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Abstract 31 

COVID-19 has caused worldwide death and economic destruction. The pandemic is the result of 32 

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has demonstrated 33 

high rates of infectivity leading to great morbidity and mortality in vulnerable populations. At 34 

present, scientists are exploring various approaches to curb this pandemic and alleviate its health 35 

consequences, while racing to develop a vaccine. A particularly insidious aspect of COVID-19 is 36 

the delayed overactivation of the body’s immune system that is manifested as the cytokine storm. 37 

This unbridled production of pro-inflammatory cytokines and chemokines can directly or 38 

indirectly cause massive organ damage and failure. Systemic vascular endothelial inflammation 39 

and thrombocytopenia are potential consequences as well. In the case of COVID-19, the 40 

cytokine storm often fits the pattern of the macrophage activation syndrome with 41 

lymphocytopenia. The basis for the imbalance between the innate and adaptive immune systems 42 

is not clearly defined, but highlights the effect of SARS-CoV-2 on macrophages. Here we 43 

discuss the potential underlying basis for the impact of SARS-CoV-2 on macrophages, both 44 

direct and indirect, and potential therapeutic targets. These include granulocyte-macrophage 45 

colony-stimulating factor (GM-CSF), interleukin 6 (IL-6), interferons, and CXCL10 (IP-10). 46 

Various biopharmaceuticals are being repurposed to target the cytokine storm in COVID-19 47 

patients. In addition, we discuss the rationale for activating the macrophage alpha 7 nicotinic 48 

receptors as a therapeutic target. A better understanding of the molecular consequences of 49 

SARS-CoV-2 infection of macrophages could lead to novel and more effective treatments for 50 

COVID-19. 51 

Key words: Immunopharmacology, immunomodulation therapy, pandemic, cytokine storm, 52 

macrophage activation syndrome, biologicals. 53 
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1. Introduction   54 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, 55 

China in December of 2019 and quickly wreaked havoc around the world in the form of the 56 

pandemic COVID-19, causing death, undermining economies, overwhelming medical 57 

professionals, and challenging the scientific community (Liu et al., 2020b). This positive-sense 58 

single-stranded RNA virus has proven to be highly contagious, being spread by symptomatic and 59 

likely asymptomatic individuals (Furukawa et al., 2020; Huff and Singh, 2020; Oran and Topol, 60 

2020).  As the name suggests, the primary target of SARS-CoV-2 is the lungs, but other organs 61 

such as blood vessels, heart, and brain are susceptible as well.  All age groups are vulnerable to 62 

infection, but generally exhibit different degrees or classes of symptoms, with those over 60, 63 

male, and with underlying medical conditions more likely to exhibit severe symptoms and 64 

succumb to viral toxicity (Conti and Younes, 2020; Team, 2020). Some 81% exhibit mild, 65 

moderate, or no symptoms; 14% show severe symptoms; and 5% experience critical disease with 66 

high mortality (Wu and McGoogan, 2020). An especially alarming complication of COVID-19 is 67 

the cytokine storm that develops after a week or two of delay in severely infected individuals.   68 

SARS-CoV-2 has 4 structural proteins, namely the E (envelope), S (spike), M 69 

(membrane), and N (nucleocapsid) proteins (Guo et al., 2020). The N protein holds the RNA 70 

genome, while the S, E, and M proteins form the viral envelope. The virus primarily gains entry 71 

into a human cell by binding to the exopeptidase angiotensin converting enzyme 2 (ACE2). This 72 

protein is located on the membrane surface of several cell types including alveolar type II and 73 

endothelial cells. Proteins other than ACE2 may function as receptors for entry as well (Guo et 74 

al., 2020). Cell entry is facilitated by cleavage of the spike protein by the serine protease 75 

TMPRSS2 or a furin-like proprotein convertase, thereby exposing the fusion peptide. Besides 76 



3 

 

inducing cell death, viral infection can initiate an inflammatory response, which with SARS-77 

CoV-2 is thought to manifest among other things as widespread vascular endothelial dysfunction 78 

(Teuwen et al., 2020). Beyond this, however, increasing evidence supports the conclusion that 79 

SARS-CoV-2 may exert some of its lethal effects by insidiously compromising the body’s 80 

immune response. Here we summarize evidence for macrophages as targets of SARS-CoV-2 and 81 

the implication that has for immunomodulatory treatments of COVID-19 (Fig. 1).   82 

 83 

2. Cytokine storm 84 

Progression of COVID-19 in more severe cases is marked by the delayed occurrence of a 85 

cytokine storm or cytokine release syndrome, due to overactivation of the immune system. 86 

Although not definitively established, this phenomenon is thought to contribute to the acute 87 

respiratory distress syndrome (ARDS) and widespread organ damage that foretells death. Nor is 88 

it clear what relationship there is between the cytokine storm and thrombocytopenia, which is 89 

common in patients with COVID‐19 and may ultimately contribute to adverse outcome, although 90 

both enhanced platelet activation/consumption and destruction are likely outcomes of the 91 

cytokine storm. Multi-organ (micro-) thrombosis seems to characterize severe COVID-19 cases 92 

(McFadyen et al., 2020; Prieto-Pérez et al., 2020), and likely reflects in part the production of 93 

pro-inflammatory cytokines, such as IL-1β and TNF-α, by macrophages (Conti et al., 2020a).  94 

Notably, excessive activation or proliferation of macrophages is a contributing factor to 95 

hemophagocytic histiocytosis (HH) also known as secondary hemophagocytic 96 

lymphosistiocytosis (Xu et al., 2020).  HH has been identified as a deregulation of the immune 97 

system, characterized by hemophagocytosis by macrophages, overactivation of cytotoxic T cells, 98 

and pro-inflammatory cytokine massive release (Ramos-Casals et al., 2014). HH is the 99 
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histological counterpart of the macrophage activation syndrome. A clinical study performed on 100 

post-mortem bone marrow samples taken from patients who died from COVID- 19 showed 101 

findings highly consistent with the diagnosis of HH (Prieto-Pérez et al., 2020). Elevated blood 102 

ferritin has also been shown to be associated with poor outcome in a retrospective study of 150 103 

COVID-19 patients (Mehta et al., 2020a).   104 

From multiple observations, both CD4+ and especially CD8+ (or cytotoxic) T-cells appear 105 

to be over-activated early-on in COVID-19 resulting in the excessive production of granulocyte-106 

macrophage colony-stimulating factor (GM-CSF), which in turn stimulates 107 

monocytes/macrophages to produce interleukin-6 (IL-6) and other inflammatory factors. With 108 

time, there is a significant decrease in peripheral CD4+ and CD8+ T lymphocytes, as well as 109 

natural killer (NK cells) in COVID-19 patients, perhaps secondarily to their sustained activation 110 

by macrophage-derived interferon gamma-induced protein 10 (IP-10), also known as CXCL10. 111 

With disease progression, neutrophilia may occur, especially in those with severe critical 112 

pulmonary conditions (Liu et al., 2020a). 113 

 114 

3. Macrophage (monocytes) 115 

3.1 Inflammatory signature 116 

Human monocytes and macrophages express ACE2, as well as TMPRSS2 and furin, and 117 

would seem to be a widespread target for SARS-CoV-2 infection (Abassi et al., 2020; Wang et 118 

al., 2020b). Evidence was reported in COVID-19 patients for the infection of macrophages of the 119 

spleen and lymph nodes with SARS-CoV-2, which was associated with severe lymphocyte 120 

apoptosis (Wang et al., 2020b).  Moreover, infected macrophages were shown to produce IL-6, a 121 

pro-inflammatory cytokine that directly promotes lymphocyte necrosis and would explain in part 122 
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the common characteristic of lymphocytopenia in COVID-19 patients. Based on their 123 

morphology and ability to produce IL-6, TNF-α, and IL-10, as well as surface expression of 124 

CD11b, CD14, CD16, CD68, CD80, CD163, and CD206, circulating monocytes have an 125 

activated or pro-inflammatory phenotype. The expression of CD163 and CD206 suggests a bias 126 

towards the intermediate or regulatory phenotype, with CD163 expression being a feature of 127 

activated monocytes/macrophages in hemophagocytic lymphosistiocytosis syndrome (Wang et 128 

al., 2020b). An increase in the pool size of the intermediate subtype of monocytes may be 129 

characteristic of severe COVID-19 (Merad and Martin, 2020b).  The activated plasma blood 130 

monocyte phenotype and lymphocytopenia would seem to persist into the recovery stage as well 131 

(Wen et al., 2020).   132 

Multiple studies have demonstrated that the lungs are a target of macrophages in COVID-133 

19 (Chua et al., 2020; Wang et al., 2020b).  Inflammatory macrophages are increased with 134 

increased levels of nonresident macrophages, which in the upper respiratory tract have a highly 135 

inflammatory phenotype with the expression of a number of chemokines and pro-inflammatory 136 

cytokines IL-1B, IL-8, IL-18, and TNF-α (Chua et al., 2020; Liao et al., 2020). Macrophages in 137 

the lower airways were found to have an even stronger inflammatory signature and overall there 138 

was a strong correlation between activation status of non-resident macrophages and COVID-19 139 

disease severity (Chua et al., 2020). Other immune cells, such as mast cells, likely act 140 

synergistically with macrophages to cause lung damage (Kritas et al., 2020). 141 

 142 

3.2 Interferon suppression 143 

Although CXCL10, as well as CCL2, are interferon (IFN)-induced genes, there is 144 

evidence for impaired or delayed Type 1 IFN signaling in SARS-CoV-2-infected cells. One ex 145 



6 

 

vivo experiment with lung tissue showed that SARS-CoV-2 induced less IFNs and pro-146 

inflammatory mediators than SARS-CoV (Chu et al., 2020).  Single-cell RNA sequencing 147 

analysis of bronchoalveolar lavage samples from severe and mild COVID-19 patients revealed 148 

that SARS-CoV-2 mainly infects the epithelial and recruited inflammatory macrophage subsets 149 

(Bost et al., 2020). In the latter, a disease severity-associated downregulation of type I IFN genes 150 

was noted. Notably, IFN is known to exhibit multiple biological functions such as antiviral, 151 

antiproliferative, and immunomodulatory effects (Nile et al., 2020; Wang et al., 2019). How 152 

SARS-CoV-2 thwarts intrinsic innate immune responses in monocyte-macrophages is not 153 

defined, although in monocyte-derived dendritic cells (but not macrophages) viral antagonism of 154 

STAT1 phosphorylation was reported (Yang et al., 2020). In contrast, work in Vero cells, 155 

indicates that SARS-CoV-2-infected cells are still responsive to type I IFN treatment unlike 156 

SARS-CoV-infected cells (Lokugamage et al., 2020).  Of note, ACE2 was shown to be an 157 

interferon-stimulated gene in human lung cells, which is also upregulated by smoking and viral 158 

infections (Smith et al., 2020). A discussion of possible means by which SARS-CoV-2 attenuates 159 

the interferon response can be found elsewhere (Paces et al., 2020).  Recently, it was reported 160 

that the SARS-CoV-2 viral ORF6, ORF8 and N proteins were potential inhibitors of the type I 161 

interferon signaling pathway (Li et al., 2020).  162 

In light of these observations and urgent need to identify new therapies to control 163 

COVID-19 severity, IFN approved drugs have emerged as a potential treatment for COVID-19 164 

patients. For instance, it has been demonstrated that the administration of recombinant IFNs to 165 

SARS-CoV and SARS-CoV-2 patients decreased viral protein synthesis and replication 166 

(Falzarano et al., 2013; Li et al., 2019; Zumla et al., 2016). In agreement, a recent published 167 

study on MERS-CoV patients reported that a combination of remdisevir and IFN beta showed a 168 
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superior antiviral effect when compared with lopinavir/ritonavir combination (Sheahan et al., 169 

2020). Therefore, testing the efficacy and safety of recombinant IFNs may be a worthwhile 170 

promising approach in the setting of COVID-19. Triple antiviral therapy with lopinavir-ritonavir, 171 

ribavirin and interferon beta-1b was reported to be safe and superior to lopinavir-alone in 172 

improving symptoms and reducing viral shedding and hospitalization in those with mild to 173 

moderate COVID-19 (Hung et al., 2020). On the other hand, there is evidence that IFN might be 174 

playing an important role in COVID-19 hyper-inflammation, suggesting that timing is a 175 

consideration (Conti et al., 2020c; Lee et al., 2020). Analysis of monocytes by single-cell RNA-176 

seq from patients with severe COVID-19 exhibited signs of a type I IFN response along with 177 

TNF/IL-1β-driven inflammation. 178 

 179 

3.3 Possible contribution of nicotine and nicotinic acetylcholine receptors 180 

Although multiple investigations report a detrimental impact of nicotine on COVID-19 181 

patients through up-regulating ACE2 receptors in the lungs (Farsalinos et al., 2020a; Leung et 182 

al., 2020; Russo et al., 2020), recently published epidemiological studies reveal that smokers are 183 

either asymptomatic or show less severe respiratory symptoms compared with non-smokers 184 

(Covid et al., 2020; Farsalinos et al., 2020b; Kloc et al., 2020; Miyara et al., 2020; Petrilli et al., 185 

2020). A disruption of the cholinergic anti-inflammatory pathway in COVID-19 patients has 186 

been noted (Farsalinos et al., 2020a; Farsalinos et al., 2020c). It has been reported that over-187 

responsiveness of the immune system, otherwise known as the cytokine storm, highly correlates 188 

with enhanced severity of COVID-19 infection, substantially increasing the mortality rate (Wang 189 

et al., 2020a; Ye et al., 2020).  In the human lungs, the inflammatory response is mainly 190 

mediated by lung macrophages with two main types: the alveolar and interstitial macrophages 191 



8 

 

(Kloc et al., 2020). Under physiological conditions, the alveolar macrophages exhibit anti-192 

inflammatory characteristics by dampening the adaptive immune response and suppressing pro-193 

inflammatory cytokines release (Kloc et al., 2020). Following a viral infection such as COVID-194 

19, the alveolar macrophages switch from the anti- to pro-inflammatory phenotype, initiating 195 

consequently an inflammatory response, then switch back during the resolution phase to the anti-196 

inflammatory phenotype, promoting thereafter tissue repair in the site of injury (Hu and 197 

CHRISTMAN, 2019; Hussell and Bell, 2014).  In the context of COVID-19 infection,  an 198 

accumulation of macrophages in the lungs of COVID-19 patients has been observed (Wang et 199 

al., 2020a). Besides resident macrophages, monocyte-derived and non-resident macrophages 200 

have been described in COVID-19 patients (Chua et al., 2020); however, a better understanding 201 

of their interrelationship is needed. 202 

Of note, lung macrophages have been shown to express ACE2 receptors, facilitating 203 

therefore the entry of SARS-CoV-2 to host cells (Tsaytler et al., 2011; Verdecchia et al., 2020).  204 

Besides ACE2 receptors, lung macrophages express alpha 7 nicotinic receptors (nAChRs α7) 205 

(Abrial et al., 2012).  nAChRs α7 are potentially implicated in attenuating the cytokine storm 206 

through decreasing pro-inflammatory cytokine release (Kalamida et al., 2007; Tracey, 2002). For 207 

instance, it has been indicated that activation of nAChRs α7 located on lung macrophages by 208 

acetylcholine and/or nicotine mitigates the hyper-inflammatory response mediated disease 209 

severity (Lu et al., 2014; Tindle et al., 2020). Strong evidence reveals that the cholinergic anti-210 

inflammatory pathway mediated by nAChRs α7 inhibits the translocation of the pro-211 

inflammatory marker NF-κB to the nucleus and activates the JAK2-STAT3 pathway, 212 

consequently suppressing the inflammatory response and decreasing the cytokine storm in the 213 

lungs (Báez-Pagán et al., 2015; Changeux et al., 2020; Lu et al., 2014). Given the observed lower 214 
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number of hospitalized COVID-19 patients among smokers, the potential role of medicinal 215 

nicotine to alleviate COVID-19 progression and development should be rapidly studied and 216 

clearly distinguished from conventional smoking that has no therapeutic effects.  217 

 218 

3.4 Chemokine profile: a possible role for CXCL10 (IP-10) 219 

Longitudinal profiling of 71 COVID-19 patients identified early expression of inhibitory 220 

mediators IL-10 and IL-1RA, along with the chemokine CCL5 (aka RANTES), in those with 221 

mild but not severe disease (Zhao et al., 2020). CCL5 is chemotactic for T cells, as well as 222 

eosinophils and basophil.  On the other hand, the majority of cytokines associated with the 223 

cytokine storm in viral infections, including IL-6 and IFN-γ, were only increased at a late stage 224 

in severe illness, with TNF and GM-CSF not showing a difference between mild and severe 225 

cases.   226 

Multiple studies have documented the upregulation of not only inflammatory cytokines 227 

but also chemokines in COVID-19 patients. Chemokines are low molecular weight proteins that 228 

act largely as chemoattractants for immune cell recruitment during inflammation, as well as 229 

modulators of immune cell homeostasis and angiogenesis (Coperchini et al., 2020). Compared to 230 

non-ICU patients, COVID-19 patients admitted to the ICU, exhibited higher plasma levels of 231 

IL2, IL7, IL10, GSCF, CXCL10 (IP-10), CCL2 (MCP1), CCL3 (MIP1A), and TNFα, indicating 232 

activation of T-helper 1 (Th1) cell function (Huang et al., 2020), although increased circulating 233 

levels of Th2-immune related cytokines IL-4 and IL-10 implicated in inflammation suppression 234 

are noted as well (Han et al., 2020). Transcriptomic analysis of bronchoalveolar lavage fluid of 235 

COVID-19 patients revealed an upregulation of CXCL1, CXCL2, CXCL6, CXCL8 (IL8), 236 

CXCL10 (IP-10), CCL2 (MCP-1), CCL3 (MIP-1A), and CCL4 (MIP1B) (Xiong et al., 2020). 237 
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CXCL10 (IP-10) is a chemoattractant for monocytes/macrophages, dendritic cells, NK cells, and 238 

T cells; CCL2 (MCP-1) is a chemoattractant for monocytes, dendritic cells, and memory T cells. 239 

CXCL2 and CXCL8, which are secreted by monocytes/macrophage, serve as potent 240 

chemoattractants for neutrophils. Single cell RNA sequencing of nasopharyngeal and bronchial 241 

samples from COVID-19 patients identified increased inflammatory macrophages that express 242 

CCL2, CCL3 (MIP-1A), CCL20, CXCL1, CXCL3, CXCL10 (IP-10), CXCL8 (IL8), IL1B and 243 

TNF-α (Chua et al., 2020). Levels correlated with disease severity. CXCL10 (IP-10) levels were 244 

previously associated with the severe acute respiratory syndrome (SARS) disease progression 245 

and resolution due to the SARS-CoV virus (Altara et al., 2016; Jiang et al., 2005), and 246 

development of ARDS in preclinical models (Coperchini et al., 2020).  The elevated 247 

nasopharyngeal levels of CXCL10 with COVID-19 may permit this chemokine to be used in 248 

widespread immunoassay testing for early detection of SARS-CoV-2-infection (Cheemarla et al., 249 

2020).  250 

 251 

3.5 Possible contribution of GM-CSF 252 

Mounting evidence suggests that immunomodulatory agents, including GM-CSF, could 253 

be a promising therapy for COVID-19 (Lang et al., 2020; Mehta et al., 2020b). GM-CSF is 254 

known to be implicated in the production of granulocytes, monocytes, macrophages, and 255 

dendritic cells from progenitor cells, a process known as myelopoiesis (Egea et al., 2010; 256 

Fleetwood et al., 2007). It has been demonstrated that GM-CSF is secreted by different cell types 257 

including alveolar type II epithelial cells, playing therefore a key role in the integrity of alveolar 258 

barriers and maturation of alveolar macrophages (Cakarova et al., 2009; Rösler and Herold, 259 

2016). Multiple investigations have considered GM-CSF as a pivotal cytokine that activates both 260 
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the innate and adaptive immune response. For instance, GM-CSF can polarize myeloid cells into 261 

a pro-inflammatory phenotype, releasing subsequently reactive oxygen species and pro-262 

inflammatory cytokines such as IL-1β, IL-6, TNF-α, and chemokines including CCL17, CCL2, 263 

and IL8, which can attract lymphocytes, monocytes, and neutrophils to the site of inflammation 264 

(Hamilton, 2020).  It has also been reported that GM-CSF can prime dendritic cells to activate T 265 

cells, boosting thereafter the immune response by enhancing the recruitment of myeloid cells to 266 

the site of injury (Cao et al., 2015; Komuczki et al., 2019; Zhang et al., 2013). Since the goal of 267 

enhancing lung tissues integrity and dampening hyper-active immune response may lead to a 268 

drastic decrease in  morbidity and mortality rate in COVID-19 patients, administration of GM-269 

CSF as a promising therapy is being clinically investigated (Lang et al., 2020). Pre-clinical 270 

investigations revealed that overexpression of GM-CSF decreased apoptosis in alveolar wall 271 

cells, consequently preventing hyperoxia-induced lung damage (Baleeiro et al., 2006; Paine III et 272 

al., 2003). A clinical study performed by Matute-Bello et al. reported that in patients ARDS, 273 

increased GM-CSF in bronchoalveolar lavage fluid was associated with decreased mortality rate 274 

through potentially improved alveolar macrophage survival (Matute-Bello et al., 2000). This 275 

observation was further strengthened with a clinical study completed by Herold et al. showing 276 

that administration of inhaled GM-CSF to patients with pneumonia-associated ARDS enhanced 277 

oxygenation and lung compliance (Herold et al., 2014). Currently, a clinical study is assessing 278 

the potential beneficial effect of using inhaled and intravenous GM-CSF agonist in respiratory 279 

failure COVID-19 patients (Movers et al.).  280 

The potential benefits of administrating GM-CSF agonist in the context of COVID-19 281 

patients, however, should be carefully studied, particularly in the late stage of COVID-19 where 282 

lung injury is thought to be driven by the cytokine storm rather than viral overload (Siddiqi and 283 
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Mehra, 2020). Paradoxically, considerable interest in administrating anti-GM-CSF is gaining 284 

interest in the setting of COVID-19, given  that a marked increase in GM-CSF expressing natural 285 

killer, B cells, and CD+ 4 and CD+ 8 T cells was observed  in COVID-19  ICU patients when 286 

compared to  mild cases (Zhou et al., 2020). However, given the role of GM-CSF in boosting the 287 

immune response to remove pathogen and enhancing lung repair, it is important to consider that 288 

the observed increase could be a result of exacerbated COVID-19 severity and related 289 

comorbidities. The rational is that during COVID-19 infection, over-activation of myeloid cells 290 

could be a critical mediator of enhanced cytokine storm, consequently aggravating tissue 291 

damage. Therefore, anti-GM-CSF therapy may decrease the detrimental immune response, and 292 

thus exert beneficial effects (Barnes et al., 2020; Mehta et al., 2020a; Merad and Martin, 2020a), 293 

a hypothesis that was supported by a preclinical study of SARS-CoV infection animal model, 294 

showing that GM-CSF mediated the infiltration of inflammatory monocytes/ macrophages into 295 

the lungs (Channappanavar et al., 2016). Taking together, these findings suggest that GM-CSF is 296 

a key player in regulating myeloid cell induced hyper-inflammation in many tissues including 297 

the lungs. Anti-GM-CSF approach in patients with COVID-19, however, should be well 298 

monitored, given the critical contribution of GM-CSF in alveolar macrophage function and 299 

pathogen clearance.  300 

As of the start of May 2020, there were some 49 clinical trials underway targeting the 301 

cytokine storm in COVID-19 patients (Wang et al., 2020b). The vast majority involve 302 

biologicals. Besides those involving GM-CSF, prominent among them are a number of studies 303 

involving anti-IL-6 strategies. In addition, antagonistic antibodies directed against TNF, IL-1, 304 

IL-1R, and IL-8 are being investigated for attenuating excessive immune activation and the 305 

cytokine storm (Conti et al., 2020b). The rationale behind those targeting the actions of GM-CSF 306 
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latter in COVID-19 is that this cytokine constitutes an autocrine/paracrine positive feedback loop 307 

that helps drive the cytokine storm (Mehta et al., 2020c). In a preliminary study, dexamethasone 308 

showed promise in reducing mortality of hospitalized COVID-19 patients if they were receiving 309 

respiratory support (mechanical ventilation or oxygen) (Group et al., 2020), but targeting the 310 

cytokine storm via broad-spectrum immunosuppression does raise a number of concerns 311 

(Theoharides and Conti, 2020). 312 

 313 

3.6 Possible contribution of the renin angiotensin system  314 

SRS-CoV-2 can gain entry into monocytes/macrophages via ACE2, although the virus is 315 

not thought to replicate in these cells. In this way, macrophages may act as a sort of “Trojan 316 

horse”, allowing for the delivery of the virus to lung and other tissue parenchyma (Abassi et al., 317 

2020). ACE2 is a protease that forms part of the beneficial counterpoint to the renin-angiotensin 318 

system (Forrester et al., 2018). By removing the carboxy-terminus amino acid, it converts the 319 

vasoconstrictive and pro-inflammatory octapeptide angiotensin II (Ang II) to Ang (1-7), which 320 

has beneficial effects including vasodilation and anti-inflammation actions via the Mas receptor.  321 

An additional consequence of virus-mediated ACE2 loss might be increased Ang II 322 

inflammatory effects via the Ang II type 1 (AT1) receptor or diminished protective signaling via 323 

the Mas receptor (Abassi et al., 2020). Although multiple studies reported increased ACE2 324 

expression in COVID-19 patients who are on angiotensin converting enzyme inhibitors (ACEIs) 325 

and angiotensin II receptor blockers (ARBs) (Ferrario et al., 2005; Igase et al., 2008), recent 326 

emerging investigations suggested that ACEIs and ARBs could exert protective effects through 327 

up-regulating ACE2, modulating negatively therefore the severity of COVID-19 (Kuba et al., 328 

2005) and reversing the marked increase in Ang II levels, decreasing consequently its deleterious 329 
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effects on the cardiopulmonary system (Danser et al., 2020; Sommerstein et al., 2020; Zheng et 330 

al., 2020). A study done by Kuba et al. showed that the administration of exogenous ACE2 to 331 

ARDS animal model substantially decreased inflammation and enhanced oxygenation (Kuba et 332 

al., 2005). Similarly, epidemiological studies revealed that ACEIs and ARBs decreased the risk 333 

of pneumonia in general population (Liu et al., 2013; Shinohara and Origasa, 2012). Therefore, 334 

investigation aimed at testing the potential beneficial or detrimental effects of ACEIs and ARBs 335 

in the context of COVID-19 is being undertaken (Buckley et al., 2020). 336 

 337 

4. Conclusions 338 

Substantial evidence indicates that pro-inflammatory macrophages play a critical role in 339 

the pathological consequences of COVID-19. Additional evidence is needed concerning the 340 

presence phenotype of these cells. Nor is it clear what the relationship is between SARS-CoV-2 341 

infection and monocyte/macrophage activation status, namely whether these immune cells are 342 

simply responding to the viral infection or are hijacked by the virus to act in an uncontrolled 343 

rogue manner. Emerging evidence indicates that targeting the cytokines and chemokines 344 

associated with their activation or restoring their innate immunity control may provide the means 345 

to successfully combat COVID-19.  346 

 347 

  348 
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Figure Legend 723 

 724 

Figure 1 – Macrophages at the center of the cytokine storm. With inflammation, macrophages, T 725 

cells, endothelial cells and a number of other immune and mesenchymal cells, produce the 726 

monomeric glycoprotein granulocyte-macrophage colony-stimulating factor (GM-CSF) (red 727 

arrows). Besides stimulating the production of granulocytes and monocytes, GM-CSF can serve 728 

as a chemoattractant for the migration of monocytes and neutrophils into the tissue (blue arrows), 729 

and can alter neutrophil receptors. GM-CSF signaling promotes a pro-inflammatory M1 730 

macrophage phenotype and the production of a number of inflammatory cytokines and 731 

chemokines by monocyte-derived or tissue macrophages (black arrows). Macrophages 732 

themselves are direct targets of the SARS-CoV-2 via expression of the receptor for viral binding 733 

ACE2, as well as TMPRSS2 or a furin-like proprotein convertase. The effect of SARS-CoV-2 on 734 

macrophage phenotype is not defined, although inhibition of protective interferon signaling is 735 

reported. Lung macrophages also express the G protein-coupled alpha 7 nicotinic receptors 736 

(nAChRs α7) that signal through JAK-STAT3 and oppose inflammatory signaling by blocking 737 

the translocation of p65/p50 NF-κB into the nucleus upon IκBα (inhibitor of NF-κB) 738 

degradation. See text for additional details. Some of the content is adapted from Servier Medical 739 

Art (https://smart.servier.com/).  740 
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