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Introduction 
 
1.1 Immunity 

The immune system protects organisms from invading pathogens and harmful substances. In 

higher organisms, it is commonly comprised of two components, namely innate immunity and 

adaptive immunity. As the first line of immune protection, innate immunity springs into 

action immediately after a pathogen enters the organism. In contrast, adaptive immunity acts 

through a slower but more effective, specific response and provides protection from later re-

exposure to the same antigen. T cells and B cells are two main types of cells carrying out the 

adaptive immune response. T cells have two main subtypes, namely CD4 and CD8, 

characterized by the co-receptor expressed on the cell surface. A CD4 T cell, also known as T 

helper cell, has the function of activating the B cells and macrophages. A CD8 T cell, known 

as cytotoxic T cell, can destroy infected cells and cancer cells. Antibodies secreted by the 

activated B cells travel along the bloodstream and bind to the foreign antigens they recognize, 

thereby inactivating them or marking them attractive targets for the immune system to 

destroy. For the immune system to function properly, it has to detect a variety of harmful 

antigens as well as distinguish them from the normal tissue. Dysfunction of the immune 

system would result in either autoimmune disease when it raises immune response to a 

healthy tissue, or immunodeficiency when it fails to detect certain harmful antigens.  
  

1.2 MHC class II 

Major histocompatibility complex (MHC) molecules are a class of transmembrane proteins 

that are essential for presenting antigens on cell surface to T cells. As opposed to MHC class I 

which is expressed on all nucleated cells, the expression of MHC II is restricted on the surface 

of dendritic cells, macrophages, and B lymphocytes, due to which these three types of cells 

are collectively known as professional antigen-presenting cells (APCs). MHC class II are also 

expressed on epithelial cells in the thymus and interact with T lymphocyte precursors as they 

mature.  In contrast to MHC class I which presents antigens from intracellular pathogens, 

MHC class II presents antigens from extracellular pathogens (1). Professional APCs generate 

antigenic peptides by the degradation of extracellular pathogens and present them bound to 

MHC class II on the cell surface, thus enabling the peptides to be recognized by the 

corresponding epitope specific CD4 T cells. The MHC class II molecules consists of two 

similarly sized transmembrane polypeptides, α chain and β chain. In humans, the MHC is 

called the human leukocyte antigen (HLA) complex. Among MHC class II proteins in human, 
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there are three highly polymorphic molecules which present peptide antigens to CD4 T cells, 

HLA-DP, HLA-DQ, HLA-DR. On each of the HLA locus where the three highly 

polymorphic molecules are encoded, denoted as DPA1, DPB1, DQA1, DQB1, DRB1, DRB3, 

DRB4, DRB5, there are numbers of functional alleles, except DRA that is invariable. The 

variation between MHC allotypes is concentrated in domains that bind peptide and T cell 

receptor, thereby determines the types of peptides that each MHC allotype binds, as well as 

the recognition by T cells. The polymorphisms in MHC genes are important for increasing the 

scope and strength of T cell immunity. Moreover, it has been shown that different HLA 

variant is related with different autoimmune and infectious diseases. For example, rheumatoid 

arthritis is found to be associated with certain alleles of HLA-DRB1 gene in European and 

Asian populations (2)(3)(4). Other diseases that show HLA association include celiac disease 

(CD), psoriasis, ankylosing spondylitis, systemic lupus erythematosus, and multiple sclerosis 

(5). 
  

1.3 T cells  

T cell is a type of lymphocyte that matures in the thymus and plays an important role in cell 

mediated immune response. Depending on the MHC class on the thymic epithetical cell it 

interacted during development, a lymphocyte could differentiate into either naive CD4 or 

naive CD8 T cell marked by the co-receptors CD4 or CD8 glycoprotein expressed on its 

surface. The lymphocytes interact with peptide-MHC II would become naive CD4 T cells, 

while those interact with peptide-MHC I would become naive CD8 T cells. Before the T cells 

mature and leave the thymus, they have to undergo positive selection and negative selection, 

where only a small subpopulation of thymocytes with successfully rearranged T cell receptor 

(TCR) that bind self-peptide:MHC complex with intermediate affinity would survive and 

differentiate into mature T cells. CD8 T cell, also known as cytotoxic T cell, can destroy 

infected cells and tumor cells mainly by releasing cytokines and interleukins upon 

recognizing peptides presented by MHC class I (6). The mature CD4 T cells have a variety of 

functions, such as helping B cells in the differentiation into plasma cells that produce 

antibodies, inducing macrophages to develop enhanced microbicidal activity, producing 

cytokines, as well as recruiting granulocytes to sites of infection (7).  
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1.4 CD4 T cells  

In cell mediated immune response, naive CD4 T cells can be activated after recognition of its 

cognate antigenic peptides presented by MHC II on the surface of APC, such as dendritic cell. 

The activation process requires several signals. The primary one is TCR recognition of 

antigenic peptides presented by MHC molecules on the surface of APC, and this interaction is 

augmented by the CD4 co-receptor binding to the MHC class II. The second signal required 

occurs when co-activating molecules CD28 on the T cell bind costimulatory proteins on the 

APC. As a response of activation, naïve CD4 T cells proliferate by clone expansion and 

differentiate into effector T helper cells, where different cytokines (also sometimes known as 

signal 3) are required for inducing the differentiation into different subtypes of T helper (Th) 

cells, each with a distinct cytokine profile. The most well-established T helper cell subsets are 

Th1, Th2, Th17, regulatory T cells (Treg) and follicular helper T cells (Tfh) (8). Each of the 

subtypes secrete a set of specific cytokines with important pathogenic and protective 

functions (Figure 1).   

  

 
Figure 1.  Different CD4+ T cell subsets. Different CD4+ T cell subsets are differentiated from 
naive T cells under the influence of different cytokines. Each CD4+ subset produces a different 
set of cytokines controlled by the activation of different subset-specific transcription factors. The 
figure is modified from (8). 
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A small fraction of the effector T cells further differentiates into either central memory T cells 

homing to the secondary lymphoid tissues or effector memory T cells in the infected tissues. 

Unlike the short-lived effector T cells, memory T cells has a potential for long-term survival, 

and therefore would be able to mount a faster and more vigorous immune response upon 

recognizing their cognate antigen in the future.  
  

1.5 T cell receptor repertoire 

T cell receptor (TCR) is a heterodimer composed of two highly variable protein chains on the 

surface of T cells. TCR of human T cells normally consists of an α chain and a β chain, 

whereas the TCR of around 1%-5% of human T cells consists of γ and δ chains (9). In the 

human genome, α chain locus consists of a constant region (C), approximately 70 variable (V) 

gene segments and 61 joining (J) segments. β chain locus consists of two constant regions 

(C), 52 variable (V) gene segments, 2 diversity (D) segments and 13 joining (J) segments 

(10). During T cell development, highly variable TCR chain is generated through genetic 

recombination of different V (D) J gene segments as well as random deletion and/or insertion 

of nucleotide at the junction regions. Specifically, recombination occurs between variable (V) 

and joining (J) segments for the α and γ chains, whereas for the β and δ chains, the 

recombination occurs between V, J and D segments (11). Each chain has three 

complementarity-determining regions (CDRs) in the variable domain which is known to be 

the structure for recognition specificity. In contrast to CDR1 and CDR2 that are encoded by 

germline sequences, CDR3 is the most highly variable region as a result of the random 

nucleotide deletion and insertion in the V(D)J junctions during the TCR generation process 

(Figure 2).  CDR3 is the main region for recognizing the antigenic peptides (12).  
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Figure 2.  Generation of TCR. For the generation of TCRα chain, DNA is rearranged through 
recombination of the germline V!, J! gene segments and some random deletion and/or insertion 
of nucleotide denoted by N at the junction region, which is then transcribed and spliced with C!  
gene segment. Similarly, TCRβ chain is generated through recombination of the germline VDJ 
gene segments, with random deletion and/or insertion of nucleotide at the two junction regions. 
The two Cβ gene and their associated Dβ, Jβ segments allow a further remedial attempt if 
rearrangement at one β chain locus is non-productive. For both TCR chains, CDR1 and CDR2 
are encoded by germline sequences in the V region. CDR3 region straddle the VJ junction for α 
chain and VDJ junction for β chain. The figure is modified from Figure 5.3, The Immune system, 
3rd edition (Garland Science 2009). 

 

All the highly variable TCRs in a human body constitute a highly diverse TCR repertoire, the 

diversity of which is the key to maximizing potential coverage of the protective 

immunity. Theoretically, the VDJ recombination of TCR genes can result in a total number of 

TCR clonotypes that ranges from 10$% to 10&'. However, due to the presumably non-random 

recombination process, the diversity of TCR repertoire in a human being was estimated to be 

at around 10$( clonotypes (13). By contrast, the total number of T cells in a human body is 

believed to be much smaller, i.e. at the order of 10$& (14)(15). The highly diverse TCR 

repertoire of an individual is both modulated by the MHC polymorphism during the thymic 

selection processes, and skewed towards some specificities resulting from past antigen 

exposure as a result of the T cell clonal expansion after antigenic stimulation. The clonal 

expansion in turn result in a large number of clones that share identical TCRs, some of which 

would transit into memory T cells persisting for decades after antigen clearance (16).  
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In recent years, advances in high-throughput immunosequencing allow millions of immune 

cell receptor sequences to be generated in parallel, thus largely improve the understanding of 

adaptive immune repertoires. Diagnostic of immunological diseases has become one of the 

potential clinical applications of this technology.  
  

1.6 Celiac disease 

Celiac disease (CD) is a chronic autoimmune disorder resulting from mis-appropriate immune 

response toward ingested gluten proteins found in wheat, barley and rye. In addition, oats are 

also reported to be unsafe for a small fraction of CD patients (17). Typical symptoms of CD 

include chronic diarrhea, abdominal distention and malabsorption (18). In the small bowel, 

the lesion caused by the abnormal inflammatory reaction is usually characterized by blunting 

of villi and lymphocyte infiltration (19). The most accurate diagnosis is the histopathological 

changes observed in small intestine biopsies. Serology-based diagnosis is also used in 

children as the combination of total IgA and IgA class antibodies against transglutaminase 2 

(TG2) was shown to be more accurate than other test combinations (20). 

 

The vast majority of CD patients have HLA-DQ protein either encoded by HLA-DQ2 allele 

or HLA-DQ8 allele, specifically HLA-DQ2.5 (HLA-DQA1*05/HLA-DQB1*02, expressed 

by 90% of CD patients). Patients with HLA-DQ8 (HLA-DQA1*03/HLA- DQB1*03:02) and 

HLA-DQ2.2 (HLA-DQA1*02:01/HLA-DQB1*02) (21) (22) (23) account for the remaining 

CD population. The strong HLA-DQ2.5 allele association with CD was explained by higher 

expression of HLA-DQA1*05/HLA-DQB1*02 genes than non-predisposing alleles (24). The 

other functional explanation is that these HLA class II molecules bind to gliadin peptides 

more tightly than other HLA class II molecules, thus increasing the risk of activating T cells 

(25). 

  

A large number of gluten peptides have been identified as gluten T cell epitopes in CD. These 

epitopes are restricted by different HLA-DQ molecules, especially for HLA-DQ2.5 

(26)(27)(28)(29). Among the large number of identified gluten T cell epitopes, a few of them 

were commonly recognized by a substantial proportion of gluten-specific T cells in CD 

patients with HLA-DQ2.5 (30). Moreover, different efficiency of these gluten epitopes to 

induce the T cell responses was reported to be influenced by factors such as resistance to 

proteolytic degradation, substrate affinity to TG2 and specificity to HLA molecules (31)(32). 
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TG2 deamidates the gluten peptides and the introduction of negatively charged glutamic 

residues enables the gluten peptides to bind better to HLA-DQ2 and HLA-DQ8 molecules. 

Thus, deamidated gluten T cell epitope peptides can stimulate immune system more 

efficiently (33). TG2 can also catalyze the formation of gliadin-TG2 complex by crosslinking 

of gliadin to itself, thus creates antigenic epitopes that can be recognized by TG2-specific B 

cells (34)(35). In such a way, it boosts the production of anti-TG2 Abs with the help of 

gluten-specific T cells (36). The above hapten-carrier model explains the observation that the 

presence of circulating anti-TG2 Abs coincides with gluten ingestion and clinical presentation 

of CD, and suggesting that the cooperation between T cells and B cells is crucial in the 

pathogenesis of CD (19). Taken together, the gluten peptides presented by the disease 

predisposing HLA-DQ proteins on the surface of APC to naive CD4 T cells provide signal for 

T cell activation and proliferation. CD associated B cells are primed upon binding either 

deamidated gluten peptides or gliadin-TG2 complex, so that they are able to differentiate to 

plasma cells producing anti-gluten or anti-TG2 antibodies with the help of the activated 

gluten-specific CD4 T cells. Moreover, such an amplified loop selects T cells specific for 

peptides that are good substrates for TG2 (37). 
 

1.7 Gluten-specific T cells in CD 

Although several studies (38)(39)(33)(40) have suggested that gluten peptide p31-43/49 may 

directly activate the innate immune system, CD4+ T cells that recognize gluten peptides 

bound to predisposing HLA-DQ protein are known as a key player in the pathogenesis of CD 

(41)(42)(43)(44). Importantly, the gluten-specific CD4+ T cells were only found in the small 

intestine of celiac disease patients, but not in healthy controls (43)(45). It has been suggested 

that the mucosal changes in untreated CD patients or treated patients after gluten challenge 

are initiated by activated gluten specific T cells that produce various cytokines (46). For 

instance, IFN-γ level was reported to be markedly increased in duodenal mucosa of CD 

patients after gluten exposure both in vivo and in vitro (47), As a marker of Th1 cell, IFN-γ 

alone or in combination with tumor necrosis factor (TNF-α) are cytotoxic to epithelial cells 

(47)(48), The other cytokines reported to be produced by CD4+ gluten-specific T cells upon 

activation include IL-2, IL-4, IL-6, IL-8, IL-10, IL-5, IL-21, and transforming growth factor 

(TGF)-β (47)(49)(50). In a recent mass cytometry analysis of CD4 T cells in the blood and 

intestines of CD patients, the gluten-specific cells display a distinct profile of surface proteins, 

including upregulated T cell activation makers such as CD38, CD161, CD28, HLA-DR, 
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OX40 and downregulated exhaustion marker killer cell lectin-like receptor subfamily G 

member 1 (KLRG1), the expression of the which was consistent with the result of bulk RNA 

sequencing (45). 

 

Studies focusing on TCR repertoire of the CD patients discovered biased TCR V-gene usage, 

and in some instances preferred TCRa and TCRb pairing, for gluten specific CD4 T cells 

towards each of immunodominant gluten epitopes, namely DQ8-glia-α1(51)(52), DQ2.5-glia-

α1a, DQ2.5-glia-ω1(53), DQ2.5-glia-α2 (54)(55) and DQ2.5-glia-ω2(55). Particularly, T cell 

clonotypes with identical amino acid sequences were observed in multiple CD patients. These 

TCR shared across individuals are known as public TCR sequences. 
  

1.8 HLA-DQ tetramer 

Isolation of antigen-specific T cell was historically challenging due to the low affinity 

between TCRs and their pMHC counterparts. In 1996, the advance of MHC multimers, 

typically tetramers, facilitated the identification and isolation of antigen-specific T cells by 

using a complex of multiple MHC molecules covalently linked with antigenic peptides 

(56)(57). Among multiple HLA-DQ2.5-restricted gluten T-cell epitopes, a few epitopes were 

prevalently observed in CD patients, i.e. DQ2.5-glia-α1a, DQ2.5-glia-ω1, DQ2.5-glia-α2 and 

DQ2.5-glia-ω2 (43)(58). In recent years, HLA-DQ2.5-gluten tetramers carrying these four 

immunodominant gluten epitopes have been used to stain and visualize gluten-specific T cells 

directly from blood or small intestinal tissue from CD patients (59)(60). 

 

1.9 DNA sequencing technologies 

Advances in sequencing technologies have caused a revolution in many fields. The first 

Sanger sequencing method began in 1977 (61). A key technique was the use of fluorescence-

labeled dideoxynucleotides (ddNTPs), which serve to randomly terminate the replicating 

chains. Many randomly terminated chains from the same DNA template then migrates on a 

polyacrylamide gel tray under electrostatic forces with a speed inversely proportional to their 

length.  The sequence of the DNA template is recorded by capturing the color of fluorescence 

on ddNTP at the end of the gel tray. Roche’s 454 Sequencer further simplified the preparation 

process and was introduced in 2005. It vastly improved the throughput by analyzing a large 

number of samples in parallel. Therefore, it is known as the second generation of sequencing 

technology. Now we have come to the era of next-generation sequencing (NGS) or high-
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throughput sequencing. The cost of sequencing has decreased dramatically as more players 

joined the market. Illumina sequencers, which also rely on the chain termination method, 

distribute randomly fragmented chains of 200-300 base pair length to the surface of a flow 

cell with large number of adaptors for further replication through bridge PCR. Each fragment 

is replicated, forming a cluster of DNA chains. The sequences are then recorded by capturing 

the fluorescent signals emitted from each cluster as each new base is added. The sequencer 

became the most efficient at that time since each flow cell analyzes approximately 150 

million clusters. In addition, there are several other sequencing technologies, such as long-

read technologies from PacBio, Ion Torrent, SOLiD as well as Nanopore sequencing from 

Oxford Nanopore Technologies with lower throughput but user defined read length up to 

2,272,580 base pair (62). 
  

1.10  Transcriptomics 

RNA as an intermediate product between DNA and protein is a useful tool in understanding 

the function of cells. Before RNA-seq, microarrays (63) was widely used in gene expression 

studies. But since it requires species-specific or transcript-specific probes, it is incapable to 

detect unknown changes, such as novel transcripts, gene fusions, and mutations. The range of 

gene expression measurements with the array hybridization technology is relatively narrow 

due to the limitation of background at the low end and signal saturation at the high end (64). 

With the advances of NGS, transcriptome can be profiled without any prior knowledge of 

novel changes. Moreover, it is free from cross-hybridization artifacts, and rare transcripts can 

be captured by increasing the sequencing depth (65). 
  

1.11  Single cell transcriptome sequencing 

Traditional bulk sequencing measures the expression of RNAs from large population of cells, 

therefore the heterogeneity between the cells is obscured. Single cell transcriptome 

sequencing has enabled the generation of transcriptomic data on the level of individual 

cells.  The higher resolution of transcriptional data provides an unprecedented opportunity for 

exploring the cellular identity, dynamics and function, especially for cells of rare type. Many 

methods and protocols for sc-RNA sequencing have been developed in the last few years. 

Typically, protocol for sc-RNA sequencing consists of cell capture, mRNA reverse 

transcription, cDNA amplification, cDNA library preparation and sequencing. For single-cell 

capture strategy, low throughput manual approaches, such as mouth pipetting or laser capture 
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microdissection, are useful for sample containing rare targeted cells. By allowing cell 

enrichment by fluorescent labels and increasing the efficiency for cell capture, fluorescence-

activated cell sorting has gained more popularity, and is widely applied in such as Smart-seq2 

(66), CEL-seq/2 (67), MARS-seq (68), and STRT-seq (69). Fluidigm C1, a microfluidic 

based method with comparable efficiency for cell capture, provides a more integrated system 

enabling an automated process for cell capture and down-stream molecular biology steps. The 

droplet-based methods, such as 10x Genomics Chromium (70) and drop-seq (71), are of 

highest throughput but with a typically lower coverage, therefore are ideal for studies that 

require a large number of cells, for example, study for identifying cell subpopulations of 

complex tissues. Each protocol takes different strategies for mRNA reverse transcription and 

cDNA amplification. For instance, Tang-seq (72)(73) adopts poly(A) tailing followed by 

PCR; CEL-seq/2, MARS-seq use second-strand synthesis followed by in vitro transcription 

(IVT), where the sequencing covers only the 3’-end of mRNA due to the premature 

termination of reverse transcription; Likewise, 10x Genomics Chromium and drop-seq also 

adopt a tag-based method that only capture either 5’-end or 3’-end of mRNA; Smart-seq2 is a 

full-length protocol with higher sensitivity than the other methods evaluated in , including 

CEL-seq2, Drop-seq, MARS-seq, SCRB-seq and Smart-seq. 

A well-known challenge of the single cell RNA-seq technique is the larger technical 

variations and dropout, i.e. a transcript cannot be not detected especially for those genes of 

low expression.  The technical variations could arise from various phases of library 

preparation, such as reverse transcription and PCR amplification, as well as the process of 

sequencing. To alleviate the problem, the use of unique molecule identifier (UMI) and spike-

ins, such as External RNA Control Consortium (ERCC) can be incorporated into certain 

scRNA-seq protocols. UMIs consisting of a certain number of random nucleotides serve as 

molecule tags that are added to cDNA segments during reverse transcription. The use of UMI 

allows for correcting the PCR amplification bias by collapsing reads with identical UMI, 

since they are considered to be PCR-amplified from the same mRNA molecule.  ERCC is a 

collection of external RNAs with known sequences and concentration that can be added to 

each sample. Quite a few purposes of using ERCC have been published, including for quality 

control, read counts normalization and identification of highly variable genes. However, some 

usage is controversial considering that ERCCs often exhibit higher noise than endogenous 

genes due to contingent pipetting errors or mixture quality.    
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1.12  Index switching 

Multiplexing is a common practice in single cell sequencing. By adding a unique index or 

combination of indices to each sample, it allows materials from large number of samples to be 

pooled and sequenced simultaneously in a single run. However, it has been reported that 

certain reads could be assigned to a wrong sample as a result of index switching or index 

hopping. Index switching is essentially a molecule recombination between endogenous 

sequences and free-floating indices during the sequencing run. While the problem of index 

switching is negligible on the older Illumina sequencing platforms such as MiSeq, NextSeq 

and HiSeq 2500, on the Illumina HiSeq 3000, 4000, X sequencing platforms using the 

patterned flow cell technique introduced in 2015, the level of index switching is reported to be 

increased to up to 10% (74)(75). The issue could be corrected by removing reads with non-

existing combinations of indices if double indexing (76) was introduced with proper indexing 

strategy, such that each sample has a unique row index and a unique column index. However, 

it is not a practical solution for single cell studies considering the large number of cells 

usually processed and the limited number of indices available. 

 
1.13  Bioinformatics 

1.13.1 Quality control 

Quality control is important for all next generation sequencing data, as samples can fail in a 

range of different ways. Quality control usually involves assessing the quality of data from 

many different perspectives, such as quality of base calling, GC content, duplicated reads, 

over-represented k-mers and presence of adaptors. Tools (77) and NGSQC (78)  can be used 

to scan the sequences. Phred scores indicating the quality for base calling can be summarized 

by position in reads or tile of the sequencing lane, so that one could choose to trim low-

quality bases from reads, or exclude all reads with low-quality. Specific contaminant such as 

adapter dimers might be visualized by displaying distribution of GC content in each read. 

Likewise, sequences of adapter dimers or rRNA may be identified by the plotting the 

proportion of each base position. In addition, summary of duplicated sequence usually 

indicates enrichments bias, such as PCR over-amplification. MultiQC (79) combines all these 

metrics of quality control from all individual samples and visualize them in an interactive 

way, therefore it is a practical tool for experiments with large number of samples, typically as 

in single cell studies. It often gives warning of the problematic batches or batch effects in the 

very early phases of bioinformatic analysis. 
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1.13.2 Genome alignment 

Reads are typically aligned to either a genome or transcriptome in order to quantify the 

number of reads mapped to each gene or transcript. Various aligners have been developed, 

each with its own merits.  Aligners including TopHat, STAR and Hisat2 have gained 

enormous popularity due to the ability to detect novel genes or transcripts by awareness of the 

gaps or splice junctions between exons. GSNAP (80), PALMapper (81), MapSplice (82) are 

optimized to identify SNPs (83). BWA-MEM, bbmap, Stampy, and NextGenMap deal with 

different issues when the reference genome is missing. Some K-mer based pseudo-alignment 

tools, such as Salmon, Sailfish and Kallisto are much faster, so that they are more practical for 

large datasets as in single cell studies and no extra step of transcript quantification is needed. 

Otherwise, raw counts of the mapped reads should then be aggregated on gene level or 

transcript level using, for instance, HTSeq-count (81) or featureCounts (85). 
  

1.13.3 Single cell pre-processing quality filter 

In single cell experiments, cells of poor-quality should be removed from the downstream 

analysis to mitigate the technical variation. Small number of reads or small number of 

detected genes usually indicate poor RNA capture efficiency, i.e. RNA molecules from the 

cell might have failed to be converted to cDNA or amplified. In addition, a large proportion of 

reads mapped to mitochondrial genes or spike-in molecules such as ERCC, could be a sign for 

cellular apoptosis. In addition, depending on the aligner used, some metrics from the 

alignment results can also be used to filter the low-quality cells, such as the mapping rate and 

proportion of reads mapped to exons.  
  

1.13.4 Normalization 

During library preparation and sequencing, samples are subject to different conditions causing 

bias in the measurement of gene expression. In contrast to data generated by bulk microarray 

or RNA-seq experiments, single cell RNA-seq data has higher level of these bias, which could 

be introduced by biological factor, such as endogenous mRNA content, as well as multiple 

technical factors, such as capture and reverse transcription efficiency, amplification factor, 

dilution factor, sequencing depth, etc. Most of the undesired factors are cell specific and some 

can be both cell-specific and gene-specific. Normalization is a preprocessing step in the 

analysis of transcriptome data that aims to correct the biases raised from those factors which 

are not of direct interest for the study. Ideally, the bias from technical effects should to be 
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corrected by normalization, while the biological signal of interests of the study should be 

preserved.  

 

Following some within-sample normalization methods, such as fragments per kilobase of 

exon model per million mapped reads (FPKM), reads per kilobase of exon model per million 

reads (RPKM) and transcripts per million (TPM), a widely used class of normalization 

methods is based on estimating a scaling factor per library. Typical methods in this class are 

trimmed mean of M values (TMM), Upper Quartile and Full Quartile. Another class of 

methods is based on explicit regression on known confounding factors, such as batch and 

ERCC. Moreover, recently proposed methods such as BASiCS, remove unwanted variation 

(RUV) and surrogate variable analysis (SVA) are able to correct the unknown confounding 

factors given that suitable parameters are provided.  
  

1.13.5 Data integration 

Although the effect of technical factors can be alleviated with proper normalization, several 

methods for data integration were shown to outperform the traditional tools developed for 

microarray data, such as limma (86) and ComBat (87) in batch-effect correction (88). Aside 

from integrating single-cell data sets produced across different batches, individuals, protocols, 

more importantly, these methods allow harmonizing single cell data sets that measure distinct 

modalities, thus providing a better understanding. For example, integrating single-cell 

RNAseq data with single-cell ATAC sequencing improved the discovery of regulatory logic 

in different subpopulation of cells (89). One of the most popular methods was introduced by 

Butler.A et al. (90) in 2017, where canonical correlation analysis (CCA) was employed to 

identify shared correlation structures across single-cell datasets. After embedding cells from 

each data sets into the low-dimensional space that capturing the most correlated features, the 

CCA subspaces were aligned. However, due to the fact that CCA captures the most correlated 

features between the two data sets while ignore the others, the datasets were supposed to be 

based on the same set of genes. In other words, cells in each data sets should be of similar 

subpopulation. It is also necessary to remove non-expressed genes, as the CCA is sensitive to 

collinearity in the expression data. Haghverdi et al. (91) built connections between data sets 

by identifying Mutual Nearest Neighbors (MNN). These identified anchors were then used to 

calculate batch-correction vectors, which were subtracted from one dataset to integrate it into 

another. This MNN-based method improved the applicability as it only requires at least one 

cell population in both data sets, although a single small population might not suffice for 
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accurate estimation of local batch effects. However, another assumption that the batch-effect 

variation is much smaller than the biological-effect variation does not always hold in practice. 

In 2019, a strategy published in the third version of Seurat package (89) overcame the 

limitations of the two aforementioned methods. Cosine distances were used for measuring cell 

similarities as they were robust to differences in sequencing depth and capture efficiency 

between batches. Searching for MNNs in a shared low-dimensional space produced by CCA 

match cell successfully even in the presence of significant batch-effect, as CCA can 

effectively identify shared biological features and conserved gene correlation patterns. 
 

1.13.6 Dimensionality reduction 

Dimensionality reduction is useful in the analysis of large multidimensional datasets. Aside 

from the convenience for visualization, it also helps to reduce the noise and the cost of 

computing power. Principal component analysis (PCA), t-Distributed Stochastic Neighbor 

Embedding (tSNE) and Uniform Manifold Approximation and Projection (UMAP) are the 

most commonly used techniques for dimension reduction.  Principal components in PCA is a 

linear recombination of uncorrelated variables, generated by the rule that each succeeding 

component has the highest variance possible under the constraint that it is orthogonal to the 

preceding ones. Therefore, PCA plot using only a few top components can usually capture the 

global structure by preserving the highly variable information. tSNE employs random walks 

and the nearest-neighbor network to map the high dimensional data to 2-dimensional space. 

Therefore, it is good at preserving local distances between cells, i.e. similar data points would 

be attracted in a cluster while the dissimilar ones would be repelled, in such a way that the 

distance between dissimilar cells or clusters are less meaningful. As with tSNE, UMAP is also 

a neighbor graph-based technique with improved algorithm that preserve both the local and 

global structure well. It can be applied on top n components of the PCA, and is much faster 

than tSNE. 
  

1.13.7 Pathway enrichment analysis 

The analysis of genome-scale data usually results in long list of interesting genes for certain 

phenotype, each associated with molecular function in a certain biological process, or 

expressed in certain cellular compartment. A typical challenge of these studies is to get 

systematic insight into the genes. Pathway enrichment analysis or gene set enrichment 

analysis is a computational method to identify the pathways that are enriched in the genes of 

interest more than could be expected by chance, thus providing a better understanding of the 
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biological functions of the genes and mechanisms of the disease studied. The most popular 

tools include DAVID, GSEA, Ingenuity and Reactome. One of the most commonly used 

databases Gene Ontology (GO) contains a large collection of standardized annotation of 

genes. By comparing the frequency of individual annotation in the gene list of interest with 

that in the background gene list, an enrichment score can be calculated for each pathway, 

indicating the significance level of enrichment. Tools as Camera (92) and Setrank (93) 

eliminate false positives in the significance test by incorporating some corrections based on 

the fact that the gene sets or pathways overlapped more with others are more likely to get 

significance due to the inter-gene correlation. 
  

1.13.8 Immune adaptor sequencing from scRNAseq data 

A large variety of immune cell receptor sequences can be generated by the recombination of 

different V, D, and J gene segments as well as random deletion and/or insertion of nucleotide 

at the junction regions. Due to the complexity, information about immune cell receptor 

constructed by using traditional alignment tools is very limited. Tools such as TraCer (94), 

TRAPeS (95), BraCer (96) and BASIC (97) were developed specifically to reconstruct the 

full-length immune cell receptor sequences from full-length scRNA-seq data and to annotate 

them in terms of V-, D-, J-gene usage, sequences of CDR3 region, thus facilitating the 

inference of clonal relationship. Therefore, single cell transcriptome data can be analyzed 

along with the reconstructed TCRs or inferred clonal type.  
  

1.13.9 Methods for classification 

Inference of a disease state is a typical classification problem, since the aim is to assign an 

individual to a category, for example, healthy or different states of disease development. 

Among many possible classification techniques, logistic regression, linear discriminant 

analysis and K-nearest neighbors are most popular. With the unprecedented improvement in 

computing power, some computing-intensive methods such as generalized additive models 

and support vector machines are also widely used.  

The logistic regression is typically used when the response is binary, for example, an 

individual is diseased or healthy. In essence, in logistic regression and many other 

classification techniques, an individual is classified as being diseased if the probability of 

being healthy is calculated to be smaller than 0.5, and vice versa. As the log transform of odds 

have a nice feature that forcing the probability between 0 and 1, by assuming a linear 
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relationship between the log-odds (logit) of a probability and the predictor(s), the logistic 

function can be easily fitted and used for prediction.  

 

Receiver operating characteristic (ROC) curve can be used to assess and illustrate the 

performance of a binary classifier. At various discrimination threshold settings, two operating 

characteristics, namely the true positive rate (TPR) and the false positive rate (FPR), are 

plotted in such a way that the detection probability of a classifier in the y-axis and the 

cumulative distribution function of the false detection probability on the x-axis are 

simultaneously conveyed in the ROC curve. ROC analysis is widely used to assess the 

performance of classifier and get the optimal models regardless of the distribution of the 

responses and predictors, especially in the case of diagnostic decision making. 
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Aims 

 
The main goal of my PhD project is to characterize the gluten-specific T cells on the single 

cell transcriptome level. We used the HLA-DQ-gluten tetramers carrying the 

immunodominant gluten epitopes to identify and sort the disease-specific CD4+ T cells 

sampled from the lamina propria of duodenal biopsies and peripheral blood from untreated 

patients with CD.  A secondary goal is to explore the potential of direct TCR sequencing in 

CD diagnostics. 
  



 23 

Summary of papers 

 
Paper I 

In this proof-of-principle study, we demonstrated that the state of celiac disease could be 

inferred by unbiased direct TCR sequencing. Celiac disease affects around 1% of the 

population and the disease-associated gluten-specific TCRs are well characterized 

(51)(52)(53)(54)(55). By investigating the TCR repertoires of unsorted lamina propria T cells 

from 15 individuals, and comparing with a large database of nearly 6000 gluten-specific 

TCRα and TCRβ amino acid sequences, we showed that the states of celiac disease could be 

successfully inferred in the majority of the subjects. The result from this small study shows 

promise for the ultimate goal of inferring celiac disease state based on TCR sequencing of 

circulating T cells. 

 

Paper II 

We experienced a major set-back when it was reported that the most widely used sequencing 

platforms, HiSeq3000/4000/X from Illumina, are prone to erroneous read assignment due to 

adaptor switching of the identifying indices. Based on our single cell transcriptome data 

sequenced on HiSeq3000 and HiSeq4000 platforms, we utilized the unique expression of 

immune receptor of each T and B cell to quantify the impact of index switching on single cell 

RNA-seq experiments. We confirmed that index switching affects all samples run in 

multiplexed libraries on Illumina HiSeq3000 and HiSeq4000 platforms. By quantifying the 

spread-of-signal from 47 unique markers in 51 wells due to index switching, we estimated the 

median percentage of incorrectly detected markers to be 4.2% (interquartile range (IQR): 

2.0%-8.7%). We did not detect any consistent pattern of some indices to be more prone for 

switching than others, suggesting that index switching is a stochastic process. 

 

Paper III 

Gluten-specific CD4+ T cells are the key drivers for the pathogenesis of celiac disease. To 

study the gluten-specific CD4+ T cells on the single cell transcriptome level, we conducted 

single cell transcriptome sequencing on CD4+ T cells sampled from peripheral blood of four 

untreated CD patients. Cells were sorted with a mix of HLA-DQ2.5:gluten tetramers 

presenting each of the four immunodominant gluten epitopes, i.e. DQ2.5-glia-α1a, DQ2.5-

glia-ω1, DQ2.5-glia-α2 and DQ2.5-glia-ω2. We demonstrated that the transcriptome profiles 
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of the gluten specific cells were consistently different from the non-specific cells, and largely 

in accordant with Th1 and follicular helper T cells. Moreover, analysis on the reconstructed 

full-length TCRs of the CD4+ T cells suggested that cells that shared clonal origins did not 

show more similar transcriptional profiles compared with cells that were clonally unrelated.   
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Methodological considerations 
 
4.1 Sample selection 

Paper Ⅰ was a proof-of-concept study exploring the possibilities for inferring disease state 

by matching sequences from the sampled TCR repertoire against a priori known disease-

associated TCR sequences. Although HLA-DQ2 and HLA-DQ8 present with identical 

clinical pictures, only HLA-DQ2-retricted TCR sequences were considered in this study. 

Therefore, only untreated HLA-DQ2 CD patients were included in the disease group, while 

HLA-DQ8 celiac patients as well as healthy individuals were grouped as controls. The 

diagnosis of CD was based on IgA-TG2 titer and histological Marsh score. We sampled two 

pieces of duodenal biopsies from each donor as it is advantageous to look at the T-cell 

response in the affected tissue where the frequency of disease-relevant T cells is much higher 

than in blood, i.e. 1-2% (98) compared to 1 per 100,000 (99)(60), respectively.  

 

With the purpose of studying index switching, there was less restrictions on the sample 

selection for paper II as long as they were single cell samples, and full-length transcriptome 

was sequenced with sufficient depth, such that the reads with switched index could cover the 

receptor region. 

 

To study the gluten-specific CD4+ T cells on the single cell transcriptome level, we 

conducted single cell transcriptome sequencing on CD4+ T cells sampled from peripheral 

blood and gut of untreated CD patients in study Ⅲ. By assuming that some known house-

keeping genes are truly expressed in all cells, we modelled the detection failures as a logistic 

function of mean log transformed expression of the house-keeping genes, in line with the 

standard logistic model for drop-outs for quality control. The plot of the models (Figure 3) 

together with FastQC report indicated that quality of cells from three batches was 

significantly worse than the other one. All cells from gut were from the batches of poor 

quality, such that only 141 out of 371 of them passed quality control. Therefore, we mainly 

focused on the data of good quality and excluded the gut cells in the downstream analysis. 

Blood cells from the three batches of lower quality was integrated as an independent support 

cohort.   
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Figure 3. False negative rate for house-keeping genes for cells in each of the four batches 
(left).  For each cell colored by batch, detection failures of over 400 house-keeping genes were 
modelled as a logistic function of the mean log transformed expression. The house-keeping genes 
were extracted from scone (100). The corresponding area under the curve for each cell were 
visualised in the bar plot on the right panel sorted by batch and size. The height of each bar 
indicates the probability of drop-out in the corresponding single cell.   

 

4.2 TCR repertoire sequencing 

For study Ⅰ, both bulk sequencing and single cell sequencing can be used to profile the TCR 

repertoire. In order to cover the gut TCR repertoire, we used bulk sequencing, as opposed to 

single-cell TCR sequencing which will be prohibitive for the same sequencing coverage. With 

single cell sequencing technique however, the paired TCRα and TCRβ information would be 

an advantage in terms of identifying the TCR of gluten-specific cells and therefore improve 

the performance. 
 

4.3 Disease state inference 

In study Ⅰ, we inferred the disease state of 15 donors by matching sequences from TCR 

repertoire against a priori known disease-associated TCR sequences. Although we chose to 

use logistic regression, a range of other methods were valid and applicable for the 

classification problem, such as linear discriminant analysis, K-nearest neighbors and support 

vector machine. ROC was an intuitive solution, as a single predictor was used. Without cross-

validation, the performance tends to be over-estimated in terms of inferring the disease state 

of independent individuals. Together with the fact that the prediction could be less robust with 

the very limited sample size, we reported the result of ROC as a supplement for logistic 

regression. 
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4.4 Association between the frequency of an TCR in repertoire and its 

popularity rate 

Concerning the association between how often an TCR clonotype was observed in our TCR 

repertoire data and the number of patients in the reference dataset who expressed this 

clonotype, correlation is typically used as a measurement. The different types of correlations 

are Pearson correlation (101), Kendall rank correlation (102), Spearman correlation (103), and 

the Point-Biserial correlation (104). Pearson correlation is typically used for measuring the 

association between two linearly related variables. Assumptions of two variables measured by 

Spearman correlation include linearity, homoscedasticity and normality, which is obviously 

violated in our data of frequency. Both Kendall's rank correlation and Spearman correlation 

are non-parametric tests for measuring the degree of association between two variables, as 

they do not rely on any assumptions on the distribution of the two variables. Both can be used 

for ordinal data as in our study. Considering the relatively higher frequency of ties in the 

frequency data, we chose to use Kendall's rank correlation over Spearmen.  

 

4.5 Protocol for single cell RNA sequencing  

Based on previous studies, gluten-specific cell is rarely detected in blood of CD patients. In 

the CD4 compartment, only 1 to 100 per million CD4 cells in blood would be expected to be 

specific to a given pMHC (99)(60). In order to capture sufficient gluten-specific cells for 

study Ⅲ, cell enrichment is required. Therefore, we chose to use bead enrichment of HLA-

DQ:gluten-tetramer stained T cells prior to flow cytometry assisted cell sorting. Moreover, it 

is preferable for study Ⅱ and Ⅲ to quantify the expression of more genes with high accuracy. 

From the perspective of quantification, there are two categories of scRNA-seq methods. 

Methods such as Quartz-Seq, Smart-seq2 (66), SUPeR-seq and MATQ-seq are based on full-

length, with the aim to achieve a uniform read coverage of each transcript. The other type of 

methods such as Drop-seq (71) , SEL-seq2 (67), InDrop-seq (105), MARS-seq (68), Seq-Well 

(106) and STRT-seq (69) only capture either the 5’- or 3’-end of each transcript. The full-

length protocols provide the possibility to perform analysis on clonotype of the single cells in 

combination with the full-length transcriptomic profiles. Moreover, they were reported to 

have better sensitivity for detecting low-expressed genes (107). Considering all these issues as 

well as the cost, Smart-seq2 was used for single cell library preparation, as it is a full-length 

based protocol with high sensitivity (107)(108). 
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4.6 Quantification of genes 

Traditional challenges for gene expression estimation include the requirement of substantial 

computational resources, the ambiguity in read mapping caused by alternative splicing, and 

non-uniform sampling of reads. For quantification of the transcript expression we chose to use 

Salmon (109), which is a k-mer based pseudo-aligner. It achieves a high speed in the same 

order of magnitude as some other aligners i.e. kallisto (110) and sailfish (111), by applying a 

lightweight alignment, which aims to get the original transcript of a read instead of the exact 

alignment. In the meanwhile, by using two phases of statistical inference and models 

accounting for sample-specific bias, better accuracy is achieved by accounting for alternative-

splicing, sequence-specific bias, GC-content bias and positional bias. After testing some 

values of the parameter k on a few samples, we found that the default k-mer length of 31 

worked well. Another benefit of Salmon is that we do not have to trim the reads before gene 

quantification, even though the base quality normally tends to drop at the end of the reads. 

The reasoning is that the pseudo alignment or lightweight alignment process of Salmon is 

based on super maximal exact matches (MEMs). In such a way that any nucleotide mismatch 

outside the region of the MEMs would not stop the read from being mapped as a whole, but 

only result in a proportional reduction of the estimated probability of the read originating 

from a transcript. 
 

4.7 Cell selection for quality control 

In single cell RNA-seq experiment, it is commonly observed that a portion of cells are of bad 

quality due to various reasons. For example, some cells could be apoptotic; RNAs in some 

samples are not efficiently converted into cDNA or amplified; and that some samples contain 

no cell or multiple cells. Those low-quality cells need to be excluded before analysis so that 

they would not distort the interpretation of the result. In paper III, we applied criteria from 5 

metrics for excluding the low-quality cells based on their distribution. The 5 thresholds were 

chosen by assuming that most of the cells are of good quality. Specifically, cells with lower 

mapping rate than 30% were excluded, since a low mapping rate may indicate RNA 

degradation or empty wells. The library size, defined as the total number of counts over all 

genes in a single cell sample were also applied as a filter by removing samples with sizes 

smaller than 200,000. A low library size indicates a low RNA capture efficiency for the 

sample. Library size is in large correlated with the number of detected genes (including the 
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exogenous spike-ins). For the purpose of removing samples that potentially contained more 

than one cell, we also imposed a filter with upper boundary of the number of detected genes, 

in such a way that cells with number of detected genes ranged from 1,800 to 15,000 were 

retained. Another metrics for measuring sample quality is the proportion of read counts 

mapped to mitochondrial genes. High proportion of mitochondrial genes is usually indicative 

of low-quality, owing to the fact that the cytoplasmic RNAs tend to be lost while the 

mitochondrial RNAs were left in a broken or apoptotic cell (112)(113). Based on the overall 

distribution, samples with a proportion of read counts mapped to mitochondrial genes larger 

than 15% were excluded. Similarly, we also excluded samples with larger than 40% reads 

mapped to ERCC spike-ins. The amount of ERCCs added to each single cell sample were 

constant, therefore loss of endogenous transcripts would cause an increasing proportion of 

reads mapped to ERCCs. 

 

We added ERCC spike-ins in two of the batches from the study, i.e. samples generated from 

patients CD1507 and CD1517, but stopped using it for the other batches based on the 

following three considerations. First, although it is useful for quality control on cells, when 

we applied the quality control scheme with the aforementioned five metrics, only 5 more cells 

were identified as low-quality compared to the scenario without considering ERCC where 256 

low-quality cells were identified out of 576 cells in total; Second, the read counts from ERCC 

spike-in RNAs are noisier, as their variations were higher than majority of endogenous genes. 

This suspicious fact impacts the reliability of using analytical methods where ERCC spike-ins 

is used for normalization or selecting highly variable genes. Moreover, a considerable number 

of total reads, specifically around 7.4%, were generated from ERCC spike-ins. 
 

4.8 Cell clustering and visualization 

We chose to use Seurat 3.0.2, a widely used R package for single cell data analysis. It 

provides implementations of analytical methods for a variety of purposes, including 

identification of highly variable genes, data visualization, unsupervised clustering, and 

identification of differentially expressed genes.  
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Results and discussion 
 
5.1 T Cell Receptor Repertoire as a Potential Diagnostic Marker for CD 

(Paper I) 

Guided by the hypothesis that an individual’s T cell receptor repertoire is skewed towards 

some specificities as a result of past antigen exposure, a few previous studies have shown that 

TCR clonotyping can be used as a diagnostic tool for infectious disease such as CMV 

serostatus (114). By profiling TCR repertoire of 15 donors, we explored the possibilities for 

inferring the state of CD, for which the T-cell response is less pronounced compared to the 

strong CMV response.  

As a reference of CD associated TCRs, an external database comprised of 2,929 TCRα- and 

2,662 TCRβ-clonotypes obtained from 6,808 single-cell TCR sequencing of HLA-DQ2.5-

gluten-tetramer-sorted cells from 59 CD patients was utilized. From this large reference 

database, we generated a subset of public clonotypes (observed in at least two CD patients) 

that possibly represent a more CD-specific reference database. By matching TCRα- and 

TCRβ-clonotypes from TCR repertoires of the 15 donors against the above two references, 39 

TCRβ clonotypes out of the 226 public TCRβ references were observed in our data. The 

number of matches increased only by 1.4-fold when we used the reference database 

comprised of all gluten-specific TCRβ, which was 14 times larger than public TCRβ (Paper I, 

Figure1). It confirmed our assumption that the public clonotypes were more specifically 

associated with CD.  

In order to explore the effect of sequencing depth on the predictive accuracy in our gut 

repertoire data, we employed a bootstrap procedure. Each time, one individual was randomly 

set aside for testing and a logistic regression model was trained on 14 cases which were 

randomly sampled with replacement from the 14 remaining cases. After repeating this process 

for 1000 times, we calculated the average predictive accuracy for each individual that reflects 

the probability of being correctly inferred. By visualizing the repertoire size versus the 

predictive accuracy (Figure 4), the predictive accuracy was satisfactory for the individuals 

with a repertoire size over 2000. However, much more cautions are needed to generalized the 

observation due to the limited number of individuals.   
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Figure 4. Effect of sequencing depth on the predictive accuracy. Repertoire size is represented 
as number of unique TCR-beta chains detected from each individual. The accuracy on y axis is 
the frequency that the individual has been correctly inferred when it is selected as the testing 
case in bootstrapping. 

 

There is noticeable difference between the total number of detected TCRα and TCRβ 

clonotypes in our data, which could be a reason for the fact that the proportion of matches in 

the reference database of TCRβ clonotypes was higher than those in the TCRα compartment. 

In most published studies where both TCRα and TCRβ have been sequenced, there is more 

TCRβ data, either as more numerous clonotypes in bulk data or as more read counts and 

higher sequencing rate in single-cell data, compared to TCRα (115)(116)(117)(118). Most 

likely it reflects a biological inequality in the transcription rate, where there, for reasons not 

known, is more TCRβ transcripts than TCRα transcripts per cell. Consequently, the result of 

the inference (Paper I, Figure 2) suggested that matching TCRβ alone was sufficient for 

predicting celiac disease state, while the inference by TCRα clonotypes performed rather 

poorly both when used on its own and in combination with TCRβ. There are two hypotheses 
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for the cause, which can be tested in further studies: the TCRα chains are structurally less 

relevant for gluten-peptide recognition, or an TCRα clonotypes is disease-specific only if it is 

paired with certain TCRβ chains. The later hypothesis can be tested by single-cell TCR 

sequencing where the paired TCRα and TCRβ information is available. 

 

Considering previously reported systematic differences in the human TCR repertoire with 

ageing (119), we have checked the association between age and our predictor variable. Based 

on the result, we do not believe that confounding by age played a role in our predictions. 

However, we cannot completely rule out the possibility, as our sample size was limited. 

Potential confounders should be examined in larger cohorts. 

Since it is confirmed that the public clonotypes are more specifically associated with CD, we 

believe that the database of disease-associated TCRs can be improved by further step of 

validation. The current reference database for gluten-specific TCR clonotypes was sampled 

and generated from CD patients, and the public gluten-specific TCR clonotypes were treated 

equally regardless of the number of patients across which the given TCR was observed. The 

specificity of those gluten-specific TCR clonotypes in the reference could be further improved 

by involving more TCR repertoires from healthy controls for training and purifying. We 

believe the current reference database has covered the majority of the gluten-specific TCR 

clonotypes in HLA-DQ2.5+ CD patients, as the percentage of matching (0.22%-1.1%) was 

comparable to a recently published study (45) where the cells binding to the same tetramers 

comprised 0.3–1.5% of the total small intestinal CD4+ T cells. As public TCR sequences are 

continually accumulating by the inclusion of more patients, we believe the database of public 

gluten-specific TCRs would approach to saturation, where we would have a complete 

collection of public gluten-specific CD4+ TCR sequences when barely any new clonotypes 

were gained by including more patients. 

5.2 Quantify Index Switching (Paper II) 

The advance of next-generation sequencing technology comes with a risk of index switching, 

which is essentially molecular recombination occurring in Illumina Hiseq platform, resulting 

in certain amount of sequencing reads being assigned to an incorrect sample.  We 

demonstrated that the immune cell receptor information can be utilized to detect and quantify 

index switching in single cell experiment. The estimated percentage of incorrectly detected 

markers ranges from 2.0% to 8.7%. It was in the same range as reported in (75), but higher 
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than it was reported in (74) (120), where the rate of index switching was up to 2% and 0.47% 

respectively. We speculate that those differences might be caused by the chosen method for 

measurement, the level of free-floating adaptors in library preparation and the variation of 

sequencer. We did not observe any significant difference in index switching level between 

Illumina HiSeq3000 and HiSeq4000.  

 

We also confirmed that index switching is a stochastic process in which the occurrence is not 

biased towards any indices, which could be a fundamental basis for developing computational 

methods for correcting the effect of index switching. Although there is a published tool (121) 

for computationally correcting the index switching effect, it is more practical to either 

eliminate the possibility through experimental design, i.e. use a sequencing platform less 

susceptible to index switching, or apply an indexing strategy enabling reads with switched 

indices to be removed downstream, e.g. by using dual indexing with unique indices at both 

ends.  

5.3 Single cell transcriptomic analysis of gluten-specific T cells (Paper 

III) 

Being aware of the issue of index switching on Illumina HiSeq3000 and HiSeq4000 

platforms, we turned to Illumina Nextseq platform and conducted single cell transcriptomic 

sequencing on circulating gluten-specific CD4+ T cells identified by HLA-DQ:gluten 

tetramer staining and used tetramer-negative CD4+ T cells as controls. The majority (81%) of 

the sorted tetramer+ cells had an intestinal origin (positive for b7-integrin) and were activated 

(positive for CD38), while most (75%) of the tetramer- cells were negative for both markers. 

Considering the tetramers carrying the four immunodominant epitopes only capture less than 

a half of all gluten-specific T cells, gluten-specific T cells of other specificities may also be 

expected in a small population of the controls. In order to avoid high proportion of the gluten-

specific T cells of other specificities in the control cells, we purposely did not match b7-

integrin and CD38 expression in cell selection. Circulating gluten-specific CD4+ T cells that 

are only found in CD patients, showed a distinctive phenotype in a mass cytometry analysis 

with 43 antibody markers (45). Single cell transcriptomic analysis is not limited by the 

number of markers, thus providing a complete view of the gluten-specific CD4+ T cells.  

Based on the observations in the quality control process, including the number of cells passed 

and the model of detection failures as a logistic function of mean log transformed expression 

of the house keeping genes, we focused on the data of best quality, where 342 blood CD4+ T 
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cells from one patient passed quality control. By applying a graph-based clustering on the 

transcriptomic data of the 342 cells, we observed a cluster of the tetramer-binding gluten-

specific T cells with distinct gene expression profile, together with some discordant cells 

mostly found in the adjacent area consisting of tetramer-negative T cells (Paper III, Figure 

1A). It confirmed our hypothesis that gluten-specific CD4+ T cells harbor distinct phenotype 

not only on the protein level, but also on the transcriptome level.  

 

We performed differentially expression analysis on the tetramer+ T cells and tetramer- T cells 

and compared the results obtained from single-cell RNA-seq study and bulk RNA-seq study. 

On one hand, the cells in our single-cell study can be well classified into either tetramer-

positive or tetramer-negative group by using differentially expressed genes from a bulk study 

as markers (Paper III, Figure 1C). The consistency assured us that both experiments were 

well performed. On the other hand, we observed some cases where of two genes with similar 

biological function, one was only identified as differentially expressed in bulk study, while 

the other was only identified in single-cell study. We therefore believe that both bulk and 

single-cell RNA-seq are important to capture complete gene expression patterns.  

Based on the result of differentially expression analysis, we then set out to probe into 

molecular function and biological process associated with the differentially expressed genes. 

The significantly enriched pathways in GSEA mainly include the following categories: 1) 

response mediated processes, such as antigen receptor-mediated signaling, TCR signaling and 

activating signal transduction; 2) those associated with co-stimulatory signal during T cell 

activation, such as CTLA4, CD28 family; all of the above showed an increased T-cell 

activation in tetramer+ T cells. 3) increased signal of cytokines, such as interleukin-1 family, 

a group of cytokines regulating immune and inflammatory responses. On the other hand, the 

widely down-regulated ribosomal genes indicate reduced overall translation and protein 

synthesis activities in tetramer+ T cells.  

 

In contrast to a variety of activation makers that were upregulated, we observed down-

regulation of the early activation marker CD69 in the tetramer+ cells. The down-regulation of 

CD69 is known to be required for cell egress from intestinal tissue (122)(123). It is in 

accordance with the mass cytometry data in (45), where the expression of CD69 was 

markedly lower in blood than in gut. Together with the report (124) that CD69 in T cell is up-

regulated half an hour after stimulation, then rapidly down-regulated, and the up-regulated 

gut-homing markers such as CCR9 and α4 integrin in the tetramer+ cells, indicates that the 
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tetramer+ cells in blood have recently egressed from the intestinal tissue. 

 

Our result (Paper III, Figure 3A) was in accordance with the previous observation in 

(60)(59)(125) that tetramer+ T cells are activated effector memory T cells. One previous in 

vitro study (126) showed that most gluten-specific cells had a phenotype of regulatory T cell. 

However, the ex vivo analysis (45) suggested that the gluten-specific T cells do not express a 

classical regulatory T cell phenotype due to the lack of markers CD25 and GARP. By 

applying VISION pipeline with gene signatures from (127), we observed that the tetramer+ T 

cells in our study showing features of either Th1 or Tfh cells (Paper III, Figure 3C). We also 

found a few cells with transcriptional burst of IFN-g and IL-21, key cytokines secreted by T 

cells and important for inflammatory responses in the celiac lesion and differentiation of 

plasma cells. As suggested by a recent study (128), plasma cells might be the most abundant 

cells presenting gluten peptides to T cells in inflamed intestinal tissues from CD patients. 

Finally, we combined the clonotype inferred from the reconstructed TCRs and the 

transcriptional profile of the cells. As expected, the vast majority of the cells with clonal 

expansion were tetramer positive cells (Paper III, Figure 4A). Similar to the findings in (94), 

cells that shared the same clonal origin were not more transcriptionally similar than any other 

randomly selected pairs of tetramer-positive cells. The result indicate that the clonal origin 

has limited impact on the phenotype of the cells, if any. 
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Conclusion and future perspectives 

 
The current diagnostic strategy of CD in adults is based on screening by serum test, followed 

by confirmation with biopsy. Based on knowledge established by many studies on 

characterization of gluten-specific T cells, e.g. gluten-specific T cells are only found in CD 

patients but not in healthy controls (43)(45); certain identical T cell clonotypes are observed 

in multiple CD patients (129), we hypothesized that TCR-based methods could also be used 

as a potential diagnostic tool and performed the proof-of-principle study in Paper I. Although 

we successfully inferred CD state of majority of the donors in the study with limited cohort 

size, there are some apparent obstacles for using TCR sequencing based test as a diagnostic 

tool in practice. The major concern is the difficulty for identifying sufficient number of 

circulating gluten-specific T cells at a reasonable cost, given that the frequency of these cells 

is much lower in blood than that in gut. Machine learning methods such as Support Vector 

Machine, Random Forest, Gradient Boosting Machine and Conversional Neural Network 

have been showing great potential in identifying disease-specific immune receptor sequence 

(130) and distinguishing immune repertoire in different disease status (131), such as multiple 

sclerosis (132); tumor or normal tissues from patients with gastric cancer (130), colorectal and 

breast cancer (133). These machine learning methods were very likely applied on large scale 

of immune receptor repertoire data from CD patients. In that event, the machine learning 

process should be able to generate signatures for discriminating the repertoires, which may 

not necessary be limited to gluten-specific T cells. Importantly, aside of sequential data, it is 

easy to incorporate other information such as CDR-length and physicochemical properties of 

amino acid sequences, thereby improving the predictive accuracy. In addition, clinical 

application of TCR-based methods would require further research focusing on how they can 

be combined with the existing serological tests of CD, e.g. serum IgA and TG2-IgA, DGP-

IgG tests, to achieve sufficient specificity and sensitivity so that invasive biopsy-based tests 

will no longer be needed. 

Many studies over the past decades pointed to gluten-specific CD4 T cell as a key player in 

the pathology of CD. In the single cell transcriptome analysis, we demonstrated that the 

gluten-specific CD4+ T cells displaying signatures consistent with activated effector memory 

T cells were more heterogenous in contrast to the naive CD4 T cells.  For instance, despite the 

pervasive upregulated signals for TCR signaling observed in gluten-specific T cells, 

(co)activation marker such as CD28 was expressed among some of them, while the rest of 
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them expressed CTLA-4, a molecule dampening the immune response by competing with 

CD28. Further experiment, e.g. time-series study could explore if there is any regulon causing 

the differences or they were just in different phase of immune response. In addition, the 

global transcriptional profiles of the tetramer-positive cells showed that these cell harbor 

features of either Th1 or Tfh cells, of which Tfh cells have ability to support B cell antibody 

production (134)(135). It has been shown that Tfh cells increases in the blood of patients with 

autoimmune diseases, including systemic lupus erythematosus (136) and rheumatoid arthritis 

(137). It is a challenge but of major interest to understand how the interaction between T 

helper cells and variety of immune cells were regulated in different conditions. 

We observed that differentially expressed genes between the gluten-specific CD4 T cells and 

the non-specific ones associated with several biological processes, such as TCR signaling, 

activating signal transduction, as well as some metabolic processes including fatty acid 

metabolism and redox potentials. In order to provide a rational basis for therapeutic 

intervention, further reconstruction of gene regulatory network is required. A more robust 

regulatory network can be expected if the network can be inferred by combined use of 

supportive information collected from multiple levels, i.e. gene co-expression, sequences of 

motif and documented function.  

One of the major hindrances to identifying potential marker for therapeutic perturbation is 

variation in the expression of markers under certain condition, which might be caused by 

many factors including body compartments, function time, individual, experimental 

workflows in different labs as well as random dropout events. A single experiment is unlikely 

to handle all these factors, therefore is not robust enough for the purpose.  In future, 

continually refined methods for data integration would allow collecting variety of data 

modalities produced from different experimental workflows and data produced by different 

labs. The joint analysis of them would be promising for overcoming the limitation and getting 

more reliable markers. Moreover, it would be valuable to compare molecular signatures of 

immune cells from different diseases and tissues. Take CD for example, the unique profile of 

gluten-specific CD4 T cells identified by CyTOF experiments was shown to be also found in 

multiple other autoimmune diseases, suggesting that therapies targeting CD associated T cells 

could also be useful in other autoimmune diseases, especially for that which disease-driving 

antigen have not been identified (138). 
  



 38 

References 
 
1.  Parham P. The Immune System. 4th ed. New York: Garland Science; 2014. 625 p.  

2.  Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee H-S, Jia X, et al. Five amino 
acids in three HLA proteins explain most of the association between MHC and 
seropositive rheumatoid arthritis. Nat Genet. 2012 Mar;44(3):291–6.  

3.  Okada Y, Suzuki A, Ikari K, Terao C, Kochi Y, Ohmura K, et al. Contribution of a Non-
classical HLA Gene, HLA-DOA, to the Risk of Rheumatoid Arthritis. Am J Hum Genet. 
2016 Aug;99(2):366–74.  

4.  Okada Y, Kim K, Han B, Pillai NE, Ong RT-H, Saw W-Y, et al. Risk for ACPA-
positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in 
Asian and European populations. Hum Mol Genet. 2014 Dec 20;23(25):6916–26.  

5.  Kumar V, Robbins SL, editors. Robbins basic pathology. 8th ed. Vol. Table 5-7. 
Philadelphia, PA: Saunders/Elsevier; 2007. 946 p.  

6.  Katze MG, Korth MJ, Law GL, Nathanson N, editors. Viral pathogenesis: from basics to 
systems biology. 3rd ed. Amsterdam; Boston: Elsevier/Academic Press; 2016. 351 p.  

7.  Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008 Sep 
1;112(5):1557–69.  

8.  Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature 
cytokines in autoimmune and inflammatory diseases. Cytokine. 2015 Jul;74(1):5–17.  

9.  Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to 
immunology. Nat Rev Immunol. 2013 Feb;13(2):88–100.  

10.  Dupic T, Marcou Q, Walczak AM, Mora T. Genesis of the αβ T-cell receptor. Chain B, 
editor. PLOS Comput Biol. 2019 Mar 4;15(3):e1006874.  

11.  Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA. Profiling the T-cell receptor 
beta-chain repertoire by massively parallel sequencing. Genome Res. 2009 
Oct;19(10):1817–24.  

12.  Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T Cell Antigen 
Receptor Recognition of Antigen-Presenting Molecules. Annu Rev Immunol. 2015 Mar 
21;33(1):169–200.  

13.  Laydon DJ, Bangham CRM, Asquith B. Estimating T-cell repertoire diversity: 
limitations of classical estimators and a new approach. Philos Trans R Soc B Biol Sci. 
2015 Aug 19;370(1675):20140291.  

14.  Alberts B, Johnson A, Lewis J. Molecular Biology of the Cell [Internet]. 4th edition. 
Vol. Lymphocytes and the Cellular Basis of Adaptive Immunity. New York: Garland 
Science; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26921/ 

15.  Arstila TP. A Direct Estimate of the Human T Cell Receptor Diversity. Science. 1999 
Oct 29;286(5441):958–61.  



 39 

16.  Restifo NP, Gattinoni L. Lineage relationship of effector and memory T cells. Curr Opin 
Immunol. 2013 Oct;25(5):556–63.  

17.  Di Sabatino A, Corazza GR. Coeliac disease. The Lancet. 2009 Apr;373(9673):1480–93.  

18.  Fasano A. Clinical presentation of celiac disease in the pediatric population. 
Gastroenterology. 2005 Apr;128(4):S68–73.  

19.  Jabri B, Sollid LM. T Cells in Celiac Disease. J Immunol. 2017 Apr 15;198(8):3005–14.  

20.  Husby S, Koletzko S, Korponay-Szabó I, Kurppa K, Mearin ML, Ribes-Koninckx C, et 
al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines 
for Diagnosing Coeliac Disease 2020: J Pediatr Gastroenterol Nutr. 2019 Oct;1.  

21.  Tosi R, Vismara D, Tanigaki N, Ferrara GB, Cicimarra F, Buffolano W, et al. Evidence 
that celiac disease is primarily associated with a DC locus allelic specificity. Clin 
Immunol Immunopathol. 1983 Sep;28(3):395–404.  

22.  Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary 
association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med. 
1989 Jan 1;169(1):345–50.  

23.  Karell K, Louka AS, Moodie SJ, Ascher H, Clot F, Greco L, et al. HLA types in celiac 
disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from 
the European Genetics Cluster on Celiac Disease. Hum Immunol. 2003 Apr;64(4):469–
77.  

24.  Pisapia L, Camarca A, Picascia S, Bassi V, Barba P, Del Pozzo G, et al. HLA-DQ2.5 
genes associated with celiac disease risk are preferentially expressed with respect to non-
predisposing HLA genes: Implication for anti-gluten T cell response. J Autoimmun. 
2016 Jun;70:63–72.  

25.  Bergseng E, Sidney J, Sette A, Sollid LM. Analysis of the binding of gluten T-cell 
epitopes to various human leukocyte antigen class II molecules. Hum Immunol. 2008 
Feb;69(2):94–100.  

26.  Arentz-Hansen H, Körner R, Molberg Ø, Quarsten H, Vader W, Kooy YMC, et al. The 
Intestinal T Cell Response to α-Gliadin in Adult Celiac Disease Is Focused on a Single 
Deamidated Glutamine Targeted by Tissue Transglutaminase. J Exp Med. 2000 Feb 
21;191(4):603–12.  

27.  Qiao S-W, Bergseng E, Molberg Ø, Jung G, Fleckenstein B, Sollid LM. Refining the 
Rules of Gliadin T Cell Epitope Binding to the Disease-Associated DQ2 Molecule in 
Celiac Disease: Importance of Proline Spacing and Glutamine Deamidation. J Immunol. 
2005 Jul 1;175(1):254–61.  

28.  Sollid LM, Qiao S-W, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing 
of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. 
Immunogenetics. 2012 Jun;64(6):455–60.  



 40 

29.  Sollid LM, Tye-Din JA, Qiao S-W, Anderson RP, Gianfrani C, Koning F. Update 2020: 
nomenclature and listing of celiac disease-relevant gluten epitopes recognized by CD4+ 
T cells. Immunogenetics. 2020;72(1–2):85–8.  

30.  Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, et al. 
Comprehensive, Quantitative Mapping of T Cell Epitopes in Gluten in Celiac Disease. 
Sci Transl Med. 2010 Jul 21;2(41):41ra51.  

31.  Shan L, Qiao S-W, Arentz-Hansen H, Molberg Ø, Gray GM, Sollid LM, et al. 
Identification and Analysis of Multivalent Proteolytically Resistant Peptides from 
Gluten: Implications for Celiac Sprue. J Proteome Res. 2005 Oct;4(5):1732–41.  

32.  Dørum S, Arntzen MØ, Qiao S-W, Holm A, Koehler CJ, Thiede B, et al. The Preferred 
Substrates for Transglutaminase 2 in a Complex Wheat Gluten Digest Are Peptide 
Fragments Harboring Celiac Disease T-Cell Epitopes. Buckle AM, editor. PLoS ONE. 
2010 Nov 19;5(11):e14056.  

33.  Araya RE, Gomez Castro MF, Carasi P, McCarville JL, Jury J, Mowat AM, et al. 
Mechanisms of innate immune activation by gluten peptide p31-43 in mice. Am J 
Physiol-Gastrointest Liver Physiol. 2016 Jul 1;311(1):G40–G49.  

34.  Sollid LM, Molberg O, McAdam S, Lundin KE. Autoantibodies in coeliac disease: 
tissue transglutaminase--guilt by association? Gut. 1997 Dec;41(6):851–2.  

35.  Iversen R, Roy B, Stamnaes J, Høydahl LS, Hnida K, Neumann RS, et al. Efficient T 
cell-B cell collaboration guides autoantibody epitope bias and onset of celiac disease. 
Proc Natl Acad Sci U S A. 2019 23;116(30):15134–9.  

36.  Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of 
tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997 Jul 
1;3(7):797–801.  

37.  du Pré MF, Sollid LM. T-cell and B-cell immunity in celiac disease. Best Pract Res Clin 
Gastroenterol. 2015 Jun;29(3):413–23.  

38.  de Ritis G, Auricchio S, Jones HW, Lew EJ-L, Bernardin JE, Kasarda DD. In vitro 
(Organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. 
Gastroenterology. 1988 Jan;94(1):41–9.  

39.  Maiuri L, Troncone R, Mayer M, Coletta S, Picarelli A, Vincenzi MD, et al. In vitro 
Activities of A-Gliadin-Related Synthetic Peptides Damaging Effect on the Atrophic 
Coeliac Mucosa and Activation of Mucosal Immune Response in the Treated Coeliac 
Mucosa. Scand J Gastroenterol. 1996 Jan;31(3):247–53.  

40.  Gómez Castro MF, Miculán E, Herrera MG, Ruera C, Perez F, Prieto ED, et al. p31-43 
Gliadin Peptide Forms Oligomers and Induces NLRP3 Inflammasome/Caspase 1- 
Dependent Mucosal Damage in Small Intestine. Front Immunol. 2019 Jan 30;10:31.  

41.  Halstensen TS, Brandtzaeg P. Activated T lymphocytes in the celiac lesion: Non-
proliferative activation (CD25) of CD4+ α/β cells in the lamina propria but proliferation 
(Ki-67) of α/β and γ/δ cells in the epithelium. Eur J Immunol. 1993 Feb;23(2):505–10.  



 41 

42.  Halstensen TS, Scott H, Fausa O, Brandtzaeg P. Gluten Stimulation of Coeliac Mucosa 
In Vitro Induces Activation (CD25) of Lamina Propria CD4H T cells and Macrophages 
but no Crypt-Cell Hyperplasia. Scand J Immunol. 1993 Dec;38(6):581–90.  

43.  Molberg O, Kett K, Scott H, Thorsby E, Sollid LM, Lundin KEA. Gliadin Specific, 
HLA DQ2-Restricted T Cells are Commonly Found in Small Intestinal Biopsies from 
Coeliac Disease Patients, but not from Controls. Scand J Immunol. 1997 Jul;46(1):103–
8.  

44.  Lundin KEA, Scott H, Fausa O, Thorsby E, Sollid LM. T cells from the small intestinal 
Mucosa of a DR4, DQ7/DR4. DQ8 celiac disease patient preferentially recognize gliadin 
when presented by DQ8. Hum Immunol. 1994 Dec;41(4):285–91.  

45.  Christophersen A, Lund EG, Snir O, Solà E, Kanduri C, Dahal-Koirala S, et al. Distinct 
phenotype of CD4 + T cells driving celiac disease identified in multiple autoimmune 
conditions. Nat Med. 2019 May;25(5):734–7.  

46.  Nilsen EM, Lundin KE, Krajci P, Scott H, Sollid LM, Brandtzaeg P. Gluten specific, 
HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 
profile dominated by interferon gamma. Gut. 1995 Dec 1;37(6):766–76.  

47.  Nilsen EM, Jahnsen FL, Lundin KEA, Johansen F, Fausa O, Sollid LM, et al. Gluten 
induces an intestinal cytokine response strongly dominated by interferon gamma in 
patients with celiac disease. Gastroenterology. 1998 Sep;115(3):551–63.  

48.  Deem RL, Shanahan F, Targan SR. Triggered human mucosal T cells release tumour 
necrosis factor-alpha and interferon-gamma which kill human colonic epithelial cells. 
Clin Exp Immunol. 2008 Jun 28;83(1):79–84.  

49.  Goel G, Tye-Din JA, Qiao S-W, Russell AK, Mayassi T, Ciszewski C, et al. Cytokine 
release and gastrointestinal symptoms after gluten challenge in celiac disease. Sci Adv. 
2019 Aug;5(8):eaaw7756.  

50.  Bodd M, Ráki M, Tollefsen S, Fallang LE, Bergseng E, Lundin KEA, et al. HLA-DQ2-
restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal 
Immunol. 2010 Nov;3(6):594–601.  

51.  Broughton SE, Petersen J, Theodossis A, Scally SW, Loh KL, Thompson A, et al. 
Biased T Cell Receptor Usage Directed against Human Leukocyte Antigen DQ8-
Restricted Gliadin Peptides Is Associated with Celiac Disease. Immunity. 2012 
Oct;37(4):611–21.  

52.  Petersen J, van Bergen J, Loh KL, Kooy-Winkelaar Y, Beringer DX, Thompson A, et al. 
Determinants of Gliadin-Specific T Cell Selection in Celiac Disease. J Immunol. 2015 
Jun 15;194(12):6112–22.  

53.  Dahal-Koirala S, Ciacchi L, Petersen J, Risnes LF, Neumann RS, Christophersen A, et 
al. Discriminative T-cell receptor recognition of highly homologous HLA-DQ2–bound 
gluten epitopes. J Biol Chem. 2019 Jan 18;294(3):941–52.  



 42 

54.  Qiao S-W, Christophersen A, Lundin KEA, Sollid LM. Biased usage and preferred 
pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in 
coeliac disease. Int Immunol. 2014 Jan 1;26(1):13–9.  

55.  Dahal-Koirala S, Risnes LF, Christophersen A, Sarna VK, Lundin KE, Sollid LM, et al. 
TCR sequencing of single cells reactive to DQ2.5-glia-α2 and DQ2.5-glia-ω2 reveals 
clonal expansion and epitope-specific V-gene usage. Mucosal Immunol. 2016 
May;9(3):587–96.  

56.  Altman JD, Moss PAH, Goulder PJR, Barouch DH, McHeyzer-Williams MG, Bell JI, et 
al. Phenotypic Analysis of Antigen-Specific T Lymphocytes. Science. 1996 Oct 
4;274(5284):94–6.  

57.  Bakker AH, Schumacher TN. MHC multimer technology: current status and future 
prospects. Curr Opin Immunol. 2005 Aug;17(4):428–33.  

58.  Hardy MY, Girardin A, Pizzey C, Cameron DJ, Watson KA, Picascia S, et al. 
Consistency in Polyclonal T-cell Responses to Gluten Between Children and Adults with 
Celiac Disease. Gastroenterology. 2015 Nov;149(6):1541-1552.e2.  

59.  Raki M, Fallang L-E, Brottveit M, Bergseng E, Quarsten H, Lundin KEA, et al. 
Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of 
celiac disease patients. Proc Natl Acad Sci. 2007 Feb 20;104(8):2831–6.  

60.  Christophersen A, Ráki M, Bergseng E, Lundin KE, Jahnsen J, Sollid LM, et al. 
Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic 
marker for coeliac disease without oral gluten challenge. United Eur Gastroenterol J. 
2014 Aug;2(4):268–78.  

61.  Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci. 1977 
Feb 1;74(2):560–4.  

62.  Payne A, Holmes N, Rakyan V, Loose M. BulkVis: a graphical viewer for Oxford 
nanopore bulk FAST5 files. Bioinformatics. 2019 Jul 1;35(13):2193–8.  

63.  Taub F E, DeLEO JM, Thompson EB. Sequential Comparative Hybridizations Analyzed 
by Computerized Image Processing Can Identify and Quantitate Regulated RNAs. DNA. 
1983 Dec;2(4):309–27.  

64.  Zhao S, Fung-Leung W-P, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and 
Microarray in Transcriptome Profiling of Activated T Cells. Zhang S-D, editor. PLoS 
ONE. 2014 Jan 16;9(1):e78644.  

65.  Kukurba KR, Montgomery SB. RNA Sequencing and Analysis. Cold Spring Harb 
Protoc. 2015 Nov;2015(11):951-69.  

66.  Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 
for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013 
Nov;10(11):1096–8.  



 43 

67.  Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. 
CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016 
Dec;17(1):77.  

68.  Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively 
Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell 
Types. Science. 2014 Feb 14;343(6172):776–9.  

69.  Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-
cell RNA-seq with unique molecular identifiers. Nat Methods. 2014 Feb;11(2):163–6.  

70.  Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively 
parallel digital transcriptional profiling of single cells. Nat Commun. 2017 
Apr;8(1):14049.  

71.  Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly Parallel 
Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 
2015 May;161(5):1202–14.  

72.  Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-
transcriptome analysis of a single cell. Nat Methods. 2009 May;6(5):377–82.  

73.  Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, et al. RNA-Seq analysis 
to capture the transcriptome landscape of a single cell. Nat Protoc. 2010 Mar;5(3):516–
35.  

74.  Effects of Index Misassignment on Multiplexing and Downstream Analysis [Internet]. 
Illumina, Inc.; Available from: https://www.illumina.com/content/dam/illumina-
marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-
004.pdf 

75.  Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, et al. Index Switching 
Causes “Spreading-Of-Signal” Among Multiplexed Samples in Illumina HiSeq 4000 
DNA Sequencing. bioRxiv. 2017 Apr 9;  

76.  Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex 
sequencing on the Illumina platform. Nucleic Acids Res. 2012 Jan;40(1):e3.  

77.  Simon Andrews. FASTQC. A quality control tool for high throughput sequence data 
[Internet]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

78.  Dai M, Thompson RC, Maher C, Contreras-Galindo R, Kaplan MH, Markovitz DM, et 
al. NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC 
Genomics. 2010;11(Suppl 4):S7.  

79.  Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for 
multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047–8.  

80.  Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in 
short reads. Bioinformatics. 2010 Apr 1;26(7):873–81.  



 44 

81.  Jean G, Kahles A, Sreedharan VT, Bona FD, Rätsch G. RNA-Seq Read Alignments with 
PALMapper. Curr Protoc Bioinforma [Internet]. 2010 Dec [cited 2020 Feb 18];32(1). 
Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471250953.bi1106s32 

82.  Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, et al. MapSplice: 
Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 
2010 Oct 1;38(18):e178.  

83.  Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. 
A survey of best practices for RNA-seq data analysis. Genome Biol [Internet]. 2016 Dec 
[cited 2017 Oct 15];17(1). Available from: http://genomebiology.com/2016/17/1/13 

84.  Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput 
sequencing data. Bioinformatics. 2015 Jan 15;31(2):166–9.  

85.  Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for 
assigning sequence reads to genomic features. Bioinformatics. 2014 Apr 1;30(7):923–
30.  

86.  Smyth GK, Speed T. Normalization of cDNA microarray data. Methods. 2003 
Dec;31(4):265–73.  

87.  Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data 
using empirical Bayes methods. Biostatistics. 2007 Jan 1;8(1):118–27.  

88.  Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A benchmark of 
batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 
2020 Dec;21(1):12.  

89.  Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. 
Comprehensive Integration of Single-Cell Data. Cell. 2019 Jun;177(7):1888-1902.e21.  

90.  Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell 
transcriptomic data across different conditions, technologies, and species. Nat 
Biotechnol. 2018 May;36(5):411–20.  

91.  Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell RNA-
sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol. 
2018 May;36(5):421–7.  

92.  Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene 
correlation. Nucleic Acids Res. 2012 Sep 1;40(17):e133.  

93.  Simillion C, Liechti R, Lischer HEL, Ioannidis V, Bruggmann R. Avoiding the pitfalls 
of gene set enrichment analysis with SetRank. BMC Bioinformatics. 2017 
Dec;18(1):151.  

94.  Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO, Dougan G, et al. T cell 
fate and clonality inference from single-cell transcriptomes. Nat Methods. 2016 
Apr;13(4):329–32.  



 45 

95.  Afik S, Yates KB, Bi K, Darko S, Godec J, Gerdemann U, et al. Targeted reconstruction 
of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell 
differentiation state. Nucleic Acids Res. 2017 Sep 19;45(16):e148.  

96.  Lindeman I, Emerton G, Mamanova L, Snir O, Polanski K, Qiao S-W, et al. BraCeR: B-
cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nat 
Methods. 2018 Aug 1;15(8):563–5.  

97.  Canzar S, Neu KE, Tang Q, Wilson PC, Khan AA. BASIC: BCR assembly from single 
cells. Bioinformatics. 2017 Feb 1;33(1)425-7.  

98.  Bodd M, Ráki M, Bergseng E, Jahnsen J, Lundin KEA, Sollid LM. Direct cloning and 
tetramer staining to measure the frequency of intestinal gluten-reactive T cells in celiac 
disease. Eur J Immunol. 2013;43(10):2605–12.  

99.  Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, et al. Naïve CD4+ T 
cell frequency varies for different epitopes and predicts repertoire diversity and response 
magnitude. Immunity. 2007 Aug;27(2):203–13.  

100.  Cole MB, Risso D, Wagner A, DeTomaso D, Ngai J, Purdom E, et al. Performance 
Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq. Cell 
Syst. 2019 Apr;8(4):315-328.e8.  

101.  Stigler SM. Francis Galton’s Account of the Invention of Correlation. Stat Sci. 1989 
May;4(2):73–9.  

102.  Kendall MG. A NEW MEASURE OF RANK CORRELATION. Biometrika. 1938 Jun 
1;30(1–2):81–93.  

103.  Myers JL, Well A. Research design and statistical analysis. 2nd ed. Mahwah, N.J: 
Lawrence Erlbaum Associates; 2003. 508 p.  

104.  Glass GV, Hopkins KD. Statistical methods in education and psychology. 3rd ed. 
Boston: Allyn and Bacon; 1996. 674 p.  

105.  Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet 
Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell. 2015 
May;161(5):1187–201.  

106.  Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-
Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat 
Methods. 2017 Apr;14(4):395–8.  

107.  Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. 
Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol Cell. 2017 
Feb;65(4):631-643.e4.  

108.  Svensson V, Natarajan KN, Ly L-H, Miragaia RJ, Labalette C, Macaulay IC, et al. 
Power analysis of single-cell RNA-sequencing experiments. Nat Methods. 2017 Mar 
6;14(4):381–7.  



 46 

109.  Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-
aware quantification of transcript expression. Nat Methods. 2017 Apr;14(4):417–9.  

110.  Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq 
quantification. Nat Biotechnol. 2016 May;34(5):525–7.  

111.  Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification 
from RNA-seq reads using lightweight algorithms. Nat Biotechnol. 2014 
May;32(5):462–4.  

112.  Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-
sequencing experiments. Genome Biol. 2016 Dec;17(1):63.  

113.  Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, et al. 
Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016 
Dec;17(1):29.  

114.  Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK, Osborne EJ, et al. 
Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-
mediated effects on the T cell repertoire. Nat Genet. 2017 May;49(5):659–65.  

115.  Howie B, Sherwood AM, Berkebile AD, Berka J, Emerson RO, Williamson DW, et al. 
High-throughput pairing of T cell receptor α and β sequences. Sci Transl Med. 2015 Aug 
19;7(301):301ra131.  

116.  Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence to 
functional phenotype at the single-cell level. Nat Biotechnol. 2014 Jul;32(7):684–92.  

117.  Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. Overview of 
methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 2017 
Dec;17(1):61.  

118.  Dash P, McClaren JL, Oguin TH, Rothwell W, Todd B, Morris MY, et al. Paired 
analysis of TCRα and TCRβ chains at the single-cell level in mice. J Clin Invest. 2011 
Jan 4;121(1):288–95.  

119.  Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov 
DB, et al. Age-Related Decrease in TCR Repertoire Diversity Measured with Deep and 
Normalized Sequence Profiling. J Immunol. 2014 Mar 15;192(6):2689–98.  

120.  van der Valk T, Vezzi F, Ormestad M, Dalen L, Guschanski K. Low rate of index 
hopping on the Illumina HiSeq X platform. bioRxiv. 2017 Aug 22;179028.  

121.  Larsson AJM, Stanley G, Sinha R, Weissman IL, Sandberg R. Computational correction 
of index switching in multiplexed sequencing libraries. Nat Methods. 2018 
May;15(5):305–7.  

122.  Shiow LR, Rosen DB, Brdičková N, Xu Y, An J, Lanier LL, et al. CD69 acts 
downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid 
organs. Nature. 2006 Mar;440(7083):540–4.  



 47 

123.  Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. 
Eur J Immunol. 2017;47(6):946–53.  

124.  Rosette C, Werlen G, Daniels MA, Holman PO, Alam SM, Travers PJ, et al. The Impact 
of Duration versus Extent of TCR Occupancy on T Cell Activation. Immunity. 2001 
Jul;15(1):59–70.  

125.  du Pré FM, van Berkel LA, Ráki M, van Leeuwen MA, de Ruiter LF, Broere F, et al. 
CD62LnegCD38+ Expression on Circulating CD4+ T Cells Identifies Mucosally 
Differentiated Cells in Protein Fed Mice and in Human Celiac Disease Patients and 
Controls: Am J Gastroenterol. 2011 Jun;106(6):1147–59.  

126.  Cook L, Munier CML, Seddiki N, van Bockel D, Ontiveros N, Hardy MY, et al. 
Circulating gluten-specific FOXP3 + CD39 + regulatory T cells have impaired 
suppressive function in patients with celiac disease. J Allergy Clin Immunol. 2017 
Dec;140(6):1592-1603.e8.  

127.  Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE, et al. 
Molecular and Transcriptional Basis of CD4+ T Cell Dysfunction during Chronic 
Infection. Immunity. 2014 Feb;40(2):289–302.  

128.  Høydahl LS, Richter L, Frick R, Snir O, Gunnarsen KS, Landsverk OJB, et al. Plasma 
Cells Are the Most Abundant Gluten Peptide MHC-expressing Cells in Inflamed 
Intestinal Tissues From Patients With Celiac Disease. Gastroenterology. 2019 
Apr;156(5):1428-1439.e10.  

129.  Risnes LF, Christophersen A, Dahal-Koirala S, Neumann RS, Sandve GK, Sarna VK, et 
al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin 
Invest. 2018;128(6):2642–50.  

130.  Konishi H, Komura D, Katoh H, Atsumi S, Koda H, Yamamoto A, et al. Capturing the 
differences between humoral immunity in the normal and tumor environments from 
repertoire-seq of B-cell receptors using supervised machine learning. BMC 
Bioinformatics. 2019 Dec;20(1):267.  

131.  Brown AJ, Snapkov I, Akbar R, Pavlović M, Miho E, Sandve GK, et al. Augmenting 
adaptive immunity: progress and challenges in the quantitative engineering and analysis 
of adaptive immune receptor repertoires. Mol Syst Des Eng. 2019;4(4):701–36.  

132.  Ostmeyer J, Christley S, Rounds WH, Toby I, Greenberg BM, Monson NL, et al. 
Statistical classifiers for diagnosing disease from immune repertoires: a case study using 
multiple sclerosis. BMC Bioinformatics. 2017 Dec;18(1):401.  

133.  Ostmeyer J, Christley S, Toby IT, Cowell LG. Biophysicochemical Motifs in T-cell 
Receptor Sequences Distinguish Repertoires from Tumor-Infiltrating Lymphocyte and 
Adjacent Healthy Tissue. Cancer Res. 2019 Apr 1;79(7):1671–80.  

134.  Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. Subspecialization of 
Cxcr5+ T Cells. J Exp Med. 2001 Jun 18;193(12):1373–82.  

135.  Campbell DJ, Kim CH, Butcher EC. Separable effector T cell populations specialized 
for B cell help or tissue inflammation. Nat Immunol. 2001 Sep;2(9):876–81.  



 48 

136.  Kim SJ, Lee K, Diamond B. Follicular Helper T Cells in Systemic Lupus 
Erythematosus. Front Immunol. 2018 Aug 3;9:1793.  

137.  Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet M-E, Lazaro E, et al. T 
Follicular Helper Cells in Autoimmune Disorders. Front Immunol. 2018 Jul 17;9:1637.  

138.  Christophersen A, Risnes LF, Dahal-Koirala S, Sollid LM. Therapeutic and Diagnostic 
Implications of T Cell Scarring in Celiac Disease and Beyond. Trends Mol Med. 2019 
Oct;25(10):836–52.  

 

 



  

  

I  





  

 
T Cell Receptor Repertoire as a Potential Diagnostic Marker for 

Celiac Disease 
 

Ying Yao1,2, Asima Zia4, Ralf Stefan Neumann1,2, Milena Pavlovic3, Gabriel Balaban3, 
Geir Kjetil Sandve2,3, Shuo Wang Qiao1,2* 

 
1 Department of Immunology, Institute of Clinical Medicine, University of Oslo, Norway 
2  K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Norway. 
3 Department of Informatics, University of Oslo, Norway. 
4 Living Systems Laboratory, King Abdullah University of Science and Technology, Saudi 
Arabia.  
 
 
* Correspondence:  
Shuo Wang Qiao 
s.w.qiao@medisin.uio.no 
 
Keywords: Celiac Disease1, CD4+ T cells2, TCR repertoire3, Disease Inference4; High-
throughput sequencing5 

 
Abbreviations 
CD  celiac disease 
TCR   T cell receptor 
TCRα  T cell receptor α chain  
TCRβ   T cell receptor β chain 
MHC    major histocompatibility complex 
pMHC  peptide:MHC complex 
HLA     human leukocyte antigen 
UMI     unique molecular identifier 
CMV    cytomegalovirus 
ROC     Receiver Operating Characteristics 
AUC     area under the ROC curve 
 
Abstract 

An individual’s T cell repertoire is skewed towards some specificities as a result of past 

antigen exposure. Identifying T cell receptor signatures associated with a disease is 

challenging due to the overall complexity of antigens. In celiac disease, the antigen epitopes 

are well characterised and the specific T-cell repertoire associated with the disease has been 

explored in depth. By investigating T cell repertoires of unsorted lamina propria T cells from 

15 individuals, we provide the first proof-of-concept study showing that it could be possible 

to infer disease state by matching against a priori known disease-associated TCR sequences.  

 

1. Introduction 



  

T cell plays a central role in cell mediated immune response. The T cell receptor (TCR) is 

responsible for recognizing antigenic peptides bound to major histocompatibility complex 

(MHC) molecules. In 95% of human T cells, the TCR consists of the α chain (TCRα) and β 

chain (TCRβ). During T-cell development, each thymocyte generates its unique TCR variant 

through recombination of different V, D, J gene segments and random deletion and/or 

insertion of nucleotide at the junctions. This results in a highly diverse TCR repertoire and the 

diversity is important for maximizing potential coverage of the protective immunity. During 

thymic selection, only a small fraction of thymocytes that bind self peptide:MHC complex 

(pMHC) with intermediate affinity differentiate into mature T cells, therefore MHC 

polymorphism further modulates an individual’s TCR repertoire by determining the collection 

of peptides that can be presented to T cells during development 1 2. Structural studies of TCRs 

binding to pMHC ligands 3 have shown that although there are some exceptions, as a rule, the 

variable regions of the TCRα chain largely contact the MHC molecule whereas the TCRβ 

chain makes most contact with the antigenic peptide. This notion is supported by genetic 

studies where the usage of V-gene segment of the TCRα is more closely associated with the 

human leukocyte antigen (HLA) profiles of the person 4. 

 

In cell mediated immune response, naïve T cells are activated and clonally expand after 

recognition of foreign antigenic peptides presented by MHC. Thus, although the diversity is 

highest in the naive compartment, in the memory compartment it is skewed towards some 

specificities as a result of past antigen exposure and thereby antigen-driven selection and 

expansion. Since T cells directed against certain antigen in a disease setting are clonally 

expanded, a biased repertoire should be observed given enough sequencing power. With 

advancement of high-throughput immune receptor sequencing methods, TCR repertoire has 

the potential to be a diagnostic marker for infections or autoimmune disease. However, due to 

the complexity and diversity of TCR repertoires of different individuals, identifying the TCR 

signatures associated with an antigen is challenging. Somma et al.5 identified a number of 

TCRβ clonotypes implicated in the pathogenesis of multiple sclerosis, which were clonally 

expanded in both the healthy and the affected twin. In contrast, studies on monozygotic twins 
6 have demonstrated that different disease settings altered the TCR gene usage and TCR 

repertoire as a whole. Despite TCR complexities, TCR clonotyping has been used as 

diagnostic tool in Emerson et al.7 where the exposure to cytomegalovirus (CMV) of 666 

subjects could be inferred by their TCR repertoires. The TCR repertoire data was generated 

from peripheral blood, since CMV is a disease that elicit a particularly strong immune 



  

response where an unusually large proportion of the T-cell response is CMV-related. 

However, the T-cell response is less pronounced for most other diseases. In the CD4 

compartment, only 1 to 100 per million CD4 cells in blood would be expected to be specific 

to a given pMHC 8 9 whereas in affected tissue the frequency of antigen-specific TCR would 

be expected to be around 1 to 5 per hundred CD4 T cells, at least in celiac disease 10. 

Therefore, it is advantageous to look at the T-cell response in the affected tissue where the 

frequency of disease-relevant T cells is much higher than in blood.  

 

Celiac disease (CD) is a long-term HLA-associated autoimmune disorder that primarily 

affects the small intestine. Its pathogenesis is relatively slow compared to acute infections. 

The primary association is with MHC class II alleles encoding HLA-DQ2.5 (HLA-

DQA1*05/HLA-DQB1*02, expressed by 90% of patients), HLA-DQ8 (HLA-DQA1*03/HLA-

DQB1*03:02), and HLA-DQ2.2 (HLA-DQA1*02:01/HLA-DQB1*02) 11 12 13. The MHC class 

II association shows that CD4 T cell plays an important role in pathogenesis of celiac disease. 

The epitopes of the causative antigen gluten are well defined and gluten-specific T cells that 

are only found in the small intestine of celiac disease patients, but not in healthy controls, 

have been isolated and extensively studied. All gluten-reactive T cells in the lesions are 

restricted by the disease-associated HLA-DQ2.5 molecule in HLA-DQ2.5-positive subjects 14. 

HLA-DQ-gluten tetramers carrying the immunodominant gluten epitopes have been used to 

visualize gluten-specific T cells directly from blood or small intestinal tissue 15. Studies have 

shown that public features, i.e. identical TCRα, TCRβ, or paired TCRαβ amino acid 

sequences found in different individuals, are frequently observed among gluten-specific T 

cells 15. 

 

To explore whether disease state could be assessed from a limited number of tissue-derived 

cells, we started with around 10,000 T cells taken from the lamina propria of two duodenal 

biopsies per individual to assess the celiac disease state. Of these T cells, more than 80% are 

CD4. In order to find the best diagnostic biomarkers, we evaluated the usage of different 

types of prior information, i.e. all gluten-specific TCRs versus a smaller subset of public 

gluten-specific TCRs shared across multiple CD patients. The aim of this study is proof of 

principle to show the potential of using TCR-based diagnostics. This is the first step towards 

biopsy-free diagnostics of CD where TCR information would be collected directly from 

blood.  

 



  

2. Materials and methods 

 

2.1 Sample collection  

The project was approved by the Regional Committee for Medical and Health Research 

Ethics South-East Norway (REK 2010/2720) and signed informed consent forms were 

obtained from all subjects. Intestinal biopsies from seven HLA-DQ2.5+ untreated celiac 

disease patients and eight non-celiac controls or HLA-DQ2-negative patients were collected 

in accordance with medical guidelines. Since TCR recognize peptide-HLA complexes, for the 

purpose of this study where we look for signature sequences of gluten:HLA-DQ2-reactive 

TCRs, we do not expect to find these TCR sequences in HLA-DQ2-negative patients whose 

gluten-reactive T cells are HLA-DQ8-restricted. Two pieces of duodenal biopsies were 

collected in ice-cold RPMI-1640. The epithelial layer that largely contain CD8+ intra-

epithelial T cells was removed with two 5-minute incubation with PBS+2%FCS+2mM EDTA 

at 37C. After thorough washes with PBS to remove detached epithelial cells, the remaining 

lamina propria tissue was digested for 45 minutes with 1 mg/ml Collagenase (Sigma) and 0.1 

mg/ml DNAse (Sigma). The resulting lamina propria single-cell suspension was counted and 

seeded directly in TCL buffer in four concentrations (108,000; 36,000; 18,000 and 9,000 cells 

per well) and eight biological replicates for each concentration. After thorough mixing to aid 

cell lysis, the lysates were kept frozen at -70C until processed. After defrosting, the cell lysate 

in TCL was transferred to 96-well plates precoated with dT-oligos from the TurboCapture 96 

mRNA kit (Qiagen). mRNA extraction and cDNA synthesis using the plate-immobolized 

oligo-dT was carried out in accordance with the manufacturer’s instructions with the 

modification of additional template switch oligo (Bio-

d(AAGCAGTGGTATCAACGCAGAGTAGTNNNNNN)-r(GGG), where N denotes random 

nucleotides that serve as UMI). Following cDNA synthesis, two semi-nested TCRα- and 

TCRβ-specific PCR reactions were carried out as in 15. 

 

2.2 TCR sequencing and data processing 

Double indexing was applied in library preparation, thereby every pair of reads had an index 

composed of two barcodes on the forward and reverse read respectively, encoding the sample 

origin. Libraries were sequenced on the Illumina MiSeq platform with 250 nt pair-end 

sequencing at the Norwegian Sequencing Center (Oslo University Hospital).  

 



  

All paired end reads were de-multiplexed based on the combination of their R1 and R2 

barcode sequences. Both of the paired R1 and R2 reads were dropped if any of them had any 

nucleotide mismatch with the reference barcodes. On the paired reads assigned to each 

sample, we performed UMI tag extraction and UMI-guided assembly using the MIGEC 

pipeline 16, where all reads in a sample were grouped by their UMI and then each group with 

larger than 10 reads were assembled to generate a consensus sequence by multiple alignment. 

Both consensuses need to be successfully assembled for paired reads, otherwise the pair was 

dropped. Considering the relatively short UMI length and large expected number of cells in 

some wells in the study, the probability for a pair of similar UMI caused by sequencing error 

was relatively low. We have therefore not corrected sequencing errors in the UMI. The 

consensus sequences of samples from the same patient were then pooled and aligned with 

mismatches, inserts and deletions to the TCR database following the MiXCR pipeline 17, 

thereby TCRαβ chain and CDR3 repertoires were extracted from the assembled consensus 

sequences. Identical sequences were grouped in clonotypes, and the corresponding 

clonecounts were recorded. Consensus with poor quality were also collected and mapped to 

the grouped clonotypes for correction of PCR and sequencing errors. The default parameters 

of MiXCR were applied throughout this process. 

 

2.3 Reference database of gluten-specific TCR sequences 

To search for disease-associated TCR sequences that were present in our data, we used a 

reference database comprised of TCRα- and TCRβ-clonotypes obtained from single-cell TCR 

sequencing of HLA-DQ2.5-gluten-tetramer-sorted cells from 59 celiac disease patients. 

Sequences belonging to donors in the present study were excluded. Overall, there were 2,929 

TCRα- and 2,662 TCRβ-clonotypes originating from 6,808 tetramer-sorted cells. A clonotype 

is defined throughout the study as a unique amino acid sequence of the re-arranged variable 

regions of the TCRα (VJ) or TCRβ (VDJ). Within this large reference dataset that includes 

almost all known gluten-specific TCR clonotypes to date, there is a smaller subset that 

consists of public clonotypes, defined as identical amino acid sequences observed in at least 

two CD patients. This public TCR subset contains 151 TCRα and 226 TCRβ clonotypes that 

have been collapsed from 1,150 TCRα sequences and 1,436 TCRβ sequences from 2,003 

gluten-specific T cells. The collaps of TCR sequences to clonotypes was caused by both in 

vivo clonal expansion (multiple cells expressing identical TCRαβ sequences in the same 

patient) and convergent recombination (different nucleotide sequences encoding identical 

amino acid sequence).  



  

 

2.4 Inferring disease state  

We used logistic regression to classify the subjects based on the presence of the 

aforementioned antigen-specific TCR sequences. Logistic regression was performed by 

sklearn.linear model.LogisticRegression function from scikit-learn v0.20.4 Python module 18, 

where either normalized unique match or normalized clonecount match was used a single 

predictor. All the other parameters were set as default except for the C (inverse of 

regularization strength) that was set at 1E+5 to eliminate the effect of penalty term since no 

simplified model was preferable with a single predictor. We also employed the R package 

ROCR1.0-7 to calculate the sensitivity and specificity while using the same single predictor 

ranged from 0 to the maximum in different experimental settings, as well as the 

corresponding AUCs. Test for association between the prevalence of a clonotype and its 

frequency in our data using Kendall's tau was done with R package stats 3.4.4. 

 

3. Result 

 

3.1 Data acquisition 

We sampled one million cells from the lamina propria of two duodenal biopsies from each of 

15 individuals and sequenced the rearranged TCRα and TCRβ variable region in all samples. 

Flow cytometric analysis showed that approximately 1% of the sampled cells were T cell, of 

which >80% were CD4+ T cells. Thus, we have sampled and sequenced approximately 

10,000 T cells from each subject. The number of sequencing reads generated from each 

individual varied from 0.1 million to 2.7 million, with an average of 1.7 million, representing 

on average 5,821 molecules after deduplexing. The number of unique clonotypes we observed 

ranged from 861 to 8,778. Basic information of the donors and the libraries were summarised 

in Table 1. 

 

3.2 Gut-derived TCR clonotypes in our data matched preferentially public gluten-

specific TCRs 

By collapsing TCRs with the same V gene, J gene and CDR3 amino acid sequences from 

repertoires from all donors, we had in total 17,261 unique TCRα and 26,820 unique TCRβ 

clonotypes in our dataset (Figure 1). To find an optimal set of disease-associated TCR 

clonotypes for inferring disease state, we employed an external database consisting of data 

from multiple single-cell TCR sequencing projects where HLA-DQ2.5:gluten tetramer was 



  

used to stain T cells from CD patients in vitro, followed by sorting and sequencing of the 

sorted gluten-specific TCRs. Among the total 5,591 gluten-specific TCRα and TCRβ amino 

acid sequences in the database, 377 of them were observed in at least two celiac disease 

patients and were thus defined as public clonotypes. When we compared our dataset from the 

gut tissue with the reference database, we found that 93 of the TCRβ clonotypes in our data 

matched gluten-specific TCR sequences in the reference database, of which 39 matched the 

subset of public TCRβ sequences. While 58 of the TCRα clonotypes matched gluten-specific 

TCRα sequences, only 15 out of these matched the public TCRα sequences (Figure 1). Since 

the public clonotypes account for 5% and 8% of the total TCRα and TCRβ reference dataset, 

respectively, it is interesting to note that among the matches we found in the gut-derived TCR 

data, 26% and 42% of them were matched to the public TCRα and TCRβ sequences, 

respectively. 

 

From published studies of gluten-specific TCR sequences, it is known that some TCR 

clonotypes such as the TRBV7-2/TRBJ2-3 clonotype with CDR3 amino acid sequence 

ASSxRxTDTQY are found in virtually all CD subjects 19 15. On the other hand, many public 

CD clonotypes were found in only two subjects of total 59 subjects from whom the reference 

database was made. We hypothesized that highly public clonotypes found in many individuals 

in the reference database were more likely to be observed in our test data derived from 

unsorted T cells from the gut. For all the matched TCR clonotypes found in repertoires of all 

CD patients, we calculated the Kendall's rank correlation to test for the association between 

how often the TCR clonotype was observed in our data and the number of patients in the 

reference dataset who expressed this clonotype (Supplementary Table 1). Result of the test 

showed that the matching frequency of a TCR was positively associated with the number of 

patients across which the TCRs was shared, with tau of 0.338 and P value of 0.0026. 

Therefore, we found that the most public clonotypes found in many CD patients were also 

more frequently observed in our gut repertoire dataset.  

  

3.3 Matching TCRβ alone was sufficient for predicting celiac disease state  

For each TCR-repertoire of the 15 individuals, we summed up the number of unique TCR 

clonotypes that matched the disease-associated reference TCR sequences, this is referred to as 

sum unique disease associated TCRs. Since clonal expansion is a feature associated with the 

gluten-specific T cells in earlier studies, we took into account the clone size of each matched 

sequence, measured by the clonecount. Therefore, we also calculated the sum of the 



  

clonecount of the same matched TCR sequences. For each subject, we normalized the unique 

clonotype match by dividing it with the total number of unique clonotypes found in that 

individual (unique match). Similarly, we calculated for each individual the clonecount match 

where the total clonecounts of all matched sequences were divided by the total number of 

clonecounts in the repertoire (Figure 2, Supplementary Table 2).  

 

The normalized unique match and clonecount match were then used as a predictor in a 

logistic regression model to infer the status of celiac disease. We performed the analysis by 

using all TCR sequences or by using only TCRβ repertoires. In every possible combination, a 

balanced predictive accuracy was evaluated based on leave one out cross-validation. In 

addition, either the normalized unique match or clonecount match was used as a 

nonparametric classifier which was evaluated by AUC of ROC plots to enhance the 

robustness of the result. Both the balanced accuracy for logistic regression and the AUC value 

for nonparametric classifier are metrics that evaluate the predictive performance through 

balancing sensitivity and specificity.  

 

We did not observe any clear and consistent differences in the predictive performance when 

matching against all gluten-specific TCR sequences was compared with matching against the 

public TCR sequences (Figure 3). Also, the predictive performance was similar whether 

information of clonal expansion was used or not. We did in all experimental settings observe 

higher predictive performance when using only TCRβ repertoire data (AUC between 0.94 and 

0.98; 12-13 correct predictions) compared to using the sum of TCRα and TCRβ matches 

(AUC between 0.66 and 0.88; 6-10 correct predictions). 

 

Considering the fact that the individuals in the diseased group were older than those in the 

control group as a whole (see Supplementary Fig.S1 on line), we checked if age could be a 

confounding factor in the predictions. In each scenario, we calculated the Pearson correlation 

coefficient of age and the predictor, either the normalized unique match or the normalized 

clonecount match. In seven out of eight scenarios, we got a low correlation coefficient, ranged 

from -0.13 to 0.15. There is only one exception showing slightly stronger association between 

age and the predictor (ρ = -0.34), where the public sequences were used as the reference and 

the normalized clonecount matches of both TCRα and TCRβ was used as the predictor. (see 

Supplementary Fig.S2 on line). It is another support for using only TCRβ for prediction, since 

it was less likely to be confounded by age if any effect exists.  



  

 

4. Discussion 

With the rapid advances in sequencing technology and in particular the ability to sequence a 

large number of TCRs, the TCR signatures associated with the recognition of a particular 

antigen, and in its extension a particular disease, can conceivably be used to infer the disease 

state. In this paper, we have used celiac disease in which extensive information about the 

disease-specific TCRs exist, to do a proof-of-principle study showing that disease state can be 

inferred based on TCR sequences derived from the diseased tissue. Using a small set of a few 

thousand clonotypes sequenced from around 10,000 T cells sampled from each of the 15 

donors, the CD status was correctly predicted for 13 out of the 15 donors by matching against 

known gluten-specific TCRs.  

TCRα clonotypes performed rather poorly in our study both when used on its own and in 

combination with TCRβ. Two controls had relatively large expanded TCRα clones that 

matched with public CD associated TCRα clonotypes. We suspect that although these TCRα 

clonotypes are disease-specific when paired with certain TCRβ chains, the expanded TCRα 

clones we have observed in our two controls most likely are paired with different TCRβ 

chains that conferred the complete TCR some other celiac-unrelated specificities. This could 

be better tested by further study profiling paired TCRs at the single cell level. 

 

We used two types of prior information; the list of gluten-specific TCRs that contains all the 

5,591 clonotypes of gluten tetramer-sorted T cells, and its small subset of 377 public 

clonotypes observed in more than one CD patient in the same database. These two alternative 

choices for disease associated TCRs present a trade-off between the quantity and specificity 

for finding matches for disease associated TCRs, since the database of public TCR sequences 

is more reliable. For the TCRβ repertoires, despite that the reference database of all gluten-

specific TCRβ was 14 times larger than the subset of public TCRβ, the number of clonotypes 

matched to non-public reference sequences was about the same as number of clonotypes 

matched to public TCRβ. The predictions were not improved by including those non-public 

gluten specific TCRβs. It suggested that the non-public gluten specific TCRβ might not be as 

powerful as the public ones      for diagnosing celiac disease. In addition, the considerable 

smaller size of the public database would save computational power.  

 



  

The public TCRβ sequence dataset can be further improved in two aspects. On one hand, 

although the majority of TCRs in this study that matched the public reference TCR sequences 

were from untreated celiac disease patients, a few of them were also observed occasionally in 

the controls, which is similar to findings in 20. We therefore believe that specificity of the 

public clonotypes could be further improved by involving more TCR repertoires from 

controls for training and purifying. On the other hand, public TCR sequences among CD 

patients can be continually accumulated by including a larger cohort over time. In a previous 

published study20 where 39 public TCRβ was used, only five of the 39 public TCRβ 

sequences were detected in 10 active CD patients. Comparing with the extremely low number 

of detected public sequences, 70 public TCRβ sequences were detected in 8 CD patients in 

our study where 226 public TCRβ was used. The public TCR sequences among CD patients 

might approach to saturation. The positive association between the prevalence and frequency 

for the public TCR clonotypes indicates that the both the sequencing depth and number of 

individuals included can be optimized. 

 

In this study, the state of CD was successfully inferred for the majority of the donors. For CD, 

the antigen specific CD4+ T cells are restricted by the disease-associated HLA molecules, 

which facilitates the prediction task focusing on distinguishing the HLA-DQ2+ untreated CD 

patients from the others as control. As the number of antigen specific CD4 T cells varies in 

different tissue for different infectious diseases, the repertoire size should be carefully 

validated when using T cell repertoire information as diagnostic tool. 

 

The number of subjects included in this study is rather small, and only a few thousand 

clonotypes were sequenced from unsorted lamina propria from each subject. Our results 

indicate that even with these limitations, it might be possible to infer disease state by 

matching against known disease-associated TCR sequences. It is to our knowledge the first 

time this was shown for CD. Age was relatively uncorrelated with our most predictive 

features, the clonecount match (ρ = -0.026) and unique count match (ρ = 0.14), to the TRB & 

public TCR set, so that we do not believe that confounding by age played a role in our 

predictions based on these features. However, previous studies21 have shown systematic 

differences in the human TCR repertoire with ageing. As our sample size was limited, we 

cannot rule out the possibility of age-related confounding affecting the predictive value of our 

TRB & public TCR set for diagnosing CD in the general population. It needs to be tested in 

further studies with larger sample sizes whether some other factors aside from HLA type, 



  

such as age and severity of tissue damage, affect the frequency of gluten specific T cells in 

CD patients.  

 

Ultimately, in CD, we would like to infer the disease state from blood samples such that 

diagnosis can be given without the need of endoscopic biopsy. In addition, with the advances 

in the knowledge of specific TCRs and TCR sequencing, it is conceivable that TCR repertoire 

could be used for the diagnosis of other chronic immune-mediated inflammatory diseases.  
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Figure Legends  
Figure 1. Number of unique TCRα (A) and TCRβ clonotypes (B) that matched either public 
or non-public disease associated TCR sequences.  

Figure 2. Normalized match to each reference dataset for donors grouped by disease status. 
The donors on the left side of each frame were controls, while donors on the right were 
untreated celiac disease patients (UCD). Colors indicate if a donor was correctly predicted by 
Logistic regression models trained on the others. (A) Using normalized unique match and the 
public sequences as reference (B) Using normalized clonecount match and the public 
sequences as reference (C) Using normalized unique match and all gluten specific sequences 
as reference (D) Using normalized clonecount match and all gluten specific sequences as 
reference.  

Figure 3. Predictive performance in all experimental settings. (A) using normalized unique 
match as a single predictor in logistic regression, balanced accuracy was evaluated by leave 
one out cross-validation (B) Receiver operating characteristic curve (ROC) and the 
corresponding area under the curve (AUC) by using normalized unique match as classifier (C) 
using normalized clonecount match as a single predictor in logistic regression, balanced 
accuracy was evaluated by leave one out cross-validation (D) Receiver operating 
characteristic curve (ROC) and the corresponding area under the curve (AUC) by using 
normalized clonecount match as classifier.  

Tables 
 
Table 1. Basic information of the donors and the libraries 

Subject 
ID 

Age 
group 

HLA Histology 
(Marsh) 

Serology 
(IgA-TG2) 

CD status Group Reads cDNA 
molecules 
(TCRα) 

cDNA 
molecules 
(TCRβ) 

Clonotypes 
(TCRα) 

Clonotypes 
(TCRβ) 

CD1357 50-54 DQ2 3a n.a. UCD UCD 1 966 714 7 788 8 701 1 721 2 563 

CD1358 35-39 DQ2 3c 93 UCD UCD 1 783 764 3 857 6 945 1 866 3 249 

CD1364 20-24 DQ2 3b 10 UCD UCD 2 727 644 6 913 9 956 3 218 4 726 

CD1368 40-44 DQ2 3c 66 UCD UCD 2 519 295 6 293 13 086 2 938 5 840 

CD1370 50-54 DQ8 1 <1 control control 838 353 2 206 5 729 692 1 757 

CD1386 30-34 DQ2 0 <1 control control 1 696 311 4 302 4 548 677 1 033 

CD1390 18-19 DQ8 3c 40 UCD control 106 758 567 1 236 318 657 

CD1393 25-29 DQ2 3b 9 UCD UCD 2 269 730 9 746 6 693 2 041 1 999 



  

CD1408 25-29 n.a 0 n.a. control control 2 001 839 8 792 4 298 2 051 1 615 

CD1409 30-34 DQ2 0 <1 control control 1 760 049 7 526 4 002 1 341 1 071 

CD1422 30-34 DQ2 3a 6 UCD UCD 1 901 639 3 881 2 998 500 532 

CD1428 20-14 DQ2 0 <1 control control 506 210 924 1 877 270 591 

CD1450 35-39 DQ2 0 <1 control control 1 559 849 2 158 4 035 471 1 468 

CD1451 65-69 DQ2 3c 70 UCD UCD 1 783 685 2 884 2 673 461 842 

CD1453 30-34 DQ8 0 5 Potential
* 

control 1 880 982 4225 3728 808 1148 

* Potential CD is defined as positive seology but normal histology. 
n.a.: not available 
 
Data Availability Statement:  

4 Upon manuscript acceptance TCR sequences will be uploaded to the NCBI Sequence 
Read Archive (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?) 
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Fig S1. Age of donors in the group of untreated celiac disease (UCD) and the control group. 
 



  

 
Fig S2. Correlation of age and the predictor, either the normalized unique match (left on each panel) or the 
normalized clonecount match (right on each panel) in each scenario with fitted line and value of Pearson 
correlation coefficient. Red represent untreated celiac disease patients (UCD), blue represent the controls. 
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