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ABSTRACT: We report the transition metal quantum mechanics
(tmQM) data set, which contains the geometries and properties of
a large transition metal−organic compound space. tmQM
comprises 86,665 mononuclear complexes extracted from the
Cambridge Structural Database, including Werner, bioinorganic,
and organometallic complexes based on a large variety of organic
ligands and 30 transition metals (the 3d, 4d, and 5d from groups 3
to 12). All complexes are closed-shell, with a formal charge in the
range {+1, 0, −1}e. The tmQM data set provides the Cartesian coordinates of all metal complexes optimized at the GFN2-xTB level,
and their molecular size, stoichiometry, and metal node degree. The quantum properties were computed at the DFT(TPSSh-D3BJ/
def2-SVP) level and include the electronic and dispersion energies, highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) energies, HOMO/LUMO gap, dipole moment, and natural charge of the metal center;
GFN2-xTB polarizabilities are also provided. Pairwise representations showed the low correlation between these properties,
providing nearly continuous maps with unusual regions of the chemical space, for example, complexes combining large
polarizabilities with wide HOMO/LUMO gaps and complexes combining low-energy HOMO orbitals with electron-rich metal
centers. The tmQM data set can be exploited in the data-driven discovery of new metal complexes, including predictive models
based on machine learning. These models may have a strong impact on the fields in which transition metal chemistry plays a key
role, for example, catalysis, organic synthesis, and materials science. tmQM is an open data set that can be downloaded free of charge
from https://github.com/bbskjelstad/tmqm.

■ INTRODUCTION
Machine learning (ML) is revolutionizing several research fields
in which chemistry plays a central role.1−4 By minimizing the
error relative to reference data (i.e., training data set), ML
algorithms deliver predictive models mapping a set of
descriptors (i.e., features) into one or more properties of
interest (i.e., targets). These models can robustly handle data
sets that can be both very large and complex and, once compiled,
can compute accurate predictions in a simple laptop within a
fraction of a second. The fast execution of ML predictions
enables the exploration of the vast chemical compound space
(CCS)5−7 with different approaches, including multi-objective
optimization8 and inverse design.9−11 Neural networks12−16 and
other ML models have been used successfully in a wide range of
applications, with numerous examples in materials science17−21

and drug discovery.22−26 ML and data-driven approaches are
also making rapid progress in catalytic,27−41 organic,42−47

inorganic,48,49 and theoretical50−56 chemistry.
Despite the high potential of ML, a major challenge in its

application is the need for big data sets for the training and
validation of the models. There are fields of high interest, for
example, catalysis, in which the size and scope of experimental
data is small. An efficient solution is to use computational results
as training data.57−60 This is one of the fundamental concepts
underlying quantum-based ML (QML),61 in which the ML

models are trained with data from quantum mechanical (QM)
calculations. QML models are used to predict highest occupied
molecular orbital (HOMO)/lowest unoccupied molecular
orbital (LUMO) energies and gaps, dipole moments, polar-
izabilities, and other quantum properties governing the
macroscopic behavior of chemical systems. State-of-the-art
QML models, including atomistic62 and message-passing neural
networks,63 yield predictions approaching chemical accuracy.64

However, the training of these models requires quantum data
sets that must be large and comprehensive to avoid overfitting
and to ensure the unbiased exploration of the CCS. These data
sets are scarce, and their generation remains hampered by the
high computational cost of quantum mechanics calculations,
thus limiting the scope of QML. Quantum data set examples
include the Materials Project,65 PubChemQC,66 and the
GDB1367-based QM series for organic chemistry (QM7,54

QM7b,68 QM8,69,70 and QM971). Ab initio molecular dynamics
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trajectories and off-equilibrium conformations are also available
from the MD1772 and ANI-173 data sets, respectively. Quantum
data sets for transition metal (TM) complexes cover either
small27 or large but specific8 regions of the chemical space.
Other data-driven approaches to organometallic chemistry have
focused on the isolated ligands.74

We herein report the transition metal quantum mechanics
data set (tmQM), which contains a curated collection of TM
compounds, includingWerner, bioinorganic and organometallic
complexes. The computational protocol used in the generation
of the tmQM data set consists of filtering structures from the
Cambridge Structural Database (CSD), followed by xTB
geometry optimizations and density functional theory (DFT)
single points (Figure 1). In total, tmQM contains 86,665
complexes extracted from the CSD, representing the diversity of
the TM−organic chemical space with a large variety of organic
ligands bound to all the 3d, 4d, and 5d TMs from groups 3 to 12.
tmQM provides the Cartesian coordinates optimized at the
GFN2-xTB level and a set of quantum properties computed at
the DFT(TPSSh-D3BJ/def2-SVP) level, including the elec-
tronic and dispersion energies, metal center natural charge,
HOMO/LUMO energies and gap, and dipole moment.
Polarizabilities are also provided at the GFN2-xTB level. The
pairwise representations of the properties revealed unusual
regions within the CCS, for example, TM complexes with large
polarizabilities and wide HOMO/LUMO gaps.
The tmQM data set will enable the training of ML models,

which can be exploited in the data-driven discovery of new
catalysts and functional materials. Traditional predictive models,
including multivariate linear regression,75−77 and quantitative
structure−activity relationships,78,79 will also benefit from the
availability of the tmQM data set, which can be downloaded free
of charge from https://github.com/bbskjelstad/tmqm and
http://quantum-machine.org/datasets/.
Chemical Subspace Extracted from the CSD. The

tmQM data set fully comprises structures extracted from the
2020 release of the CSD by using the seven filters listed below.
The filters were implemented by means of the CSD Python API.

1. Composition filter (metal elements): Excluded all
structures except those containing a single TM.80

2. Composition filter (nonmetal elements): Excluded all
structures except those containing a minimum of one C
and one H atoms. The other elements allowed in the
structures were as follows: B, Si, N, P, As, O, S, Se, F, Cl,
Br, and I.

3. Component filter: Excluded the structure of all molecular
components, except that of the metal complex.

4. Polymer filter: Excluded all polymeric structures.

5. Spatial coordinates filter: Excluded all structures without
three-dimensional coordinates.

6. Disorder filter: Excluded all structures with disordered
atoms.

7. Charge filter: Excluded all structures with charge higher
than 1 and lower than −1.

Filters 1−2 extract mononuclear TM−organic compounds
from the CSD, including Werner, organometallic, and
bioinorganic complexes. Filter 3 removes the solvent molecules
and counterions that are found in many crystal structures. Filters
4−6 ensure the correctness of the structures passed to the
software used in the QM calculations. Filter 7 removes highly
charged species, which may cause charge-separation artifacts in
the gas-phase QM calculations.
In total, 116,332 structures were extracted from the CSD with

filters 1−7. Figure 2 shows the distribution of different
molecular properties over the TM series. The number of
bonds involving themetal center (Figure 2A) peaks at 4, 5, and 6
(31, 12, and 33% of the total, respectively). The latter is themost
abundant instance and dominates with most TMs. Notable
exceptions to this trend are Ni, Pd, Pt, and Cu, which show a
preference for making four bonds. These observations can be
associated to the prevalence of the tetrahedral (4 bonds), square
planar (4 bonds), trigonal bipyramidal (5 bonds), square
pyramidal (5 bonds), and octahedral (6 bonds) coordination
geometries. However, it should be noted that the number of
metal bonds was extracted from the connectivity table of the
CSD mol2 files. Thus, this number is equal to the degree of the
metal center node in the molecular graph of the complex, which
is not necessarily equal to the coordination number.81 For
example, the η5-Cp ligand counts five bonds but, in an
octahedral complex, and from a molecular orbital perspective,
it only occupies three coordination sites. With Ti and other early
TMs forming stable arene complexes, 8 is one of the most
abundant metal bond counts (i.e., octahedral complexes with
three monodentate ligands and one Cp ligand). In contrast, at
the extreme of the late TM groups, the number of metal bonds
peaks at the lowest possible values. For example, 2 is the most
common metal bond count with Au.
The figure also shows the distribution of the TM complex

charges (Figure 2B) and sizes (Figure 2C). The former
distribution clearly shows the dominance of q = 0 for all TMs,
without any exception, and with the neutral complexes
comprising 82% of the total. The molecular size distribution,
measured in number of atoms, is balanced between the small
(1−50 atoms) and medium-size (50−100 atoms) classes, which
include 34 and 57% of the total, respectively. The large class

Figure 1.Computational protocol used to generate the tmQMdata set. CSD =Cambridge Structural Database; xTB = extended tight-binding; DFT =
density functional theory; μ = dipole moment; α = polarizability; q = charge.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01041
J. Chem. Inf. Model. 2020, 60, 6135−6146

6136

https://github.com/bbskjelstad/tmqm
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01041?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01041?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01041?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01041?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01041?ref=pdf


Figure 2.Distributions over the 3−5d TM series by (A) metal node degree; i.e. number of bonds to the metal, (B) molecular charge q, and (C) size in
number of atoms. The insets show the totals. The data are for the 116,332 structures extracted from the CSD with filters 1−7.
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(>100 atoms) includes a smaller portion of structures (9%),
being the smallest fraction with all TMs.

Figure 3 reflects the strong organic component of the TM
complexes extracted from the CSD. C and H account for 87% of

Figure 3. Composition by the number of non-TM atoms in the chemical formula (D), with the inset excluding C and H, and the 30 most abundant
Morgan fingerprints (E). The data are for the structures extracted from the CSDwith filters 1−7.82 Fingerprint legend: All nonlabeled atoms are C, and
the gray fragments show the fingerprint connectivity but are not part of it; fingerprint label = bit number, blue circle = central atom in the fingerprint,
yellow circle = aromatic atom, star = arbitrary atom.
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the chemical composition of the entire space (Figure 3D). After
these two elements, N, O, P, Cl, and F are, in this order, the most
abundant. These elements are found in the most common
ligands, including amines, carboxylates, heterocycles, phos-
phines, and halides. The nature of the chemical space was also
explored by computing Morgan fingerprints, using radius = 3,
and a large number of bits (i.e., 32,768) to avoid hash collisions.
The connectivity needed to generate the fingerprints is available
from the CSD database and can be retrieved by using the CSD
code provided for all entries of the tmQM data set. Figure 3E
shows the 30 most abundant fingerprints, which account for
conjugated C−C bonds (e.g., bits 21,860 and 24,401), aromatic
rings based on C (e.g., 15,535 and 1947) and N (e.g., 22,946),
amines (e.g., 23,463), and other fragments that are commonly
found in organic ligands. Other groups and ligands, including
chloride, alkoxy, oxo, and phosphines, can also be easily
recognized in fingerprints 18,067, 25,271, 31,370, and 2049,
respectively.
Figures 4 and 5, which show one random example for each of

the 30 TM elements, give a glimpse of the vast diversity of the

chemical space extracted from the CSD. The 30 complexes in
the two figures (i.e., a mere 0.03% of the full space) include 48
ligands, which are bound to the metal center in five different
coordination modes (κ1, κ2, κ3, η2, and η5), four different
coordination numbers (2, 4, 5, and 6) and six different
coordination geometries (linear, tetrahedral, square planar,
trigonal bipyramidal, square pyramidal, and octahedral).
Interestingly, the further extension of these variables by

considering all the 116,332 structures extracted with filters 1−
7 would allow for a combinatorial explosion yielding a massive
number of TM complexes. Thus, despite the large size of the
CSD, this database represents a minuscule fraction of the full
TM−organic compound space, which also underlines the need
for predictive models enabling the efficient exploration of this
vast space.

Quantum Geometries and Properties. The structures of
the TM complexes extracted from the CSDwith filters 1−7 were
used as the basis to construct the tmQM data set. The advantage
of using the CSD as the source of structures is that the TM
complexes in the resulting data set can be accessed
experimentally through documented synthesis procedures.
Thus, ML models trained with the tmQM data set will embed
synthetic accessibility in their internal representations used for
prediction and generation tasks.
The CSD structures were fully optimized in gas phase with the

extended tight-binding xTB method.83 The second-generation
parametrization for geometries, frequencies, and noncovalent
interactions (GFN2-xTB84) was used. The GFN2-xTB para-
metrization is less empirical than the GFN1, and it was proven to
be more robust in geometry optimization.85 The tight
optimization level was used in the GFN2-xTB calculations to
set the convergence thresholds to 1 × 10−6Eh (energy) and 8 ×
10−4Ehα

−1 (gradient). The calculations were carried out with the
xtb program. Before passing the geometries to the software used
for the DFT calculations, the following three filters were applied

1. Convergence filter: Excluded all geometries that did not
reach the convergence thresholds.

Figure 4. Randomly selected structures, and their CSD codes, for each
TM in groups 3−7. The selection was made among the 116,332
structures extracted from the CSD with filters 1−7.

Figure 5. Randomly selected structures and their CSD codes for each
TM in groups 8−12. The selection was made among the 116,332
structures extracted from the CSD with filters 1−7.
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2. Geometry quality: The GFN2-xTB-optimized geometries
were ranked based on their deviation from the initial CSD
crystal structure. The deviation was measured for each
geometry by computing a structure quality index Sq with
eq 1

=
∑

S
d

N R

ocyc
q

n

At (1)

in which the norm of the displacement (dn) is summed over all
optimization cycles (ocyc) and divided by the size of the system
in atoms (NAt) and the CSD R factor. The 7% geometries
yielding the largest Sq values were excluded.

85

3. Electron-count filter: Excluded all structures with an odd
number of electrons.

The first two filters excluded geometries with major flaws (e.g.
erroneous coordination number and geometry). The third filter
excluded all TM complexes that are forced to have an open-shell
ground state, due to an odd number of electrons (i.e. 22,325 of
the 116,332 structures extracted from the CSD). This filter
excludes the errors and high computational cost associated to
QM calculations on open-shell systems. In total, 86,699
geometries passed filters 1−3.
The GFN2-xTB optimized Cartesian coordinates of all TM

complexes are included in the tmQM data set. By using
chemoinformatics software like RDKit, molSimplify, and Open
Babel, these coordinates can be easily transformed into features
for ML models, including Morgan fingerprints,86 SMILES,87−89

and autocorrelation functions.90 All geometries are provided
together with their CSD code, molecular size, charge, spin

Figure 6. Pairwise correlations, with color gradients based on property values; α vs HOMO/LUMO gap (F), μ vs qM (G), HOMO energy vs qM (H),
and LUMO energy vs qM (I). Level of theory: TPSSh-D3BJ/def2-SVP, except GFN2-xTB for α.
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multiplicity, stoichiometry, and metal node degree (i.e., number
of bonds involving the metal center).
The quantum properties of the tmQM data set were obtained

from single-point calculations at the DFT level on the GFN2-
xTB optimized geometries. All properties were computed for the
closed-shell singlet state. The calculations were performed in gas
phase with the hybrid meta-GGA TPSSh functional91 and the
double-ζ polarized def2-SVP basis set,92 including effective core
potentials for Z > 36. Dispersion was introduced bymeans of the
D3BJ model.93 The calculations were carried out with the
Gaussian16 program, using the ultrafine pruned (99,590) grid
for high numerical accuracy. This level of theory was used to
compute the following properties: electronic and dispersion
energies, HOMO and LUMO energies, HOMO/LUMO gap,
dipole moment, and metal center charge, which was derived

from natural population analysis.94 In total, the computation of
the quantum properties converged for 86,665 TM complexes. In
addition to the GFN2-xTB geometries, the tmQM data set
provides these DFT properties for all TM complexes. Polar-
izabilities are also provided at the GFN2-xTB level based on the
self-consistent D4 model using a Gaussian-weighting scheme.84

Pairwise Property Representations. The nature of the
tmQM data set was explored by representing quantum property
pairs in scatter plots. Figure 6 includes a selection of four plots
showing the poor correlation between the HOMO/LUMO gap
and the polarizability (Figure 6F) and between the metal natural
charge and the dipole moment (Figure 6G), the HOMO energy
(Figure 6H), and the LUMO energy (Figure 6I). The plots have
blob shapes with an almost continuous variation of the two
properties represented in each case. This lack of correlation was

Figure 7. Pairwise correlations colored by the periodic table group; α vs μ (J), LUMO vs HOMO energies (K), HOMO/LUMO gap vs qM (L), and α
vs qM (M). Level of theory: TPSSh-D3BJ/def2-SVP, except GFN2-xTB for α.
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also observed in the pairwise representations of the HOMO/
LUMOgap versus the dipole moment (Figure S1), polarizability
versus dipole moment (Figure S2), HOMO/LUMO gap versus
metal center natural charge (Figure S3), and polarizability versus
metal center natural charge (Figure S4). Interestingly, these
representations also show that unusual regions of the chemical
space have small, yet significant, populations, for example,

complexes with large polarizabilities and wide HOMO/LUMO
gaps, complexes with small dipole moments and highly charged
metal centers, complexes with low HOMO energies and
electron-rich metal centers, and complexes with high LUMO
energies and electron-poor metal centers.
The pairwise scatters were also plotted by using the color of

the data points to encode the periodic table group of the metal

Table 1. Data Benchmarks and Their Associated MAE (in Atomic Units, Except for μ, in D) and r2 Scores

property qM μ gap α

benchmark MAE r2 MAE r2 MAE r2 MAE r2

1 (B2PLYP-D3) 0.12 0.99 0.53 0.98 0.124 0.69
2 (DFT-Opt) 0.05 0.99 0.56 0.94 0.007 0.92
3 (DFT-α) 19.8 0.81

Figure 8. Pairwise property correlations from the B2PLYP-D3 benchmark 1; qM (N), HOMO/LUMO gap (O), TPSSh-D3BJ HOMO/LUMO gap vs
qM (P), and B2PLYP-D3 HOMO/LUMO gap vs qM (Q).
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center (Figure 7). For the sake of clarity, the plots were divided
in two sets, one accounting for groups 3, 5, 7, 9, and 11, and one
accounting for groups 4, 6, 8, 10, and 12. The data points were
added to the scatter plots in a random order; that is regions with
a dominant color are mostly associated to a given TM group.
Most of the plots have no color structure, that is, any metal can
give any combination of properties with the appropriate choice
of ligands. This is the case, for instance, of polarizability versus
dipole moment (Figure 7J). However, there are property pairs
with some structure, for example, the HOMO versus LUMO
energies (Figure 7K), in which group 12 yields the largest gaps.
Themost structured property pairs are those involving the metal
natural charge, with the scatter plots yielding color bands
(Figure 7L,M). Following the periodic trends, the groups closest
to the d0 configuration, or exceeding the d10 configuration,
yielded the highest positive charges, whereas the groups closest
to the d10 configuration yielded the lowest negative charges.
More pairwise representations of the quantum properties are
available in the Supporting Information (Figures S5−S8).
Data Benchmarks. The tmQM data set was assessed by

performing three different benchmarks for a set of quantum
properties including themetal center natural charge (qM), dipole
moment (μ), HOMO/LUMO gap, and polarizability (α).

• Benchmark 1: The qM, μ, andHOMO/LUMOgaps of the
GFN2-xTB-optimized geometries, computed at the
TPSSh-D3BJ/def2-SVP level, were compared to their
values recomputed at the B2PLYP-D3/def2-SVP level.95

• Benchmark 2: The qM, μ, andHOMO/LUMOgaps of the
GFN2-xTB-optimized geometries, computed at the
TPSSh-D3BJ/def2-SVP level, were compared to their
values recomputed after reoptimizing the geometries at
the same TPSSh-D3BJ/def2-SVP level.

• Benchmark 3: The α of the GFN2-xTB-optimized
geometries, computed at the same GFN2-xTB level,
were compared to their values recomputed at the TPSSh-
D3BJ/def2-SVP level.

Benchmark 1 showed how the quantum properties vary upon
lifting the DFT level from the meta-GGA TPPSh hybrid
functional to the B2PLYP-D3 double-hybrid functional. Bench-
mark 2 showed how much sensible are the quantum properties
to the level of theory used in the geometry optimization of the
CSD structures, by comparing GFN2-xTB to DFT(TPSSh-
D3BJ). Benchmark 3 showed the deviation of the GFN2-xTB
polarizabilities relative to the DFT(TPPSh). Table 1 gives the
mean absolute error (MAE) and r2 score for each benchmark.96

Table 1 shows that in both benchmarks 1 and 2, q and μ
yielded the smallest MAEs, with r2 → 1. The largest deviations
were found for the HOMO/LUMO gaps, in line with the strong
dependence of this property on the theory levels used in the
single-point and geometry optimization calculations. This
scenario is illustrated for benchmark 1 with qM (Figure 8N)
and theHOMO/LUMOgap (Figure 8O). However, despite the
larger uncertainty of the HOMO/LUMO gap relative to qM, the
pairwise correlations of these two properties at the TPSSh-D3BJ
(Figure 8P) and B2PLYP-D3 (Figure 8Q) levels have essentially
the same shapes, with three adjacent clusters at qM ≈ −1.50e,
−0.75e, and 0.50e, that increase in size from qM≈−2 to qM≈ +2.
In benchmark 3, the deviation of the GFN2-xTB α values
relative to the DFT(TPSSh-D3BJ) is larger than those of qM and
μ in benchmarks 1 and 2, though significantly smaller than that
of the HOMO/LUMO gap in benchmark 1. More pairwise

representations of the quantum property benchmarks are
provided in the Supporting Information (Figures S9−S12).

Data Availability. tmQM is an open data set freely available
at GitHub (https://github.com/bbskjelstad/tmqm) and from
Quantum-Machine (http://quantum-machine.org/datasets/).
Quantum features, geometries and properties computed at the
GFN2-xTB and TPSSh-D3BJ/def2-SVP levels of theory are
provided in the xyz and csv file formats.

■ CONCLUSIONS
This article reported the tmQM data set, which provides the
quantum geometries and properties of a large amount of TM
complexes. The complexes were extracted from the CSD
database with a series of filters imposing constraints on chemical
composition, structure, and charge. After optimization at the
GFN2-xTB level, additional filters were applied to control
geometry quality and electronic structure. A total of 86k TM
complexes passed these filters and were included in the tmQM
data set after computing their quantum properties at the TPSSh-
D3BJ/def2-SVP level, including the electronic and dispersion
energies, HOMO/LUMO energies and gap, dipole moment and
metal center natural charge. Polarizabilities are also provided at
the GFN2-xTB level. The pairwise representations of these
properties allowed for mapping regions of the chemical space
with unusual properties; for example, TM complexes combining
electron-rich metal centers with low HOMO energies. The
tmQM data set, which is open and freely available at https://
github.com/bbskjelstad/tmqm, will enable the training of ML
models for the discovery of new molecular materials based on
TMs.
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Lobato, J. M.; Sańchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent. Sci. 2018, 4, 268−276.
(11) Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular
Design Using Machine Learning: Generative Models for Matter
Engineering. Science 2018, 361, 360−365.
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