1 ¼ u cð Þeih, (3.3)

LAGRANGIAN DRIFT IN A PERMEABLE BOTTOM LAYER 3



where h ¼ jaþ idt is the phase function. Here we have
defined

j ¼ kþ ia, (3.4)

d ¼ bþ ix: (3.5)

In (3.4)-(3.5) k is the real wave number and x the real
wave frequency, while a and b are the real small spatial
and temporal attenuation coefficients, respectively.
Inserting into (3.2), we find

u00 þ c2u ¼ 0, (3.6)

where primes denote derivative with respect to c: In (3.6)
we have defined

c ¼ ijN=d: (3.7)

To eliminate the small barotropic response in the fluid
layer, we use the rigid-lid approximation for the upper
boundary; see Gill and Clarke (1974). Since then
u c ¼ H1ð Þ ¼ 0, the solution to (3.6) can be written

u ¼ Asincðc�H1Þ, (3.8)

where A is the internal wave amplitude. The linear dis-
placements thus become

x
�
1 ¼ ðicA=jÞcosc c�H1ð Þeih, (3.9)

z
�
1 ¼ Asincðc�H1Þeih: (3.10)

In the permeable bed the linearized version of (2.22) is

x
�
2t ¼ �ðK=�2ÞQ

�
2a: (3.11)

Introducing Q
�
2 ¼ q2 exp ih, and applying that the lower

boundary of the bottom layer is impermeable, that is
z
�
2 c ¼ �H2ð Þ ¼ 0, we find by using the (3.11), together

with the continuity equation (2.23), that

x
�
2 ¼ ijKq2= �2dð Þ� �

eih, (3.12)

z
�
2 ¼ j2Kq2= �2dð Þ� �

ðcþH2

�
eih: (3.13)

3.1. Conditions at the interface and the
dispersion relation

In the present problem we consider an inviscid stratified
fluid layer overlaying a permeable medium saturated with
the same fluid, but of constant density. The surface of the
upper layer at c ¼ H1, and the impermeable bottom of the
porous layer at c ¼ �H2, are material surfaces. On the
other hand, the horizontal separation between the fluid
layer and the porous bed at c ¼ 0 is an immaterial surface.
Here particles from the upper layer may penetrate into the
lower layer, and vice versa. The complicating factor is that
the Darcy velocity in the porous medium is defined as an
average, which makes the problem of mass and momentum
transfer far from trivial; see the comprehensive discussion

by L�acis et al. (2020). We here follow the approach by
Levy and Sanchez-Palencia (1975), and take that normal
component of the velocity and the normal stress (here the
pressure) are continuous at the interface; see also Kandel
and Pascal (2013). However, these conditions are the same
as if the interface was a material surface. Hence, we can use
our Lagrangian formulation where particles characterized
by c 	 0 belong to the fluid layer, and particles with c 
 0
are confined to the porous bed. Accordingly, we take that
z
�
1 c ¼ 0ð Þ ¼ z

�
2 c ¼ 0ð Þ: We then obtain from (3.10) and

(3.13)

A ¼ �j2H2Kq2=ð�2dsincH1Þ, (3.14)

which relates the internal wave amplitude to the ampli-
tude q2 of the fluctuating pressure gradient in the perme-
able layer; see (3.11).

With a hydrostatic pressure distribution in both layers,
the pressure must be continuous at the interface, or
P1 c ¼ 0ð Þ ¼ P2ðc ¼ 0Þ: Utilizing (2.18), this means that
p1 c ¼ 0ð Þ ¼ p2ðc ¼ 0Þ: But since q10 c ¼ 0ð Þ ¼ q2, we real-
ize that

p
�
1 þ q2gz

�
1 ¼ p

�
2 þ q2gz

�
2, c ¼ 0: (3.15)

Hence, using (3.15), we find from (2.20) and (2.22)

x
�
1ttðc ¼ 0Þ ¼ �Q

�
2a ¼ �ijq2eih: (3.16)

Inserting from (3.9) and (3.14) into (3.16), we finally
obtain the complex dispersion relation for this problem

ijH2KN=�2 ¼ tan ijH1N=dÞ:ð (3.17)

3.2. Spatially damped waves

For spatially damped waves we take that b ¼ 0 in (3.5),
and introduce the small dimensionless parameter M by

M ¼ kH2KN=�2 � 1 (3.18)

Then, from (3.17)

i � a=kð ÞM ¼ tanðDð1þ ia=kÞÞ, (3.19)

where we have defined

D ¼ kH1N=x: (3.20)

In our analysis we assume that the waves are slowly
damped over one wavelength, that is

a=k � 1: (3.21)

Utilizing (3.18) and (3.21), a simple series expansion
yields to lowest order in M and a=k

iM ¼ tanDþ iaD=ðkcos2DÞ: (3.22)

The real part of this equation requires that

tanD ¼ 0, (3.23)

4 J. E. H. WEBER



which is fulfilled when D ¼ np, n ¼ 1, 2, 3, ::: In this case,
with given frequency, the permissible wave numbers
obtained from (3.20) are

kn ¼ npx=ðNH1Þ: (3.24)

From the imaginary part of (3.22) we obtain

aD=ðkcos2DÞ¼ M: (3.25)

Hence, using that D ¼ np, we find

an=kn ¼ M= npð Þ ¼ ðH1=H2ÞR, (3.26)

where R, as mention in the abstract, is a small parameter
given by

R ¼ xK=�2: (3.27)

For surface waves over an infinitely deep porous layer,
Reid and Kajiura (1957) state that R (with molecular �

and a different notation) is the fundamental parameter of
the porous problem. We note that for a macroscopic per-
meable bed of finite depth, this is also the case for
internal wave forcing, but now modified by the depth
ratio H1=H2:

3.3. Temporally damped waves

For temporally damped waves we take that a ¼ 0 in
(3.4). Assuming b=x � 1, we then obtain from (3.17)

iM ¼ tanDþ ibD=ðxcos2DÞ: (3.28)

Again, the real part is satisfied for D ¼ np, n ¼ 1, 2, 3, :
In this case for given k, we obtain for the permissible
frequencies

xn ¼ kH1N=ðnpÞ: (3.29)

The imaginary part of (3.28) reduces to

bD=ðxcos2DÞ¼ M: (3.30)

Hence,

bn=xn ¼ M= npð Þ ¼ ðH1=H2ÞRn, (3.31)

where now Rn ¼ xnK=�2:

Long internal waves are non-dispersive, so the group
velocity is Cg ¼ x=k: Thus, we note from (3.26) and
(3.31) that for each wave mode

b ¼ x=kð Þa ¼ Cga, (3.32)

as first shown by Gaster (1962).

4. Lagrangian mean drift induced by temporally
damped waves

Here we consider the nonlinear problem to second order
for the Lagrangian mean quantities. The mean is defined
by averaging over the wave cycle, and this process is

denoted by an over-bar. In the mean drift calculations we
use real values of the linear wave variables.

Traditionally, the Stokes drift (Stokes, 1847) to second
order is obtained from the formula in Eulerian variables
by Longuet-Higgins (1953). In Lagrangian terms
Longuet-Higgins’ expression can be stated as

uðSÞ ¼ x
�
x
�
ta þ z

�
x
�
tc : (4.1)

As pointed out by Longuet-Higgins (1953), the
Lagrangian mean drift uðLÞ can be written as

uðLÞ ¼ uðSÞ þ uðEÞ, (4.2)

where uðEÞ is the viscosity-dependent Eulerian mean vel-
ocity. We demonstrate in Section 5 that for spatially
damped waves, uðEÞ becomes important in the perme-
able bed.

4.1. Drift in the fluid layer

We first focus on temporally damped waves, which is the
simplest case. Then we can assume that the mean varia-
bles do not depend on the horizontal coordinate a:
Accordingly, from (2.20),

uðLÞ1t ¼ �x
�
1ttx

�
1a , (4.3)

where uðLÞ1 ¼ x1t: We note that if we consider permanent
waves (constant amplitude in time and space), the phase
differences on the right-hand side of (4.3) would result in
uðLÞ1t ¼ 0, or uðLÞ1 ¼ FðcÞ, which is correct, but inconclusive.
For irrotational inviscid wave motion, one may utilize the
fact that the mean vorticity vanishes identically. This yields
the correct expression for uðLÞ1 , which in this case is equal
to the Stokes drift; see Clamond (2007) for surface waves.

However, internal waves possess vorticity, which makes
the determination of uðLÞ1 from a direct Lagrangian
approach more complicated. In the present problem the
amplitudes of the wave variables on the right-hand side
of (4.3) are exponentially damped in time. From a
Lagrangian point of view, this small damping is related
to a weak viscosity �1 in the fluid. So to obtain the
Lagrangian mean drift in this case, a small non-zero vis-
cosity has to be included into the problem; see the discus-
sion in Weber (2019b) for surface waves.

Hence, we introduce the effect of a small viscosity in
the stratified case, and consider temporally damped
waves. Again, since the mean variables do no depend on
the horizontal coordinate a, we can write the horizontal
mean momentum (2.20) when viscosity is included as

x1tt þ x
�
1ttx

�
1a � �1 x

�
1tccx

�
1a þr2x1t

� �
¼ 0: (4.4)

The Laplacian operator r2 is nonlinear in the
Lagrangian formulation. Utilizing the results by Pierson

LAGRANGIAN DRIFT IN A PERMEABLE BOTTOM LAYER 5



(1962), and assuming long waves, that is @2=@c2
�� �� �

j@2=@a2j, (4.4) becomes to second order

�1u
ðLÞ
1cc � uðLÞ1t ¼ ~x1tt~x1a � �1½4~x1tcc~x1a þ 3~x1tc~x1ac �, (4.5)

where we have utilized that x
�
1a ¼ �z

�
1c from continuity.

The forcing-terms on the right-hand side of (4.5) are pro-
portional to expð�2bntÞ: From the linear part of the vis-
cous wave problem, it is easily shown that

bn ¼ �1l2n=2, (4.6)

were ln ¼ np=H1 is the vertical wave number (Weber,
2019a). In the present case the wave damping (3.31) is
not determined by the viscosity in the fluid layer, but by
the vertical motion at the interface. For consistency, the
fluid viscosity in (4.5) must then be modelled from (4.6)
as �1 ¼ 2bn=l

2
n :

Inserting from the real part of (3.9), we find from (4.5)
to lowest order in bn=x,

�1u
ðLÞ
1ncc � uðLÞ1nt ¼ �ð3=2Þ�1Cnl4nA

2
ne

�2bntcos2lnðc�H1Þ,
(4.7)

where Cn ¼ x=kn ¼ NH1=ðnpÞ is the phase speed of mode
n: The solution to (4.7) contains the Stokes drift as well
as the Eulerian mean flow due to viscosity; see (4.2).
Remark, however, by using the linear solution (3.9) as
forcing term, we have neglected the Eulerian mean cur-
rents resulting from viscous effects at the boundaries.
These are in effect treated as free-slip boundaries in our
analysis. Utilizing that �1 ¼ 2bn=l

2
n , direct integration of

(4.7) yields the Stokes drift for mode n,

uðSÞ1n ¼ 1
2
ðnpN=H1ÞA2

ne
�2bntcos2lnðc�H1Þ: (4.8)

We note that the Stokes drift modes vary trigonometri-
cally in the vertical (Wunsch, 1973) in such a way that
the integral over the layer (the Stokes flux) vanishes iden-
tically. The last result is valid for an arbitrary stable
stratification, as shown by Weber et al. (2014). We also
remark that each Stokes drift mode is positive at the
upper ðc ¼ H1) and lower ðc ¼ 0) boundary.

We should point out here that the solution (4.8) for
the Stokes drift is valid however small bn is, as long as it
is nonzero. In the present problem bn ! 0 when K ! 0,
that is when the lower permeable layer becomes solid.
Finally, it is a simple exercise to show that the applica-
tion of (4.1) yields the Stokes drift (4.8).

4.2. Drift in the permeable bottom layer

For temporally damped waves, we find to second order
when averaging (2.22)

uðLÞ2 ¼ � x
�
2tx
�
2a ¼ � x

�
2tx
�
2

� �
a þ x

�
2x
�
2ta , (4.9)

where uðLÞ2 ¼ x2t is the horizontal Lagrangian mean drift
in the permeable bed. We observe right away that the
first term on the right-hand side is zero for temporally
damped waves. Furthermore, since x

�
2 ¼ x

�
2ða, tÞ; see

(3.12), we note from (4.1) that (4.9) is just the Stokes drift
in the bottom layer,

uðLÞ2 ¼ uðSÞ2 ¼ x
�
2x
�
2ta : (4.10)

To calculate the forcing in (4.10), we must first relate the
linear pressure gradient q2n in the bottom layer to the
amplitude An for mode n in the case of temporally
damped waves. Inserting into the general expression
(3.14) from (3.29) and (3.31) we find that

q2n ¼ ð�1ÞnNCnAn: (4.11)

Hence, from the real part of (3.12), using (4.11), the
Stokes drift (4.10) for mode n becomes

uðSÞ2n ¼ 1
2
ðnpN=H1ÞR2

nA
2
ne

�2bnt, (4.12)

where the small parameter Rn is defined by (3.31). We
notice that the Stokes drift in the permeable bed is a fac-
tor R2

n smaller than the Stokes drift in the fluid layer
at c ¼ 0:

We also remark that since xta ¼ 0 in both layers, we
obtain from the continuity equation (2.23) that ztc ¼ 0:
With an impermeable boundary at c ¼ �H2, plus con-
tinuity of mean velocities at c ¼ 0, this means that zt ¼ 0
in both layers. We demonstrate in Section 5 that this
changes when we consider spatially damped waves.

5. Lagrangian mean drift induced by spatially
damped waves

In the case of spatial damping, we have nonzero horizon-
tal mean gradients in the system. Then, from (2.20)

x1tt ¼ x2 x
�
1x
�
1a� p1=q2 þ gðq10=q2½ Þz1�a, (5.1)

where we have used that for spatially damped waves
x
�
1tt ¼ �x2x

�
1: In fact, the first term on the right-hand

side may be developed further, such that

x1tt ¼ � ax2x
�2

1� p1=q2 þ gðq10=q2½ Þz1�a: (5.2)

We realize that in order to avoid infinite drift velocities as
time increases, the right-hand side must vanish identi-
cally, that is

p1=q2 þ gðq10=q2½ Þz1�a ¼ �ax2x
�2

1 : (5.3)

Just as for temporally damped waves, this means from
(5.1) that the Lagrangian mean drift reduces to the
Stokes drift in the upper layer, but now slowly damped
in space,
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uðLÞ1n ¼ uðSÞ1n ¼ 1
2
ðnpN=H1ÞA2

ne
�2anacos2lnðc�H1Þ: (5.4)

For spatial damping, we now obtain from (2.15) in the
permeable bed

p2=q2 þ gz2�a ¼ Q2a,
�

(5.5)

where the mean pressure gradient Q2a is a forcing term for
the mean drift; see (2.22). At the interface c ¼ 0 we must
have p1 ¼ p2 and z1 ¼ z2: Hence, from (5.3) and (5.5),
using that q10 c ¼ 0ð Þ ¼ q2, we obtain

Q2a ¼ �ax2x
�2

1 , c ¼ 0: (5.6)

Inserting to lowest order from (3.9), we find for mode n

Q2na ¼
1
2
anN2A2

ne
�2ana (5.7)

Hence, from (2.22),

uðLÞ2 ¼ �x
�
2tx
�
2a �ðK=�2ÞQ2a ¼ uðSÞ2 � ðK=�2ÞQ2a: (5.8)

With reference to (4.2), we note that the mean pressure
gradient Q2a induces an Eulerian mean current in the per-
meable bed that comes in addition to the Stokes drift.
Inserting from (3.12) and (5.7), we obtain for mode n

uðLÞ2n ¼ 1
2
npN½1=H1 þ 1=H2�R2A2

ne
�2ana: (5.9)

We notice that if H2 < H1, the last term in the paren-
thesis (from the Eulerian mean flow) will dominate the
Lagrangian drift in the permeable bed. In the suggested
application in Section 6 of this theory to the slow drift of
particles in the tropical rainforest, modelled as a macro-
scopic porous medium, we obviously have that H2 � H1,
where H1 typically is the height of the troposphere.
Hence, the Eulerian mean flow will dominate in
this problem.

We also remark that since now x1, 2ta 6¼ 0, we have a
slow vertical mean drift in the system. The continuity
equation (2.23) in the upper layer reduces to

z1tc ¼ �x1ta: (5.10)

Integrating in the vertical, and applying that the total
Stokes flux in internal waves is zero (Weber et al., 2014),
we obtain from (5.10) that

z1t H1ð Þ ¼ z1tð0Þ: (5.11)

By integrating z2tc ¼ �x2ta in the lower layer, and utiliz-
ing that the bottom boundary is impermeable, we find

z2t ¼ 2aðcþH2ÞuðLÞ2 : (5.12)

From (3.26) and (5.9), we note that this vertical mean
drift is of OðR3Þ: Since we from mass conservation must
have z1t 0ð Þ ¼ z2t 0ð Þ, we realize from (5.11) that

z1t H1ð Þ ¼ 2aH2u
ðLÞ
2 : (5.13)

Hence, also the upper boundary moves vertically with a
velocity of OðR3Þ (it should be pointed out that this does
not contradict the rigid-lid assumption, which was
applied to the linear problem in Section 3 to eliminate
the barotropic wave response). Anyway, the very small
vertical mean drift discussed here is probably negligible
for all practical purposes.

6. Discussion and final remarks

To the author’s knowledge the application of a
Lagrangian description to flows in porous media is not
common. This formulation has the advantage that it
yields directly the mean particle drift in the medium. Of
particular interest is the use of the long-wave approxima-
tion when the layer thickness is small compared to the
scale of the external forcing. This assumption simplifies
the drift problem considerably. Furthermore, it is relevant
to geophysical applications; see the discussion below. It
should be mentioned, however, that any application to
nature faces the problem of estimating the macroscopic
permeability K and the overall eddy viscosity �2 in the
voids. But this is not peculiar to flows in porous media.
Similar estimates must be done when we apply sub-grid
quantities like eddy viscosity or eddy diffusivity in large-
scale atmosphere or ocean modelling. When it comes to
turbulent flows in porous media, Wood et al. (2020) con-
tain references to studies suggesting various ways (meas-
urements and/or numerical simulations) of solving the
interstitial turbulent fluid problem, but this is outside the
scope of the present paper.

The wave-induced drift in a permeable bottom layer
has several interesting geophysical applications. As men-
tioned in the Introduction, surface gravity waves in the
ocean may cause vertical and horizontal drift in coral
reefs (Webber and Huppert 2020), which is important for
maintaining a healthy reef system. Likewise, surface
waves may induce a mean transport of microplastics in
the porous bottom layer of shallow banks, where the bot-
tom consists of a mixture of shells, stones and gravel
(Weber and Ghaffari 2021). In the atmosphere, where the
gravity waves are of the internal type, a comparable case
would be the (potentially) wave-induced drift in large
boulder fields (felsenmeere) found in many places of the
earth. The analysis in this problem could also pertain to
internal waves in the atmosphere interacting with a dense
forest canopy, which by far appears to be the most inter-
esting application.

For oceanic applications we need not worry about the
additional presence of slowly varying ocean currents, since
the gravity wave motion is dominating, and the mean cur-
rents are second order quantities. In the atmosphere, it is
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opposite. Here fluctuating wind fields dominate near the
ground, and the gravity wave motion is secondary.

For the boreal forest, there exists an extensive literature
on wind-driven flows in forest canopies; see the reviews by
Raupach and Thom (1981), Finnigan (2000), Belcher et al.
(2012), and the many references therein. The main aim in
many of these studies is the modelling of the turbulent
boundary layer near the ground in various complex ter-
rains. One particularly important purpose is to quantify
the CO2 exchange between forests and the atmosphere.

In normal circumstances the action of the wind will sub-
due the weak mean drift induced by the wave motion in the
forest canopy, as described in this paper. Exceptional cases
with no or little winds occur, but they are sporadic.
However, one possible exception of a more permanent
character could be the tropical rainforest, which experien-
ces very light winds. The average wind speed above the
canopy is 2-3m s�1, and often less than half of this value.
Wind speeds are even smaller when measured below the
tree tops. Because the rainforest consists of large stands of
broad-leaved trees, any light breeze passing above the
dense canopy is obstructed in the understory. For example,
wind speeds near the forest floor in a Colombian jungle
were typically between 1 and 5 percent of the speed
recorded above the canopy (Baynton et al., 1965). Due to
its vast size, the Amazonian tropical rain forest is of par-
ticular interest. Here Acevedo et al. (2004) observed
median nocturnal winds of 0.75m s�1 at the 5.7m level,
while on many nights the average wind speed fell consider-
ably below the median value. At another measurement site
in the Amazonas wind velocities were well below 0.5m s�1

at 25m height, both day and night (Fitzjarrald et al. 1990).
In addition, the wind direction appears to be disorganized
(do Couto-Santos and Luiz~ao, 2010).

The primary production term for the turbulent kinetic
energy within the mixing-layer region of a forest canopy is
proportional to the vertical wind shear, while the dominant
balance of forces on an air parcel is between advective
deceleration, the pressure gradient, and the canopy drag
(Belcher et al. 2003, 2012). With this in mind, the light
winds and the weak horizontal and vertical wind shear in
the tropical forest may justify the use of the lowest order
momentum balance between the pressure gradient and a
linear drag (Masuoka and Takatsu 1996) in modelling the
rain forest as a macroscopic porous layer. Hence, the
wave-induced drift in a permeable bottom layer explored in
this paper could provide a model for the vertical fluctua-
tions and the slow net transport of small substances in the
tropical rainforest, like bio aerosols emitted from the eco-
system and smoke particles from deforestation fires.

With the application to the equatorial region in mind,
it is a reasonable approximation to neglect the Coriolis
force in the momentum equation for the upper layer in

Section 2. Alternatively, we could use the beta-plane
approximation. Then the waves become internal equator-
ial Kelvin waves, propagating eastwards and trapped
within the baroclinic equatorial Rossby radius. Near the
equator the result for the Stokes drift will be approxi-
mately the same as that derived in Section 4 and Section
5, if we direct the X axis eastward along the equator; see
the analysis by Weber et al. (2014).

Although the present theory appears to be sound from
a fluid dynamic point of view, there are unfortunately no
field observations to corroborate it. Generally, wave-
induced drift is notoriously hard to observe, and
adequate experiments may be particularly difficult, both
methodically and practically, to perform in the dense
rainforest. A future possible way to approach this prob-
lem theoretically and experimentally is by the wave tank
set up of Luhar et al. (2010), but with suitably arranged
vertical cylinders in the bottom layer. This could provide
interesting results with relevance to wave-induced drift in
rigid fibrous materials, like the dense rainforest.
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