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Abstract 

Floods can be devastating, and information about possible flood impact and early flood 

warnings are essential for public safety and response. Although weather forecasting is 

improving, weather predictions continue to be uncertain. Systematic errors originate from 

the difference between the scale of global forecasting models and the local scale needed 

for hydrological impact modeling. Ensemble prediction systems can capture uncertainty in 

the meteorological forecast variables, and different techniques exist to reduce systematic 

errors in both meteorological forecasts and the hydrological output. In a flood forecasting 

system, warnings are issued when a forecasted flood is likely to exceed a predefined flood 

threshold. In such systems, there is a balance between issuing too many false alarms and 

failing to detect flood events, the latter being considered worse.  

Flood exceedance levels are used to define flood-prone areas and are essential for 

establishing guidelines for construction and placement of infrastructure and buildings. In 

the context of climate change, flood levels should be adapted and adjusted for future 

environments. However, the effect of climate change at the regional scale, important for 

local adaptation, is not necessarily fully reflected by the global model output. In some 

regions, both flood size and patterns will change and raise new challenges and demands 

for local communities. However, it may be difficult for the decision-maker to relate 

information about climate change; therefore, alternative approaches to demonstrating 

possible scenarios of future flood impact are useful.  

This study had two focuses to address forecasting of floods and assessment of future flood 

impact.  

(1) The first was to evaluate different pre- and postprocessing techniques applied to more 

than 100 catchments in Norway. The catchments represent the diversity of the Norwegian 

hydroclimate, ranging from humid coastal to subarctic continental. The evaluation was 

targeted at revealing any seasonal and regional differences. The study also assessed the 

differences in performance of the processing schemes for the full dataset, including all the 



ii 

days of the study period, and a flood dataset, which only included days when streamflow 

exceeded the mean annual flood.  

The results of the forecasting studies showed that the processing schemes improved model 

performance for nearly all catchments and lead times, and that there were regional 

differences in the performance of the pre- and postprocessing schemes under flood 

conditions. The combination of preprocessing and postprocessing performed best for 

inland and high-elevation catchments, whereas for coastal catchments, preprocessing 

precipitation using Bayesian model averaging was most effective for short lead times and 

preprocessing temperature was more important for longer lead times. Independent of 

processing scheme, spring floods were more predictable for longer lead times than autumn 

floods, which were not predictable beyond 3–4 days ahead.  

(2) Atmospheric rivers are responsible for most large floods in the west coast of Norway. 

The second focus of this study was to assess the impact of these events in a future warmer 

climate. An event-based storyline approach was applied to explore future climate events 

and compare them to present climate events. The storyline approach enables high-

resolution models better adapted to resolving the processes and orography responsible for 

the extreme precipitation causing flooding in western Norway. A modeling chain, similar 

to the operational weather and flood forecasting systems, was applied; it included a high-

resolution global climate model, a non-hydrostatic weather forecasting model, and 37 

hydrological catchment models. By applying a storyline approach, this study aimed to 

contribute to the present knowledge about regional flood impact in a future climate. The 

operational forecasting chain provides a flood warning setting that is known to end users; 

therefore, it may facilitate the interpretation of results, enabling reference to relevant events 

previously experienced.  

The high-resolution models applied in this study are well adapted to simulating 

atmospheric river events making landfall in the west coast of Norway. By including a non-

hydrostatic regional weather forecasting model, the distribution of precipitation intensities 

in the complex topography was further improved. The two most extreme events for 30 

years of present and future climate were selected. The modeling results showed that both 
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future events would involve larger floods in more catchments compared to the present 

climate events. Although meteorological forcing is the most important variable for flood 

estimates, the initial hydrological conditions influenced the ultimate flood level and is, 

therefore, an additional aspect in the assessment of any plausible worse case. These 

combinations of factors can be another contribution to the storyline approach, in which the 

addition of relevant elements within limits of physical plausibility imitates stress testing 

commonly used in engineering and other disciplines.   
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Chapter 1 

Introduction 

1.1 Motivation 

Floods contribute to about a third of the global economic losses due to natural disasters 

(Berz 2000; Jacobeit 2003). Flood warning systems are used for immediate action to save 

lives and reduce social and economic losses, whereas from a climate change perspective, 

knowledge of future floods is essential for planning to reduce the susceptibility of 

communities to floods.   

In Norway, the first known flood warning was issued on April 6, 1860, almost two months 

before the extreme flood of that year (Roald 2013). This first warning was based on the 

knowledge that large amounts of snow in the mountains increased the probability of spring 

floods caused by snowmelt. Years later in 1938, flood information was shared by 

establishing communication lines for stations upstream to inform those downstream about 

the flood situation. In 1967, following the disastrous floods of the previous year, the first 

flood forecasting service for selected municipalities in the Glomma catchment was 

initiated. Regression equations based on upstream measurements were used to estimate the 

downstream flood levels (Hegge 1968).  However, it took until the large flood of 1987 for 

a national flood forecasting center to be established in 1989. In 1995, yet another large 

flood caused severe damage in the Glomma and Lågen catchments, and the events further 

strengthened the flood forecasting service. By November 1995, precipitation-runoff 

models, using weather forecasts as forcing, were operational for 17 catchments. However, 

the computational time was long, and hence the usefulness of the model output was limited 
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(NOU-16 1996). The current operational flood warning system has its origin in the 1995 

system, and with updates and developments now includes 145 catchments and three 

hydrological models run at different temporal and spatial resolutions.  

Rainfall is the single most important variable causing floods; however, in cold climates, 

snow plays an additional role. In Norway, snowmelt-induced floods are typical of spring 

and early summer. Rain-induced floods can be linked to specific weather systems. The rare 

southeastern storm trajectories have been responsible for the largest known floods in 

eastern Norway, whereas in southern and central Norway, the southwestern storm 

trajectories are the most frequent flood generating systems (Roald 2008, 2013). The 

atmospheric river (AR) is a special variation of the western weather system, and is defined 

as a narrow filament of very high atmospheric moisture content that is transported from the 

tropical or extratropical latitudes toward the poles (e.g., Zhu and Newell 1998; Ralph and 

Dettinger 2011; Ralph et al. 2017). Atmospheric rivers cause intense precipitation when 

orographically lifted reaching a topographic barrier like the western mountain range of 

Norway (Stohl et al. 2008), and have been responsible for the largest floods in the region 

(Stohl et al. 2008; Lavers and Villarnini 2013, 2015; Azad and Sorteberg 2017; Benedict 

et al. 2019).  While AR-related floods are characteristic of autumn and winter in western 

coastal catchments (Azad and Sorteberg 2017), snowmelt-induced or combined snowmelt- 

and rain-induced floods are common in spring and early summer and are typical floods of 

inland and high-elevation areas (Roald 2013).  

1.1.1 Flood forecasting 

To provide the exact level of flooding is difficult, and in risk assessment and subsequent 

decision-making probabilities on flood exceedance are essential. Therefore, 

implementation of uncertainty quantification in a flood forecasting system sets an added 

value. Different approaches are available for assessing uncertainty. For example, the 1999 

Norwegian warning system applied a combination of deterministic meteorological 

forecasts and hydrological and statistical models to quantify the total uncertainty in the 

hydrological forecasts. In the first step, statistical models (Follestad and Høst 1998) were 

applied to the deterministic temperature and precipitation forecasts to account for 



3 

uncertainty in the meteorological input, which created an ensemble of new values used as 

input for hydrological modeling. In the second step, an autoregressive model describing 

the hydrological model error was used to give the total empirical distribution of composite 

errors forming the probability distribution of the streamflow (Langsrud et al. 1998, 1999). 

However, the methods were computationally intensive and required recalibration for each 

important update in the weather forecasting model. Another way of assessing the 

uncertainty that originates from meteorological forecasts is to use the meteorological 

ensemble forecast. Ensembles are typically produced by running the weather forecasting 

model with perturbations (small changes) of the initial conditions, model description, and 

parameterization, and thereby provide different trajectories of future states. Figure 1 

illustrates the evolvement over time of different members of an ensemble, in which the 

distribution at the forecast time indicates the likelihood of occurrence. 

Figure 1. An ensemble of temperature forecasts showing the range of possible values over the 

forecast time (ECMWF 2017). 

Although the skill of weather forecasting has improved in the last decades (e.g., Buizza 

2005; Haiden et al. 2018), ensemble forecasts at the scale essential for hydrological 

modelling still contain errors in the mean and spread, i.e., they are biased and 

underdispersed (e.g., Buizza 1997; Wilks and Hamill 2007; Gneiting et al. 2007). A variety 

of techniques have been proposed to correct and improve the statistics of ensemble 

forecasts to provide calibrated and, thus, skillful forecasts. For an overview of techniques, 

see, for example, Vannitsem et al. (2018) and Li et al. (2017). A forecast is considered 

reliable when the observations appear to belong to the same probability distribution as the 
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forecast, e.g., for 90% of the forecasts, the observations are within a 90% confidence 

interval (Leutbecher and Palmer 2008).  

When meteorological forecasts are used as input in hydrological models, the errors 

propagate through the model. Since the relationship between the input and the output from 

the hydrological model is nonlinear, it is essential to evaluate at what stage in the 

processing chain a correction scheme is most beneficial. In this thesis, the correction 

approaches applied to the meteorological inputs are referred to as preprocessing and those 

applied to the hydrological output as postprocessing.  

Previous studies have analyzed the effects of both pre- and postprocessing on short- to 

medium-range streamflow forecasts (e.g., Zalachori et al., 2012; Roulin and Vannitsem, 

2015; Benninga et al., 2017; Sharma et al., 2018). However, the conclusions on the ultimate 

effect of pre- and postprocessing are not consistent. Only a few studies have considered 

the effect on flood forecasts (e.g., Roulin and Vannitsem 2015; Fundel and Zappa et al. 

2011). Therefore, there is a gap in the knowledge of the combined effect of pre- and 

postprocessing for a variety of catchments, and especially for floods. 

1.1.2 Future flood predictions 

The first assessment of changes in runoff and peak flows in Norway under a future warmer 

climate suggested that large snowmelt floods were likely to become rarer, whereas local 

rain-induced floods could become more severe due to increased intensity of rainfall 

(Sælthun et al. 1990). These early expectations were confirmed in later studies (Sælthun et 

al. 1998; Beldring et al. 2006; Roald et al. 2006; Lawrence and Hisdal 2011; Hanssen-

Bauer et al. 2017). Climate change studies in Norway indicate regional differences in 

floods. The snowmelt floods typical of inland, northern, and eastern catchments would be 

reduced, and the seasonality of floods would change due to changes in temperature and 

precipitation. In a warmer climate, snowmelt floods would occur earlier and diminish in 

some regions (Vormoor et al. 2015). The west coast is most prone to increased precipitation 

and rain-induced floods. In the warmer future environment, the intensity and frequency of 

weather systems like atmospheric rivers are expected to increase (Whan et al. 2020), 

resulting in an increase in atmospheric river-induced floods. Although atmospheric rivers 
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and their future changes have received attention in recent climate studies (e.g., Dettinger 

2011; Ralph and Dettinger 2011; Espinoza et al. 2018), the effect of atmospheric rivers on 

floods at the catchment scale is not well studied.  

The general approach in climate projection studies is to apply a multimodel ensemble (e.g., 

Sillmann et al. 2013; Hanssen-Bauer et al. 2017), and thereby represent the uncertainty not 

only in the description of atmospheric processes, but also in the description, coupling, and 

interactions between the atmosphere, ocean, and land surface processes/schemes. 

However, there are situations where a different approach, referred to as a storyline, seems 

appropriate (IPCC 2010). For example, specific weather processes may be better described 

and resolved by one global climate model (GCM) than by others, and in such cases, the 

model best suited to solving the specific task should be selected (IPCC 2010). Application 

of storyline approaches is advancing to provide complementary information to 

probabilistic assessments. Focusing on a few specific events allows for high-resolution 

modeling that can resolve specific atmospheric processes not possible within a multimodel 

ensemble running at a coarse spatial-temporal resolution (Hazeleger et al. 2015; Shepherd 

et al. 2018; Shepherd 2019). 

1.2 Objectives 

The main objectives of this thesis were to explore how the hydrological ensemble modeling 

chain can be set up to achieve reliable flood forecasts for a variety of catchments in 

Norway, and to further assess the impact of specific extreme flood events in a future 

warmer climate.  

Therefore, this study had two main focuses. 

(1) It evaluated different pre- and postprocessing techniques applied to more than 100 

catchments in Norway. All catchments are part of the Norwegian flood forecasting system 

and represent the diversity of the country’s hydroclimatic conditions, ranging from humid 

coastal to subarctic continental. The evaluation was targeted to reveal seasonal and regional 

differences, in addition to the differences between forecasting floods and day-to-day 

forecasting.  



6 

The following research questions were answered: 

Q1: Will pre- and/or postprocessing schemes improve daily streamflow forecasts, and to which 

variables should a processing approach be applied?  

Q2: How do the processing schemes perform under flood conditions, and are there seasonal or 

regional differences? 

(2) The second focus was on AR-induced floods in a future warmer climate. An event-

based storyline approach was applied to explore and compare the future climate to the 

present atmospheric river events affecting western Norway. All analyses were set within a 

modeling chain similar to the operational weather and flood forecasting systems. The 

modeling chain included a high-resolution GCM, a nonhydrostatic weather forecasting 

model, and a hydrological model set up for 37 catchments. The thesis addressed two 

additional questions: 

Q3: What is the added value of an event-based storyline approach in climate impact studies? 

Q4: What is the added value of higher spatial resolution in climate impact studies? 

1.3 Study design 

This thesis consists of four papers; Paper I, III and IV are published in peer-reviewed 

journals, and Paper II is ready for submission. The operational modeling chain for flood 

forecasting was used as a basis to address the research questions. Figure 3 shows the three 

modeling chains used in the thesis, and Figure 4 gives an overview of the questions 

addressed and the approaches used in each paper. Papers I and II answered questions Q1 

and Q2. Paper I addressed the effect of temperature calibration on streamflow forecasts 

and used modeling chain 1 to establish retrospective forecasts and modeling chain 2 to 

establish initial conditions for the forecasts and reference the streamflow used for 

evaluation of forecasts. In Paper II, the analysis was extended by addressing the combined 

effect of preprocessing temperature and precipitation and postprocessing streamflow on 

both streamflow and flood forecasts. Paper III addressed question Q3 and used modeling 

chain 3 to establish the flood scenarios and modeling chain 2 to establish the initial 

conditions. In this paper, the largest atmospheric river events in western Norway in the 



7 

present and future climate were compared using an event-based storyline approach. Paper 

IV addressed question Q4 and used modeling chain 3 to evaluate the added value of 

applying a nonhydrostatic weather forecasting model in the modeling chain.   

Figure 2. Overview of the three modeling chains used in the studies presented in this thesis. The 

same hydrological models (HBV-ens) were used for all chains. Modeling chain 1 was used to 

establish streamflow forecasts in which ECMWF ENS (European Center for Medium-Range 

Weather Forecasts - Ensemble prediction system) was used as meteorological forecasts and the 

internal states were obtained from modeling chain 2. In modeling chain 2, the seNorge 

(interpolated observations at 1-km grid resolution for all of Norway) daily catchment mean 

temperature (T) and precipitation (P) were used as a reference for the BMA (Bayesian model 

averaging) preprocessing, verification of the forecasts, and to establish the reference streamflow 

and the internal states of the hydrological model. The reference streamflow was used as a 

reference for postprocessing, and as verification for streamflow forecasts in modeling chain 1. In 
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modeling chain 3, the downscaled AROME-MetCoOp (Applications of Research to Operations 

at Mesoscale - Meteorological Cooperation on Operational Numerical Weather Prediction) was 

primarily used as meteorological forcing, but EC-Earth (European Community Earth-System 

Model) was used directly to evaluate the effect of resolution of high impact studies. The initial 

hydrological conditions were established by the reference HBV in modeling chain 2. All 

modeling chains are explained in more detail in sections 3 and 4.  

Figure 3. Overview of the four papers, including the research questions (Q), the modeling chain, 

analysis approaches, and underlying data used in each paper. Meteorological data by ECMWF 

ENS (European Center for Medium-Range Weather Forecasts - Ensemble prediction system), 

EC-Earth (European Community Earth-System Model), and AROME-MetCoOp (Applications of 

Research to Operations at Mesoscale - Meteorological Cooperation on Operational Numerical 

Weather Prediction). Input data used were temperature (T) and precipitation (P), whereas sea 

surface temperature (SST) defined the periods used to establish climate projection data. Extreme 

atmospheric river (AR) events were the basis for future flood evaluation.  
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Chapter 2 

Scientific background 

Dynamical weather and climate models describe complex processes of the earth system 

and consist of differential equations that describe the motion of the atmosphere and 

conservation of energy and mass. Calculations are applied to grid cells in vertical layers 

covering the globe (Fig. 4); the resolution (size) of the grid cells determines which 

processes are resolved, which are parameterized, and how well the model represents the 

topography. The hydrological cycle involving storage and transport of water in the 

atmosphere, ocean, cryosphere, and land surface (Fig. 4, left) is an important contribution 

to the energy exchange between the land surface and the atmosphere, as well as for the 

spatial distribution of water.  Surface water and rivers are quantitatively a small part of the 

hydrological cycle, but are a vital part of livelihoods and location of settlements.  

The focus of this study was to improve estimations of streamflow, which included both 

enhancing the flood forecasts up to a lead time of nine days, and to explore specific flood 

events in a future warmer climate. For both daily streamflow forecasts and flood 

projections in a future climate, the weather variables (e.g., temperature and precipitation) 

from global weather or climate models were used as input for hydrological models. The 

meteorological variables are often provided at a coarser spatial scale compared to the local 

scale of the hydrological model. To achieve meteorological variables that represents the 

scale of the hydrological model and correspond well with observations at the land surface, 

a processing step that often included both downscaling and calibration (e.g., bias 

correction) was applied to the raw meteorological forecasts. 
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Figure 4. Simplified view of a dynamic weather and climate model in which the planet is divided 

into a 3-dimensional grid, and within each grid, wind, heat transfer, radiation, relative humidity, 

and surface hydrology are calculated and interactions with neighboring grids are evaluated 

(https://celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html). 

2.1 Hydrological ensemble forecasts 

Hydrological forecasts are subject to uncertainty from various sources, including 

meteorological forcing, initial conditions, hydrological model parameters, and model 

structure.  The uncertainties might be both random, almost independent between time steps, 

or systematic, like systematic biases that persist over longer time windows (Engeland et al. 

2016). In hydrological forecasting, both interpolated observations and forecasts are used 

as forcing. For observations there are errors in measurements. Observed precipitation often 

suffers from systematic errors/uncertainty due to under-catch that depends on wind speed 

and precipitation phase (Wolff et al. 2015).  In addition, temperature and precipitation need 

to be interpolated from the station points to the catchment area used in the hydrological 

https://celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html
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model. The interpolation introduces both random and systematic errors where the latter is 

caused by the representativeness of the station location, for example how well they 

represent the elevation distribution of the catchment. The interpolated forcing is used to 

establish the initial conditions of the hydrological model before forecasts are used. 

Uncertainties in the meteorological observations therefor translates into the initial 

hydrological conditions. To quantify uncertainties in meteorological forecasts, most 

weather forecasting centers use ensemble forecasts, which are increasingly being used also 

by hydrological forecasting centers (Cloke and Pappenberger 2009; Wetterhall et al. 2013). 

Uncertainties is the meteorological forecasts are described in section 2.2. Streamflow 

observational uncertainty can be caused by stage measurement or by the rating curves, 

where floods and high streamflow values can be more uncertain (e.g., Reitan and Petersen-

Øverleir 2009). The hydrological models are simplifications of the natural process, and 

therefore uncertainty due to the model structure can be addressed by a multimodel 

approach. For example, Thiboult et al. (2016) improved the streamflow forecasts 

throughout the forecast horizon up to nine days ahead by including multiple models. The 

parameter uncertainty might be addressed by using a sample of parameter sets instead of a 

single parameter set (e.g., Vrugt et al. 2003). Beven and Binley (1992) proposed the 

Generalized likelihood uncertainty estimation (GLUE) framework to address the 

uncertainty in model identification by looking for models that are equally acceptable (often 

referred to as equifinal). 

The total uncertainty in streamflow forecasts can be assessed using hydrological ensembles 

that sample from all uncertainty sources listed above. For example, Refsgaard and Storm 

(1996), Krzysztofowicz (2001) and Kavetski et al. (2006) presented methods to sample the 

total uncertainty in hydrological modeling chains. Such approaches might be used to 

identify the relative role of each uncertainty source.  Thiboult (2016) found that accounting 

for the uncertainty in initial hydrological conditions contributed to accuracy and dispersion 

for shorter lead times in an es, whereas for longer lead times, meteorological forcing 

uncertainty was important to maintain reliability. Demargne et al. (2010) showed that the 

hydrological model uncertainty, i.e., model parameters, model structure, and hydrological 

initial condition, were more significant for shorter than longer lead times. Especially for 
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high streamflow events, the meteorological uncertainty was most important beyond two 

days ahead.  Also, Zappa et al. (2011) indicated that meteorological forcing was the 

dominant source of uncertainty in the hydrological forecasting chain.  

In this thesis, the focus was on the uncertainty caused by meteorological forcing by using 

meteorological ensemble forecasts to establish hydrological ensemble forecasts. Therefore, 

hydrological forecast uncertainty and techniques applied to improve streamflow and flood 

forecasts were assessed, all within the Norwegian flood forecasting chain.  

2.2 Meteorological ensemble forecasts  

Dynamical weather systems are complex, non-linear and eventually chaotic, and hence it 

is not possible to fully describe and resolve their physical and dynamical evolution. 

Assumptions and simplifications are made to parameterize processes, while numerical 

approximations are made for discretization of continuous equations (Vannitsem et al. 

2018). In addition to uncertainty originating in model description and parameterization, 

weather predictions are subject to the uncertainty in the initial conditions, data assimilation, 

and the chaotic nature of the atmosphere. This was acknowledged, for example, by Leith 

(1974) who suggested using Monte Carlo techniques to provide a range of alternative 

forecasts for the same future. Today, ensemble prediction systems are used to represent the 

uncertainties in weather forecasts. Singular vectors (Toth and Kalnay 1997) or breeding 

vectors (Molteni et al. 1996) are used to account for the errors in the initial conditions, 

whereas methods like the stochastically perturbed parameterization tendency (SPPT) 

scheme (Buizza et al. 1999; Palmer et al. 2009; Leutbecher et al. 2017) account for the 

uncertainty in the model’s physical description and parameterization. Figure 5 shows the 

concept of initial condition perturbation and the SPPT used to establish the European 

Center for Medium-Range Weather Forecast (ECMWF) ensemble forecasts (ENS). 
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Figure 5. The process of perturbing initial conditions and the stochastically perturbed 

parameterization tendency (SPPT; ECMWF 2017). 

Due to computer demand and the consequent high cost, there is a tradeoff between 

ensemble size and resolution when running global weather forecasting models. Studies 

have shown that shorter lead times gain the most by higher resolution, whereas larger 

ensemble size is beneficial to longer lead times (e.g., Miller et al. 2010; Buizza 2010; Kay 

et al. 2013).  

Ensemble forecasts have two main advantages (Kalnay 2003). Firstly, the average of the 

ensemble is more skillful than any single member for forecasts beyond a few days. 

Secondly, reliability can be attained from the ensemble forecast. Reliability describes how 

well the ensemble is able to capture the observations, e.g., for 90% of the time, the 

observations should be within the 90% interval of the ensemble forecasts. A reliable 

forecast with a narrow (sharp) distribution is more informative than one with a broad 

distribution that makes it more difficult to separate events from nonevents (e.g., Gneiting 

et al. 2007; Leutbecher et al. 2017). 

However, the ability of weather forecasting models to predict future states (predictability) 

is limited (Lorenz 1963, 1969). Predictability depends on atmospheric conditions and is 

higher for stable high-pressure situations, e.g., in the center of an anticyclone, compared to 

unstable atmosphere, e.g., the development of a frontal wave (Persson 2015). There are 

also regional differences, and predictability is generally higher for the extratropics than for 

the tropics (e.g., Haiden et al. 2018). In addition, due to data assimilation schemes which 
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are part of the dynamical weather and climate models, areas with high observation densities 

are less uncertain than areas with low observation densities (ECMWF 2020a). 

2.3 Pre- and postprocessing 

The grid resolution of the meteorological global ensemble forecasts is generally too coarse 

to be used directly as input for hydrological models at the local scale, which can affect the 

hydrological response. Compared to local observations, the raw (unprocessed) ensemble 

forecasts are often biased and underdispersed. Whereas bias describes the difference 

between the ensemble mean and the observations, dispersion describes the spread of the 

ensemble members and is a property of the ensemble alone. Underdispersion is most 

evident at shorter lead times, and can be explained by the growth rate of the perturbations 

applied in the ensemble prediction system, which are optimized for the medium range and 

tend to be smaller compared to those of the “real” atmosphere for the short range forecasts 

(eg., Buizza et al. 1999). Moreover, the model resolution affects the details in the 

description of topography, which is important to how well e.g. orographic enhancement of 

precipitation and convective precipitation is resolved. Along a coastline, a detailed 

representation of the coastline and hence the separation between land and ocean cells are 

important, and will affect e.g. radiation schemes and temperature estimates. Therefore, raw 

ensembles are often seen as unreliable in a statistical sense (Buizza 1997; Wilson et al. 

2007). 

For the reasons explained above, meteorological forecasts are downscaled from the grid 

resolution provided by the weather forecasting model to a scale appropriate for 

hydrological modelling. Downscaling includes dynamical and statistical approaches; 

dynamical downscaling usually involves a regional weather model providing forecasts at 

a high resolution able to resolve small-scale processes. A non-hydrostatic convective-scale 

weather prediction model like Applications of Research to Operations at Mesoscale - 

Meteorological Cooperation on Operational Numerical Weather Prediction (AROME-

MetCoOp; Müller et al. 2017) provides an explicit representation of relevant physical 

descriptions, for example by improving orographic representation and allowing for 

convective processes. However, dynamical downscaling is computationally expensive and 
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not readily available; statistical methods are, therefore, an easier and more practical choice. 

Statistical downscaling defines a statistical model that fits the ensemble forecasts to the 

observation and provides adjusted forecasts that are statistically calibrated (e.g., Hamill 

and Colucci 1997; Persson 2015).  

A selection of statistical ensemble processing methods is presented, for example, in Li et 

al. (2017) and Vannitsem et al. (2018). The methods differ in their sensitivity to length of 

training data and ensemble size and how spread and bias are corrected. To achieve 

improved streamflow forecasts, processing can be applied to the input (i.e., precipitation 

and temperature), output (i.e., streamflow), or all variables. Table 1 shows a selection of 

studies in which pre- or postprocessing was used for the end purpose of improving 

streamflow forecasts. 

Ensemble model output statistics (EMOS; Gneiting et al. 2005; Wilks and Hamill 2007; 

Vannitsem et al. 2018) are a group of regression methods in which the conditional mean 

of the distribution is a linear combination of the ensemble members and a nonconstant 

variance is allowed. The most applied variant of the method uses a normal distribution 

(non-homogenous Gaussian regression; Wilks and Hamill 2007). Another popular 

approach is Bayesian model averaging (BMA; e.g., Raftery et al. 2005; Wilson et al. 2007), 

which combines the weighted predictive distribution of each model (or ensemble member). 

The weights can be considered the prior probability attached to each model (or ensemble 

member). BMA is widely used to improve the spread–skill of bias-adjusted (calibrated) 

ensemble forecasts for a range of variables, and is applied using different probability 

distributions (kernels).  

Raftery et al. (2005) applied BMA to temperature and sea-level pressure using a normal 

density function. A Bernoulli–gamma distribution is suggested for precipitation (Sloughter 

et al. 2007). The gamma distribution was found less appropriate for streamflow (Vrugt and 

Robinson 2007) and wind (Sloughter et al. 2010). Friederichs and Thorarinsdottir (2012) 

used generalized extreme value distribution to process peak wind. Duan et al. (2007) 

applied the Box–Cox transformation to streamflow to achieve a normal distribution in a 

multimodel BMA approach. A number of studies have shown the applicability of BMA 
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(see Table 1 for examples) in which the choice of an appropriate kernel distribution, e.g. 

normal for temperature and a Bernoulli-gamma for precipitation, is important for the 

results.  

Application of BMA to precipitation generally increases the performance of the forecast 

compared to that of unprocessed forecasts, but less so for high-precipitation events 

(Sloughter et al. 2007; Liu and Xie 2014). The skill of streamflow forecasts increases when 

BMA is applied to a multimodel streamflow dataset (Duan et al. 2007; Parrish et al. 2012). 

Xu et al. (2019) further showed that by applying BMA to streamflow forecasts, it is 

possible to improve the forecasts to levels similar to those of streamflow forecasts that 

account for several sources of uncertainty (e.g., forcing, initial conditions, and hydrological 

models; Thiboult et al. 2016). The flexibility of BMA is appealing, and is relevant to 

studies in which combinations of hydrological models and different sources of forcing can 

be evaluated.  
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2.4 Observed climate change 

Flood frequency and magnitude are sensitive to changes in precipitation and temperature. 

In Europe, the spatial patterns of floods are changing both in terms of timing and magnitude 

(Blöschl et al., 2017, 2019). An analysis of daily extreme precipitation in the second half 

of the 20th century showed an increasing trend for most of Europe; however, there were 

regional and seasonal differences and the highest increase in extreme precipitation is 

detected in stations with an overall increase in precipitation (e.g., Klein Tank and Können 

2003). During the 20th century, the average temperature increase in Norway was similar to 

the global increase of 0.7 °C (Hanssen-Bauer and Nordli 1998), and precipitation in the 

same period increased by 5–15% (Hanssen-Bauer and Førland 1998). The highest 

precipitation increases averaged over the whole of Norway is about 18%, seen from the 

1970s. The increase is largest for autumn in southern and southeastern Norway and for 

spring in western and northern regions (Hanssen-Bauer et al. 2017). The observed changes 

in temperature and precipitation have an impact on floods. Vormoor et al. (2016) showed 

that there is a decreasing trend in floods in northern Norway due to reduced snowmelt, 

whereas the trend is increasing in southern and western Norway, caused mainly by an 

increase in intense rainfall events. 

2.5 Global climate projections and regional downscaling 

To assess changes in a future climate, studies depend on emission scenarios representing 

anthropogenic external forcing. Meehl et al. (2009) described the difference between daily 

forecasts and climate projections; daily forecasts are basically an initial condition problem, 

whereas multi-decadal to century climate change projections are a forced boundary 

condition problem. When the external forcing is known, global climate models (GCM) 

validated with historical data estimate rather well the forced response at a global scale (e.g., 

IPCC 2010).    

The variability and uncertainty of climate change at the local scale are larger than at the 

global scale (e.g., Hawkins and Sutton 2009). To assess the local or regional hydrological 
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impact, it is necessary to translate global model output to local values. The discrepancy in 

resolution is often solved by dynamical downscaling (regional climate models [RCM]) and 

statistical downscaling. Independent of downscaling method, it is considered essential to 

establish the local data used for impact studies. Statistical methods rely on calibration of 

the model that fits the GCM output to observations in an historical reference period, and it 

is often assumed that the statistical relationships between the global and local data stand in 

a future changing climate (e.g., Dixon et al 2016). For dynamical downscaling, the 

computer demand for running high-resolution models is high, and international initiatives 

have been established to provide climate projection data from multiple models and 

resolutions available for scientific use, e.g., the Coupled Model Intercomparison Project 

Phase 5 (CMIP5; Taylor et al. 2012) or the European Coordinated Regional Downscaling 

Experiment (EURO-CORDEX; Jacob et al. 2014; Hazeleger et al. 2015). The horizontal 

model resolution of the RCMs in the EURO-CORDEX is typically about 12 km (0.1°), 

whereas the horizontal resolution of the driving GCMs is 100 km (1.25°) or more. 

In a future climate, precipitation intensity is projected to increase globally with a more 

pronounced increase in mid and high latitudes (e.g., Meehl et al. 2007). For Norway, the 

projections show that the increase in precipitation observed in the last century would 

continue in the future (Hanssen-Bauer et al. 2017). The annual increase in the median value 

for precipitation was 3–14% at the end of the century under the RCP4.5 emission scenario 

and based on the CMIP5 12-km mulitmodel ensemble. However, there was a large spread 

in the model simulations, with the northern regions having the highest uncertainty (spread). 

Especially important for floods is that the number of days with high precipitation and high 

intensity of precipitation would increase, and consequently, the possibility of rain-induced 

floods. Assessment of floods in a future climate indicates that both the number and 

magnitude would increase in the western regions of Norway, whereas snowmelt-induced 

floods in the eastern and high-elevation areas would decrease (e.g., Beldring et al. 2006; 

Roald et al. 2006; Sorteberg et al. 2018; Hanssen-Bauer et al. 2017; Vormoor et al. 2015; 

Lawrence and Hisdal 2011). 

For a plausible assessment of floods in a future climate, it is important to represent high 

precipitation events correctly. It is generally acknowledged that a high-resolution model is 
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necessary for simulation of extreme precipitation events. Moreover, the topography must 

be well represented for accurate orographic simulation. However, the computer costs of 

high-resolution modeling are often a limiting factor. A storyline approach is presented 

below that allows for high-resolution modeling, and an alternative approach is introduced 

to assess potentially high-impact extreme flood events in a future climate. 

2.6 Storylines 

Multi-model GCM modeling approaches, in which probabilities are attached to different 

scenarios, is the traditional choice for estimating future climate change. However, the IPCC 

(2010) pointed out instances where different approaches are preferable. For example, the 

best model for the purpose should be chosen for cases in which specific weather processes 

are better described and resolved by one GCM compared to others. High-resolution 

modeling at a high computational cost is required to resolve certain events. In such cases, 

storylines following selected physically plausible trajectories (events) can be an alternative 

to the coarse-resolution GCM ensemble (Hazeleger et al. 2015). Storyline approaches are 

currently being advanced to complement information obtained from traditional 

probabilistic assessments. A storyline can be tailored to unfold past or plausible future 

events in a physically self-consistent way. A storyline based on plausibility rather than 

probability can be used to raise risk awareness of specific events and thereby enable 

decision-makers to adapt proactively (Shepherd et al. 2018; Shepherd 2019). There are 

obvious limitations to the storyline approach; since limited datasets are used, care must be 

taken in selecting events, and the validity of models and the purpose of the study must be 

transparent (Sillmann et al. 2019).   

Including a full and comprehensive modeling chain is important in the storyline approach; 

for flood impact studies, at least one hydrological model should be included. Each 

catchment has its specific properties, and a linear relationship does not necessarily exist 

between precipitation and streamflow. Schaller et al. (2016) showed that even if there is a 

signal in GCMs and RCMs, it can be dampened in the hydrological modeling. Therefore, 

conclusions on hydrological impacts should not be drawn from extreme precipitation 

events alone (Felder et al. 2017). 
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An example in which a storyline is applicable is the landfall of atmospheric rivers in a 

future climate. For such cases, it is essential to have a model resolution that can describe 

the topographic barrier (Neiman et al. 2009). Moreover, the model should be able to resolve 

the relevant processes, e.g., the small-scale sharp frontal structures that are associated with 

the development of atmospheric rivers (Whan et al. 2020). Zappa et al. (2013) 

demonstrated that CMIP5 models with a higher horizontal resolution were more effective 

at representing both cyclone number and intensity and storm-track position and orientation. 

Dominguez et al. (2018) applied a storyline approach to assess how a devastating 

atmospheric river event in 2007 might appear in a warmer future climate. They used a 

“pseudo-global-warming” approach and applied the climate change data to a modelling 

chain to reveal the atmospheric-hydrologic-hydraulics and economic impacts of the 

“future” event. However, no studies have provided a high-resolution simulation of future 

plausible atmospheric river events and followed the extreme precipitation event all the way 

to floods.  

2.7 Hydrological forecasting versus climate projections 

There are obvious differences in forecasting streamflow and assessing climate change 

impact of flood events. Forecasting is an initial condition problem and one important key 

to the success of weather and flood forecasts are observations used in assimilation schemes 

to update model states (ECMWF 2020a).  Climate change is more a boundary condition 

problem, and emission scenarios and process parameterization become even more critical 

to represent the future climate (Meehl et al. 2009). Forecasts can be verified/evaluated due 

to the relatively short time horizon, whereas the climate change projections cannot be 

verified in a similar way. We can assess how well the models performs for current climate 

and thereby assume they have a similar performance for the future climate. 

In both weather forecasting and climate projection studies ensembles are used to enable 

alternative realizations for a given time horizon and displays uncertainty from different 

sources in the modelling chain. In weather forecasting uncertainties in initial conditions 

are accounted for by initial condition perturbations. In climate projections different 

emission scenarios are used to capture the uncertainty in future environment, whereas 
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deficiencies in a model structure or process descriptions can be represented by multi-model 

ensembles or alternative parametrization schemes. Both the initial condition perturbation 

and a stochastically perturbed parameterization tendency (SPPT, Leutbecher et al. 2017) is 

used to establish the ensemble of weather forecasts at ECMWF, and thereby assessing a 

probability of future weather. The same SPPT approach can be applied within a storyline 

approach to represent deficiencies in model parametrization, and thereby establish an 

ensemble of plausible weather events at the end of the century, without any probabilistic 

interpretation. Independent of the approaches used to create an ensemble, the ultimate goal 

is to improve the weather forecasts or the climate projections, and to better capture the 

uncertainty attached to prediction in both the near and the far future.  

The resolution of the model determines which processes that can be resolved and how well 

topography can be described. Due to the coarse resolution of global weather and climate 

models, the model output is often biased when compared to the local observations. These 

biases in model output are troublesome for hydrological modeling. The model outputs 

therefor need to be downscaled and bias corrected, and similar methods are used for 

forecasting and climate projections. Regional climate models are used to get a better 

representation of regional weather and climate. To provide forecasts and projections that 

are calibrated and representative of the statistics of observations, different statistical 

approaches are applied to account for systematic and random errors in predictions. Well 

adopted correction techniques should be applied for improved streamflow and flood 

simulations at the local catchment scale.  

2.8 Gap of knowledge  

In flood forecasting, ensemble forecasts add value since they provide a probability attached 

to the exceedance of flood thresholds. Available processing techniques to remove bias and 

improve dispersion, and thereby improve forecasting skill, are described in e.g. Vannitsem 

et al. (2018). To improve streamflow forecasts most studies have focused on precipitation 

and streamflow. However, for Norway and other snow prone regions, temperature is 

important to estimate snow accumulation and snow melt, both important for correct 

streamflow forecasts. There are few studies that have looked at improvements in 
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forecasting skill for the unique and combined effect of preprocessing temperature, 

precipitation, and postprocessing streamflow for forecasting both floods and all streamflow 

values (table 1). There are no conclusive results to which variables processing should be 

applied, nor to preferred technique. Examples of findings are that streamflow forecasting 

skill will depend on flow levels (e.g., Benninga et al. 2017), lead time (e.g., Demargne et 

al. 2010; Thiboult et al. 2016), and for different seasons (e.g., Monhart et al. 2019). Several 

studies underline that to provide robust results, there is a need to test processing techniques 

for more catchments, more data, and events. Only two of the studies listed in table 1 use 

more than 30 catchments (Verkade et al. 2013; Xu et al. 2019) where Verkade et al. (2013) 

focused on preprocessing only and Xu et al. (2019) focused on postprocessing. None of 

these two studies analyzed the effects on floods. It is therefore a need for more knowledge 

on the combined effect of preprocessing temperature and precipitation and postprocessing 

streamflow on flood forecasts for a large sample of catchments. In this thesis, these 

knowledge gaps are addressed by defining the research questions Q1 and Q2 defined in the 

Introduction (Section 1.2) and answered in paper I and paper II. A flood forecasting chain 

consisting of 145 Norwegian catchments was used. The catchments represent different 

regions, varies in size, climatology, and hydrological regimes, and the study period 

includes several flood events affecting most parts of Norway. In the processing setup, 

different techniques are evaluated, for the single variable and for combinations. A special 

focus is laid on how the applied techniques affect floods, and spatial and temporal patters 

in predictability across lead times were investigated.  

Floods are expected to change in a future climate. For Norway, studies indicate an increase 

in rain induced floods, whereas the large snowmelt driven floods are expected to decrease 

at the end of the century (e.g., Hanssen-Bauer et al. 2017). Atmospheric rivers are one of 

the dominant flood-generating weather systems onto western Norway and are responsible 

for the most damaging flood events in the region (Stohl et al. 2008). Even though the future 

change in atmospheric rivers have gained attention in climate studies (e.g., Ralph and 

Dettinger 2011; Espinoza et al. 2018), the ultimate effect on floods at the catchment level 

is not well studied. In this thesis research questions Q3 and Q4 are addressed in paper III 

and paper IV. An event-based storyline approach (Hazleger et al 2015) is used to provide 
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a high-resolution modeling alternative to assess the impact of future extreme precipitation 

events. One argument for applying a storyline is to raise the awareness of risk by focus on 

plausibility rather than probability (Shepherd et al 2018). One problem with assessment of 

atmospheric river induced floods is that the extreme precipitation is enhanced by 

orographic lifting, and therefore a high horizontal model resolution is essential for a good 

representation of topography.  Most global climate models run at a coarse resolution not 

well suited to describe orographic precipitation and nor the atmospheric river induced 

floods. In this thesis the entire modelling chain comprises a high-resolution global climate 

model, a regional weather prediction model, and a catchment based hydrological model. 

The weather and hydrological models are in operational use, and therefor optimally 

calibrated to the region of interest, here 37 different catchments over western Norway are 

included.  This enables an insight into the flood impact of future atmospheric river events 

for a larger region. Further, the use of known flood reference, for example flood 

exceedance thresholds and warning colors are similar to those in operational use, mitigates 

any mismatch between the perception of climate change between the climate scientist and 

the user of the data. 
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Chapter 3 

Study area and data 

3.1 Norwegian climatology and catchments 

The Norwegian topography and diversity of climatic zones (Hanssen-Bauer and Förland 

1998; Hanssen-Bauer and Nordli 1998) create large variations in precipitation and 

temperature patterns, resulting in a variety of hydrological regimes (Gottschalk et al. 1979). 

Steep mountains combined with a temperate oceanic climate cause high annual 

precipitation in western coastal Norway (Fig. 6, left). Inland eastern and northern areas of 

Norway experience less precipitation and a larger difference between winter and summer 

temperatures compared to the coastal areas (Fig. 6).  

Hanssen-Bauer et al. (2017) gave an overview of the past, current, and future climate in 

Norway. In the assessment of climate change in Norway, a multimodel ensemble for each 

of the emission scenarios RCP4.5 and RCP8.5 was included. The RCP4.5 projections 

indicate a temperature increase of about 2–4 °C with the highest increase in the northern 

regions, especially in winter (Fig. 7, right). RCP8.5 (Fig. 8) indicates an overall higher 

temperature compared to RCP4.5, while the relative temperature increase is highest in the 

winter/cold season. The percent change in precipitation is higher under RCP8.5 than under 

RCP4.5; however, the spatial precipitation patterns of the two scenarios are similar.  
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Figure 6. Mean annual precipitation in mm (left), mean annual summer temperature in °C 

(middle), and mean annual winter temperature in °C (right). All data were for the reference 

period 1971–2000 (Norwegian Centre for Climate Services [NCCS],2020). 

Figure 7. Changes in precipitation (left) as percent change at the end of the century (2071-2100) 

compared to the reference period, change in mean summer (middle), and winter temperature 

(right) as degrees Celsius. The reference period was 1971–2000 and the simulations were under 

RCP4.5 (Norwegian Centre for Climate Services [NCCS] 2020). 
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Figure 8. Changes in precipitation (left) as percent change at the end of the century (2071-2100) 

compared to the reference period, change in mean summer (middle), and winter temperature 

(right) in degrees Celsius. The reference period was 1971–2000 and the simulations were under 

RCP8.5 (Norwegian Centre for Climate Services [NCCS] 2020). 

 

 

Figure 9. Catchments included in the operational flood forecasting system, partitioned into 

regions; north (N), mid (M), west (W), south (S), and east (E). 
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The flood forecasting system in Norway is based on streamflow forecasts for 145 

catchments, representative of most regions and climates (Fig. 9). The catchments vary in 

size from 3 to 15447 km2 and in elevation from 103 to 2284 m. The catchments are mostly 

unregulated, and can be divided into five regions, north (N), south (S), west (W), mid (M), 

and east (E), which reflect major hydroclimatological zones (Hanssen-Bauer et al. 2017; 

Vormoor et al. 2016). Despite the regional and seasonal variations in temperature, most 

catchments under the present climate experience subzero temperatures and seasonal snow 

cover. Any snow stored during winter is responsible for the low flows in winter and the 

possibility of snowmelt-induced floods in spring. In Norway, two basic hydrological 

regimes can be defined. High flows during the autumn and winter due to heavy rainfall are 

typical of the coastal regions (S, W, and M), whereas the inland and north (E and N) regions 

more often have high streamflow during the spring due to snowmelt. However, many 

possible transitions exist between these two basic streamflow patterns within each region 

(e.g., Gottschalk et al. 1979).  

3.2 Meteorological observation: SeNorge  

In this study, the gridded SeNorge version 1.1 data (Tveito et al. 2005; Tveito 2007; Mohr 

2008) were used as temperature and precipitation references in Papers I and II, and in 

modeling chain 2 (see Figure 3) to establish the initial model conditions, and as forcing for 

the HBV model to calculate the simulated reference streamflow in all papers. The SeNorge 

dataset is a 1×1-km interpolated grid based on the available station data at each time step 

and provides daily data back to 1957. The interpolated temperature is created by detrending 

the observed 24-h mean temperature to sea level. The temperature interpolation accounts 

for location, including latitude and longitude. The difference in elevation within a 20-km 

radius from the measuring point gives an indirect measure of topography, and affects 

vertical temperature changes (Tveito 2002; Tveito et al. 2005; Mohr 2008). The gridded 

SeNorge precipitation data use precipitation corrected for undercatch. The interpolation is 

based on a triangulation approach that takes into account the station elevation and a digital 

elevation map of Norway (see Mohr [2008] for details). Since most measuring stations are 
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placed at low elevation close to populated areas, the observational points for higher 

elevations and sparsely populated areas are fewer and are hence more uncertain.  

3.3 Meteorological forecasting: ECMWF ENS  

This study used the ECMWF temperature and precipitation forecast ensemble (ENS) for 

the period March 3, 2013 to December 31, 2015, with an original grid resolution of 0.25° 

or approximately 32 km (i.e., model cycles/versions 38r1/2, 40r1, and 41r1; ECMWF 

2020). The ENS consists of a control forecast for which the forecast model is run using the 

best initial conditions, model description, and model parameters. The 50 additional 

members of the ENS are generated by adding small perturbations to the initial conditions 

and to the model physics schemes, subsequently running the model with different perturbed 

conditions compared to the control forecast. The ensemble represents the weather forecast 

uncertainty, with ideally a small spread in the ensemble indicating a stable atmosphere and 

less uncertain forecasts compared to an unstable atmosphere resulting in a large spread. A 

more detailed description of the ECMWF ENS system is provided, for example, in Buizza 

et al. (1999, 2005) and Persson (2015). The ECMWF ENS was used in modeling chain 1 

in Figure 3 to generate retrospective streamflow forecasts.  

3.3.1 ECMWF IFS cycle - to choose a representative model version 

The ECMWF forecasting models consist of a set of applications that are available in the 

Integrated Forecasting System (IFS; ECMWF [2020c]) and undergo changes relatively 

often. In 2016, there was a major upgrade that changed the horizontal and vertical 

resolution as well as introducing changes to the radiation schemes (IFS 41r2). The higher 

resolution and the radiative scheme solved to a large degree some of the temperature biases 

that were apparent along the Norwegian coast (Seierstad et al. 2016). Moreover, an earlier 

experimental version of the IFS 41r1, which included a higher horizontal resolution, 

improved the precipitation intensity data of the extreme events that affected western 

Norway in October 2014 (Figure 2 in EFAS 2014).  

Based on the findings above, it was anticipated that the new IFS cycle 41r2 would improve 

the weather forecasts, and ultimately the hydrological simulations. An experimental dataset 
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was used in which IFS 41r2 was rerun for two extreme precipitation events affecting 

Norway in 2014 (original ENS, IFS 40r1) and 2015 (original ENS, IFS 41r1), thereby 

enabling a comparison of the same events of the original IFS ensemble and the new 

ensemble run by IFS 41r2. Both chosen events caused extensive flooding in affected 

catchments, and the floods were not well captured using the original ensemble. The first 

event in 2014 improved the forecasts using IFS 41r2 for 50% of the affected catchments. 

IFS 41r2 for the second event, which affected southern Norway in 2015, improved the 

forecasts for all catchments. However, flood size was underestimated for all catchments, 

and neither the original nor the IFS 41r2 ensemble forecasts were able to predict the 

observed floods, see for example Stordalsvatn in Figure 10.  

Figure 10. An example of the performance of the two IFS versions for the 2014 atmospheric 

river event in the Stordalsvatn catchment. The issue date was 5 days before the peak of the event. 

crps.exp = continuous ranked probability score (CRPS) for the experimental ensemble (IFS 

41r2); crps.org = CRPS for the original ensemble (IFS 40r1). The black line is the reference 

flood (simulated using observations), blue line is the median of the experimental ensemble (the 

ensemble range indicated by blue transparent color), and the dotted blue line is the median of 

the original ensemble forecast (the light blue transparent color indicating the range of the 

original ensemble). 

The comparison of IFS cycles showed that the new model cycle improved the streamflow 

forecasts. However, the improvement was not sufficient to provide reliable forecasts for 

the selected events; therefore, some processing seemed appropriate also for the new IFS 

cycles. Since this study focused on floods, the earlier dataset covering a period with many 
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floods was chosen instead of the resent dataset for a period consisting of unusually few 

floods. 

3.4 Future climate projections 

3.4.1 EC-Earth 

The global climate model EC-Earth is based on the ECMWF integrated weather forecasting 

system IFS cycle 31r. EC-Earth version 2.3 (Hazeleger et al. 2010; Haarsma et al. 2013) 

provided the data used to evaluate the impact of future climate atmospheric rivers on 

western Norway (modeling chain 3 in Figure 3). EC-Earth is a high-resolution global 

model (resolution of about 25 km, T799L91). By comparing the integrated water vapor 

transport (IVT) of the model simulations to IVT of the ERA-Interim (Dee et al. 2011), 

Whan et al. (2020) showed that the model is well adapted to represent both the intensity 

and frequency of atmospheric rivers reaching the west coast of Norway. The RCP4.5 

emission scenario (van Vuuren et al. 2011) was used to represent a future climate. A 

detailed description of the model setup is provided by Haarsma et al. (2013), and the model 

has been validated and used in several studies (e.g., Haarsma et al. 2013; Bintanja et al. 

2014; Baatsen et al. 2015; Van Haren et al. 2015; Van der Linden et al. 2018). In this study, 

two extreme precipitation events were selected from a present-day scenario between 2002 

and 2006 and a future scenario between 2094 and 2098. A perturbation method similar to 

the operational method used at ECMWF (SPPT, Figure 5) was applied to the selected 

events. By rerunning EC-Earth for all perturbed events, an ensemble of 10 members were 

created for each original event.    

3.4.2 AROME-MetCoOp 

The non-hydrostatic weather forecasting system AROME-MetCoOp (Müller et al. 2017) 

is the operational short-range (1–3 days) forecasting system for Norway, Sweden, and 

Finland. In the operational setup, the AROME-MetCoOp model was initialized and forced 

at the lateral boundaries by ECMWF IFS, which was replaced by EC-Earth for the setup 

used in Papers III and IV. The high-resolution (2.5 km) temperature and precipitation 

forecasts from AROME-MetCoOp are used as input for the operational flood forecasting 
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systems in Norway. Although the ECMWF IFS is able to represent reasonably well the 

large-scale precipitation patterns for extreme events, precipitation intensities and spatial 

distribution are better represented by AROME-MetCoOp; this is mainly explained by the 

better representation of orographic precipitation by the model’s spatial resolution (Müller 

et al. 2017).  

In this thesis, the operational weather prediction model AROME-MetCoOp was used in 

modeling chain 3 (see Figure 3) to downscale the extreme events selected from the high-

resolution EC-Earth GCM. In the operational setting, AROME-MetCoOp has been shown 

to give a better spatial representation of extreme precipitation than ECMWF (Müller et al. 

2017) and is, therefore, suitable for the purpose of assessing flood impact of atmospheric 

river events in a future climate.  
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Chapter 4 

Methods 

4.1 Modeling framework 

A simplified presentation of the models and the pre- and postprocessing techniques used 

in the different studies of this thesis are shown in Figure 11. In the operational flood 

warning setup, both ECMWF-HRes and AROME-MetCoOp were used as forcing, but for 

different lead times. The warning levels were defined by the exceedance of thresholds 

estimated from the reference streamflow.  

Figure 11. Simplified operational flood forecasting chain: Top row shows the data and models 

used in the Norwegian operational chain, followed by typical models and processing steps, and 

last the three approaches applied in Paper I-IV.   



38 

In Papers I and II, different statistical pre- and postprocessing techniques were 

implemented and evaluated for all the data and for floods. For the future flood impact 

storylines (Papers III and IV), the regional weather prediction model AROME-MetCoOp 

was used to downscale and improve the spatial representation of weather for extreme 

events, and thereby potentially improve the flood simulations.  

4.2 Precipitation–runoff model 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Bergström 1976; Sælthun 

1996; Beldring 2008) is a conceptual precipitation–runoff model implemented in the 

operational Norwegian flood-forecasting service. The HBV catchment scale, which uses 

daily average temperature and precipitation, was selected to estimate streamflow in this 

thesis. In the HBV model, each catchment is subdivided into ten equally large elevation 

zones. Each zone accounts for vertical precipitation and temperature gradients. Snow, soil 

moisture, and groundwater processes were described by separate modules and represented 

the water balance in the catchment by  

𝑃 − 𝐸 − 𝑄 =
𝑑

𝑑𝑡
[𝑆𝑆𝑃 + 𝑆𝑆𝑀 + 𝑆𝐺𝑊 + 𝑆𝑆𝑊],

where P was precipitation, E was evapotranspiration, Q was streamflow, 𝑆𝑆𝑃 was snowpack 

storage, 𝑆𝑆𝑀 was soil moisture storage, 𝑆𝐺𝑊 was groundwater storage, and 𝑆𝑆𝑊 was soil 

water storage.  

For calibration and validation of the hydrological model, SeNorge version 1.1 precipitation 

and temperature data described in Section 3.2 is used as forcing, whereas the streamflow 

observations are from the hydrological database of the Norwegian Water Resources and 

Energy Directorate (NVE; https://www.nve.no/hydrology/). The Nash–Sutcliffe 

efficiency (Nash and Sutcliffe, 1970) and volume bias are used as calibration and 

validation metrics for the operational models (Ruan Gusong, personal communication, 

June 15, 2016). The Nash–Sutcliffe efficiency (positively oriented with an optimal value 

of 1) averaged for all catchments for the calibration period (1980 to 1995) is 0.74 with 

zero volume bias, and 0.71 with 2.2% volume bias for the validation period (1996 to 

2012). This thesis applied the same setup and parameters as those of the operational 

flood-forecasting model. 

https://www.nve.no/hydrology/
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To avoid biases and uncertainties originating from the hydrological model, it is common 

practice to evaluate the effect of the processing scheme on streamflow by using a reference 

forecast, which is a simulated streamflow from the hydrological model forced with 

meteorological observations. This approach was adopted in this thesis, and SeNorge v1.1 

was used to establish the reference streamflow (see Figure 2(2), reference streamflow Qo). 

4.3 Pre- and postprocessing 

The meteorological and hydrological ensemble forecasts were pre- and postprocessed by 

including statistical processing approaches, which are described in more detail below.  

The raw forecasts were downscaled by applying a nearest neighbor interpolation. Nearest 

neighbor was chosen primarily since it is less computer demanding compared to, for 

example, bilinear interpolation. Whenever no other preprocessing techniques were applied, 

temperature was adjusted using a standard atmospheric lap rate of 0.65 ℃/100 m to 

account for the discrepancy between the different grid elevations (Sheridan et al. 2010; 

Persson 2015). 

4.3.1 Grid calibration - MetNorway 

This thesis applied the operational preprocessing methods used by the Norwegian 

Meteorological Institute (MET Norway); all methods are available at 

https://github.com/metno/gridpp/. The calibration parameters used at the time of the study 

period were provided by MET Norway. The processing schemes were applied to the raw 

ensemble forecasts and for the study period 2013–2015, and thereby established a new set 

of ensemble forecasts referred to as the calibrated ensembles (Tcal and Pcal in Figure 2). 

The following is a summary of the methods used by Met Norway to establish the calibration 

coefficients.  

MET Norway established the calibration parameters for temperature by applying quantile 

mapping (Seierstad et al. 2016; Bremnes 2007) using both ensemble ENS re-forecast 

(Owens and Hewson 2018) and Hirlam (High Resolution Limited Area Model; Bengtsson 

https://github.com/metno/gridpp/
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et al. 2017) gridded temperature forecast. Mapping is applied to the gridded forecasts, and 

for each grid cell. Monthly unique quantile transformation coefficients are determined by 

using data from a three-month window centered on the target month, e.g., the May analysis 

consists of April, May, and June. The same coefficients, based on mapping the first 24 

hours, are applied to all lead times and members. A 1:1 extrapolation is used for forecasts 

outside the observation range. 

The method applied to precipitation is mainly targeted at improving the spread of the 

ensemble, and 200 WMO station observations are used to establish the parameters. For 

precipitation, a Bernoulli–gamma distribution is applied to account for the non-continuous 

nature of daily precipitation. A logistic regression is used to describe the discrete part of 

precipitation (i.e., rain or not), and uses the ensemble mean and the fraction of members 

with less than 0.5 mm precipitation as predictors. The continuous part is described by the 

gamma distribution with the mean and variance as predictors. To fit the bias model, the 

cube-transformed mean precipitation is used, whereas the untransformed mean forecast is 

used to fit the variance model. 

In this thesis, calibrated temperature ensemble forecasts were obtained for all issue dates 

by using the calibration parameters that MET Norway applied operationally at the time 

(approx. 2013 to 2015). The data were, therefore, similar to what would have been 

available for operational weather forecasting at that time. For the CAL methods, the 

corrections were applied to each ensemble member. Keeping the order of the members 

ensured consistency between the calibrated temperature and precipitation members, which 

is important for hydrological modeling. By applying the available meteorological methods, 

it was possible to evaluate whether the improved skill in the weather forecasts propagated 

to the streamflow and flood forecasts.  

4.3.2   Bayesian model averaging 

BMA is an adaptive method for pre- and postprocessing, and is used to correct spread errors 

in bias-corrected ensemble forecasts (e.g., Wilson et al. 2007). This thesis adopted the 

BMA approach suggested by Fraley et al. (2010), which includes a simple bias adjustment 

applied to each ensemble member using a linear regression. The output from the BMA is 
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a probability density function (pdf), which is a weighted average of the pdfs centered on 

each of the corrected forecast members (eq. 1). For each ensemble member, the pdf 

(referred to as the kernel) for the quantity to be forecast, y, is denoted by 𝑓(𝑦|𝑥𝑚). For an

ensemble consisting of M members, xm is the forecast by ensemble member m, and the 

density function conditioned on all M ensemble members is the weighted average of the 

pdf for each member: 

𝑓(𝑦|𝑥1, … , 𝑥𝑀)~ ∑ 𝑤𝑚𝑓(𝑦|𝑥𝑚)

𝑀

𝑚=1

 1.

where ∑ 𝑤𝑚 = 1𝑀
𝑚=1  and the weights are interpreted as the posterior probabilities of each 

ensemble member. When the ensemble members are indistinguishable (exchangeable), as 

is the case with ECMWF ENS, all members are given equal weights, and the BMA mean 

is treated as a constant for all members (Fraley et al. 2010). To account for the specific 

properties of temperature, precipitation, and streamflow, different distributions were used 

as kernels (see below for details). 

Different training lengths were evaluated to train the BMA models. A training length of 45 

days, meaning the 45 daily forecasts and observations prior to the forecast issue date, was 

used to establish the BMA parameters. Unique parameters were hence obtained for each 

issue date, catchment, and lead time.  

4.3.3 Probability density distributions 

The normal distribution (eq. 2) was used as the kernel for preprocessing temperature 

(Raftery et al. 2005) and postprocessing Box–Cox transformed streamflow (Box and Cox 

1964; Duan et al. 2007). The mean was specified as 𝑎0 + 𝑎1𝑥𝑚, where xm was the 

temperature forecast for ensemble member m and a0 and a1 were regression parameters to 

account for any bias. The variance 𝜎2 was defined as the same for all ensemble members. 

Then, the pdf for the forecasted variable 𝑦𝑡 conditioned on all ensemble members was 

f(𝑦𝑡|𝑥1, … , 𝑥𝑀)~ ∑ 𝑤𝑚Ɲ(𝑎0 + 𝑎1𝑥𝑚, 𝜎2)

𝑀

𝑚=1

2.
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For postprocessing streamflow, the BMA with a normal kernel, similar to eq. 2, was 

applied, where forecasts xm was replaced by the Box–Cox transformed streamflow 𝑞𝑚
∗.

A Bernoulli–gamma distribution was used to model precipitation as suggested by 

Sloughter et al. (2007). The pdf for the forecasted variable, 𝑦𝑝, was established for each 

member in eq. 3 and combined the probability for zero precipitation (𝑓(𝑦𝑝 = 0|𝑥𝑚)) and the 

pdf for the amount of precipitation (ℎ(𝑦𝑝|𝑥𝑚)). The second part of eq. 3 described the pdf 

of precipitation, given that it was larger than zero. The I{*} was unity if the condition in 

brackets was true and zero otherwise, 

For the indicator function for ensemble member m, the probability of zero precipitation 

was given by eq.4,  

𝑓(𝑦𝑝 = 0|𝑥𝑚) =
1

1 + 𝑒𝑥𝑝 (𝑏0 + 𝑏1𝑥𝑚
1/3

+ 𝑏2𝛿𝑚) 4. 

where b0, b1 and b2 were regression parameters common to all ensemble members, and 𝛿𝑚 

equaled unity if xm = 0 and zero otherwise. Following Sloughter et al. (2007), the cube-root 

transformation of precipitation (𝑦𝑝) was assumed to follow a gamma distribution in which 

the mean (𝜇𝑚) and variance (𝜎𝑚
2 ) of the distribution depended on the original forecast 

ensemble member (𝑥𝑚) as described in eq. 5. 

𝜇𝑚 = 𝑐0 + 𝑐1𝑥𝑚
1/3

 and 𝜎𝑚
2 = 𝑑0 + 𝑑1𝑥𝑚 5. 

The parameters 𝑐0 and 𝑐1 𝑑0 and 𝑑1 were the same for all ensemble members. In the case 

of temperature, the BMA-pdf for precipitation was specified as the weighted average of 

the pdf for each ensemble member. 

𝑓(𝑦𝑝|𝑥𝑚) =  𝑓(𝑦𝑝 = 0|𝑥𝑚)𝐼{𝑦𝑝=0} + 𝑓(𝑦𝑝 > 0|𝑥𝑚)ℎ(𝑦𝑝|𝑥𝑚)𝐼{𝑦𝑝>0} 3.
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4.3.4 Rank correlation maintaining temporal and intervariable consistency 

In addition to preprocessing the meteorological variables to achieve downscaled and 

calibrated forecasts applicable for use in hydrological models, it is important to preserve 

physical and temporal consistency between the variables. In this thesis, the consistency 

between members and lead times were preserved in the gridded calibration approach. Tcal 

and Pcal were produced by applying the processing schemes to each ensemble member 

separately. However, the BMA models define a probability density function from which 

51 new ensemble members are randomly drawn for each lead time and variable 

independently. The temporal trajectory and the consistency between temperature and 

precipitation is thereby lost. An empirical copula approach (Wu et al. 2018) can be used to 

reconstruct a structural intervariable relationship for multivariate postprocessing. There are 

different strategies to establish a reference structure. The Schaake shuffle (e.g., Clark et al. 

2004) uses observations to create the reference structure, whereas ensemble copula 

coupling (ECC, Schefzik et al. 2013) uses the structure of the raw ensemble. This thesis 

applied a simplified version of the copula approach. It applied a transfer function defined 

by the ranked correlation between the original ensemble members and the new BMA-

processed values. The catchment average temperature and precipitation values for all 

ensemble members were used to establish the transfer functions. For each variable and lead 

time, the ensemble member with the highest value from the original ensemble was 

reassigned the highest value from the new BMA-processed ensemble, the original member 

with the second highest value was reassigned the second highest value, and so on. 

Consequently, it was possible to keep temporal and intervariable consistency for each of 

variable.  

4.4 Evaluation of performance 

The performance and skill of the applied processing schemes are assessed by appropriate 

evaluation measures. Different measures will enhance specific characteristics of the 

forecasts, and the choice of performance measure may affect the choice of model, model 

setup, parameter values, or processing schemes (Jolliffe and Stephenson 2012).  
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4.4.1  Reliability 

Rank histograms (e.g., Hamill and Colucci 1997) are useful visual aids to establish the 

reliability of ensemble forecasts. The observations are ranked with respect to the 

corresponding ensemble forecast, and the shape of the rank histogram can provide insights 

on the strengths and deficiencies of the ensemble forecast system. A U shape indicates 

underdispersion in which a larger than expected part of the observations falls in the tails of 

the distribution, whereas a convex shape indicates overdispersion. Sloped rank histograms 

indicate systematic forecast bias (Hamill, 2001). Decomposition of the chi-squared test 

statistics for the rank histogram is suggested by Jolliffe and Primo (2008), and provides 

numerical values to describe the slope (bias) and convexity (dispersion) of the rank 

histogram. This approach was used in Paper I.   

Paper II assessed reliability by a Q–Q plot in which the cumulative relative frequencies of 

observations from the rank histograms were plotted against the cumulative uniform 

distribution. These plots enabled comparison of the reliability of all processing schemes 

for each catchment and evaluation of bias and under- and overdispersion. A perfect reliable 

forecast will follow the 1:1 line.  

4.4.2 The continuous ranked probability score and skill score 

The continuous ranked probability score (CRPS; Hersbach, 2000) measures the distance 

between the ensemble forecast and a reference observation. The ensemble forecast is 

expressed by the cumulative density function, and if the forecast is a single value, CRPS 

equals the mean absolute error. CRPS has the same dimensions as the evaluated variable, 

and is the preferred score to assess the performance of ensemble forecasts. CRPS measures 

the distance between the observation xo and the ensemble forecast, where the latter is 

expressed by the cumulative density function 𝐹𝑥(𝑥):

𝐶𝑅𝑃𝑆(𝐹𝑥 , 𝑥𝑜) = ∫ [𝐹𝑥(𝑥) − H(𝑥 − 𝑥𝑜)]2𝑑𝑥

∞

−∞

6. 

where H is the Heaviside function, which is zero when the argument is less than zero, and 

one otherwise. 
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Skill scores are convenient to compare the relative performance of variables or between 

catchments since these scores are dimensionless. The continuous ranked probability skill 

score (CRPSS; eq. 7) is calculated by including a benchmark (CRPSB) that the new forecast 

should outperform.  

𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆

𝐶𝑅𝑃𝑆𝐵

7. 

The daily climatology data were used as a benchmark in Paper I. A climatological 

temperature ensemble of 55 members were created from the daily catchment mean values 

from each day of the year, and similarly, daily streamflow climatology was established 

from the reference streamflow calculated by the HBV model, forced with 55 years of 

temperature and precipitation. The focus of Paper II was evaluation of different processing 

schemes, and the raw streamflow forecasts were used as the benchmark. This allowed 

evaluation of the relative improvement of streamflow forecasts by applying different 

processing schemes.  

4.4.3 Contingency tables, hits, and false alarms 

The occurrence and nonoccurrence of floods are binary events that can be summarized in 

a contingency table (table 2).  

Table 2. The contigency table gives an overview of hits (H), missed events (M), false alarms (F), 

and correct nonevents (N), and is used to evaluate the performance of a forecasting system. 

Occurrence of event 

No Yes 

F
o
re

ca
st

ed
 

ev
en

t 

No 𝑵 𝑴 

Yes 𝑭 𝑯 

For an ensemble system, a hit is a certain probability or a defined number of ensemble 

members exceeding a certain threshold. Since floods are rare events, the number of events 
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is small compared to the number of nonevents. If correct negative warnings are included 

as successful forecasts, the evaluation would result in a high score with little information 

about the performance during floods. A high hit rate is the main goal; however, it should 

not be at the cost of issuing too many false alarms. The critical success index (CSI; 

Donaldson et al. 1975; Jolliffe and Stephenson 2012) is a score that accounts for and will, 

therefore, penalize the hits by both the missed events and the false alarms (eq. 8), 

𝐶𝑆𝐼 =  
𝐻

𝐻 + 𝐹 + 𝑀
8. 

Therefore, the CSI was chosen as the method to evaluate the performance of the processing 

schemes in Paper II to specifically mimic the operational value of processing schemes for 

multiple catchments during flood conditions.  

4.5 Evaluation of future floods 

In previous studies, the probabilities of floods, the change in seasonality, flood generating 

processes, and the changes in return levels have been assessed by multi-model ensembles 

including different GCM, RCM, bias correction methods, and emission scenarios (e.g., 

Beldring et al. 2006; Lawrence and Hisdal 2011; Hanssen-Bauer et al. 2017). This thesis 

focused on a modeling chain that is specifically well adapted to assess the impact of future 

floods caused by ARs. High-resolution modeling is computer demanding, and for this 

reason, the most extreme events were selected. The selection represented plausible events 

with the highest precipitation within the study area and were further perturbed to assess 

some of the model uncertainty. Model output was downscaled to the resolution of the 

impact modeling and consistency between the variables was kept. 

The event-based storyline approach was used in Papers III and IV to infer changes in flood 

impact between present and future extreme events. The number of realizations that 

exceeded the different flood warning thresholds was compared between the present and 

future climate events. The 50-year flood (Q50) estimated for the present climate was used 

as a threshold. The largest floods from the observational record (60 years) were compared 

to the largest floods from the projection to see whether this level was exceeded at any 
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catchments by any realizations. Furthermore, the contribution to events of initial 

hydrological conditions relative to perturbations of the GCM was evaluated by calculating 

the relative mean absolute deviation caused by the ensemble and by the initial hydrological 

conditions.  
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Chapter 5 

Results 

This section provides a summary of the results of the four papers constituting this thesis. 

All studies were focused on the catchments of the Norwegian flood forecasting system. A 

total of 145 catchments were part of this study, although not all catchments were included 

in all sub-studies. The two first papers included catchments from all Norway and a variety 

of climatic regimes and events, whereas the last two papers focused on the impact of 

atmospheric rivers and selected catchments in western Norway. Most catchments were 

included in Paper I. The evaluation in Paper II included the catchments that exceeded the 

flood level in the two-year period of the analysis. In Paper III, the catchments within the 

western region, most susceptible to ARs, were investigated. In Paper IV, two catchments 

were highlighted to show the hydrological variability at different temporal and spatial 

model resolutions for a present climate and a future climate atmospheric river event. 

5.1 Paper I: Streamflow forecast sensitivity to air temperature 

forecast calibration for 139 Norwegian catchments 

Precipitation is the most important flood generating mechanism in most catchments. 

Snowmelt, which is controlled to a large degree by temperature, is another important flood 

generating mechanism for regions with seasonal snow cover. Most Norwegian catchments 

experience subzero temperature with seasonal snow cover during winter, and are hence 

prone to snowmelt floods in spring. The main objective of Paper I was to investigate the 

effect of temperature forecast calibration on the streamflow ensemble forecast skill. 
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Furthermore, the paper aimed to detect any regional patterns or catchment characteristics 

that influence the temperature and streamflow forecast skill.  

This paper applied the temperature calibration approach used by the operational weather 

forecasting service to remove biases in the uncalibrated raw temperature forecasts (Tens) to 

obtain calibrated forecasts (Tcal). By running the hydrological model with observed 

precipitation in combination with the uncalibrated (Tens) and the calibrated (Tcal) 

temperature forecasts, it was possible to assess the sensitivity of streamflow to temperature 

calibration alone.  

The results showed that temperature ensemble calibration affected both temperature and 

streamflow forecast skill for most catchments, but season and region affected the skill 

differently. Figure 12 shows the skill change between calibrated and raw temperature and 

streamflow forecasts for spring and autumn. In autumn, the skill was improved for both 

temperature and streamflow, which was not the case for spring in which some catchments 

had negative skill change values for both temperature and streamflow.  

Figure 12. (Figure 5 in Paper I). Skill change for temperature (vertical axis) and streamflow 

(horizontal axis) for spring and autumn. Colors represent different regions in Norway: E = east; 

S = south; W = west; M = mid; and N = north. Grey line indicates the one-to-one relationship.  

The high skill improvements for temperature in the autumn resulted in improved 

streamflow forecast skill; however, the streamflow skill improvements were not of the 

same magnitude as the temperature skill improvements. This can be explained by subzero 
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temperature improvements that have less effect on streamflow. The cold bias in 

temperature was most apparent for the coastal regions in autumn and winter. Therefore, 

the effects of temperature calibration was dependent on both region and season. 

In spring, although the temperature skill change was smaller than in autumn, the 

streamflow skill changes were more sensitive to temperature skill changes, apparent from 

a relationship closer to the one-to-one line in Figure 12. For temperature forecasts, it was 

useful to apply a regional division to identify spatial patterns in forecast skill. For 

streamflow, the spatial patterns were not so obvious, and it was not possible to be 

conclusive on any relationship between catchment characteristics and streamflow forecast 

skill. 

In summary, the effect of temperature on forecast skill could not be neglected, and the 

streamflow forecasts were sensitive to the quality of temperature forecasts in climates with 

seasonal snow cover.  

5.2 Paper II: The benefit of pre- and postprocessing streamflow 

forecasts for 119 Norwegian catchments 

The main objective of Paper II was to evaluate the benefit of preprocessing, postprocessing, 

or a combination of the two compared to the raw ensembles. The performance of different 

combinations of pre- and postprocessing techniques was evaluated for ensemble forecasts 

within the framework of the Norwegian flood warning system. The ECMWF ensemble 

forecasts for temperature and precipitation were used to force the operational hydrological 

HBV model. Daily retrospective streamflow forecasts for two years (2014 and 2015) were 

estimated for 119 Norwegian catchments. Two approaches were used to preprocess the 

temperature and precipitation forecasts (Traw and Praw): (i) the preprocessing applied to 

the gridded forecasts was the same as that used by the operational weather forecasting 

service in Norway, and included a quantile mapping approach for temperature and a zero-

adjusted gamma distribution for precipitation, providing Tcal and Pcal; and (ii) BMA was 

applied to the catchment average of temperature and precipitation, providing Tbma and 

Pbma. BMA was used for postprocessing catchment streamflow forecasts, providing Qbma. 
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Streamflow forecasts were generated for 14 schemes consisting of different combinations 

of the raw, pre-, and postprocessing approaches for the lead time of 1–9 days for the two-

year period. 

The forecasts for all streamflow and flood events were evaluated. The lowest flood warning 

level in Norway, the mean annual flood (QM), was used to separate the flood dataset from 

all streamflow. Evaluating all streamflow data showed that postprocessing improved the 

forecasts up to a lead time of two days, while using BMA preprocessing temperature and 

precipitation the forecasts were improved for 50–90% of the catchments beyond the two-

day lead time. For flood events, preprocessing of precipitation and temperature gave better 

CRPS to marginally more catchments compared to the other schemes, but there was no 

obvious pattern. Postprocessing without preprocessing seems to be the least good 

approach. For longer lead times, postprocessing leads to poorer performance in 

increasingly more catchments, compared to using raw forecasts (see Figure 13) 

In an operational forecasting system, warnings are issued when forecasts exceed defined 

thresholds, and confidence in warnings depends on the hits to false alarms and missed 

events ratio. Analysis of the CSI showed that many of the forecasts seemed to perform 

equally well. Furthermore, there were large differences in the ability to issue correct 

warning levels between spring and autumn floods. There was almost no ability to predict 

autumn floods beyond two days, whereas spring floods had predictability up to nine days 

for many processing schemes and catchments.  

The results underline differences in the predictability of floods depending on season and 

flood generating processes, i.e., snowmelt-affected spring floods versus rain-induced 

autumn floods. Moreover, the results indicate that the ensemble forecasts are less good at 

predicting correct autumn precipitation; therefore, more emphasis should be given to 

finding a better method to optimize autumn flood predictions. To summarize, the flood 

forecasts benefited from pre-/postprocessing; however, the optimal processing approaches 

depended on region, catchments, and season. 
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Figure 13. (Figure 7 in Paper II). Boxplots of CRPSS for all catchments based on the flood 

dataset. All processing schemes (indicated on the horizontal axis) for all lead times LT:1 to 9 

days (from top row and down). The first six boxplots show combination of preprocessed 

temperature (T) and precipitation (P), where raw=no processing, cal=grid calibration, and 

bma=Bayesian model averaging. The last seven boxplots are all postprocessed (indicated by the 

Q), with different combination of preprocessed temperature and precipitation..  
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5.3 Paper III: An event-based approach to explore selected present 

and future atmospheric river-induced floods in western Norway 

Future climate change at the global scale is well documented, whereas effects at the local 

scale are more challenging to model, and the estimated changes are more uncertain. Paper 

III investigated extreme precipitation events caused by atmospheric rivers and compared 

their flood impacts in a warmer future climate to those in the current climate by applying 

an event-based storyline approach. Furthermore, it evaluated the importance of initial 

hydrological conditions and meteorological forcing to the total flood impact.  

Atmospheric rivers are specific events that are better resolved by high-resolution global 

models. Therefore, a modeling chain, which consisted of the high-resolution climate model 

EC-Earth and the regional weather prediction AROME-MetCoOp model, was created as a 

means for dynamical downscaling to provide better orographic representation of 

precipitation. To evaluate the flood impact, Paper III used the HBV model set up for 37 

catchments located within areas that can be impacted by ARs.  

 Since the Norwegian catchments are at a high latitude and in steep terrain, parts of the 

catchment may be snow covered and experience snow fall controlled by elevation, which 

defines the spatial distribution of temperature. The role of the hydrological initial 

conditions were investigated using contrasting initial conditions from four different 

historical years that were chosen to represent a variety snow (snow and no snow) and soil 

moisture (dry and wet) conditions.  

Thereafter, the magnitude and number of catchments affected by floods were analyzed. 

The main finding was that future events have a greater effect than present climate events 

on catchments with larger floods (Fig. 14). This finding is in line with expectations from 

previous climate projection studies of Norway. The new contribution of this study is that 

it visualized plausible impacts and showed how future events have a higher spatial impact, 

indicating that more catchments might be affected during one single event, which is an 

important finding for decision-making and flood prevention and adaption. Furthermore, 

perturbation of atmospheric model physics and parameters were of the highest importance 
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to assess a larger range of extreme precipitation events, whereas the initial hydrological 

conditions made an additional contribution to the total flood estimation.  

Paper III showed that the storyline approach providing high-resolution modeling, similar 

to an operational modeling chain, is well adapted to describe atmospheric rivers in both the 

present and the future climate.  

Figure 14. (Figure 9 in Paper III). Flood warning levels for catchments in western Norway for 

all four selected events. From top left, pr-1 and pr-2 (present climate) and fu-1 and fu-2 (future 

climate), using hydrological initial conditions that contains snow and high soil moisture (SNOW-

WET). The highest warning level reached for each catchment is presented for all events. The 

yellow, orange, and red diamonds represent floods exceeding the warning thresholds of a 

median (> QM), 5-year (> Q5) or a 50-year (> Q50) return level, respectively. Green diamonds 

(< QM) indicate no floods. 
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5.4 Paper IV: The role of spatial and temporal model resolution in 

a flood event storyline approach in western Norway 

Paper IV (led by N. Schaller) explored the effect of high spatial and temporal model 

resolution when evaluating high-impact extreme events in a future climate and compared 

this to the impact in a present climate. The hypothesis was that a physical climate storyline 

approach, which allows for higher resolution modeling, can provide added value to existing 

probabilistic approaches. Paper IV applied the same dataset and was part of the same 

research project as the study presented in Paper III. Two catchments that had previously 

been severely affected by atmospheric rivers were chosen as the focus of the study, and the 

hydrological impact was investigated for different temporal and spatial model resolutions. 

The spatial resolution of the meteorological models was investigated by applying modeling 

chain 3 (Fig. 2), whereas the temporal resolution was investigated by HBV run by a co-

author. 

The topography of western Norway is challenging. Therefore, a high-resolution 

atmospheric model is necessary to improve the representation of orographically enhanced 

precipitation. In this study, precipitation intensity was realistically simulated with higher 

variability by the regional AROME-MetCoOp model compared to the global EC-Earth 

model. Furthermore, the higher resolution regional atmospheric model could model large 

precipitation differences in nearby valleys, whereas the coarser resolution global model 

provided a more uniform precipitation field.  

The difference in precipitation between the regional and global model was reflected in the 

streamflow values (see Figure 15). Moreover, AROME-MetCoOp also affected the 

representation of temperature and will, therefore, have an additional effect on streamflow 

whenever parts of the catchments experience temperatures below zero. Furthermore, the 

hydrological model was able to better represent the culmination of flood events, and, 

therefore, the damage potential of the floods, when hourly rather than daily time resolution 

was used.  
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Figure 15. (Figure 3 in Paper IV). Present (left) and future (right) events in the Røykenes 

catchment. The top panels show daily precipitation and the bottom panels show streamflow. The 

shaded area represents the range of the 10 ensemble members for both. 

One drawback of this study was that only two catchments were evaluated. One of the 

catchments was not affected by the events, whereas in the second catchment, the future 

flood was clearly larger than the present one. For this study, a different selection approach, 

e.g., using the highest precipitation for the specific catchments, might have altered the

events and, therefore, the impact on the catchments. 
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Chapter 6 

General discussion and outlook 

This thesis addressed two different topics: flood forecasting up to nine days ahead and 

assessment of floods caused by atmospheric rivers at the end of the century. Although these 

topics represent different challenges, there were similarities in the methodological 

frameworks used to address them. Similar modeling chains were used in which a global 

weather model was the first element. The resolution needed to force the hydrological 

impact models was essential to both forecasts and climate projections. Downscaling, either 

dynamical or statistical, was used to give a better representation of weather at the local 

scale. Statistical approaches (preprocessing) were used to downscale and calibrate the 

meteorological forecasts, whereas dynamical downscaling was used for the climate 

projections. Both approaches have common variations of techniques and models.  

The time horizon is one of the profound differences between climate projections and 

weather forecasts. Climate projections do not need to maintain the accuracy expected of 

weather forecasts; however, the models used for climate projection should be validated and 

evaluated against historical observations to ensure that they are able to represent the 

climatology of a reference period. Furthermore, the projections should be plausible 

reflections of future trends and provide a statistically coherent representation of the future 

climate. On the other hand, weather forecasting should be able to provide reliable and 

accurate forecasts for a relatively short and limited time. Another difference is that weather 

forecasting is an initial condition problem for short lead times, where the chaotic nature of 

the atmosphere defines a limit of predictability (e.g., Lorenz 1963, 1969). For projections 

for the end of the century, the relative importance of different sources of uncertainty 
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depends on the scale. At the global scale, the emission scenarios are the main source of 

uncertainty, whereas at the local scale, model uncertainty is nearly as important as emission 

scenarios (Hawkins and Sutton 2009).  

The following discussion first addresses the use of meteorological ensemble forecasts and 

different processing schemes for improving flood forecasts. Thereafter, storylines used to 

assess the impact of future flood events are discussed.  

6.1 Ensemble flood forecasting 

This thesis focused on the meteorological forcing uncertainty that makes the highest 

contribution to uncertainty, especially for flood forecasts (Zappa et al. 2011). The working 

hypothesis was that pre- and/or postprocessing would improve streamflow forecasts, as 

shown by previous studies (Table 1). A majority of these studies focused on postprocessing 

streamflow and one or two variables, and their processing only evaluated a few catchments. 

Only a few studies focused on floods. Papers I and II evaluated two years of retrospective 

forecasts for over 100 catchments with varying properties and climatic conditions. The 

catchments are representative of a high-latitude climate that includes seasonal snow cover. 

The number of catchments and the varied characteristics provide a unique insight into the 

robustness of approaches applied, especially how the applied techniques perform under 

flood conditions.  

6.1.1 The full dataset - all streamflow 

Paper I focused on assessing the effect of calibrated temperature forecasts on streamflow 

forecasts. The evaluation of raw temperature forecasts for Norway revealed a bias in the 

cold seasons, which was to a large degree removed by preprocessing. The temperature 

calibration affected streamflow both during autumn and spring, and typically related to the 

partitioning of snow and rain and to snow melt. Few studies have evaluated the ultimate 

effect on streamflow by processing temperature. Both Verkade et al. (2013) and Benninga 

et al. (2017) included temperature and precipitation in their preprocessing scheme, but they 

did not assess the effect solely of temperature on streamflow forecasts. A common outcome 

of these studies was that even though preprocessing precipitation and temperature 
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improved the skill of forcing, the effect was not translated into streamflow forecasts 

(Verkade et al. 2013; Benninga et al. 2017). A different result was obtained by Roulin and 

Vannitsem (2015) and Sharma et al. (2018) who found that preprocessing precipitation 

improved streamflow forecasts. By adding postprocessing to the evaluation, they were able 

to achieve further improvements. Zalachori (2012) reported that preprocessing alone did 

not improve the performance of streamflow for longer lead times, which was achieved by 

including postprocessing. However, postprocessing did not help to improve streamflow 

forecasts in Benninga et al. (2017). Most of the other studies agreed that postprocessing 

streamflow would improve streamflow forecasts for most lead times. All these contrasting 

results can be supported to some degree by the results presented in this thesis.  

In Paper II, the processing schemes applied included two approaches for temperature and 

precipitation preprocessing, and one approach for postprocessing. The results of evaluation 

of the full dataset in Paper II showed that any processing scheme was better than the raw 

ensemble forecasts. These findings are in line with the expectation of most of the studies 

presented in Table 1, and the main hypothesis of this work. The results show that both 

temperature approaches, Tcal and Tbma, perform well and provide improved streamflow 

forecasts when applied alone and in combination with postprocessing. For precipitation, 

Pbma performs well, whereas for Pcal, both alone and in combination with Tcal, there are 

large differences in performance skill between catchments. This indicates that BMA 

applied to catchment values for precipitation is a better approach compared to the simpler 

grid calibration (CAL). Furthermore, postprocessing alone resulted in the lowest skill 

compared to preprocessing alone or the combination of the two. The improved 

performance by pre- and postprocessing is supported by other studies (Zalachory et al. 

2012; Sharma et al. 2018; Roulin and Vannitsem 2015). Moreover, it is important to 

consider the performance of the original ensemble forecasts. For regions with low initial 

performance, the room for improvement is larger. This was shown by some large 

temperature improvements in regions with a large temperature bias. However, the 

relationship between improvement in temperature forcing and the resulting streamflow was 

not necessarily clear (e.g., Figure 12), mainly because streamflow is dependent on the 

combined effect of temperature and snow, or temperature and precipitation. 
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Another interesting result in this study is that for most of the catchments, postprocessing is 

less important as lead time increases, in contrast to the findings of Zalachori et al. (2012). 

This may be explained by the general size and memory of the catchments. In general, the 

Norwegian catchments are small, and a relatively quick response to precipitation can be 

expected. However, the catchments in Zalachori et al. (2012) are in the same size range as 

the Norwegian catchments; therefore, other aspects, for example, the techniques applied in 

addition to the initial performance of the raw ensembles, may be another explanation. 

6.1.2 Floods 

The difference in skill of the various processing schemes and catchments is less clear for 

the flood dataset compared to the full dataset. The BMA approach applied to precipitation 

revealed a weakness when preprocessing extreme precipitation events. For example, the 

preprocessed precipitation ensemble for the atmospheric river event in 2014 included some 

improbably high Pbma values for some western catchments (e.g., Figure 12 in Paper II). 

Furthermore, in the examples above, Qbma suppressed the effect of the high precipitation 

values from Pbma. As a result, the combination of pre- and postprocessing (Pbma and Qbma) 

produced lower flood values compared to the other processing schemes. To avoid such 

incidents, techniques to constrain precipitation amounts or give a better representation of 

high precipitation values should be considered. For example, Ji et al. (2019) showed that 

by dividing the precipitation data into different precipitation categories, and thereafter 

training the BMA on relevant precipitation data, the forecasting skill of the probabilistic 

forecast was greatly improved. The variation in skill between the catchments for the flood 

dataset can be explained by the number of days included in flood evaluation, in addition to 

catchments characteristics, the nature of the events, and the season. Overall, the results 

showed that even though there were large differences between the catchments, only few 

catchments did not improve by any processing, and preprocessing Tbma and Pbma was 

marginally best. 

Another interesting result is the distinct difference in predictability between spring and 

autumn floods, which to a large degree reflects the dominating flood-generating processes 
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in each season. Snowmelt dominates during spring, whereas rain dominates during autumn. 

Being more dependent on temperature, the snowmelt floods during spring are easier to 

forecast on longer lead times. The more intense autumn precipitation has a discontinuous 

spatial and temporal behavior, which may lead to large errors.  

6.1.3 Outlook 

For several of the flood events, an early signal of high precipitation is lacking, which is 

difficult to improve within this setup. However, there were events in which the storm path 

and the location of intense precipitation was misplaced. For such cases, it was not possible 

to correct the floods by using the processing techniques at hand. More flexible processing 

approaches that account for the uncertainty in spatial location of forecasted precipitation 

should be considered. 

The global ensembles of medium range forecasts are designed to maximize the spread after 

48 hours. A possible alternative to short lead times is the use of regional meteorological 

ensembles that outperform the global ensembles (Frogner et al. 2019a; Frogner et al. 

2019b). However, such regional ensembles were not available for this study, but will be 

implemented in future studies. Other options are to combine the deterministic high-

resolution ECMWF HRES forecast and the ENS within for example the BMA setup. The 

combination of the two systems provides more skillful precipitation forecasts than each 

system alone (Rodwell 2005/2006).   

These findings show that for floods that are characterized by rapid changes in precipitation 

and streamflow, alternative approaches to choosing training data should be investigated, as 

well as including reforecasts and testing analog methods (e.g., Zalachori et al. 2012).  

6.2 Future floods and storylines 

The motivation for the studies presented in Papers III and IV was the atmospheric river 

flood events that caused extensive damage in the west coast of Norway in 2005 and 2014. 

Historically, atmospheric rivers have been responsible for the most damaging floods in this 

area (e.g., Stohl et al. 2008). Since the frequency and magnitude of atmospheric rivers are 

expected to increase in a future warmer climate (Whan et al. 2020), the main aim of the 
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studies was to investigate the flood impact of future atmospheric river events on the 

Norwegian west coast by applying an event-based storyline approach. 

To ensure that chosen models are suited to the purpose of the study, model validation is 

especially important for the storyline approach. The high-resolution EC-Earth model has 

been used in several previous studies, e.g., to show how tropical hurricanes in a warmer 

future would be more prone to striking western Europe (Haarsma et al. 2013) and to assess 

changes in magnitude and frequency of atmospheric rivers (Whan et al. 2020). To assess 

changes in atmospheric rivers, previous studies were based on GCMs with a lower 

resolution compared to that of this study, and used specific signals of moisture and upslope 

winds to detect atmospheric rivers (e.g., Dettinger et al. 2011; Espinoza et al. 2018). 

Although these modeling approaches can determine changes in the intensity and frequency 

of atmospheric rivers, their resolution is not necessarily sufficient to represent the 

topography and hence the orographic lifting important for precipitation causing floods. The 

topography is well represented in the high-resolution EC-Earth model used in this thesis; 

Paper IV (Figures 1–3 in Paper IV) showed that there is good representation of 

precipitation and flood by the EC-Earth data. By implementing the regional weather 

forecasting model AROME-MetCoOp, the aim of this study was to further improve the 

representation of spatial intensity of precipitation. AROME-MetCoOp has been shown to 

improve operational precipitation forecasts compared to the coarser ECMWF global 

forecasts, especially for high precipitation large-scale events (Müller et al. 2017).  

The results of Paper IV show that the cumulative precipitation of the larger region will not 

necessarily be increased by the AROME-MetCoOp model (Figure 1 in Paper IV), and for 

some events, it provided less precipitation than the EC-Earth model. This can be explained 

by the topographic representation that provides higher precipitation peaks due to the 

orographic effect (e.g., steep mountain), also provides areas in-between peaks (e.g., fiords) 

with less precipitation (Figure 2 in Paper IV). However, in hydrological modeling, the data 

from the AROME-MetCoOp model provides higher streamflow, indicating that the 

redistribution provides better representation of local precipitation within the catchments. 

An alternative to applying a regional model to downscale the global data is to apply 

statistical bias correction methods. Statistical methods are more feasible alternatives, 
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especially for large datasets when the computational cost is relevant. The statistical 

approach is highly dependent on the relationship between the model output (GCM or 

RCM) and the observations under present climate conditions. Therefore, it is important to 

define downscaling and bias correction methods that can account for and preserve the 

trends caused by climate change (e.g., Eum and Cannon 2017). By focusing on a few events 

in the storyline approach in this study, it was possible to run the AROME-MetCoOp model 

for selected events, which could not be done for the complete EC-Earth dataset. 

Consequently, this study provided physically consistent spatial precipitation and 

temperature fields at the highest available model resolution for Norway. In Paper III 

(Figure 5 in Paper III), the precipitation simulated by the AROME-MetCoOp model was 

compared to the observed precipitation for the 2005 atmospheric river event, and showed 

that the spatial pattern of precipitation is well represented by AROME-MetCoOp. 

However, the peak values were underestimated in some areas. This indicates that the 

models underestimate the highest precipitation values; therefore, the results of Paper III 

(and IV) are more likely to be conservative estimates of possible impact. This should be 

considered when presenting or applying the findings.   

The last part of the modeling chain is the hydrological model, which is the operational 

flood-forecasting model calibrated and validated using the seNorge dataset. The 

hydrological model is calibrated on historical observations and may, therefore, not be 

suitable for calculations of the water balance in a changing climate, when it might be 

applied to precipitation and temperature values outside the calibration range. In addition, 

possible changes in land use and vegetation are ignored. One approach to addressing the 

robustness of a model to changing climate is to calibrate the model with, for example, a 

cold and dry period and validate it with a warm and wet period. Another approach is to 

select several parameter sets, and thereby include the uncertainty in parameter estimates. 

This approach was used in the calibration of the distributed HBV model in Paper IV. For 

the hydrological model in Paper III and the HBV-lumped model in Paper IV, the intention 

was to keep the operational model parameters; therefore, it was possible to relate the 

hydrological output to the flood exceedance levels used operationally. Since the results can 

be compared to known values and recent events, it can facilitate how the physically 
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plausible future flood impact is communicated to end users and decision-makers and future 

challenges disclosed. The atmospheric river events presented in Papers III and IV showed 

how the future events affected more catchments with higher floods. The findings are 

supported by climate projection studies that indicate an increase in precipitation and rain-

induced floods in the region (e.g., Lawrence and Hisdal 2011; Vormoor et al. 2015). 

Furthermore, Paper III showed that for selected extreme events, the initial hydrological 

conditions could alter the ultimate flood level and should therefore be accounted for.  

In Paper IV, the added value of using modeling at higher resolution was presented. The 

peak of the event and, therefore, the value that indicates the highest damage potential were 

better represented by the hourly distributed HBV model compared to the daily lumped 

model. Consequently, a high temporal resolution provides even higher specificity, which 

can be important to how the impact of selected events can be communicated and perceived 

by, for example, the public, stakeholders, or decision makers. However, results should be 

communicated carefully as an increased level of detail can give the impression of certainty 

due to the specificity of the presented event (Sillman et al. 2020). In Paper IV, two 

catchments were selected to illustrate the effect of changing spatial and temporal 

resolution. It showed that the future event was smaller than the present for one catchment. 

This result underlines that events from free-running models will not necessarily affect all 

catchments within a region. However, in Paper III, the selected extreme precipitation 

events were well suited to showing the overall impact of atmospheric rivers for a larger 

region and visualizing the spatial hazard related to these events. The selection criteria for 

the events are essential and should be targeted to ensure that the data provided are suitable 

to answer the research question.  

6.2.1  Outlook 

In this setup, the events were chosen based on the 24-h precipitation for a defined selection 

area. Since precipitation is the most important flood generating variable, this is a natural 

selection criterion. The high-resolution EC-Earth model provides precipitation data usable 

as direct input to the hydrological model. An evaluation of a different approach to define 

the most extreme events could be done by running the hydrological model with EC-Earth 
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data and select the most extreme events from streamflow data. Backtracking the events will 

enable an evaluation to whether the events were the same as chosen from the precipitation 

data, or from similar atmospheric river events, and would provide valuable insight on 

assessment on local flood impact based on events selected from precipitation data alone.    
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Chapter 7 

Conclusions 

In the first part of this thesis, the performance of streamflow forecasts applied as 

combinations of raw, pre-, and postprocessed variables was assessed to answer the 

following research questions: 

Q1: Will pre- and/or postprocessing schemes improve daily streamflow forecasts, and 

to which variables should a processing approach be applied?  

The results of Paper I showed that temperature calibration affected the streamflow forecast 

skill and that preprocessing temperature forecasts could not be neglected in climates with 

seasonal snow cover. In Paper II, different processing schemes were established by 

combining the processing of precipitation, temperature, and streamflow. Evaluation of the 

full dataset showed that all processing schemes performed better than the raw ensemble 

forecasts. The grid calibration, Pcal, was the least good preprocessing alternative for the 

streamflow performance skill. Postprocessing of the raw ensemble forecasts did not 

perform as well as any combination of pre- and postprocessed ensembles. Preprocessing 

temperature in combination with postprocessing provided the marginally best performance 

skill.  

Q2: How do the processing schemes perform under flood conditions, and are there 

seasonal or regional differences? 

By focusing on the flood dataset, Paper II showed that the processing schemes improved 

forecast performance also for flood conditions. However, the improvements were not as 

clear as for the full dataset, and there were larger differences between catchments in skill 

improvements of the applied processing scheme. Another difference was that the skill of 
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the forecasts in the flood dataset, independent of the processing scheme, was more sensitive 

to lead time than that of the forecasts in the full dataset. 

Moreover, the results showed that the predictability of floods depends on season. Fewer 

forecasting schemes were able to predict autumn floods compared to spring floods, 

especially for long lead times. Some regional differences were clear in the skill of different 

processing schemes. Coastal areas were better forecasted when preprocessing was 

included, whereas higher elevations and inland areas showed the highest skill when 

postprocessing was applied in addition to preprocessing. However, the effect of 

postprocessing was reduced by lead time. For coastal areas, Pbma was of the highest 

importance for floods and especially for short lead times. 

The evaluation of both the full dataset and the flood dataset confirms the hypothesis of this 

study that processing improves ensemble forecasts. Papers I and II show that all processing 

schemes improve the forecasts for the diverse Norwegian catchments. However, 

catchments differ in the optimal processing scheme. For a single catchment, the best 

processing scheme depends on the dataset used for training the statistical model, season, 

and lead time. Therefore, if implementing pre- and postprocessing schemes in the 

operational flood forecasting system in Norway, catchment-specific and adaptable methods 

should be considered to enable optimized forecasts.    

Even though the results clearly show the improvements of applying pre- and 

postprocessing schemes compared to using the raw ensemble forecasts, there is still work 

to be done. The catchment specific BMA is a flexible method and showed good results for 

all variables. However, the results revealed the need for further attention on preprocessing 

precipitation, especially for high precipitation events. For some events, the precipitation 

amounts for some individual members were unrealistically high. This might be solved by 

ensuring that the BMA model is trained on a representative dataset that includes sufficient 

high precipitation events. Using ECMWF reforecasts might solve this and will be included 

in future studies.  
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In the second part of the thesis, a storyline approach was applied to explore the impact of 

AR-induced floods on western Norway in a future climate. The studies answered the 

following questions. 

Q3: What is the added value of an event-based storyline approach in climate impact 

studies? 

The event-based approach provided plausible scenarios in which both the exceedance and 

magnitude of floods in individual catchments and the total impact over a larger area could 

be assessed. The findings of this storyline approach support those of previous climate 

projection studies of Norway indicating more floods at a higher magnitude. Moreover, this 

thesis was able to evaluate the sensitivity of flood magnitude to initial hydrological 

conditions by providing initial states with different combinations of soil moisture and 

snow.  

The event-based storyline approach enabled a comparison of the future flood impact to the 

present flood impact within an operational forecasting chain. The impact assessment could 

be targeted on specific weather events for a specific location, in this case, the atmospheric 

rivers affecting western Norway. Furthermore, providing results within a known visual 

frame is a unique way of presenting plausible future impact in a manner that is easily 

accessible for end users and decision-makers.  

Q4: What is the added value of higher spatial resolution in climate impact studies? 

The high spatial resolution of the EC-Earth model is well adapted to represent atmospheric 

rivers and resolve the processes responsible for orographic precipitation on the Norwegian 

west coast, which is the focus of this thesis. The AROME-MetCoOp model, which is a 

non-hydrostatic weather forecasting model, gives an even better distribution of 

precipitation intensities for the complex topography of the Norwegian coast, as well as 

better spatial representation of temperature. The streamflow magnitudes for the two 

catchments evaluated show that the better spatial representation of precipitation and 

temperature by AROME-MetCoOp indicates higher floods compared to the EC-Earth 

model. Furthermore, implementation of a higher temporal resolution, e.g., by using hourly 
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data as forcing for the hydrological model, provides better representation of the peak flood, 

and, consequently, easier assessment of the damage potential of floods.  

The storyline approach shows some clear advantages in that the strategically chosen 

modelling chain makes the results accessible for both scientist and management audience. 

Models that are validated and well adopted to the purpose provides plausible extreme 

events. Storylines provide a method to present the impact of individual future flood events 

for a larger area and is thereby complementary to other climate change studies that for 

example provide climate factors dimensioning of flood magnitude. Storylines could 

moreover be used as ‘stress test’ for how well the society is prepared for future floods. 

Further extension to the storyline could for example be to include a hydraulic model to 

evaluate the flood inundated areas, and thereby reveal exposed areas.  
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Abstract. In this study, we used meteorological ensemble
forecasts as input to hydrological models to quantify the un-
certainty in forecasted streamflow, with a particular focus on
the effect of temperature forecast calibration on the stream-
flow ensemble forecast skill. In catchments with seasonal
snow cover, snowmelt is an important flood-generating pro-
cess. Hence, high-quality air temperature data are important
to accurately forecast streamflows. The sensitivity of stream-
flow ensemble forecasts to the calibration of temperature en-
semble forecasts was investigated using ensemble forecasts
of temperature from the European Centre for Medium-Range
Weather Forecasts (ECMWF) covering a period of nearly
3 years, from 1 March 2013 to 31 December 2015. To im-
prove the skill and reduce biases of the temperature ensem-
bles, the Norwegian Meteorological Institute (MET Norway)
provided parameters for ensemble calibration, derived us-
ing a standard quantile mapping method where HIRLAM, a
high-resolution regional weather prediction model, was used
as reference. A lumped HBV (Hydrologiska Byråns Vatten-
balansavdelning) model, distributed on 10 elevation zones,
was used to estimate the streamflow. The results show that
temperature ensemble calibration affected both temperature
and streamflow forecast skill, but differently depending on
season and region. We found a close to 1 : 1 relationship be-
tween temperature and streamflow skill change for the spring
season, whereas for autumn and winter large temperature
skill improvements were not reflected in the streamflow fore-
casts to the same degree. This can be explained by stream-
flow being less affected by subzero temperature improve-
ments, which accounted for the biggest temperature biases
and corrections during autumn and winter. The skill differs

between regions. In particular, there is a cold bias in the fore-
casted temperature during autumn and winter along the coast,
enabling a large improvement by calibration. The forecast
skill was partly related to elevation differences and catch-
ment area. Overall, it is evident that temperature forecasts are
important for streamflow forecasts in climates with seasonal
snow cover.

1 Introduction

Floods can severely damage infrastructure, buildings, and
farmland, and can have high economic impacts on society
(Dobrovičová et al., 2015). Early warnings based on hydro-
meteorological forecasts are an important flood mitigation
measure and provide time to reduce flood damage. A flood-
forecasting system consists of a hydro-meteorological fore-
casting chain with three main components, all affected by un-
certainties: (i) observations used to establish the initial con-
ditions for the catchment, (ii) meteorological forecasts used
as forcing, and (iii) the hydrological model.

The Norwegian flood-forecasting system, operated by the
Norwegian Water Resources and Energy Directorate (NVE),
uses deterministic forecasts of air temperature and precip-
itation as forcing for hydrological models in 145 catch-
ments across the country. Meteorological forecasts from the
AROME-MetCoOp operational weather prediction model
(Müller et al., 2017) are used for short-range forecasts
(day 1 and 2), whereas forecasts from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF, 2018a)
high-resolution model are used for medium-range forecasts
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(day 3 to 9). All forecasts are provided by the Norwegian
Meteorological Institute (MET Norway). The Hydrologiska
Byråns Vattenbalansavdelning model (HBV) (Bergström,
1976; Sælthun, 1996; Beldring, 2008) is used as the hydro-
logical forecasting model, which combined with statistical
uncertainty models (Langsrud et al., 1998, 1999) provides
probabilistic streamflow forecasts. The uncertainty model ac-
counts for the strong autocorrelation in forecast errors and
estimates an uncertainty band around the deterministic tem-
perature, precipitation, and streamflow forecasts.

An alternative approach to estimate probabilistic stream-
flow forecasts is to use meteorological ensemble forecasts
from numerical weather prediction models as a means to
account for uncertainty in the forcing. The meteorological
ensemble forecasts are created by perturbing both the ini-
tial states and the physics tendencies of the original deter-
ministic forecast. The spread of the ensemble members can
be interpreted as the uncertainty of the forecasts, where a
large spread indicates large uncertainty (Buizza et al., 1999;
Persson, 2015). Subsequently, the meteorological ensemble
is used as forcing for a hydrological model to produce an en-
semble of forecasted streamflow, referred to as a hydrological
ensemble prediction system (HEPS). HEPSs are increasingly
being used in flood forecasting (Cloke and Pappenberger,
2009; Wetterhall et al., 2013). A HEPS adds value to a flood
forecast by assessing the forecast uncertainty caused by un-
certainties in one or several parts of the modeling chain.

Raw (unprocessed) ensembles are rarely reliable in a sta-
tistical sense (Buizza, 1997; Wilson et al., 2007). Reliabil-
ity means that the observation behaves as if it belongs to
the forecast ensemble probability distribution (Leutbecher
and Palmer, 2008). To improve reliability, the ensemble fore-
casts can be calibrated by applying statistical techniques
correcting bias and under- or over-dispersion (Hamill and
Colucci, 1997; Persson, 2015). Examples of methods used to
calibrate meteorological ensembles include ensemble model
output statistics (EMOS) (Gneiting et al., 2005; Wilks and
Hamill, 2007), Bayesian model averaging (BMA) (Raftery
et al., 2005; Wilson et al., 2007), ensemble Kalman fil-
ters (Evensen, 2003; Verkade et al., 2013), non-homogenous
Gaussian regression (Gneiting et al., 2005; Wilks and Hamill,
2007), quantile mapping (Bremnes, 2007), and kernel dress-
ing (Wang and Bishop, 2005). These methods differ in their
sensitivity to length of training data and ensemble size and in
how the spread and bias are corrected. Preprocessing (from
a hydrological perspective) refers to all techniques used to
change the output from a meteorological model and includes
calibration (described above) and downscaling. Downscaling
implies resampling from the original forecast grid size to a
grid of higher resolution, and both statistical (e.g., interpola-
tion) and dynamical (e.g., a regional weather forecast model)
techniques can be used (Schaake et al., 2010). A recent re-
view of preprocessing methods is given in Li et al. (2017)
and the textbook edited by Vannitsem et al. (2018).

In climates with seasonal snow cover, snowmelt during
the spring season is an important flood-generating process.
In these climates, temperature is a key variable to classify
the precipitation phase and to estimate the snowmelt rate.
The sensitivity of daily streamflow to temperature is non-
linear since streamflow depends on temperature thresholds
for rain–snow partitioning and for snowmelt and freeze pro-
cesses. The snowmelt and freeze processes depend on the
state of the system; i.e., snow is needed to generate snowmelt.
For temperatures well below 0 ◦C, the streamflow is not sen-
sitive to temperature, whereas for temperatures around 0 ◦C
relatively small changes in temperature might control if pre-
cipitation falls as rain or snow, and consequently whether
streamflow is generated or not. Most Norwegian catchments
experience a seasonal snow cover, but are otherwise diverse
in terms of the length of the snow season and topographic
complexity (Rizzi et al., 2017).

Downscaling and interpolating air temperature in com-
plex topography are both challenging, mostly because tem-
perature lapse rates depend on several factors, i.e., altitude,
time, and place, as well as specific humidity and air temper-
ature (Aguado and Burt, 2010; Pagès and Miró, 2010; Sheri-
dan et al., 2010). Errors in forecasted temperature might re-
sult in a misclassification of precipitation phase and/or cause
the hydrological forecasting system either to miss a flood
event or provide a false alarm, caused by too-high or too-low
snowmelt rates. It is therefore important to assess the rela-
tionship between temperature and streamflow forecasts. The
importance of reliable temperature forecasts for streamflow
forecasts is demonstrated for two Alpine catchments during a
heavy precipitation event in Ceppi et al. (2013). An interest-
ing finding in this paper is that catchment elevation distribu-
tion, and by this area above the snowline, was important for
how streamflow forecasts were affected by temperature un-
certainty. Verkade et al. (2013), on the other hand, found only
modest effects of temperature calibration on streamflow fore-
cast skill as an average over several years for Rhine catch-
ments.

As far as the authors know, the isolated effect of the uncer-
tainties in temperature forecasts has not yet been systemati-
cally investigated for a larger number of catchments in a cold
climate. The large spatial and seasonal variations in snow ac-
cumulation and snowmelt processes found in cold regions
with complex terrain require that both spatial and seasonal
patterns in the performance of temperature and streamflow
forecasts are evaluated.

The main objective of this study is to investigate the ef-
fect of temperature forecast calibration on the streamflow
ensemble forecasts skill in catchments with seasonal snow
cover and to identify potential improvements in the forecast-
ing chain. In particular, we address the following research
questions:

– Are there seasonal effects of temperature calibration on
the temperature ensemble forecast skill?
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– Are there seasonal effects of temperature calibration on
the streamflow ensemble forecast skill?

– Are there spatial patterns in the temperature and stream-
flow ensemble forecast skill and, if so, can these be re-
lated to catchment characteristics?

To answer these questions, we applied temperature ensem-
ble forecasts from ECMWF combined with the preprocess-
ing setup from MET Norway to 139 catchments in Norway.
Three years of operational ECMWF forecasts from 2013 to
2015 were used to regenerate streamflow forecasts, and the
skill of temperature and streamflow forecasts was systemat-
ically evaluated for these catchments. To investigate the iso-
lated effect of the temperature ensembles on the streamflow
forecasts, the observed seNorge precipitation (Tveito et al.,
2005) was used instead of the precipitation ensemble fore-
casts to run the hydrological model. Finally, a case study
is presented, demonstrating the effect of temperature cali-
bration on a single snowmelt-induced flood event. We start
by presenting the study area, data, and hydrological model
(HBV) used (Sect. 2). In Sect. 3, methods used to establish
the hydro-meteorological forecasting chain, the skill metrics,
and evaluation strategy are presented. Section 4 contains the
results, followed by a discussion in Sect. 5. Finally, in Sect. 6,
the findings are summarized, conclusions are drawn, and fur-
ther research questions are discussed.

2 Study area, data, and model

2.1 Study area

In Norway there are spatial variations in climate and topog-
raphy, and a recent overview of past, current, and future cli-
mate is given in Hanssen-Bauer et al. (2017). The western
coast has steep mountains, high annual precipitation (4000–
5000 mm yr−1), and a temperate oceanic climate. Inland ar-
eas have less precipitation, larger differences between win-
ter and summer temperatures, and climatic zones from hu-
mid continental to subarctic and mild tundra (according to
the Köppen–Geiger system; see Peel et al., 2007). The mean
annual runoff follows to a large degree the spatial patterns of
precipitation. The two basic flood-generating processes are
snowmelt and rainfall (Vormoor et al., 2015). Most catch-
ments in Norway have prolonged periods of subzero tem-
peratures during winter, resulting in a seasonal snow stor-
age, winter low flow, and increased streamflow during spring
due to snowmelt. The relative importance of rainfall and
snowmelt processes is decided by the duration of the snow
accumulation season and the share of annual precipitation
stored as snow. Across Norway two basic runoff regimes can
be identified: (i) coastal regions with high flows during au-
tumn and winter due to heavy rainfall and (ii) inland regions
with high runoff during spring due to snowmelt (Vormoor et

al., 2015). However, there are many possible transitions be-
tween these two basic patterns (Gottschalk et al., 1979).

The national flood-forecasting system builds on hydro-
logical models providing streamflow forecasts in 145 catch-
ments, covering most parts of Norway, varying in size (∼ 3
to 15 447 km2) and elevation difference (103 to 2284 m).
The latter is calculated as the difference between the low-
est and highest point on the hypsographic curve, 1H =

(H100−H0). The flood-forecasting catchments are mostly
pristine, although some do have minor (hydropower) reg-
ulations. Fourteen catchments have a glacier coverage of
5 % or more. Of the 145 flood-forecasting catchments, 139
were chosen as the basis for the study (Fig. 1). The catch-
ments were grouped into five regions based on their loca-
tion: north (N), south (S), west (W), middle (M), and east
(E) following Hanssen-Bauer et al. (2017) and Vormoor et
al. (2016) (Fig. 1, right). These regions are defined by the
boundaries of the major watersheds and reflect major hydro-
climatological zones. Rainfall floods dominate in the south,
west, and middle, whereas snowmelt floods dominate in the
east and north. There is still a large variability in hydro-
logical regimes within individual regions. Figure 1 includes
the location of four catchments, for which results that are
more detailed will be presented. Gjuvaa (E), Foennerdals-
vatn (W), and Viksvatn (W) were used to visualize the chal-
lenges in temperature forecasts, and both uncalibrated and
calibrated ensemble values will be presented for these three
catchments. Viksvatn (W) and Foennerdalsvatn (W) are lo-
cated in western Norway and are both catchments with some
glaciers (∼ 3 % and 47 %, respectively). Gjuvaa (E) is non-
glaciered and located inland (Fig. 1, left). The Bulken (W)
catchment was chosen to demonstrate the effect of temper-
ature calibration on the streamflow forecast for a snowmelt-
driven flood event.

2.2 Observations, hydrological model, and forecasts

2.2.1 Interpolated precipitation and temperature
observations – seNorge data

In Norway, a network of about 400 precipitation stations
and 240 temperature stations provides daily temperature and
precipitation values. These in situ observations are inter-
polated to create a gridded (1 km× 1 km) product, referred
to as seNorge (available at http://www.seNorge.no/, last ac-
cess: 1 February 2019, Tveito et al., 2005). In this study,
we used version 1.1. For this version, gridded temperature
is calculated by kriging, where both the elevation and lo-
cation of temperature stations are accounted for. The ob-
served daily precipitation is corrected for under-catch at
the gauges, and triangulation is used for spatial interpola-
tion to a 1 km× 1 km grid. A constant gradient of 10 % per
100 m beneath 1000 m above sea level (m a.s.l.) and 5 % per
100 m above 1000 m a.s.l. is applied to account for elevation
gradients in precipitation (details can be found in Tveito,
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Figure 1. The maps for Norway indicate the 139 catchments used in this study. Panel (a) shows the catchment boundaries including the
location of four selected catchments. Please note that many catchments are relatively small and difficult to detect. The locations of the
catchment gauging stations are shown in (b). Norway was grouped into five regions (N: north, M: middle, W: west, S: south, and E: east); all
regions are marked with different colors and regional boundaries.

2002; Tveito et al., 2005; and Mohr, 2008). The seNorge
data are available from 1 January 1957, and in this study
we used data for the period 1 March 2013 to 31 Decem-
ber 2015 in the forecasting mode and 1 January 1958 to
31 December 2012 to calculate the temperature and stream-
flow climatology (Sect. 3.2). The seNorge precipitation sub-
stitutes the precipitation forecasts in the ensemble forecast-
ing chain, and hence the isolated effect of temperature cali-
bration on streamflow forecasts was obtained. We hereby de-
note seNorge temperature and precipitation, To[lat,long,t] and
Po[lat,long,t], respectively, where t is an index for observation
time. Latitude (lat) and longitude (long) represent the grid
indexing.

2.2.2 Hydrological model – HBV

The HBV model (Bergström, 1976) as presented in
Sælthun (1996) and Beldring (2008) constitutes the basis for
this study. The vertical structure of the HBV model consists
of a snow routine, a soil moisture routine, and a response
function that includes a nonlinear reservoir for quick runoff
and a linear reservoir for slow runoff. The model uses catch-
ment average temperature and precipitation as input. Each
catchment is divided into 10 elevation zones, each cover-
ing 10 % of the total catchment area. The catchment average
precipitation and temperature are elevation adjusted to each
elevation zone using catchment-specific lapse rates. In this
study, we used the operational model setup which has been
calibrated for each catchment individually. PEST, a soft-
ware for parameter estimation and uncertainty analysis (Do-
herty, 2015), was used to optimize the HBV parameters, with
the Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970) and
volume bias as calibration metrics. The calibration period,

1996–2012, gives a mean Nash–Sutcliffe efficiency value of
0.77, with zero volume bias for the 139 catchments. The
validation period, 1980–1995, shows a mean Nash–Sutcliffe
efficiency value of 0.73, with a mean volume bias of 5 %
(Ruan Gusong, personal communication, 15 June 2016). We
used one optimal parameter set for each catchment and there-
fore ignored uncertainty arising from parameter estimation
and the hydrological model.

2.2.3 Reference streamflow

Reference streamflow, Qo[c,t], where c is an index for catch-
ment, was derived using seNorge precipitation and temper-
ature, aggregated to the catchment scale, as forcing to the
HBV model (Fig. 2; see “Reference mode” in the green
frame). In order to isolate the effect of temperature calibra-
tion on forecasted streamflow and avoid effects of hydrologi-
cal model deficiencies, reference streamflow was used as a
benchmark when the streamflow forecasts were evaluated.
Similarly, operational flood warning levels (here demon-
strated for the case study basin, Bulken) are based on return
periods from reference streamflow.

2.2.4 Temperature ensemble forecasts

We used the ECMWF temperature forecast ensemble (ENS)
for the period 1 March 2013 to 31 December 2015 from an
original grid resolution of 0.25◦ (i.e., model cycles/versions
38r1/2, 40r1, and 41r1; ECMWF, 2018b). This period cov-
ers model cycles/versions for which temperature grid calibra-
tion parameters are trained (40r1 and 41r1; see Sect. 3.1.2)
plus spring 2013 (cycle 38r1/2) in order to include one more
snowmelt season. In short, 50 ensemble members of ENS
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Figure 2. Conceptual diagram of the ensemble forecasting chain. Panel (a) shows the reference mode that is the calculation of reference
streamflow using the HBV model with catchment aggregated daily mean values of seNorge temperature (To) and precipitation (Po). In the
forecasting mode (b), ECMWF temperature ensembles are downscaled to 1 km× 1 km prior to catchment aggregation. Calibrated temper-
ature (Tcal) is estimated from Tens, applying a grid calibration at 5 km× 5 km resolution. Daily average forecast values (Tens or Tcal) and
observed precipitation (Po) are used to force the hydrological model at the forecasting issue date (d), with internal states from the reference
mode.

are generated by adding small perturbations to the forecast
initial conditions and model physics schemes, subsequently
running the model with different perturbed conditions. The
ensemble represents the temperature forecast uncertainty. A
more detailed description of the ECMWF ENS system is pro-
vided in, for example, Buizza et al. (1999, 2005) and Pers-
son (2015). For each issue date d, 51 ensemble members
Tens[lat,long,m,l∗] are provided for a lead time of up to 246 h,
where m is the ensemble member and l∗ the lead time in
6 h intervals. In this study, we used the forecasts issued at
00:00 UTC and aggregated daily values for the meteorolog-
ical 24 h period defined as 06:00–06:00 to provide forecasts
for lead times of up to 9 days. The observational time t for a
forecast is d + l∗.

3 Methods

3.1 Ensemble forecasting chain

Figure 2 shows the forecasting modeling chain designed
for this study. The green frame presents the observational
reference mode that determines the internal states for the
forecasting issue date, d , in the red frame. This reference

mode was also used to estimate reference streamflow Qo[c,t]
(see Sect. 2.2.3). The seNorge temperature and precipitation
(To[c,t] and Po[c,t]), aggregated to each catchment c, were
used to force the hydrological model in the observational ref-
erence mode. The red frame illustrates the forecasting mode,
including the post-processing of temperature forecasts. The
hydrological ensemble forecasts were estimated using down-
scaled raw temperature ensemble forecasts (Tens[c,m,l]; see
Sect. 3.1.1) or downscaled and calibrated temperature en-
semble forecasts (Tcal[c,m,l]; see Sect. 3.1.2) and observed
precipitation (Po[c,d+1]) as forcing, where m is the ensem-
ble member and l is lead time in days. All temperature fore-
casts were aggregated to daily time steps since the opera-
tional HBV model runs on a daily time step and the seNorge
data used as a reference provide only daily values. In the fore-
casting mode, each temperature ensemble member was used
as input and run as a separate deterministic forecast. All hy-
drological forecasts were estimated for all nine lead times.
Note that for each issue date d , the same internal states of
the HBV model were used for all ensemble member runs.
Thus two sets of streamflow ensemble forecasts (Qens[c,m,l]

and Qcal[c,m,l]) that differ only by the applied temperature
calibration were derived. The following subsections provide
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details on the approach used for downscaling and calibration
of the ensemble temperature forecasts (ENS).

3.1.1 Temperature forecast downscaling

In this paper the term downscaling refers to the interpola-
tion of temperature from a low-resolution grid to a high-
resolution grid where vertical temperature gradients are ac-
counted for. The ECMWF grid temperature, which repre-
sent the average temperature for the grid cell, was inter-
polated from a horizontal resolution of 0.25◦ (∼ 30 km) to
the 1 km× 1 km seNorge grid, using the nearest-neighbor
method and aggregated to daily values to match the spatial
and temporal resolution of the seNorge data. Due to ele-
vation differences between the ECMWF and seNorge grid
elevations, we corrected the ensemble temperature at the
1 km× 1 km scale by applying a standard atmospheric lapse
rate of −0.65 ◦C 100 m−1. Finally, the downscaled temper-
ature ensemble was aggregated to daily values and averaged
over the catchment areas to provide Tens[c,m,l] for a given lead
time and ensemble member.

3.1.2 Temperature grid calibration

The grid temperature is calibrated using quantile mapping
(Seierstad et al., 2016; Bremnes, 2007) to remove biases by
moving the ENS forecast climatology closer to the observed
climatology. MET Norway provided temperature grid cali-
bration parameters used in this study. This grid calibration
was used in the operational post-processing chain for meteo-
rological forecasts including the forecasts published on http:
//yr.no (last access: 1 February 2019). MET Norway uses
HIRLAM (High Resolution Limited Area Model, Bengtsson
et al., 2017) temperature forecasts (on a 4 km× 4 km grid)
to provide a reference for parameter estimation (calibration).
HIRLAM is suitable as a reference since it provides a con-
tinuous field covering all of Norway at a sub-daily time step.
In addition, HIRLAM gives higher skill and is less biased
than ENS (Engdahl and Homleid, 2015). To establish the
calibration parameters, MET Norway used both ENS refore-
casts (Owens and Hewson, 2018) and HIRLAM data from
July 2006 to December 2011 interpolated to a 5 km× 5 km
grid. The ENS reforecast is a five-member ensemble gener-
ated from the same model cycle (40r1 and 41r1) as ENS.
For each grid cell, monthly unique quantile transformation
coefficients are determined by using data from a 3-month
window centered on the target month; e.g., the May analy-
sis consists of April, May, and June (Ivar Seierstad, personal
communication, 10 November 2017). The same coefficients,
based on mapping the first 24 h, were applied to all lead times
and members. For forecasts outside the observation range,
a 1 : 1 extrapolation was used. That is, if a forecast is 2 ◦C
higher than the highest mapped forecasted temperature, then
the calibrated forecast is 2 ◦C higher than the highest mapped
reference temperature.

For this study, we applied the calibration coefficients pro-
vided by MET Norway to the temperature forecasts for the
period 2013–2015. Accordingly, ENS was interpolated to
the 5 km× 5 km grid for which the quantile mapping coef-
ficients were used to obtain the calibrated temperature en-
sembles (Tcal). Subsequently, the calibrated ensembles on the
5 km× 5 km grid were downscaled to the 1 km× 1 km grid
following the same procedure as for the uncalibrated tem-
perature ensemble (Tens, Sect. 3.1.1). Finally, the calibrated
temperature ensemble was aggregated to daily values and av-
eraged over the catchment areas to provide Tcal[c,m,l].

3.2 Validation scores and evaluation strategy

The evaluation focused on the performance of the tempera-
ture forecast ensembles and the effect of both uncalibrated
and calibrated temperature forecasts on the performance
of the streamflow ensembles. A well-performing ensemble
forecast should be reliable and sharp, where reliability has
the first priority (Gneiting et al., 2007). A forecast is con-
sidered reliable if it is statistically consistent with the ob-
served uncertainty; i.e., 90 % of the observations should ver-
ify within the 90 % forecast interval. Rank histograms are
often used for visual evaluation of reliability and show the
frequencies of observations amongst ranked ensemble mem-
bers. For reliable ensemble forecasts, the rank histogram will
be uniform (horizontal). A bias in the ensemble forecast is
recognized as a slope in the rank histogram, where a neg-
ative slope indicates too-warm temperature forecasts and a
positive slope too-cold forecasts. A U shape indicates that
the ensemble forecast is under-dispersed, whereas a convex
shape indicates over-dispersion (Hamill, 2001). In order to
quantify the reliability, a decomposition of the chi-squared
test statistics for the rank histogram was used to describe the
rank-histograms slope (bias) and convexity (dispersion) (Jol-
liffe and Primo, 2008). Both rank-histogram slope and con-
vexity are negatively oriented; i.e., lower values are better,
with an optimal value of zero for unbiased and uniformly dis-
tributed data. The sharpness of a reliable forecast is described
by the spread between the ensemble members, where a sharp
forecast has a small spread and is the most useful (Hamill,
2007). In this study, the temperature sharpness was assessed
by first estimating the range between the 5th and the 95th per-
centile of the ordered ensemble forecasts for all issue dates,
lead times, and catchments. For streamflow, we estimated a
relative sharpness by dividing the 5th to 95th percentile range
by the ensemble mean. Thereafter, sharpness was determined
for each catchment and lead time as the average range of all
issue dates. The continuous rank probability score (CRPS) is
a summary of reliability, sharpness, and uncertainty (Hers-
bach, 2000). CRPS (denoted as SCRP in Eq. 1) measures the
distance between the observation xa and the ensemble fore-
cast, where the latter is expressed by the cumulative density
function Fx (x):
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Figure 3. Summary of temperature and streamflow scores for all lead times. Each box represents the 139 catchments values averaged over
all issue dates. Rank-histogram test decomposition for slope and convexity is shown in (a), (e), (b), and (f), respectively, and CRPSS in (c)
and (g). Panels (d) and (h) show sharpness for the uncalibrated forecasts. Temperature is shown in panels (a)–(d) and streamflow in (e)–(h).
Results are based on the full dataset and are shown for both uncalibrated (light blue) and calibrated (blue) ensembles at lead times of 1 to
9 days. For slope and convexity, 0 is the optimal value, and the scales are reversed so that the optimal value is on the top, corresponding to
the CRPSS optimal value at 1.0.

SCRP (Fx, xa)=

∞∫
−∞

[Fx (x)−H (x− xa)]2dx, (1)

where H is the Heaviside function that is zero when the
argument is less than zero, and one otherwise (Hersbach,
2000). CRPS was calculated as the average CRPS (SCRP)
over the study period (1 March 2013 to 31 January 2015).
CRPS is similar to the mean absolute error for determinis-
tic forecasts. The temperature CRPS was computed using the
seNorge temperature To as observations, whereas streamflow
CRPS used Qo[c,t] as observations. This evaluation approach
allowed us to evaluate the isolated effect of the uncertainties
in the temperature forecasts since we can then, to a large de-
gree, ignore uncertainties in the HBV model itself.

Skill scores are convenient for comparison between fore-
cast variables (e.g., temperature versus streamflow) and
catchments since these scores are dimensionless. To calcu-
late the continuous ranked probability skill score (CRPSS de-
noted as SCRPS in Eq. 2), a benchmark is needed. The bench-
mark is a reference forecast which a skillful forecast should
outperform. For both temperature and streamflow, ensembles
representing daily climatology were used as benchmarks.
Daily seNorge temperatures (To[c,t]) from 1958 to 2012 (i.e.,
55 years) were used to create a climatological temperature
ensemble of 55 members for each day of the year. Similarly, a
daily streamflow climatology was established from reference
streamflow (Qo[c,t]) calculated by the HBV model, forced

with the 55 years of temperature and precipitation (To[c,t] and
Po[c,t]) from the seNorge data.

CRPSS (SCRPS) was calculated for each catchment accord-
ing to Eq. (2) (Hersbach, 2000). CRPSS (SCRPS) was cal-
culated for each catchment according to Eq. (2) (Hersbach,
2000), where SB_CRP is the benchmark score and SF_CRP is
the forecast score (denoted as CRPS in the text, calculated
for the benchmark and forecast, respectively).

SCRPS =
SB_CRP− SF_CRP

SB_CRP
(2)

CRPSS varies from−∞ to 1, where 1 is a perfect score. Neg-
ative values mean that the forecast performs worse than cli-
matology, and CRPSS equal to 0 implies that it performs sim-
ilarly to the benchmark (climatology in this case). The sea-
sonal skill score was calculated by averaging the daily CRPS
only for the months belonging to the target season. The ef-
fect of the grid calibration on the temperature and stream-
flow forecast skill was evaluated by comparing the valida-
tion scores using both the uncalibrated (Tens) and the cali-
brated (Tcal) ensembles to generate the streamflow ensem-
bles. For readability, the abbreviations SCRP and SCRPS used
in the equation will be substituted with CRPS and CRPSS in
the text hereafter.

Spatial patterns in the forecast performance for all 139
catchments, i.e., CRPSS and differences in CRPSS between
calibrated and uncalibrated temperature, were mapped for
Norway. Further, box plots for the five regions (see Fig. 1)
were drawn to reveal potential regional patterns. Finally,
we used linear regression to identify relationships between
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catchment characteristics (elevation difference and catch-
ment area) and the skill score (Tcal and Qcal CRPSS). The lin-
ear regression analysis was done for combinations of seasons
and regions. Seasonal variations in skill score were assessed
by calculating CRPSS for the two seasons, spring (April to
June) and autumn (October to December). This definition of
seasons is used to better capture a snowmelt season, which
for most Norwegian catchments is in the period April to
June. For this paper, we chose to focus on the results for au-
tumn and spring. Summer (July to September) was excluded
due to the relatively small changes in CRPSS explained by
the following: (i) the skill of uncalibrated temperature fore-
casts is higher and the potential for improvement is lower;
and (ii) there is less or no snow in summer, resulting in a
reduced streamflow sensitivity to temperature. Winter (Jan-
uary to March) was excluded since it performs similarly to
autumn.

Finally, the effect of temperature calibration on the flood
warning level is illustrated for a snowmelt-induced flood
event in the Bulken catchment. In the operational flood warn-
ing system at NVE, the predefined flood thresholds are catch-
ment specific and calculated return periods are based on ref-
erence streamflow, which is also the approach used herein.

4 Results

Temperature and streamflow forecasts were estimated for
139 catchments, 1036 issue dates, and nine lead times. Fig-
ure 3 presents a summary of the validation scores, CRPSS,
and the rank-histogram decomposition, in addition to sharp-
ness, for all lead times. Each box plot shows the variations
in the validation scores between the catchments. The rank-
histogram slope and convexity describe bias and dispersion
in the forecasts, respectively; both can be considered a mea-
sure for the reliability. As shown in Fig. 3, temperature slope
and convexity improve with increasing lead time, whereas
CRPSS and sharpness get poorer. For streamflow, slope
and sharpness get poorer and convexity improves, whereas
CRPSS shows small changes with lead time. To reduce the
amount of presented results, the remaining part of this pa-
per focuses on CRPSS for a lead time of 5 days. CRPSS
was the chosen validation score since it contains informa-
tion on reliability, uncertainty, and sharpness and enables a
comparison between catchments. A lead time of 5 days was
chosen since reliability (convexity and slope) has improved
and some sharpness is maintained; i.e., a too-large ensemble
spread will increase the reliability but the forecast value will
be reduced.

4.1 Temperature forecasts

Time series of seNorge daily temperature To, the range of
raw (uncalibrated) temperature ensembles Tens (left panels),
and scatter plots of ensemble mean for both raw Tens and

calibrated Tcal versus To (right panels) are shown for three
selected catchments in Fig. 4. For Gjuvaa (E), a high-altitude
catchment (Fig. 1), To lies within the range of Tens for most
days, and temperature forecast Tcal was improved by the tem-
perature calibration. The well-performing raw temperature
forecasts for this catchment are representative for most catch-
ments in eastern Norway. Representing western Norway, raw
Tens in Viksvatn (W) has a seasonal cold bias that is reduced
by the temperature calibration. The cold bias is typical for
several catchments in the coastal west, middle, and north re-
gions. Another western catchment, Foennerdalsvatn (W), has
a similar cold bias in Tens to Viksvatn (W), but for Foen-
nerdalsvatn the bias is notable for all seasons and even in-
creases for Tcal (Fig. 4).

4.2 Skill – relations to season, spatial location, and
catchment characteristics

Scatter plots of the difference between CRPSS for calibrated
and uncalibrated forecasts for the temperature (Tcal and Tens)
and streamflow (Qcal and Qens) ensembles are shown in
Fig. 5. Each dot represents a catchment and the color in-
dicates the region. The two panels in Fig. 5 show how the
change in temperature CRPSS affects the change in stream-
flow CRPSS for spring and autumn. For spring, the relation-
ship is close to the 1 : 1 line, whereas for autumn streamflow
is less sensitive to the temperature calibration.

Catchment CRPSSs for spring and autumn were sorted ac-
cording to increasing CRPSS for Tens and Qens in Fig. 6. The
figure reveals that Tens is more skillful in spring than in au-
tumn when Tens has no skill (i.e., CRPSS < 0) for about half
of the catchments (i.e., they perform poorer than the climatol-
ogy). In spring, 97 % of catchments have skillful temperature
forecasts. Temperature calibration improved the temperature
skill for most catchments in autumn, whereas for many catch-
ments in spring, the skill worsened. For streamflow, Qens,
there are only small differences in CRPSS between spring
and autumn (Fig. 6 right panels). Calibration of temperature
improved the skill for streamflow, Qcal, in autumn. Whereas
for spring, the streamflow forecast skill followed the temper-
ature skill change and is both reduced and improved.

CRPSS for uncalibrated temperature and streamflow fore-
casts and the change in CRPSS, calculated as the difference
in CRPSS between calibrated and uncalibrated forecasts,
were mapped for all catchments. Figures 7 and 8 show the
CRPSS values for spring and autumn, respectively. The fig-
ures include box plots showing the variations in skill within
each region, for both calibrated and uncalibrated forecasts.
Neither Tens nor Qens skill show any clear spatial pattern in
spring (Fig. 7 left panel). For autumn, however, Tens has the
lowest skill for the coastal catchments (Fig. 8 left panel). A
coastal low CRPSS in autumn is also seen for Qens, even
though less distinct compared to Tens. Both temperature and
streamflow CRPSS were improved by calibration for the
coastal regions (Fig. 8 right panel).
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Figure 4. Time series of temperature for Gjuvaa (a), Viksvatn (b), and Foennerdalsvatn (c) showing the range of uncalibrated tempera-
ture ensemble forecast (Tens-range, light blue area) for the period 2013–2015; seNorge observations are shown as black lines. Scatter plots
show ensemble mean temperature for both calibrated (Tcal, blue) and uncalibrated (Tens, light blue) temperature plotted against seNorge
temperature (To). Lead time (lt) is 5 days.

Figure 5. Difference in CRPSS for uncalibrated and calibrated tem-
perature for spring and autumn. The difference in temperature skill
is plotted on the y axis and the difference in streamflow skill on the
x axis. The grey diagonal represent the 1 : 1 line. Catchment values
are color indexed by region. All plots are presented for a lead time
of 5 days.

Table 1 summarizes the result of the linear regression anal-
ysis between catchment characteristics (i.e., catchment area
and elevation difference) and skill. By indicating the signif-
icance and sign of the relationships, significant relationships
were found for 12 out of 40 regression equations (5 % sig-

nificance level). Elevation difference is negatively correlated
to streamflow CRPSS for the east and middle regions. The
east region also has a negative correlation between stream-
flow CRPSS and catchment area as opposed to the other re-
gions that have a positive correlation. The correlation does
not change sign between the seasons for any of the regions.
Calibrated temperature and streamflow CRPSS plotted as a
function of catchment area are presented for the east and
south in Fig. 9.

4.3 Snowmelt flood 2013

Forecasts and observations for a snowmelt-driven flood are
presented in Fig. 10 for Bulken (W), located in western Nor-
way. The figure shows forecasted streamflow for lead times
of 2, 5, and 9 days for the target dates 16–26 May 2013. Note
that for the lead times of 2, 5, and 9 days, the forecasts for
18 May are issued on 16, 13, and 9 May, respectively. The
horizontal grey dotted lines represent the mean annual, the 5-
year, and the 50-year floods (i.e., the operational flood warn-
ing levels) in this catchment. Figure 10 reveals how tempera-
ture calibration increases the streamflow for Bulken, leading
to a change in warning level for all lead times. In addition we
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Figure 6. Temperature (Tens and Tcal, a, c) and streamflow (Qens and Qcal, b, d) CRPSS for SPRING (a, b) and AUTUMN (c, d). The
catchments are ordered by increasing CRPSS for Tens and Qens (light blue dots); the catchment calibrated values (Tcal and Qcal) are plotted
as blue circles. All results are presented for a lead time of 5 days.

Table 1. Summary of significant correlations between CRPSS for
calibrated temperature (Tcal) and streamflow (Qcal) ensembles and
catchment characteristics, i.e., area and elevation difference (1H ),
for the five regions. “X” indicates a significant positive relationship,
“×” a significant negative relationship, and “ns” a non-significant
relationship. Results are for a lead time of 5 days.

Tcal Qcal Tcal Qcal

SPRING AUTUMN

Area (km2) East ns × ns ×

South X X ns X
West X ns ns ns
Middle X ns X ns
North ns ns X ns

1H (m) East ns × ns ×

South ns ns ns ns
West ns ns ns ns
Middle ns ns ns ×

North ns ns ns ns

see how the ensemble spread increases with lead time (from
lower to upper panel), from a narrow range around the en-
semble mean for the lead time of 2 days to a very wide range
for a lead time of 9 days.

5 Discussion

Box plots of validation scores for all catchments and lead
times in Fig. 3 show that, on average, both raw Tens and cal-
ibrated Tcal temperature ensembles were more skillful with a
higher CRPSS, for shorter as compared to longer lead times,
and that Tcal was more skillful than Tens. Even though both
bias and dispersion (i.e., reliability) as measured by rank-
histogram slope and convexity improved with longer lead
times, the reduced sharpness and increased uncertainty re-
sulted in a reduced skill (CRPSS). For streamflow, the bias
increased with longer lead times, while dispersion improved.
Further, Qcal was slightly more skillful than Qens. Overall,
the grid calibration of temperature had a positive effect on
both temperature and streamflow for most validation scores
and lead times. The calibration procedure applied in this
study involves many interpolations and downscaling steps
that increase the uncertainty in temperature forecasts. We be-
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Figure 7. Spring CRPSS for uncalibrated forecasts (a, c) and CRPSS difference between calibrated and uncalibrated forecasts (b, d) for
temperature (a, b) and streamflow (c, d). A darker blue color (a, c) indicates an optimal performance (maximum CRPSS= 1.0), pink a
CRPSS of zero, and red a negative value. A green color (b, d) indicates a positive effect of temperature calibration on the skill, yellow
means no effect, and an orange color indicates a negative effect. The box plots show temperature and streamflow CRPSSs grouped by region
(Fig. 1). All results are presented for a lead time of 5 days.

lieve that a catchment-specific temperature calibration, tai-
lored to the needs of hydrological forecasting, would solve
this challenge.

5.1 Effect of temperature calibration for the
temperature forecast skill

The skill for both raw (uncalibrated) Tens and calibrated Tcal
temperature ensembles varies with season (Figs. 5–8). The
relatively small temperature skill improvements in spring and
large skill improvements in autumn can be explained by the
skill of the raw ensembles Tens. The low skill for Tens in au-
tumn and winter is caused by a cold bias and lays the foun-
dation for the large improvements seen for Tcal. The sea-
sonal differences in skill and response to calibration show
the importance of using seasonal calibration parameters. It is
also apparent that the applied methods do not perform opti-
mally for all seasons. For spring, the results show that sev-
eral catchments have a reduction in the forecast skill after

calibration. By inspecting the forecasts in detail, we found
a too-extensive correction of temperature for some days and
catchments. Quantile mapping, as most statistical techniques,
is sensitive to forecasts outside the range of calibration values
and periods (Lafon et al., 2013), which can be an explanation
for too high a correction in the highest Tens quantile. The use
of forecasts from different model cycles might affect the con-
sistency in the forecasts. Moreover, the calibration parame-
ters are sensitive to the representativeness of the calibration
period.

The most pronounced spatial pattern is the low autumn
CRPSS for uncalibrated ensembles Tens in the coastal areas.
This is seen in the box plots for the west, middle, and north
regions (Fig. 8) and in the plots of the western catchments
Viksvatn and Foennerdalsvatn during winter months (Fig. 4).
This cold bias is documented for the Norwegian coastal areas
in the cold seasons by Seierstad et al. (2016) and is mainly
caused by the radiation calculations in the ECMWF model
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Figure 8. Autumn CRPSSs for uncalibrated forecasts are presented in panels (a) and (c), where the darker blue color indicates an optimal
performance (maximum CRPSS= 1.0), pink color represents a CRPSS of zero, and red a negative value. The differences in CRPSS between
calibrated and uncalibrated forecasts are presented in panels (b) and (d), where the green color indicates a positive effect of temperature
calibration on the skill, yellow zero, and orange color indicates a negative effect. Temperature CRPSS is presented in (a) and (b) and
streamflow CRPSS in (c) and (d). The box plots of both calibrated and uncalibrated temperature and streamflow CRPSS show catchments
grouped by region (Fig. 1). All results are presented for a lead time of 5 days.

(Hogan et al., 2017). The coarse radiation grid results in
warmer sea points being used to compute longwave fluxes
applied over colder land points, causing too much cooling.
This effect is seen for the temperature forecasts for winter
2014 and 2015 for the coastal catchments in Fig. 4b and c,
in contrast to the inland catchment (Fig. 4a) which is less
biased. The radiation resolution is improved in later model
cycles (Hogan et al., 2017; Seierstad et al., 2016). In ad-
dition, the challenging steep coastal topography is not well
represented by the spatial resolution in the ECMWF model
(Seierstad et al., 2016). For inland catchments and the south
and east regions, CRPSS shows that the uncalibrated Tens is
skillful for both autumn and spring; hence, the calibration has
a smaller effect in these catchments.

5.2 Effect of temperature calibration for the
streamflow forecast skill

The skill of the temperature-calibrated streamflow ensemble
forecasts, Qcal, improved for most of the catchments for au-
tumn, while both improved and reduced skill were seen for
spring (Figs. 5–8). Autumn streamflow skill was improved by
temperature calibration for all regions, the largest improve-
ment was seen for the coast and the west and middle regions.
Two possible explanations for this spatial pattern are (i) the
improvement in temperature forecast skill during autumn in
these regions and (ii) that many coastal catchments are more
sensitive to the calibration of temperatures since the tempera-
tures are more frequently around 0 ◦C compared to the colder
and dryer inland catchments. In spring, no clear spatial pat-
terns are seen, neither for Qens nor for the change in skill.

It is also evident that, independent of the sign of the tem-
perature skill change (Fig. 5), a change in temperature has a
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Figure 9. Temperature (row a) and streamflow (row b) CRPSS for the east (E) and south (S) regions, plotted as a function of catchment area
for both autumn and spring. The colored dots show the CRPSS for the respective regions whereas the grey circles show the CRPSS for all
139 catchments. The linear regression line is plotted along with its p value (significantly different from zero for p values < 0.05). All results
are presented for a lead time of 5 days.

larger impact on streamflow in spring than in autumn. Dur-
ing spring, temperatures are often close to the two threshold
temperatures that control the phase of precipitation and the
onset of snowmelt. Such periods are challenging to simu-
late correctly (Engeland et al., 2010). Of additional impor-
tance, for spring as opposed to autumn, is the snow storage
at the end of winter, as well as the snowmelt contribution to
streamflow. Hence, estimated streamflow has a high sensitiv-
ity to changes in temperature during spring, a sensitivity also
described for Alpine snow-covered catchments by Ceppi et
al. (2013). Verkade et al. (2013), on the other hand, found
only marginal effects of preprocessing temperature and pre-
cipitation for the streamflow skill in the Rhine catchments.
The results presented herein and in the cited papers indicate
that the effect of preprocessing depends on the hydrological
regime (i.e., sensitivity to temperature), the initial skill of the
forcing variables, and on which temporal periods (i.e., for
specific events, seasons, or the whole year) the sensitivity is
evaluated. The same lead time was used to relate improve-
ment in streamflow to temperature; we consider this robust
since most catchments in this study have a concentration time
of less than a day.

In summary, it can be concluded that, to further improve
streamflow forecasts during the snowmelt season, improved
temperature forecasts are essential. Streamflow forecasts dur-
ing spring have the highest potential for improvement since
the temperature forecasts were not, for a majority of the
catchments, improved by the applied calibration. For au-
tumn, the substantial improvement in temperature forecast
skill by grid calibration improves streamflow forecasts, but
the sensitivity is less than for spring.

5.3 Catchment characteristics and skill

Only a few significant relationships between the catchment
characteristics, e.g., catchment area and elevation gradient,
and skill were found (Table 1). We expected to find the
highest temperature skill in large catchments, due to averag-
ing, and in catchments with small elevation differences, due
to less elevation correction inaccuracy. No significant rela-
tionships between temperature skill and elevation difference
were found for any combination of region or season. A pos-
itive relationship between temperature skill and catchment
area was found for 5 out of 10 regression equations. This re-
sult is not conclusive, but indicates that (i) the smallest catch-
ments are smaller than the grid size of the ECMWF model
and therefore sensitive to the preprocessing and (ii) it is more
challenging to forecast weather on small spatial scales than
large spatial scales.

It was expected that streamflow skill would increase with
catchment area due to averaging effects. Significant linear re-
gression coefficients were found for east and south but with
different signs, the same tendencies for both spring and au-
tumn. The interpretation of this result is therefore ambigu-
ous. For elevation difference, a significant negative correla-
tion was found for 3 out of 10 datasets. This suggests that
the downscaling approach has the potential to improve the
streamflow forecasts. These results are not conclusive, and
studies that are more detailed are needed to determine any
significant relationships to catchment characteristics.

Forecasting in small catchments with particular character-
istics may be challenging since they may not be well rep-
resented, neither by the numerical weather prediction model
nor by the calibration methods. In our dataset, Foennerdals-
vatn (Fig. 4c) is such an example. The catchment area is only
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Figure 10. Forecasted streamflow for the Bulken catchment fort
lead times of 9, 5, and 2 days. Forecast target dates on the x axis,
and streamflow (m3 s−1) on the y axis. Reference streamflow with
seNorge observations Qo (black solid line), ensemble mean uncali-
brated temperature Qens (blue line), ensemble mean calibrated Qcal
(blue dotted line), ensemble range Qens (light violet area), and en-
semble range Qcal (light blue area). The grey dotted lines indicate
the thresholds for mean annual, 5-year, and 50-year floods.

7.1 km2, elevation is high, topography is steep, glaciers cover
47 % of the catchment area, and it is located close to the
coast.

5.4 Snowmelt flood 2013

The snowmelt flood event (Fig. 10) illustrates clearly how
temperature calibration affects forecasted ensemble stream-
flow. The increase in forecasted temperature by grid cal-
ibration results in additional snowmelt and thus increased
streamflow. The increased streamflow led to a change in the
warning level, from below to above the 5-year flood. For this
event, however, the use of calibrated temperature reduced the
performance of the forecasted streamflow, Qcal. The refer-

ence streamflow, Qo, is better captured by the streamflow
forecasts based on uncalibrated temperature forecasts, Qens.
The deterioration in the forecast performance using cali-
brated temperature is particular for this event. Other results
provided in this study show clearly that the calibrated tem-
perature ensembles improve the streamflow forecasts on av-
erage.

Figure 10 reveals how the ensemble range for the
snowmelt event clearly increases with increasing lead time.
For a lead time of 2 days (lower panel), the range is too nar-
row, while for a lead time of 9 days (upper panel), the wide
forecasting intervals capture the events, but there is little in-
formation left in the forecasts.

6 Summary and conclusion

The main objective of this study was to investigate the effect
of temperature forecast calibration on the streamflow ensem-
ble forecast skill, as well as to identify potential improve-
ments in the forecasting chain. We applied a gridded tem-
perature calibration method and evaluated its effect on both
temperature- and streamflow-forecasting skill. The seasonal-
ity in skill was evaluated and correlations to catchment char-
acteristics and spatial patterns were investigated. Supported
by the results presented in this paper, our answers to the re-
search questions listed in the introduction are summarized as
follows.

Are there seasonal effects of temperature calibration on the
temperature ensemble forecast skill?

– The largest temperature skill improvements by calibra-
tion were found for poorly performing coastal catch-
ments in autumn and winter.

– The effect of calibration on temperature skill was less
clear in spring. In spring, the calibrated temperature re-
sulted in reduced skill for many catchments.

– Smaller bias in spring explained a higher Tens skill and,
hence, less room for improvements by calibration.

Are there seasonal effects of temperature calibration on the
streamflow ensemble forecast skill?

– In autumn and winter, streamflow skill improved for
most catchments. For spring, the calibration resulted in
both better and worse skill.

– In spring, changes in temperature skill had a higher ef-
fect on streamflow skill, compared to autumn and win-
ter.

Are there spatial patterns in the ensemble forecast skill
and, if so, can these be related to catchment characteristics?

– The skill in temperature forecasts was the lowest in
coastal catchments along the coast in the west, middle,
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and north in autumn, caused by a cold bias in the fore-
casts (this was also the case for winter, although these
results are not shown).

– The largest improvement in skill for both temperature
and streamflow was found for catchments with a cold
bias in the temperature forecasts.

– A regional division seemed useful to identify spatial
patterns in temperature forecasts, whereas for stream-
flow the spatial patterns were not so obvious.

– It was not possible to conclude a relationship between
the catchment characteristics and skill.

Is streamflow affected by temperature calibration during a
snowmelt flood?

– Streamflow increased by temperature calibration,
changing the flood warning level, clearly showing the
importance of correct temperature calibration for catch-
ments with snow during snowmelt season.

This study showed that the applied gridded temperature cal-
ibration method improved the temperature skill for most
catchments in autumn and winter. Temperature forecasts
have an impact on streamflow and are important for seasons
where temperature determines snowmelt and discriminates
between rain and snowfall. The improvement in temperature
skill propagated to streamflow skill for some, but not all,
catchments. This was to a large degree dependent on region
and the skill of the uncalibrated ensemble.

The most obvious improvement in the forecasting chain is
to use the same temperature information, the seNorge tem-
perature, for calibrating the temperature forecast that is used
for calibrating the hydrological model, generating the initial
conditions for the hydrological system, and evaluating the
performance. In particular, the calibrated temperature fore-
cast could be improved during spring when the streamflow
forecasts are the most sensitive to temperature. The prepro-
cessing of temperature includes both an elevation correction
depending on lapse rate and the calibration method. Lapse
rate in this study is defined as a constant, but actually depends
on weather conditions, location, and elevation. In addition,
the calibration method, here the quantile mapping, is sensi-
tive to forecasted values outside the observation range, and
other methods should be considered. In this study, we have
investigated the isolated effect of uncertainties in tempera-
ture forecasts. For a more complete assessment of forecast
uncertainties, error in initial conditions, hydrological model
parameters, and structure need to be accounted for. In partic-
ular, we might expect a strong interaction between uncertain-
ties in temperature forecasts and model parameters control-
ling snow accumulation and snowmelt processes.

The conclusions in this study are based on a testing period
of almost 3 years. Even if this is a relatively short testing
period, we believe that the large number of catchments to a

large degree compensates for the short testing period and that
the results and conclusions are therefore relatively robust.
We suggest that some of the main conclusions can be valid
for regions with a similar climate. The most important gen-
eral conclusion is that streamflow forecasts are sensitive to
the skill of temperature forecasts, especially in the snowmelt
season. In addition, this study shows that reducing the cold
temperature bias in coastal areas results in improved stream-
flow forecasts and that the preprocessing needs to account for
seasonal differences in temperature forecasts (biases).
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12 

Abstract. The novelty of this study is to evaluate the univariate and the combined effects of including both 13 

precipitation and temperature forecasts in the preprocessing together with the postprocessing of streamflow for 14 

forecasting of floods as well as all streamflow values for a large sample of catchments. A hydrometeorological 15 

forecasting chain in an operational flood forecasting setting with 119 Norwegian catchments was used. This study 16 

evaluates the added value of pre- and postprocessing methods for ensemble forecasts in a hydrometeorological 17 

forecasting chain in an operational flood forecasting setting with 119 Norwegian catchments. Two years of ECMWF 18 

ensemble forecasts of temperature (T) and precipitation (P) with a lead-time up to 9 days were used to force the 19 

operational hydrological HBV model to establish streamflow forecasts. Two approaches to preprocess the temperature 20 

and precipitation forecasts were tested. 1) An existing approach applied to the gridded forecasts using quantile mapping 21 

for temperature and a Bernoulli-gamma distribution for precipitation. 2) Bayesian model averaging (BMA) applied to 22 

catchment average values of temperature and precipitation. BMA was also used for postprocessing catchment 23 

streamflow forecasts. Ensemble forecasts of streamflow were generated for a total of fourteen schemes based on 24 

combinations of raw, preprocessed, and postprocessed forecasts in the hydrometeorological forecasting chain. The aim 25 

of this study is to assess which pre- and postprocessing approaches should be used to improve streamflow and flood 26 

forecasts and look for regional or seasonal patterns in preferred approaches. 27 

28 

The forecasts were evaluated for two datasets: i) all streamflows and ii) flood events with streamflow above mean 29 

annual flood. Evaluations were based on reliability, continuous ranked probability score (CRPS) and -skill score30 

(CRPSS). For the flood dataset, the critical success index (CSI) was used. Evaluations based on all streamflow data 31 

showed that postprocessing improved the forecasts only up to a lead-time of two to three days, whereas preprocessing 32 

T and P using BMA improved the forecasts for 50% - 90% of the catchments beyond three days lead-time. However, 33 

for flood events, the added value of pre- and postprocessing is smaller. Preprocessing of P and T gave better CRPS for 34 

marginally more catchments compared to the other schemes.  35 

1
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2 

Based on CSI, we found that many of the forecast schemes perform equally well. Further, we found large differences 1 

in the ability to issue warnings between spring and autumn floods. There was almost no ability to predict autumn floods 2 

beyond 3 days, whereas the spring floods had predictability up to 9 days for many events and catchments. The results 3 

indicate that the ensemble forecasts have problems in predicting correct autumn precipitation, and the uncertainty is 4 

larger for heavy autumn precipitation compared to spring events when temperature driven snow melt is important. To 5 

summarize we find that the flood forecasts benefit from most pre- and postprocessing schemes, although the best 6 

processing approaches depend on region, catchment, and season, and that the processing scheme should be tailored to 7 

each catchment, lead time, season, and the purpose of the forecasting. 8 

1 Introduction 9 

Floods can have severe economic, personal, and social costs. Early warnings based on flood forecasts enable both the 10 

management authorities and the public to take necessary measures to reduce the impact of floods (e.g., UNISDRI, 11 

2004, Pappenberger et al., 2015). However, predicting the future is adhered with uncertainty. Attaching the forecast 12 

uncertainty to a predicted flood level adds value for many end users allowing them to do risk evaluation in light of 13 

their often-unique circumstances, and thus take measures that are most appropriate and cost effective for them.  14 

In the hydro-meteorological forecasting chain there are multiple sources to uncertainty. There is uncertainty in 15 

observations, initial conditions, forcing data, model description, and model parameters (e.g., Buizza et al., 1999; Zappa 16 

et al., 2011). For flood forecasting an important source of uncertainty and errors are the forcing in the forecasting 17 

period, i.e. precipitation and temperature weather forecasts (e.g. Zappa et al., 2011), and this is the focus of this paper.  18 

From weather prediction systems it is known that small changes in the initial conditions will affect atmospheric 19 

trajectories and future weather predictions (e.g., Lorenz, 1969; Buizza, 2008). To capture the uncertainty in weather 20 

prediction caused by initial conditions and model parametrization, ensemble prediction systems (EPS) were developed 21 

as early as the 70s (Leith, 1974). The use of meteorological ensembles as input to hydrological models is one approach 22 

to achieve probabilistic streamflow forecasts, and thereby provide a probability of the forecasted flood to exceed a 23 

given level (Buizza, 2008).  24 

Today, ensemble weather forecasts are available as operational services, and using these for hydrological forecasts 25 

have been studied in the literature, see e.g., Cloke and Pappenberger (2009) and Wetterhall et al. (2013). To get 26 

unbiased and reliable hydrological forecasts, preprocessing (applied to the meteorological forcing) and/or 27 

postprocessing (applied to the hydrological output) techniques are needed. Several processing methods are proposed 28 

in literature, see e.g., Vannitsem et al. (2018) for an overview. For a national or regional flood forecasting service, a 29 

large number of catchments with different hydrological processes and regimes are considered. Therefore, to assess the30 

added value of pre- and postprocessing, a dataset from a large number of catchments that well represent the variability 31 

on hydrological processes is needed to provide robust conclusions. In addition, it is important to assess (and compare) 32 

the performance of flood forecast, not all streamflow values, for different pre- and postprocessing schemes. In most33 

papers, ensemble forecasts of all streamflow values for one or a small number of catchments are evaluated. This paper 34 

aims to fill two knowledge gaps: 1) To gain understanding of the differences in quality for pre and/or post processing 35 

method for a range of catchments, and 2) The assess the quality of pre- and postprocessing for flood forecasts. 36 
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3 

Reliability and accuracy are key characteristics used to measure the quality of ensemble forecasts. A reliable forecast 1 

is statistically calibrated (e.g., for 90% of the forecasts, the observations are within the 90% prediction interval). Raw 2 

ensemble forecasts are rarely reliable in this sense. The discrepancy between the weather predictions and point 3 

measurements shows that forecast ensembles are often biased and underdispersive (Gneiting et al., 2005). A lack of 4 

dispersion in global meteorological ensembles is most evident for the shortest lead times and can be explained by 5 

slower growth rates of the perturbations in the ensemble prediction system compared to those of an instable “true” 6 

atmosphere (Hamill and Colucci, 1997). To correct for bias and underdispersion in the ensemble system, different 7 

statistical postprocessing approaches are applied to achieve calibrated ensembles. Li et al. (2017) and Vannitsem et al. 8 

(2018) provide a comprehensive review of processing techniques, both parametric approaches relying on parametric 9 

probability distributions, for example Bayesian model averaging (BMA) and non-homogeneous Gaussian regression 10 

(NGR), and nonparametric approaches like quantile regression and ensemble error dressing methods. Raferty et al. 11 

(2005) introduced BMA to the atmospheric community as a statistical method to achieve calibrated and sharp forecasts, 12 

and the method has since been widely used within the community (Fraley et al., 2010). More recently studies that use 13 

BMA for postprocessing to improve streamflow forecasts have been carried out. For example, Madadgar et al. (2014) 14 

used copula embedded BMA for postprocessing streamflow forecasts and improved the forecasts compared to quantile 15 

mapping techniques. Jha et al. (2018) demonstrated the use of BMA to remove bias and reduce errors in the 16 

precipitation forecasts responsible for a flood event. NGR accounts for the errors in the mean, but unlike an ordinary 17 

regression, the error variance is not assumed to be constant, but rather to vary linearly with respect to the ensemble 18 

variance (Wilks and Hamill, 2007; Gneiting et al., 2005). Quantile regression applied to ensemble forecasts was19 

introduced by Bremnes (2004) and was first used to correct precipitation forecasts. The method can be viewed as a 20 

non-parametric counterpart to NGR, where the predictive probability distribution is described by a set of quantiles. 21 

Linear regression is used to describe the relationship between the observations and the forecasts, and the regression 22 

parameters are specific for each quantile. There are variations of most methods, and ensemble dressing is one that has 23 

both parametric and non-parametric approaches. Roulston and Smith (2003) suggested a non-parametric kernel 24 

dressing method, where the kernel represents a distribution of errors from previous forecasts, which is applied to each 25 

member of the ensemble. Wang and Bishop (2005) extended this idea and suggested the use of a parametric dressing 26 

method of Gaussian kernels where the parameters were estimated by the training data.  27 

Previous studies have analyzed the effects of both pre- and postprocessing on short- to medium-range ensemble 28 

streamflow forecasts (e.g., Zalachori et al., 2012; Roulin and Vannitsem, 2015; Benninga et al., 2017, Sharma et al., 29 

2018). Few studies include preprocessing of temperature. Verkade et al. (2013), Benninga et al. (2017), and Hegdahl 30 

et al. (2019) all applied variations of quantile mapping techniques to calibrate the temperature forecasts, whereas 31 

Zalachori et al. (2012) applied an analog approach. Hegdahl et al. (2019) showed that in catchments with seasonal 32 

snow cover, temperature calibration is important for improved streamflow forecasts Variations of logistic regression 33 

approaches are most common in the studies that preprocessed precipitation (Verkad et al., 2013; Roulin and Vannitsem 34 

et al., 2015; Benninga et al., 2017; Sharma et al., 2018). One exception is the analog approach applied by Zalachori et35 

al. (2012). A larger variety of approaches are used to postprocess streamflow; Bayesian processing (Reggiani et al., 36 

2009), Bayesian model averaging including multi-model approaches (Rings et al. 2012; Parish et al. 2012; Xu et al., 37 

2019), variations of quantile regression (Bogner et al., 2016; Benninga et al., 2017; Sharma et al., 2018), extended 38 

logistic regression (Fundel and Zappa 2011), and ensemble model output statistics (Roulin and Vannitsem 2015). Some 39 
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key findings are that calibrated precipitation forecasts do not necessarily lead to calibrated streamflow forecasts 1 

(Zalachori et al., 2012; Verkade et al., 2013; Benninga et al., 2017). Postprocessing alone is the simplest way to 2 

improve forecasting performance (Zalachori et al., 2012; Sharma, 2018), but not always with a significant improvement 3 

(Benninga et al., 2017). Preprocessing the meteorological forcing is important for forecasting high streamflow since 4 

errors from the meteorological model are dominant in this case (Benninga et al., 2017). Preprocessing has the highest5 

skill improvement in the warm season, whereas postprocessing is the most effective in the cold season with snow cover 6 

(Sharma et al., 2018). This summary indicates that the relative importance of pre- and postprocessing depends on 7 

factors including lead time, streamflow magnitude and season.  8 

From the literature on short- to medium range streamflow forecasts we have identified two studies investigating the 9 

combined effect of preprocessing temperature and precipitation as well as postprocessing the streamflow (Benninga et10 

al., 2017; Zalachori et al., 2012). However, neither of these two studies consider the impacts of such pre- and 11 

postprocessing strategies on the forecasting of flood events directly. Zalachori et al. (2012) assess the performance for 12 

all streamflows and Benninga et al. (2017) assess the performance for, not necessarily flood inducing, high flows. In 13 

Benninga et al. (2017) the forecasts are evaluated for only one catchment, and the author acknowledge that more 14 

catchments are needed to verify the generality of their results. A ‘large catchment sample’ is needed to draw robust 15 

conclusions in such studies (Gupta et al., 2014).  16 

The two unique contributions of our study are to (i) evaluate the univariate and the combined effects of including both 17 

precipitation and temperature forecasts in the preprocessing together with the postprocessing of streamflow for 18 

forecasting of both floods as well as all streamflow values, and to (ii) perform the evaluation for a large catchment 19 

sample. Evaluating the performance of processing approaches on flood forecasts is critical, since we can expect the 20 

processing approaches to be less efficient for extreme and often unique flood events. Using a large catchment sample 21 

allows us to investigate how the performance depends on both climatological and physiographic catchment 22 

characteristic and to draw more robust conclusions. Furthermore, this comprehensive evaluation is performed for lead 23 

times ranging from 1 to 9 days and the performance is assessed for different seasons. 24 

Following the works cited above, the working hypothesis of this paper is that pre- and/or postprocessing improves 25 

streamflow forecasts, but that the improvement might differ between catchments and between events. The main 26 

objective of this study is to assess the potential improvements in flood forecasts by combining pre- and postprocessing 27 

for a variety of catchments. We addressed the following questions: 28 

1. Which pre- and postprocessing approaches should be used in the hydrometeorological forecasting chain to 29 

improve streamflow forecasts with an emphasis on flood forecasting?30 

2. Are there regional or seasonal patterns in preferred pre- and postprocessing approaches? 31 

In this study, we applied and evaluated the different processing schemes within the operational flood forecasting setup 32 

used by the Norwegian flood forecasting service. The different schemes were tested for 119 catchments that vary in 33 

climatology, catchment characteristics, and hydrological regimes. The large number of flood events and catchments 34 

allowed us to provide robust assessments of the performance of the different schemes under different flood conditions.  35 
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2 Study Area, Hydrological Model and Data 1 

2.1 Area 2 

The west coast of Norway forms a topographical barrier for the westerlies. The resulting orographic enhancement of 3 

precipitation makes this area one of the wettest parts of Europe, with an annual precipitation of around 4000mm, 4 

whereas the driest regions in the rain shadow of the mountains have annual precipitation of around 400mm (Hanssen-5 

Bauer, 2017). The temperature depends both on latitude, altitude, and distance from the coast. The catchments belong 6 

to Köppen-Geiger climate classes ranging from subarctic in the north and at high elevations, to temperate in the coastal 7 

areas (according to the Köppen-Geiger climate classes as defined in Peel et al., 2007). 8 

The spatial patterns of mean precipitation explain most of the spatial patterns in mean runoff. The seasonal variation 9 

in runoff depends on seasonal variations in both temperature and precipitation. There are two basic runoff regimes in 10 

Norway. For coastal regions with a temperate climate, the highest flows occur during autumn and winter due to heavy 11 

rainfall.  For inland regions with a sub-arctic or arctic climate, prolonged periods of winter temperatures below zero 12 

oC result in a seasonal snow storage, winter low flow, and high streamflow during spring due to snowmelt. There are, 13 

however, many possible transitions between these two basic patterns (e.g., Gottschalk et al., 1979). 14 

The study area consists of 119 catchments distributed all over Norway (Fig 1). All selected catchments are part of the 15 

operational flood forecasting system and are mostly unregulated, with a large variation in size (3 to 15447 km2) and 16 

elevation (103 to 2284 meter above sea level [m.a.s.l.]). Six catchments are presented in more detail, the location of 17 

these are indicated in Fig 1 and some key characteristics in table 1. The three first catchments are used as examples of 18 

changes in reliability, depending on processing methods, datasets, and lead time.  The three last catchments are used 19 

to illustrate streamflow forecasts estimated by different processing approaches for three different flood events.  20 

2.2 Hydrological Model 21 

We used the Hydrologiska Byråens Vattenbalance (HBV) model (Bergstrøm, 1974; Beldring, 2006; Sælthun, 1996) 22 

that is used in the operational flood forecasting service at the Norwegian Water resources and Energy Directorate 23 

(NVE). The HBV model is a conceptual model where the vertical structure of the model includes a snow routine, a 24 

soil moisture routine, and a response function that consists of two tanks. Quick runoff is represented by a non-linear 25 

tank, whereas slow runoff is represented by a linear tank. The model divides each catchment into 10 elevation zones 26 

where each represents 10% of the catchment area. Catchment average temperature and precipitation are elevation 27 

adjusted using a catchment specific lapse-rate to attain one representative precipitation and temperature value for each 28 

elevation zone. The Nash-Sutcliff efficiency (Nash and Sutcliffe, 1970) and volume bias are used as calibration metrics. 29 

The calibration period, 1996-2012, gives a mean Nash-Sutcliffe 0.77 for all 119 catchments, with zero volume bias. 30 

The validation period, 1980-1995, shows mean Nash-Sutcliffe 0.73, with a mean volume bias of 5% (Ruan, 2016).  31 

2.3 Data  32 

2.3.1 Meteorological observation SeNorge v1.1 33 

We used the gridded daily temperature and precipitation data from SeNorge v 1.1 that covers all of Norway with a 1x1 34 

km grid size. The interpolation of observations to the grid is based on measured values at approximately 400 35 
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meteorological stations for precipitation, and 240 stations for temperature. Residual kriging is used for spatial 1 

interpolation of de-trended temperature values (Tveito, 2007; Mohr, 2008). Temperature is detrended by adjusting 2 

station data to sea level using a standard temperature lapse rate of 0.65 °C/100m. Triangulation is used for the spatial 3 

interpolation of precipitation (Tveito, 2007; Mohr, 2008). The precipitation is further elevation corrected, using a 4 

constant increase of 10% per 100 m beneath 1000 m.a.s.l, and 5% per 100 m above 1000 m.a.s.l. (Tveito et al., 2005).  5 

2.3.2 Meteorological forecasts ECMWF ENS. 6 

The temperature and precipitation forecasts used in the hydrological simulations of this study were taken from the 7 

European Center of Medium-Range Weather Forecast (ECMWF) forecast ensembles (ENS). ENS provides an 8 

ensemble of 51 members, with a forecasting period of 246 hours. The generation of the members of the ensemble is 9 

done by adding small perturbations, which represent the uncertainty in the observations, to the forecast initial 10 

conditions. Further, the uncertainty associated with the model physics is represented by perturbing the physics 11 

tendencies that come from the parametrizations and each member is perturbed individually. This method is known as 12 

the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme and improves the forecasts giving a much 13 

better spread-error relationship compared to initial condition perturbations alone. A detailed description of the 14 

ECMWF ENS system is provided in e.g. Buizza et al. (1999) and Persson (2015). The grid resolution of the model 15 

forecasts used implemented in this study is 0.25° (i.e. model cycles/versions 40r1, and 41r1 (ECMWF, 2018b)). The 16 

variables used for the hydrological modelling are the 2-meter temperature and the accumulated precipitation 17 

aggregated to catchment daily (06:00-06:00) mean values. 18 

2.3.3 Streamflow reference simulations 19 

The streamflow measurements from the NVE database (https://www.nve.no/hydrology/ ) were used as a reference for 20 

the hydrological model calibration. To evaluate the streamflow forecasts, we used simulated streamflow created by 21 

running the hydrological model with SeNorge temperature and precipitation as forcing. Using this approach, we 22 

isolated the effect of the uncertainty in the weather forecasts, and we could ignore uncertainty in hydrological model 23 

parameters, parametrizations, and calibration.  24 

2.4      Study period 25 

The years 2014 and 2015 were chosen as the study period since several large floods affected rivers in most parts of the 26 

country during this two-year period (Figure 1). In May 2014 there were large snowmelt floods in central and eastern 27 

parts of Norway (affecting the Lågen, Glomma, and especially the unregulated Trysilelva catchments). In October 28 

2014 western Norway was hit by an atmospheric river (a narrow plume of high moisture content transported from the 29 

tropical and extratropical latitude towards the poles, see e.g., Zhu and Newell 1998), which led to flooding of multiple 30 

rivers. Atmospheric rivers are responsible for extreme precipitation events when the moist air masses are 31 

orographically lifted at topographical barriers like the west coast of Norway (e.g., Stohl et al., 2008). In July 2015 there 32 

were snowmelt floods in Oppland (central eastern Norway), and in September 2015 an extratropical cyclone, Petra, 33 

caused floods in Southern Norway. In early October 2015, a cyclone, Roar, that caused floods in Trøndelag and 34 

Nordland and in early December a cyclone, Synne, caused floods in several catchments in south-west Norway, some 35 

exceeding the 200-year return level.  36 
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During the study period 2014 and 2015, floods did not occur in all catchments; hence, the number of catchments used 1 

in the flood evaluation analysis was reduced to 80. We still used all 119 catchments when evaluating the performance 2 

for all streamflow values.  3 

3 Pre- and postprocessing 4 

We applied processing steps to both the weather input to the hydrological model and its streamflow output. To 5 

distinguish the different processing steps, we refer to preprocessing as corrections schemes applied to temperature and 6 

precipitation ensembles, and postprocessing as corrections applied to the hydrological ensembles.  7 

3.1 Processing chain 8 

The temperature and precipitation forecast data from ECMWF were prepared by aggregating the variables from hourly 9 

to a daily time step. Thereafter the horizontal resolution was changed using nearest neighbor interpolation to a 1×1 km 10 

grid, equal to the SeNorge grid. For the temperature forecasts, a standard elevation adjustment of 0.65℃/100m was 11 

applied to account for the elevation differences between the original and the seNorge grid. Finally, the temperature 12 

and precipitation forecasts were aggregated to average values for each catchment. We used the ECMWF forecasts from 13 

2014 and 2015 to force the hydrological model, which enabled a retrospective evaluation of the daily streamflow 14 

forecasts for almost two years. The unprocessed daily forecasts for each catchment are referred to as Trawt,l,s,m and 15 

Prawt,l,s,m where t is issue time, l is lead time, s is catchment and m is ensemble member. For temperature and 16 

precipitation forecasts, two different preprocessing approaches were chosen, a grid calibration (CAL) producing the 17 

ensembles Tcalt,l,s,m and Pcalt,l,s,m, and Bayesian model averaging (BMA) producing the ensembles Tbma t,l,s,m and 18 

Pbma t,l,s,m. For postprocessing of streamflow, we used BMA to create Qbma t,l,s,m. For all approaches, the processing 19 

was applied to each issue date, t, lead time l and catchment, s, independently. To improve readability, t,l,s,m is 20 

suppressed in the remainder of this paper. We evaluated all combinations of Tcal and Pcal together with Traw and 21 

Praw, as well as all combinations of Tbma and Pbma together with Traw and Praw. Tcal and Pcal was not combined 22 

with Tbma and Pbma. The seven combinations of temperature and precipitation were run through the hydrological 23 

model resulting in seven unprocessed streamflow forecasts (Qraw). Thereafter, postprocessing the raw forecasts 24 

resulted in seven streamflow forecasts (Qbma), which could be compared to Qraw to establish the effect of 25 

postprocessing. Figure 2 provides an overview of the complete processing chain. More detailed presentation of each 26 

step in the processing chain follows. 27 

Different observational reference data and periods were the basis for the different processing techniques. An overview 28 

of the variables, resolution, and data used for training are presented in Table 2 and details are provided in the following 29 

subsections. 30 

3.2 Grid calibration 31 

The Norwegian Meteorological Institute (MET Norway) uses grid calibration approaches to improve ensemble 32 

forecasts that are used for the operational national weather forecasts published at yr.no (methods available at 33 

https://github.com/metno/gridpp/). We have rerun the preprocessing of the daily ensemble forecasts of temperature 34 
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and precipitation between 2014 and 2015, using the operational processing methods at that time. In the following text 1 

these are referred to with the subscript cal. All calibration parameters were provided by MET Norway.  2 

For the grid calibration methods, we applied the same corrections to each ensemble member. The ordering of members 3 

was therefore kept. Thereby consistency between the calibrated temperature and precipitation members was ensured 4 

and the temporal profile was preserved, which is important for the hydrological modelling.  5 

3.2.1 Temperature calibration (Tcal) 6 

Quantile mapping (Seierstad, 2016; Bremnes, 2007) was used to remove biases in the temperature forecasts by moving 7 

the ensemble (ENS) forecast climatology closer to the observed climatology. MET Norway used Hirlam (Bengtsson 8 

et al., 2017) temperature forecast at a 4×4 km2 grid, as a reference for parameter estimation used to calibrate the 9 

ECMWF ENS. Hirlam was the operational regional model at the time and is suitable as a reference since it provides a 10 

continuous field covering all of Norway at a sub daily time step. Hirlam gives a higher skill and is less biased than 11 

ENS when they are compared to point observations (Engdahl et al., 2015). To establish the calibration parameters, 12 

MET Norway used both ENS reforecasts (Owens, 2018) and Hirlam data from July 2006 to December 2011 13 

interpolated to a 5×5 km2 grid. The ENS reforecast is a 5-member ensemble generated from the same model cycle 14 

(40r1 and 41r1) as the operational ENS forecasts. For each grid cell, quantile transformation coefficients unique for 15 

each month of the year, were determined by using data from a three-month window centered on the target month, e.g. 16 

the May analysis consists of April, May, and June (Seierstad, 2017). The coefficients were estimated by mapping the 17 

first 24 hours of the forecasts. A 1:1 extrapolation was used for forecasts outside the range of observation. In this study 18 

we used the quantile transformation coefficients estimated by MET Norway. This enabled us to establish a 19 

retrospective calibration of the temperature ensemble forecasts. 20 

3.2.2 Precipitation calibration (Pcal) 21 

To account for the intermittent nature of daily precipitation, a Bernoulli-Gamma distribution was used to calibrate the 22 

precipitation forecasts. Precipitation observations from around 200 WMO stations in Norway are used to establish the 23 

parameters of the Bernoulli-Gamma model. All parameters in the Bernoulli-Gamma model depend on lead-time, but 24 

independent of location and issue date.  25 

The probability mass for zero precipitation was specified by logistic regression. Both the cube transformed, and the 26 

untransformed ensemble means and the fraction of ensemble members with precipitation higher than 0.5mm were used 27 

as predictors. A total of four parameters were estimated in the logistic regression model. The precipitation amounts 28 

were modelled by a gamma distribution The cube root of the forecast ensemble mean is used as a predictor in a model 29 

with two parameters to fit the mean, whereas the untransformed forecast ensemble mean is used as a predictor in a 30 

model with two parameters are used to fit the standard deviation. MET Norway provided the parameters that were used 31 

at the issue time of the precipitation forecasts, and we applied them for a retrospective calibration of the precipitation 32 

ensemble forecasts. 33 

3.3 Bayesian Model averaging  34 

https://doi.org/10.5194/hess-2021-13
Preprint. Discussion started: 22 February 2021
c© Author(s) 2021. CC BY 4.0 License.



 

9 

 

Bayesian model averaging (BMA) aims to correct dispersion errors in a bias corrected ensemble (Raferty et al 2005). 1 

For each lead time, BMA uses a mixture distribution, where for an ensemble with M members, the density function 2 

conditioned on all ensemble members is the weighted average of kernels for each member m. The preprocessed 3 

meteorological ensembles were established by randomly drawing M realizations from the mixture distribution 4 

estimated by BMA. The kernel, for the quantity one wishes to forecast, y, is denoted by 𝑓𝜃(𝑦|𝑥𝑚) where xm is the raw 5 

forecast’s ensemble member m and θ are parameters of the kernel pdf f. The probability density function conditioned 6 

on all M ensemble members is the weighted average of the pdf for each member: 7 

𝑓(𝑦|𝑥1, … , 𝑥𝑀)~ ∑ 𝑤𝑚𝑓𝜃(𝑦|𝑥𝑚)𝑀
𝑚=1 , (1) 

where ∑ 𝑤𝑚 = 1𝑀
𝑚=1  and the weights are interpreted as the posterior probabilities of each ensemble member. The 8 

ensembles in this paper are based on ECMWF ENS which are considered exchangeable, and weights and parameters 9 

can be constrained to be equal for all members (Fraley et al 2010). For each issue date we used the previous n days of 10 

ensemble forecasts and reference observations to estimate the parameters in the kernel. To account for the specific 11 

properties of temperature, precipitation and streamflow, different kernel distributions were used, the details are 12 

provided below.  13 

3.3.1 BMA for temperature (Tbma) 14 

We followed Raferty et al (2005) and used a Normal distribution as the kernel for the temperature BMA models. Since 15 

the temperature ensemble forecasts were not already bias corrected, the mean is specified as 𝑎0 + 𝑎1𝑇𝑟𝑎𝑤,𝑚 , where 16 

𝑇𝑟𝑎𝑤,𝑚 is the temperature forecast for ensemble member m and a0 and a1 are regression parameters that account for any 17 

bias. The parameters are specific for each catchment, issue date and lead time and are the same for all ensemble 18 

members.  19 

 𝑓(𝑇𝑏𝑚𝑎|𝑇raw,m)~Ɲ(𝑎0 + 𝑎1𝑇𝑟𝑎𝑤,𝑚, 𝜎2), (2) 

To estimate the parameters, the catchment average temperatures from SeNorge were used as a reference.  20 

3.3.2 BMA for precipitation (Pbma) 21 

We followed Sloughter et al (2007) who proposed a Bernoulli-gamma distribution as kernel in the BMA precipitation 22 

models to establish Pbma.  23 

𝑓(𝑃𝑏𝑚𝑎|𝑃𝑟𝑎𝑤,𝑚) =  𝑓(𝑃𝑏𝑚𝑎 = 0|𝑃𝑟𝑎𝑤,𝑚)𝐼{𝑃𝑏𝑚𝑎=0}

+ 𝑓(𝑃𝑏𝑚𝑎 > 0|𝑃𝑟𝑎𝑤,𝑚)ℎ(𝑃𝑏𝑚𝑎|𝑃𝑟𝑎𝑤,𝑚)𝐼{𝑃𝑏𝑚𝑎>0} 

 

(3) 

where I{} is unity if the condition within the brackets is true and zero otherwise. 𝑓(𝑃𝑏𝑚𝑎 = 0|𝑃𝑟𝑎𝑤,𝑚) is the probability 24 

of zero precipitation given by a logistic regression model: 25 

 𝑓(𝑃𝑏𝑚𝑎 = 0|𝑃𝑟𝑎𝑤,𝑚) =
1

1 + 𝑒𝑥𝑝(𝑏0 + 𝑏1𝑃𝑟𝑎𝑤,𝑚
1/3

+ 𝑏2𝛿𝑚)
 

(4) 
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where b0, b1 and b2 are regression parameters common for all ensemble members and 𝛿𝑚 equals 1 if xm = 0 and equal 1 

0 otherwise. 2 

ℎ(𝑃𝑏𝑚𝑎|𝑃𝑟𝑎𝑤,𝑚) was assumed to follow a gamma distribution for the cube root transformation 𝑃𝑏𝑚𝑎
′ = 𝑃𝑏𝑚𝑎

1 3⁄
 of the 3 

precipitation, where the mean (𝜇𝑚) and variance (𝜎𝑚
2 ) of the distribution depend on the ensemble member: 4 

𝜇𝑚 = 𝑐0 + 𝑐1𝑃𝑟𝑎𝑤,𝑚
1/3

 and  𝜎𝑚
2 = 𝑑0 + 𝑑1𝑃𝑟𝑎𝑤,𝑚 (5) 

where all parameters 𝑐0 and 𝑐1 , 𝑑0 and 𝑑1 were the same for all ensemble members. The seven parameters in the 5 

Bernoulli-gamma kernels were estimated using the catchment average precipitation from seNorge as reference.    6 

3.3.3 BMA for streamflow (Qbma) 7 

We applied a Box-Cox transformation (Box and Cox 1964; e.g., Duan et al. 2007) on both observed and forecasted 8 

streamflow to make the transformed streamflow 𝑞∗ normally distributed:  9 

𝑞∗ = {
(𝑞𝜆 − 1)

𝜆
 𝑓𝑜𝑟 𝜆 ≠ 0  

𝑙𝑜𝑔(𝑞)   𝑓𝑜𝑟 𝜆 = 0

 

(6) 

here 𝜆 is a transformation parameter. The Box-Cox transformation has proven valuable for hydrological applications 10 

(e.g., Engeland et al. 2010; Bates and Campbell 2001; Thyer et al. 2002; Yang et al 2007). We used a fixed λ based on 11 

previous studies by Engeland et al (2010), who found that λ = 0.2 gave forecast errors that were approximately 12 

independent of forecasted values. As for temperature, we applied the BMA with a mixture of normal kernels for 13 

postprocessing the streamflow forecasts.  14 

𝑓(𝑄′𝑏𝑚𝑎|𝑄′raw,m)~Ɲ(𝑎0 + 𝑎1𝑄′𝑟𝑎𝑤,𝑚, 𝜎2) (7) 

 15 

3.4 BMA training length  16 

Following Raferty et al. (2005), the BMA models for temperature, precipitation and streamflow were trained on data 17 

from a time window prior to the issue date for each forecast. We tested different training lengths for all variables and 18 

lead times, using CRPS (description in following section) as evaluation metric. Experiments with different training 19 

lengths showed that the optimal window size depends on variable, lead-time, and whether CRPS was calculated for all 20 

data or only for days with flooding (example in Fig 3). Precipitation was most sensitive to the training length due to 21 

the necessity of precipitation occurring within the time window. 45 days training period was optimal for most 22 

catchments and lead-times (A-Fig 1 and 2). To keep a consistency during the evaluation we used 45 days training 23 

period for all variables (i.e., temperature, precipitation, and streamflow). 24 

3.5 Temperature and precipitation dependence structure (Ensemble copula coupling) 25 

The BMA models described above were applied independently to each weather variable, each location (here 26 

catchment) and each lead time. The preprocessed ensembles where established by drawing 51 new realizations from 27 
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the mixture distribution of each BMA model independently. To recreate forecast trajectories of temperature and 1 

precipitation, it is necessary to account for the temporal and inter-variable dependence structures. In this study, it was 2 

achieved by using an approach similar to Ensemble Copula Coupling (ECC, Schefizik et al., 2013). The original 51 3 

ensemble members (m) for temperature and precipitation were, for each location, issue date, and lead time, assigned a 4 

rank (ro,m). Similarly, the 51 BMA-processed precipitation and temperature ensemble members were assigned a rank 5 

(rn,m). The 51 preprocessed ensemble members were reordered by using ro,m and rn,m as keys to keep the preprocessed 6 

ensemble in the same rank sequence as the original ensemble members. By applying this method to all variables, lead 7 

times, and issue dates we maintain the dependency between the variables, as well as the temporal dependency for each 8 

of the variables.  9 

4 Evaluation 10 

We evaluated the pre- and postprocessing methods for all days of the study period using the complete dataset, as well 11 

as for the flood dataset. 12 

4.1 Reliability: Cumulative rank-histogram plots 13 

The reliability of an ensemble forecast is often visually presented by the rank-histograms (Anderson, 1996; Talagrand 14 

et al., 1997; Hamill, 2001). In our setup, the rank-histograms consist of i=52 bins (51 members +1), where the value 15 

of the ordered ensemble members defines the limit between the bins. Each bin in the rank-histogram reflects the 16 

frequency of the ranked reference observations compared to the ensemble forecast, and a reliable forecast should have 17 

a uniform distribution of observations between the bins. There are 14 rank-histograms for each lead time and catchment 18 

to be evaluated. To reduce the number of plots, we evaluated the reliability by creating a Q-Q plot based on the 19 

cumulative rank-histogram (scaled to unity) on the y-axis and the uniform distribution on the x-axis, as explained in 20 

Fig 4. The cumulative rank-histogram 𝐹𝑖 for bin i is the sum of the relative frequency 𝑓𝑘 for all bins where 𝐹𝑖 =21 

∑ 𝑓𝑘
𝑖
𝑘=1 . The expected relative frequency of observations in each of the 52 bins given a uniform distribution equals 22 

1/52, represented by the cumulative uniform distribution 𝑈𝑖 = ∑
𝑘

52

𝑖
𝑘=1 .  . In this cumulative rank-histogram plot the 23 

1:1 line represents a uniform rank-histogram with an equal probability for the observations to be located within each 24 

bin. This approach enabled us to compare the reliability for all 14 processing schemes within a single plot. The shape 25 

of the cumulative rank histogram plots enables the detection of biases as well as under- and over dispersion as explained 26 

in the Fig 4.  27 

4.2 Continuous rank probability score (CRPS) and - skill score (CRPSS) 28 

The continuous rank probability score (CRPS) has properties that are appealing for the evaluation of ensemble forecast. 29 

Firstly, it is sensitive to the entire permissible range of parameters of interest. Secondly, its definition does not require 30 

predefined classes, which might influence the results. For a deterministic forecast, CRPS reduces to the mean absolute 31 

error (MAE, Hersbach, 2000), which enables a comparison between a deterministic and an ensemble forecast. CRPS 32 

measures the integral of squared difference between the forecast and the observation, both given as cumulative 33 

distribution function (cdf). If the observation is deterministic the Heaviside function is used for the observation cdf 34 

(Hersbach, 2000). For ensemble forecasts, the CRPS is calculated discretely since both the observations and the 35 

forecasts are reported in discrete intervals (Hersbach, 2000, Eq. 8):  36 
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(8) 

Where M is the ensemble size, xm is ensemble member n and xobs is the reference observation. For a time-series of 1 

forecasts, the mean CRPS for each scheme (𝐶𝑅𝑃𝑆𝑃𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) can be calculated. CRPS will give credit to high probabilities 2 

close to the reference, which is not necessarily the case for other ensemble verification scores (Gneiting and Rafterty, 3 

2007). CRPS has the same unit as the observations (m3/s for streamflow), and is negatively oriented, where zero is the 4 

optimal value.  5 

The continuous ranked probability skill score (CRPSS, Eq. 9) enables assessment of the skill of the different processing 6 

schemes (PS) relatively to the raw forecasts (raw). The mean CRPS for each scheme (𝐶𝑅𝑃𝑆𝑃𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) and for the unprocessed 7 

forecasts (𝐶𝑅𝑃𝑆𝑟𝑎𝑤
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) are used to calculate CRPSS.  8 

𝐶𝑅𝑃𝑆𝑆𝑃𝑆 = 1 −
𝐶𝑅𝑃𝑆𝑃𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐶𝑅𝑃𝑆𝑟𝑎𝑤
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
(9) 

Note that CRPSS has 1 as the optimal value and is positively oriented. Since CRPSS has no units, we could calculate 9 

average skill scores across all catchments. CRPS and CRPSS were calculated for the complete dataset as well as well 10 

as for the flood dataset.   11 

4.3 The Critical success index (CSI)  12 

In an operational flood forecasting setting, flood warnings are issued when there is a certain probability for streamflow 13 

to exceed predefined flood warnings thresholds. The occurrence and non-occurrence of floods are therefore binary 14 

events that can be summarized in a contingency table providing an overview of hits (H), missed events (M), false 15 

alarms (F), and correct non-events (N). Based on the contingency table shown in Table 3, the following indices can be 16 

used to evaluate the performance of a forecasting system.  17 

Hit ratio, where a hit rate of 1 is the best performance (SR):        𝑆𝑅 =  
𝐻

𝐻+𝑀
 18 

False alarm ratio (FR):                   𝐹𝑅 =  
𝐹

𝐻+𝐹
 19 

Critical Success Index (CSI):                 𝐶𝑆𝐼 =  
𝐻

𝐻+𝐹+𝑀
 20 

Since floods are rare events, there is a small number of flood-events compared to the number of non-events.  A good 21 

forecast has a high hit ratio and a low false alarm ratio. The Critical Success Index (CSI, Donaldson et al., 1975; Jolliffe 22 

and Stephenson, 2018) balance these two aims by penalizing the hit ratio for both the missed events (M) and the false 23 

alarms (F). In an operational setting, a warning will be issued when a predefined number of ensemble members (or a 24 

defined probability) exceeds the flood warning threshold. The probability of exceedance opens for potential cost lost 25 

evaluation, however for the simplicity of this work we have chosen a limit of 10 members exceeding the mean annual 26 

flood level. The mean annual flood has of a return period of 2.33 years (i.e. ~20% probability of occurrence).  27 

4.4 Floods by seasons 28 
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There might be several reasons for the seasonal differences in flood forecast performance. Firstly, there are biases in 1 

forecasted temperatures, especially for the Norwegian coast during autumn and winter (Seierstad et al., 2016, Hegdahl 2 

et al., 2019). Secondly, the flood-dominating processes are often aligned to different season, e.g. snowmelt contribution 3 

to floods dominates in spring, and rain-induced floods dominate in autumn. For these reasons, we divided the flood 4 

events into spring and autumn floods and used CSI to evaluate how the performance of processing methods depend on 5 

season. The available data covers a period of two years and we defined spring from April 4 to June 13, and autumn 6 

from September 01 to December 10. Both seasons consist of 2×101 days and 35 catchments were affected by spring 7 

floods and 40 catchments by autumn floods.  8 

5 Results 9 

We assessed the reliability of the raw and processed streamflow forecasts, and results for selected catchments are 10 

presented. CRPS and CRPSS were used to evaluate the different processing schemes for the full dataset and the flood 11 

dataset. Furthermore, we evaluated the effect of pre- and postprocessing regarding location, by plotting maps of the 12 

processing schemes giving the highest performance on the flood dataset. CSI was used to assess the ability to predict 13 

the exceedance of flood warning levels for the different schemes. CSI was calculated for all floods as well as for spring 14 

and autumn floods separately. Finally, we present streamflow forecasts based on  the different processing approaches 15 

for three flood events.   16 

5.1 Reliability 17 

We used cumulative rank-histogram plots to compare all 14 processing schemes for all lead times and found that for 18 

most catchments the schemes improved the reliability of the forecasts. Examples for lead times 1, 5 and 9 for three 19 

catchments chosen to highlight some differences, are shown in Fig 5. Vaekkava (Fig 1, Table 1) is representative of 20 

the effect of pre- and postprocessing for most catchments in this study. The raw ensembles (Traw_Praw) have a 21 

negative bias for all lead times. For a lead time of 1 day, all postprocessing schemes produce reliable forecasts, whereas 22 

preprocessed forecasts still underestimate the streamflow forecasts. The preprocessed forecasts become more reliable 23 

with increasing lead time. This can be explained by an increasing spread in the ensemble for longer lead times. For a 24 

lead time of 9 days, we see that the preprocessed forecasts, independent of methods, are more reliable than the 25 

postprocessed forecasts. Refsvatn (Fig 5 second row, Table 1) has a slightly positive bias in the raw ensemble 26 

(Traw_Praw) for a lead time of 1 day. The preprocessing schemes results in forecasts with a large negative bias and 27 

hence makes the forecasts less reliable, whereas schemes with postprocessing (*_Qbma) improve the reliability. For 28 

lead times of 5 and 9 days, the raw ensembles are the most reliable. Tannsvatn (Fig 5 bottom row, Fig 1, Table 1) has 29 

raw forecasts that are rather reliable for all lead times. For a lead time of 1 day, the improvements are seen by all 30 

postprocessed ensembles whereas the preprocessing introduces a negative bias. For a lead time of 5 days, the reliability 31 

is similar for most processing schemes, but poorest for the preprocessing schemes Pcal and the Tbma. At a lead time 32 

of 9 days, however, the preprocessing schemes based on Pbma, performs best, while those that include postprocessing 33 

are least reliable.  34 

5.2 Skill – relations to lead time for all data and floods 35 
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We used CRPS and CRPSS to evaluate how the different processing methods affected the performance of ensemble 1 

streamflow forecasts for all lead times and catchments. In Fig 6 the CRPSS for all data and catchments is presented. 2 

The most striking finding is that nearly all catchments benefit from processing. Postprocessing in combination with 3 

preprocessing is most important for the short lead times. Pcal show the largest variability in performance, where a 4 

larger portion of catchments only slightly benefit from Pcal, indicating that this preprocessing is the least robust. For 5 

the flood dataset (Fig 7), there is a larger difference between the median of CRPSS for the schemes compared to Fig 6 

6. However, the variability in skill is larger for the flood dataset compared to the full dataset, meaning that there are 7 

fewer catchments benefiting from the processing schemes under flood conditions. Postprocessing without 8 

preprocessing seems to be the least good approach. For the longer lead times, there are increasingly more catchments 9 

where postprocessing leads to a poorer performance, compared to using the raw forecast.  10 

Additional results are shown in A-Fig 3 and 4 for the full dataset and A-Fig 5 and 6 for the flood dataset, all these 11 

figures are in the appendix. By only focusing on the best processing approach for the single catchments, the applied 12 

postprocessing methods are most important for the short lead times (1-3 days) when analyzing the complete dataset 13 

(seen by the yellow to green colors in A-Fig 3 and supported by the histograms in A-Fig 4). We moreover find that the 14 

most skillful method can change for a catchment with lead-time (A-Fig 3). The BMA applied to temperature and in 15 

the combination of BMA applied to precipitation are the two best methods for lead-times above 3 days.  16 

For the flood dataset we find that there are no systematic patterns to whether pre- or postprocessing is most important 17 

to improve the skill (A-Fig 5). Postprocessing performs similar to preprocessing for most lead-times and is hence less 18 

important for the short lead-times compared to what was found for the full dataset. BMA seems to be the better choice 19 

for preprocessing, and improves the performance for more catchments compared to CAL. For longer lead times, BMA 20 

on temperature is the most important method for improved CRPS. The general tendency seems to be that preprocessing 21 

precipitation is most important for the short lead-times, whereas preprocessing temperature is more important for the 22 

longer lead-times. 23 

Figure 8 gives a detailed presentation on how the mean CRPS varies with lead time, processing scheme, and the 24 

evaluation dataset for three individual catchments. For the full dataset (Fig 8 left), the CRPS for postprocessed forecasts 25 

increases faster with lead time than CRPS for forecasts without postprocessing. The lead time at which postprocessing 26 

gives better performance than not using postprocessing varies between catchments. This is supported by the results 27 

presented in A-Fig 3. A striking difference is that CRPS increases with lead time when the full dataset is used, whereas 28 

it is reduced by lead time for the flood dataset (Fig 8 right) for several of the processing schemes. The pattern for the29 

full dataset (i.e. CRPS increases with lead time) is representative for most catchments, whereas changes in CRPS with 30 

lead time for the flood dataset varies between the catchments.  We see that the mean CRPS for all streamflows (Fig 8 31 

left) is smaller than for floods (Fig 8 right), which can be explained by the data used to estimate the mean. The flood 32 

dataset consists of fewer days and higher values, and hence the possibility for larger errors. An explanation for the 33 

decrease in CRPS for the flood dataset in Fig 8 right is that the ensemble spread increases with lead time, and it is 34 

therefore more likely that the observed floods are within the ensemble range for the long lead times. 35 

5.3 Skill – relations to location 36 
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Figure 9 shows a map of which processing method that achieves the highest performance according to CRPS for the 1 

flood dataset for each catchment for lead time 1, 5, and 9 days. The left column shows whether a preprocessing scheme 2 

alone or a combination of pre- and postprocessing methods gives the highest performance. The figures show that 3 

inland, high elevation, and eastern catchments are improved by postprocessing for lead times of 1 and 5 days, whereas 4 

the coastal catchments do not attain the highest score by postprocessing. In the right column we show which of the 5 

BMA preprocessing approaches that resulted in the best CRPS. Catchments where the grid-calibration or the raw 6 

forecasts gave the best performance are shown as black dots. We find that Pbma, alone or in combination with Tbma,7 

gives the best results for western and southern coast of Norway for lead times of 1 and 5 days. For a lead time of 9 8 

days, however, Tbma alone is more important. In the coastal regions, floods are mainly rain driven, and we find that 9 

Pbma performs well in these regions. BMA on temperature alone has a less clear pattern. A summary of the numbers 10 

from Fig 9 is presented in table 4 and quantifies the visual information from Fig 9. The effect of postprocessing is 11 

larger for shorter lead time and the catchments where preprocessing was the best option, BMA is the best choice for 12 

about 70 to 80 % of the catchments. Combining Tbma and Pbma performs best for a larger group of catchments.  13 

5.4 CSI for the whole year, spring, and autumn floods 14 

In this evaluation, the processing scheme giving the highest CSI for each catchment is considered, and we counted the 15 

number of catchments for which the specific scheme gave the best CSI. For each catchment, multiple methods can 16 

achieve equal CSI. Therefore, for some lead times, the number of “best” CSI exceeds the total number of catchments.  17 

We first evaluated CSI for floods from the whole year (A-Fig 8), which did not give any clear indications of methods 18 

that performed better than others. However, by separating the flood dataset between floods occurring in spring (Fig. 19 

10) and those occurring in autumn (Fig 11) we attain some interesting insight. For spring (Fig 10) most methods give 20 

good results for multiple catchments, indicating more than one successful method. The improved predictions by 21 

applying pre- and/or postprocessing to spring floods, holds for most lead times. For lead times of 2 to 5 days 22 

postprocessing provides the best CSI for more catchments than preprocessing alone, whereas beyond 5 days’ lead time 23 

we find that about half of the successful predictions includes postprocessing. 24 

For autumn (Fig 11) the results diverge from the spring results. For a lead time of 1 day, the predictions are highly 25 

improved by including postprocessing, whereas the effect of postprocessing diminish for lead times of 2 and 3 days. 26 

From a lead time of 4 days there is no predictability by most methods, and only six catchments show predictive skill 27 

by applying Tbma alone or in combination with Pbma.   28 

5.5 The effect of pre- and postprocessing for a selection of events and catchments 29 

The forecasted streamflow is essential to determine a correct flood warning level. In this subsection we present three 30 

flood events and catchments to exemplify how the different processing approaches influences the ensemble flood 31 

forecasts. The events are the atmospheric river affecting western Norway in October 2014, the extreme weather event 32 

Synne hitting southern Norway in early December 2015, and a snowmelt flood in eastern Norway in May 2014. For 33 

all examples, the issue date of the forecast is selected 3 to 5 days before the peak of the flood.   34 

Figure 12 shows the outcome of the different processing approaches for the October 2014 event at Bulken (Fig 1, Table 35 

1) in western Norway. Some of the ensemble members reach the reference streamflow (black line) when Pbma is 36 
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applied without Qbma. However, none of the ensemble medians reach up to the level of the reference streamflow 1 

(black line). Pbma induces very high streamflow for some of the members, whereas BMA applied to streamflow2 

removes the effect of Pbma (Fig 12 left and right respectively). The large spread in streamflow when using Pbma 3 

indicates large uncertainty in the precipitation forecasts for this event.  4 

The extreme weather event in December 2015 was difficult to forecast. In particular, the location of the rainfall was 5 

highly uncertain. Figure 13 shows the outcome of the different processing approaches for this event at Moeska (Fig 1, 6 

Table 1) in south-western Norway. We see that precipitation is underestimated, and none of the processing schemes 7 

result in ensemble members that reach the reference level for streamflow. For this event at Moeska the same pattern is 8 

seen as for the event at Bulken, where Pbma induces high streamflow values (Fig 13 left) that are later suppressed by 9 

the Qbma (Fig 13 right).  10 

Figure 14 shows the outcome of the different processing approaches for the snowmelt flood in May 2014 at 11 

Nybergsund in eastern Norway. This flood is best forecasted by the raw and preprocessed input, with small differences 12 

between the schemes. Postprocessing reduces the median forecasts for all lead times, in addition to increasing the 13 

spread.  14 

6 Discussion 15 

The results demonstrate that all catchments benefitted from one or more of the applied processing schemes, thereby 16 

confirming our working hypothesis. However, it was not possible to identify a distinct processing chain that was17 

optimal for all forecasts, the choice of method depends on several factors including lead time, season, location, and 18 

evaluation criteria.  19 

A part of the answer to our first research question “Which pre- and postprocessing approaches should be used in the 20 

hydrometeorological forecasting chain to improve streamflow forecasts with emphasis for flood forecasting?” is that 21 

preprocessing using catchment specific BMA generally performed better than the gridded calibration (CAL). One 22 

explanation is that the BMA calibration uses the same temperature and precipitation data that were used to tune the 23 

hydrological models and establish the reference streamflow. Using grid-calibrated temperature and precipitation might 24 

therefore, in many cases, lead to biases in streamflow forecasts. One example is Refsvatn (Fig 5 LT: 1) where the CAL 25 

methods induce a larger bias compared to the BMA methods. Another aspect is that the BMA approaches tailor the 26 

preprocessing to each catchment, whereas the model for the grid calibrated precipitation is independent of location and 27 

is therefore less flexible (See Table 2). In Fig 6 we see a large variability in performance for Pcal. Even though Pcal 28 

performs well for a majority of the catchment when considering the full dataset, several catchments show only small 29 

or no improvement to the forecast skill. Postprocessing, i.e. combining Pcal and Qbma, assists in improving the 30 

forecasts for these catchments.  31 

It is moreover instructive to see that postprocessing alone seems to be the least optimal choice when evaluating both 32 

the full dataset and even less optimal when the subset of floods is considered. This demonstrates the importance of 33 

correcting biases and spread in the forcing. The catchments’ responses to the temperature and precipitation inputs are 34 

non-linear, in particular for snow accumulation and snow melt processes where temperature thresholds are important. 35 

Using postprocessing alone is therefore less effective in correcting for biases in inputs to the hydrological model.  36 
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The combination of pre- and postprocessing approaches that outperforms the others depends on catchment, lead time, 1 

streamflow magnitude, and the choice of evaluation metric. We find that for the complete dataset, the best CRPS is 2 

seen when applying postprocessing combined with BMA preprocessing of temperature for lead times of up to three 3 

days, whereas for the longer lead times BMA preprocessing of temperature alone or both precipitation and temperature 4 

provide the best performance (Fig 6 and  A-Fig 4). This result is in line with Benninga et al (2017) who underlines the 5 

importance of improving the meteorological inputs, in particular for high flow events. Global meteorological 6 

ensembles often lack spread for shorter lead times since they are designed for medium range forecasts and therefore 7 

use perturbations that optimize the ensemble spread for longer lead times. BMA models used both for pre- and 8 

postprocessing will therefor improve the forecast skill. It would be instructive to assess whether using regional 9 

meteorological ensembles, which are better able to model the forecasts uncertainties in the short range compared to 10 

their global counterparts (Frogner et al 2019a, 2019b), as inputs to the hydrological model alter this finding. However, 11 

such forecasts were not available for our study period, but may be the focus of future research.   12 

Comparing CRPSS in Fig 6 and 7, we see that the improvement in skill resulting from the processing schemes is 13 

smaller for the flood dataset compared to the complete dataset. Looking at CRPS for the full dataset and floods (A-Fig 14 

5 and 6 respectively) it is less evident whether any schemes outperform others for the floods whereas for full dataset 15 

we see similar results as for CRPSS. We see that postprocessing is less useful for the three first lead times for the flood 16 

dataset as compared to the full dataset. Using BMA for both precipitation and temperature for the shortest lead times 17 

and only temperature for the longest lead times was the best choice for the largest portion of the catchments. In addition 18 

to the differences in preferred processing schemes between catchments, we find that for a single catchment, the best19 

processing schemes varies depending on lead-time. This underlines that forecast errors arise from different sources, 20 

and that being conclusive based on relatively small sample of floods is difficult.  21 

In answer to our second research question “Are there regional or seasonal patterns in preferred pre- and 22 

postprocessing approaches?” we found that the performance of the processing schemes has both regional and seasonal 23 

patterns, when the flood dataset is used for evaluation. The regional pattern indicates that an excess of catchments 24 

benefitting from preprocessing are located in coastal areas (Fig 9). Another finding is that those improved by BMA 25 

applied to precipitation (Pbma) are in areas with high precipitation (the west and southwest coast of Norway, Fig 9).   26 

It is also clear that Tbma_Pbma is the combination with the highest performance for a lead time of 1 day,  with the27 

performance diminishing with lead time, and for a lead time of 9 days, Tbma_Praw is a better choice (Table 4 and Fig 28 

9). Postprocessing is more important for the inland and high elevation catchments, where temperature and slower 29 

snowmelt processes are dominating. Moreover, for these regions we see that the effect of postprocessing is smaller 30 

with increasing lead time.  31 

The seasonal effect was evaluated by separating spring floods from autumn floods. The CSI shows that there are large 32 

differences in predictability between seasons. There is almost no ability to predict autumn floods beyond 3 days, only 33 

for 6 of 40 catchments are floods predicted by any of the approaches. In contrast, the forecasts for the spring floods 34 

show a predictability up to 9 days, and for 23 of the 35 catchments one or more approaches were able to predict the 35 

floods. These results indicate that the predictability of floods depends on flood-generating processes, i.e. snowmelt 36 

induced spring floods are easier to forecast than rain induced autumn floods. These results further imply that the autumn 37 

precipitation and floods are the most difficult to predict and has the highest potential for improvements. 38 
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For some catchments we see contradictory results when comparing CRPS and CSI for the flood dataset. Tbma produces 1 

the best CRPS for most catchments for longer lead-times (A-Fig 6), however Tbma gives a lower CSI compared to the 2 

other preprocessing methods (A-Fig 7 and Fig 10-11). This indicates that care must be taken when choosing an 3 

appropriate evaluation metric. CRPS indicates the error between the forecast and the reference value and favors 4 

forecasts close to the reference (Gneiting and Rafterty, 2007). CSI on the other hand gives no favor for forecasts close5 

to the reference only to whether the forecast exceeds the warning threshold or not. For example, the processing scheme6 

that had the best CRPS might slightly underestimate the reference value, and if the reference is just above the warning 7 

threshold, this scheme will miss the event, resulting in a low CSI value In contrast, a processing scheme that highly 8 

overestimate the reference will result in a poor CRPS and a good CSI. 9 

For the calculation of CSI, we used a limit of 10 ensemble members (a probability of about 20%) exceeding the flood 10 

threshold to issue a flood warning. The ensemble can provide a whole range of probabilities and here we only evaluated 11 

for one probability level. The optimal probability of exceedance to issue a flood warning might be different between 12 

catchments, lead times, and seasons. Another aspect is to investigate the acceptance level for false alarms to missed 13 

events. The number of tolerable false alarms might depend on the impacts of the event (e.g. risk evaluation), and it is 14 

therefore difficult to make one absolute decision on behalf of all possible exceedance levels (flood sizes) and affected 15 

parties. We acknowledge that the choice of evaluation criteria can be different depending on the users and the cost of 16 

mitigation action compared to the loss due to an event, and that false alarms and missed events might be weighted 17 

different depending on a total cost-loss evaluation. 18 

One concern when using BMA for preprocessing precipitation is that some of the ensemble members in Pbma attained 19 

physically non-plausible values. resulting in very high flood forecasts. This is apparent for the Bulken catchment for 20 

the October 2014 event (Fig 12). This suggests that the forecast distribution can be sensitive to large errors in 21 

precipitation. Especially for Western Norway where a steep topography causes large spatial differences in precipitation 22 

and therefore a potential for large errors in forecasts, Pbma should be used with care. The region experienced large 23 

amounts of precipitation prior to the October 2014 event. Therefore, the estimated BMA parameters are based on data 24 

for a period with possible large errors in the forecasted precipitation, implicating large uncertainty in the BMA model 25 

parameters. Possible solutions could be to use categorized approached (e.g., Ji et al., 2018), where the precipitation is 26 

separated into precipitation categories (based on for example daily ensemble mean) and unique BMA models are 27 

trained for each category.  28 

7 Conclusions 29 

In this study, we have evaluated streamflow forecasts in 119 catchments based on fourteen schemes with different 30 

combinations of the raw, pre-, and postprocessed values. The modelling chain is similar to the operational flood 31 

forecasting system, and we evaluated the forecast with a special emphasis on flood values exceeding the mean annual 32 

flood (QM). From the results presented and discussed in this paper, we conclude that: 33 

Applying pre- or postprocessing schemes improve streamflow forecasts compared to using raw forecasts.  The best 34 

combination of pre- and postprocessing approaches depends on location, season, lead time, and the purpose of the 35 

forecasting as represented by different evaluation criterions. The large number of catchments used for evaluation 36 

https://doi.org/10.5194/hess-2021-13
Preprint. Discussion started: 22 February 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

allows us to draw some general conclusions that can assist us in choosing an appropriate processing chain and to 1 

identify which forecasts that are the most challenging.  2 

Which pre- and postprocessing approaches should be used in the hydrometeorological forecasting chain to improve 3 

streamflow forecasts with emphasis for flood forecasting? 4 

• An evaluation of CRPS for the complete dataset of two years showed that the combination of pre- and 5 

postprocessing is most effective for short lead times, up to two-three days. For longer lead times, processing 6 

schemes that only include preprocessing provide the best results. BMA is the preferred method for 7 

preprocessing, either applied to temperature (Tbma) alone or in combination with precipitation (Pbma).8 

• For days where floods exceeded QM the added value of processing is less clear. For a small majority of the 9 

catchments applying BMA to precipitation and/or temperature (for longer lead times) improves the CRPS 10 

compared to the raw forecast and is also better than grid calibration.11 

Are there regional or seasonal patterns in preferred pre- and postprocessing approaches? 12 

• The processing is sensitive to regional or seasonal patterns. Postprocessing was most effective for inland and 13 

higher elevated catchments. The coastal catchments gained more from preprocessing. Especially BMA14 

applied to precipitation and temperature improved CRPS for the western and southwestern coastal catchments15 

for the early lead times, whereas Tbma was most important for the longer lead times.16 

• The added value of processing depends on season. We see a substantial difference between spring and autumn17 

floods using critical success index (CSI) for evaluation. In autumn, there are almost no predictive skill for 18 

more than 3 days lead-time. Spring is quite different with a longer prediction horizon; for some catchments 19 

and processing schemes the floods are predicted up to nine days in advance. The results indicate a higher20 

predictability in spring floods, which in addition to precipitation are highly dependent on temperature that 21 

controls the snowmelt intensity.22 

• The high precipitation rates, which is the flood generating process in autumn, should hence be the focus for 23 

further improvements. We found that for some incidents of high precipitation rates the BMA preprocessing 24 

resulted in unrealistic precipitation amounts for individual ensemble members. Approaches to amend this are 25 

needed. 26 

To summarize; we find that flood forecasts benefit from pre- and/or postprocessing, however the optimal processing 27 

approaches depend on region, catchment, and season. 28 
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https://github.com/metno/fimex, was used for the resampling and reprojection of the gridded datasets, and 1 

https://github.com/metno/gridpp which includes the preprocessing methods was applied for temperature and 2 

precipitation calibration (CAL). 3 

The SeNorge data are downloadable, https://thredds.met.no/thredds/projects/senorge.html, Met Norway 4 

The ensemble forecast data is available from ECMWF, and streamflow observation is available from NVE upon 5 

request 6 

7 
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11 Tables and Figures 1 

Table 1 Catchment characteristics for selected catchments: Catchment Area, Annual runoff (Q), Annual precipitation (P), 2 

catchment mean elevation (Mean elev), effective lake area (Eff lake), glacier area (Glacier).  3 

Name Area (km2) Annual Q 

(mm) 

Mean elev 

(m.a.s.l) 

Eff lake

(%) 

Glacier 

(%) 

Vaekkava 2078 375 414 0.87 0.00 

Refsvatn 53 1843 297 1.00 0.00 

Tannsvatn 118 719 905 4.59 0.00 

Moeska 121 1585 325 1.71 0.00 

Nybergsund 4425 487 781 2.48 0.00 

Bulken 1092 2038 867 0.88 0.39 

4 

Table 2 Overview of data and parameters applied the different calibration schemes. 5 

Variable Resolution Reference data Lead time Season/ Annual Training period 

Pcal Grid ~25km 200 WMO - - 2014 

Tcal Grid ~25km Hirlam 5km Parameters 

estimated using the

first 24 hours,

applied to all lead

times 

Monthly

specific

parameter 

values 

2006 to 2011 

Pbma Catchment 

average 

seNorge

catchment 

average 

Parameters lead-

time specific 1:9 

Parameters 

specific each

issue date 

45 previous

days 

Tbma Catchment 

average 

seNorge

catchment 

average 

Parameters lead-

time specific 1:9 

Parameters

specific each

issue date 

45 previous

days 

Qbma Catchment 

average 

Sim HBV Parameters lead-

time specific 1:9 

Parameters

specific each

issue date 

45 previous

days 

6 

Table 3 Contingency table for classification of hits (H), missed events (M), false alarms (F), and correct non-events (N). 7 

Observation 

No Yes 

F
o
re

ca
st

 No 𝑁 𝑀 
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Yes 𝐹 𝐻 

1 

Table 4 Summary of the results in Fig 9. ∑Post and ∑Pre shows the number of the catchments where the combination of 2 

pre- and postprocessing approaches gave the best performance. % pre shows the percentage of catchments where 3 

preprocessing gave the best performance. Tbma_Praw Traw_Pbam, Tbma_Pbma shows which preprocessing scheme 4 

using BMA that gave the best performance.  5 

Pre- or postprocessing Preprocessing – BMA 

Lead

time 

∑Post ∑Pre %

pre 

Tbma_Praw Traw_Pbam Tbma_Pbma ∑bma %bma 

1 40 40 50 5 5 20 30 75 

5 37 43 54 12 10 13 35 81 

9 31 49 61 22 6 6 34 69 

6 

7 

8 

9 

Figure 1: The map to the left shows the location of the outlet of the 119 catchments used in this study as well as a 10 

schematic overview of the areas affected by floods caused by different events (rain, snowmelt and atmospheric river (AR)) 11 

during the study period 2014 to 2015. It is worth noting that not all catchments experienced floods within the areas. The 12 

map to the right shows the catchment areas, and the locations of six catchments for which we will show some detailed 13 

results are also shown.  14 
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1 

2 

3 

4 

5 

Figure 2: The processing chain of the experimental set up. Traw and Praw are the unprocessed forecasts. Two 6 

preprocessing approaches were applied, a grid calibration (CAL) producing the ensembles Tcal and Pcal, and Bayesian 7 

model averaging (BMA) producing the ensembles Tbma and Pbma. All combinations of Tcal and Pcal together with Traw 8 

and Praw, as well as all combinations of Tbma and Pbma together with Traw and Praw, in total 7 combinations, were run 9 

through the hydrological model. BMA was applied to the streamflow forecasts producing the ensembles Pbma in addition 10 

to Qraw. In total 14 combinations of pre- and postprocessing were evaluated. The processing schemes were applied to each 11 

issue date, lead time and catchment.  12 

13 

14 

Figure 3: Left: Precipitation mean CRPS for all lead times for the Aulestad catchment. Thin lines are the 10% percentile 15 

precipitation, thicker lines include all the data. Right: temperature mean CRPS for all lead times for Viksvatn.  16 

17 
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 1 

Figure 4:  Typical shapes of the cumulative rank-histogram plots that can be used to detect both biased, over- and 2 

underdispersed ensembles. The closer the curves are to the 1:1 line, the more reliable are the ensembles.  3 
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1 

Figure 5: Reliability plots that compare all 14 processing schemes for Lead time 1, 5 and 9 days (LT: 1,5,9))for three 2 

catchments. The location of the catchments is shown in Fig 1 right. The cumulative empirical rank-histograms scaled to 3 

unity is shown on the y-axis whereas the uniform distribution is shown on the x-axis. The most reliable forecasts are 4 

closest to the 1:1 line. Fig. 4. provides details for interpretation of these plots. 5 
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1 

Figure 6: Boxplot of CRPSS (best is 1) for all catchment based on the full dataset for all processing schemes (x-axis) and 2 

all lead times (rows). The first six boxplots indicate the different preprocessing schemes, whereas the last seven indicates 3 

processing schemes that includes a postprocessing step.  4 
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1 

Figure 7: Boxplot of CRPSS (best is 1) for all catchment based on the flood event dataset for all processing schemes (x-2 

axis) and all lead times (rows). The first six boxplots indicate the different preprocessing schemes, whereas the last seven 3 

indicates processing schemes that includes a postprocessing step.  4 
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1 

Figure 8: Mean CRPS (in m3s-1) for three selected catchments as a function of lead time calculated for the full dataset to 2 

the left, and the flood dataset to the right. Note that the values for “mean CRPS” on the y-axis is different for the different 3 

plots. For Vaekkava 13 days used to calculate the flood dataset (May 30 - June 5 2014 and May 24-30 2015), whereas 2 4 

days were used for Refsvatn (December 05-06 2015) and Tannsvatn (May 21-22 2014).  5 
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1 

Figure 9: Figures to the left indicates catchments where any preprocessing approaches alone (red dots) or the combination 2 

of pre- and postprocessing  (blue dots) provides the highest performance evaluated by the mean CRPS for lead times of 1, 3 

5, and 9 days. The figures to the right show the BMA preprocessing scheme that provides the best CRPS. All evaluation of 4 

CRPS was applied for the subset of floods.  5 
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1 

Figure 10: Spring- Critical success index (CSI). Each row represents one lead time (from 1 to 9 days) and includes all 2 

processing schemes. In parenthesis the total number of catchments that predicted the exceedance of warning level. 3 
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1 

Figure 11: Autumn- Critical success index (CSI). Each row of barplots represent one lead time (from 1 to 9 days) and 2 

includes all processing schemes. In parenthesis the total number of catchments that predicted the exceedance of warning 3 

level. 4 
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1 

Figure 12: The AR event 2014 at Bulken. Boxplots of the applied processing schemes. The black line indicates the 2 

reference streamflow for the event. The horizontal lines represent the mean annual flood (yellow), the 5-year flood 3 

(orange)and the 50-year flood (red). 4 

5 

Figure 13:The extreme weather event Synne in 2015 at Moeska with boxplots indicating the streamflow estimates for 6 

different processing approaches. Reference streamflow for the event is the black line. The horizontal lines represent the 7 

mean annual flood (yellow), the 5-year flood (orange)and the 50-year flood (red).  8 
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1 

Figure 14: The snowmelt flood in May 2014 at Nybergsund, with boxplots indicating the streamflow estimates for different 2 

processing approaches. Reference streamflow for the event is the black line. The horizontal lines represent the mean 3 

annual flood (yellow), the 5-year flood (orange)and the 50-year flood (red).  4 

5 
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11.1 Appendix-Figures 1 

2 

3 

A-Figure 1: Optimal training length for temperature forecasts, using CRPS as evaluation criterion for all catchments 4 

(rows) and all lead-times (columns). Table indicates all catchments (rows) and lead-times (columns). Black: 10 days, red: 5 

20 days, blue: 30 days, green: 45 days, dark green: raw ensemble.   6 
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1 

A-Figure 2: Optimal training length for precipitation forecasts, using CRPS as evaluation criterion for all catchments 2 

(rows) and lead-times (columns). Red: 20 days, blue: 30 days, green: 45 days. BMA applied to precipitation depends on 3 

sufficient number of precipitation values above 0 to converge. We found that for some catchments this was a problem, and 4 

this was also important for the decision to use a 45 days training window, even though the results from the figure shows 5 

that for some catchments and lead times, the CRPS is better for shorter training lengths.   6 

7 
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1 

A-Figure 3: All data used to evaluate the best CRPS achieved by applied processing schemes, shown for all catchments 2 

and lead times. The color in each cell represent the processing scheme with the best CRPS score. Summary of the results 3 

shown in A-Figure 4. 4 
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1 

A-Figure 4: Summary of Figure 3. Evaluation applied to all data. Each bar indicates the number of catchments for which 2 

the specific processing scheme attained the best CRPS score. Lead-times from 1 day (top) to 9 days (bottom). 3 
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1 

A-Figure 5: Flood dataset used to evaluate the best CRPS achieved by applied processing schemes, shown for all 2 

catchments and lead times. The color in each cell represent the processing scheme with the best CRPS score. Summary of 3 

the results shown in A-Figure 6.  4 
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1 

A-Figure 6: Summary of Figure 5. Evaluation applied to the flood dataset. Each bar indicates the number of catchments 2 

for which the specific processing scheme attained the best CRPS score. Lead-times from 1 day (top) to 9 days (bottom).  3 
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1 

A-Figure 7: CSI for all catchment (86) where there was either forecasted or observed floods during the 2-year period of 2 

the study. In this figure, multiple methods can achieve the criteria for exceeding the flood warning level. The number in 3 

parenthesis shows the number of catchments where one or more methods successfully indicates the warning level is 4 

exceeded.   5 
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ABSTRACT

The aim of this study is to investigate extreme precipitation events caused by atmospheric rivers and

compare their flood impact in a warmer climate to current climate using an event-based storyline approach.

The study was set up by selecting four high-precipitation events from 30 years of present and future climate

simulations of the high-resolution global climatemodel EC-Earth. The twomost extreme precipitation events

within the selection area for the present and future climate were identified, and EC-Earth was rerun creating

10 perturbed realizations for each event. All realizations were further downscaled with the regional weather

prediction model, AROME-MetCoOp. The events were thereafter used as input to the operational

Norwegian flood-forecastingmodel for 37 selected catchments in westernNorway, and themagnitude and the

spatial pattern of floods were analyzed. The role of the hydrological initial conditions, which are important for

the total flooding, were analyzed with a special emphasis on snow and soil moisture excess. The results show

that the selected future extreme precipitation events affected more catchments with larger floods, compared

to the events from present climate. In addition, multiple realizations of the meteorological forcing and four

different hydrological initial conditions, for example, soil saturation and snow storage, were important for the

estimation of the maximum flood level. The meteorological forcing (e.g., the internal variability/perturbed

output) accounts for the highest contribution to the spread in flood magnitude; however, for some events and

catchments the hydrological initial conditions affected themagnitudes of floodsmore than themeteorological

forcing.

1. Introduction

Atmospheric rivers are transient, narrow routes of

water vapor supplying a substantial fraction of the

moisture transport from tropical or extratropical lati-

tudes toward the poles (Zhu and Newell 1998; Ralph

and Dettinger 2011; Ralph et al. 2017). When such air

masses with a high moisture content reach a topo-

graphical barrier like the west coast of Norway, the air

parcels are lifted and adiabatically cooled, forming

clouds and precipitation (Stohl et al. 2008). For western

Norway, the most extreme precipitation, flood, and

landslide events since 1900 can largely be attributed

to atmospheric rivers (Stohl et al. 2008; Lavers and

Villarini 2013, 2015; Azad and Sorteberg 2017; Benedict

et al. 2019). Three recent examples of atmospheric rivers

unfolded and affected western Norway quite differently.

In September 2005, an atmospheric river hit the city of

Bergen, with a precipitation intensity that was record
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tion as open access.

Corresponding author: Trine J. Hegdahl, tjh@nve.no

SEPTEMBER 2020 HEGDAHL ET AL . 2003

DOI: 10.1175/JHM-D-19-0071.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/9/2003/4994221/jhm

d190071.pdf by guest on 15 N
ovem

ber 2020

mailto:tjh@nve.no
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


high, and measured to 156.5mm (24 h)21 and 111mm

(12 h) 21 (Iden et al. 2005; Stohl et al. 2008). The

precipitation intensity triggered landslides and floods

causing locally large damages and casualties. In October

2014, high precipitation of long duration, which coin-

cided with initially high groundwater and soil moisture

content, caused large floods in multiple catchments

(Langsholt et al. 2015). In October 2018, a cold period

allowing snow to accumulate at high altitudes was fol-

lowed by a very warm atmospheric river event. The

combination of rainfall and extensive snowmelt caused

floods and large damages, affecting areas not usually

susceptible to autumn floods (Vannforeningen 2018).

These examples of atmospheric river induced floods

demonstrate that a combination of several factors con-

tribute to the total flood impact: the nature of the at-

mospheric river event itself, including moisture content,

landfall, dynamic development, precipitation intensity

and duration, as well as the antecedent weather that

defines the hydrological initial conditions. Due to the

important contribution from snowmelt and the initial

soil moisture, there is no unique relationship between

precipitation intensities or volumes and flood sizes

(Berghuijs et al. 2019).

In the present climate, the Norwegian west coast is

one of the wettest parts of Europe with annual precipi-

tation of more than 3000mm (Stohl et al. 2008). Rain is

the major contributor to floods, whereas the contribu-

tion from snowmelt increases with elevation and dis-

tance from the coast (Kobierska et al. 2018). The

majority of and the largest flood events in this region

occur in the autumn or early winter (Roald 2008), which

overlaps with the main seasons for atmospheric rivers

(Azad and Sorteberg 2017). Climate projections for

western Norway indicate increased precipitation in the

future, where both the number of days with intense

rainfall and the intensity of the rainfall will increase

(Caroletti and Barstad 2010; Hanssen-Bauer et al. 2017).

Baatsen et al. (2015) show that the changes in diabatic

heating and moisture transport due to a warmer

Atlantic Ocean will cause more severe storms over

western Europe and affect storm paths. Storms hitting

the British Isles today might move more toward

Scandinavia in the future.

To investigate future climate extreme precipitation

and floods, often an ensemble of climate models is

used to obtain probabilities for future extremes (e.g.,

Sillmann et al. 2013; Hanssen-Bauer et al. 2017). The

standard approach is to apply a climate–hydrological

modeling chain that includes an ensemble of global cli-

matemodels (GCMs), regional climatemodels (RCMs),

and/or statistical downscaling methods, and hydrologi-

cal models (Olsson et al. 2016). For instance, Lawrence

and Hisdal (2011) and Lawrence (2016) estimate the

flood probabilities and frequencies for Norwegian

rivers based on continuous simulations from such

ensembles. Several studies show that the floods in

western Norway will increase due to increased future

precipitation, and shift toward more rain-induced

floods in autumn and winter (e.g., Sorteberg et al.

2018; Hanssen-Bauer et al. 2017; Vormoor et al. 2016;

Lawrence and Hisdal 2011).

For Norway, the information extracted from the cli-

mate projection studies guides the societal adaptation

strategies. The projection studies are the basis for tai-

lored guidelines for climate adaptation for communities

(http://www.klimatilpasning.no/infosider/english/), pro-

vided by the Norwegian Center for Climate Services

(https://klimaservicesenter.no/). One example of a cur-

rent practice is the use of flood inundation maps that

include estimated future flood levels for specific return

periods, based on the expected change in streamflow

(e.g., Orvedal and Peereboom 2014; https://gis3.nve.no/

link/?link5flomsone). The flood inundation maps indi-

cate the water level during a 200-yr flood in a future

climate, and these maps are hence the basis for land-use

planning and govern the placement of buildings and

important infrastructure to avoid future flooding. In

addition, the future climate is important for the hydro-

power industry in Norway, both in terms of dam safety

and water available for electricity production.

For most purposes, a multimodel GCM modeling

approach is favored. There are, however, instances

where one or few models are preferable (IPCC 2010).

Some GCMs might resolve and describe specific weather

processes better than other GCMs. An example of a

weather process that is better described by higher-

resolution GCM is the landfall of atmospheric rivers

causing orographic precipitation over western Norway.

For atmospheric rivers, the model description of the

topographical barrier is of the utmost importance to get

well-represented precipitation by mountains (Neiman

et al. 2009). Large errors might arise in a steep terrain

where the elevation and hence precipitation varies

greatly, especially for small catchments where the area is

smaller than the grid resolution of a GCM. In a future

climate, more atmospheric rivers will make landfall

while temperatures are above the freezing point, and

thereby deposit less snow and more rain due to higher

mean temperature (Whan et al. 2020) and hence influ-

ence the seasonality of atmospheric river induced floods.

While atmospheric rivers and their future changes

have garnered recent attention in climate studies (e.g.,

Dettinger 2011; Ralph and Dettinger 2011; Espinoza

et al. 2018), their ultimate effect on catchment-level

flows is not as well studied.
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The aim of this study is to analyze the impact of ex-

treme atmospheric river events in western Norway un-

der present and future climate by using an event-based

storyline approach as outlined inHazeleger et al. (2015).

Shepherd et al. (2018) defines a storyline as ‘‘a physical

self-consistent unfolding of past events, or of possible

future events or pathways.’’ Moreover, Shepherd et al.

(2018) argue that one reason for applying a storyline

approach is to improve awareness of risk based on

plausibility rather than probability. The storyline ap-

proach is particularly useful for decision makers since it

enables them to assess ‘‘impact of particular actions

under an uncertain regional climate change’’ (Shepherd

2019). By applying an event-based storyline approach

and selecting only a few events, it is easier to do more

computer-intensive high-resolution global and regional

modeling than is possible with a coarse resolution multi-

model ensemble of GCMs. High-resolution climate

modeling is important for our study area with complex

topography that is not captured in coarse resolution

GCMs (Prein et al. 2015). The latter will often result in

large precipitation and/or temperature biases that would

need correction before being used as input for, for

example, hydrological impact modeling (e.g., Maraun

2016). In this study, we used a modeling chain similar to

the operational flood-forecasting modeling chain, and

thereby familiar to stakeholders in Norway. By using

a familiar modeling chain, established exceedance

thresholds, and warning colors, it is easier to assess

implications of future floods and it facilitates the

communication about future flood impact and risk

awareness. The comprehension and utilization of cli-

mate change data depend on the user (Porter and

Dessai 2017; Howarth et al. 2017), and there is often a

mismatch between the scientist perception of what the

user need and what the user wants.We believe that the

approach used in this study is a contribution to miti-

gating this mismatch.

The event-based storyline approach used for this

study comprises the entire modeling chain from a high-

resolution global climate model, to a regional weather

prediction model and finally a hydrological model esti-

mating floods (Fig. 1). A novel aspect is that the two

FIG. 1. The processing chain starting from EC-Earth climate

projections, using SST forcing (Hazeleger et al. 2010; Haarsma

et al. 2013). Further describing the event selections where the

maximum 24-h precipitation over western Norway is chosen. For

each event, stochastic perturbation of physical tendencies (SPPT)

is used to establish new event realizations by rerunning EC-Earth.

All EC-Earth realizations are downscaled using the regional

weather forecasting model AROME-MetCoOp. Temperature and

precipitation data from AROME-MetCoOp are the input to the

hydrologicalmodels (HBV), which are run for all selected events in

combinationwith four different hydrological initial conditions. The

hydrological initial conditions are determined by running HBV

with seNorge-interpolated observational data.
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downstream models are similar to the operational

weather and flood-forecasting models, and thus opti-

mally calibrated to the region of interest. Further, the

global climate model has a spatial resolution compara-

ble to that of the global weather prediction model used

operationally. With this model setup, we investigated

atmospheric river driven extreme precipitation events

for western Norway under present and future climates.

In addition to the change in precipitationmagnitude and

intensity in a future climate, the hydrological initial

conditions might also change, and should be addressed

more specifically (e.g., Sharma et al. 2018).We therefore

selected a set of four different characteristic initial

conditions that we combined with all atmospheric river

events. The hydrological initial conditions were estab-

lished using historical data from selected years to spin up

the hydrological model. This approach enabled us to

consider the importance of the hydrological initial states

when we wanted to represent different future flood

scenarios. Furthermore, we highlighted different flood

responses to the atmospheric river events and evaluated

the relative importance of hydrological initial conditions

and multiple meteorological model realizations on the

flood estimations.

2. Models and methods

a. Global climate model

We used simulations from the global climate model

EC-Earth v2.3 (Hazeleger et al. 2010; Haarsma et al.

2013) with a resolution of about 25 km (T799L91). High-

resolution global climate models with spatial resolutions

of around 30km are better capable of simulating the

water transport over the Atlantic compared to coarse

resolution global models, and hence can better represent

small-scale extreme weather systems (Haarsma et al.

2013). Two different model ensemble simulations were

considered, a present-day scenario from 2002 to 2006

and a future scenario from 2094 to 2098. Each scenario

consists of an ensemble of six independent members, for

which the initial atmospheric conditions are determined

by running a low-resolution model (EC-Earth, T159) 10

years, and use one of the first six days after the spinup

period as atmospheric conditions for each of the six

ensemble members. The EC-Earth model (T799L91) is

run for 3 months, to ensure that the members are inde-

pendent. Thereafter, the six independent members are

run for 5 years starting 1 January, which for each period

results in a 30-yr dataset. In the present-day simulations,

observed greenhouse gas and aerosol concentrations are

applied, while in the future simulation the concentra-

tions are derived from the representative concentration

pathway (RCP) 4.5 scenario (van Vuuren et al. 2011).

The sea surface temperatures (SSTs) are used as lower

boundary condition. For the period from 2002 to 2006, a

daily SST satellite product (http://www.ncdc.noaa.gov/

oa/climate/research/sst/oi-daily.php) is used. For the

period from 2094 to 2098, the ensemble mean changes in

SST from future projections of a coupled atmosphere–

ocean climate model using the SRES A1B scenario

(ESSENCE project; Sterl et al. 2008; Haarsma et al.

2013) is added to the 2002–06 SST. The projected global

temperature change at the end of the century under

SRES A1B lies within the CMIP5-projected range un-

der RCP4.5 (Sillmann et al. 2013).

Haarsma et al. (2013) provide a detailed description of

the EC-Earth model setup. The EC-Earth simulations

are previously used and validated in several studies (e.g.,

van der Linden et al. 2018; van Haren et al. 2015;

Bintanja et al. 2014; Baatsen et al. 2015; Haarsma et al.

2013). Further, Whan et al. (2020) show that the present

EC-Earth simulations, when compared to ERA-Interim

(Dee et al. 2011), are able to represent both the fre-

quency and intensity of atmospheric river precipitation

in present climate. The integrated water vapor transport

(IVT) is a measure used to track and define the atmo-

spheric rivers. Whan et al. (2020) used an automatic

algorithm to track the atmospheric rivers from 6-hourly

integrated water vapor transport and defined the IVT

exceedance threshold for the present climate period to

368 kgm21 s21 (95% percentile). In Fig. 2, we find that

the 98% percentile of the IVT in EC-Earth is similar to

ERA-Interim, which confirms that results from EC-

Earth can be used to identify atmospheric rivers.

b. Event selections

Since nearly all large-scale precipitation extremes at

the west coast of Norway are connected to atmospheric

rivers (Lavers and Villarini 2015; Azad and Sorteberg

2017; Benedict et al. 2019), the events were selected by

identifying the two largest daily precipitation values in a

predefined area. The spatial pattern of precipitation is

to a large degree controlled by orographic mechanisms.

Therefore, the area used to select the events was defined

by grid cells where the EC-Earth simulated extreme

precipitation, constrained within 57.18–63.28N and 2.68–
9.38E, derived from the 30-yr present-day climatology,

exceeded an average of 6mmday21. The grid cells used

in the selection of events for western Norway are shown

as a gray shaded area in Fig. 3. The two most extreme

precipitation events within the selection area for the

present and future climates were identified. From a

30-yr daily dataset, the two highest daily values repre-

sent the 99.98%percentile. The two present climate EC-

Earth events had a daily average precipitation over the

selection area of 84 and 74mmday21, whereas the
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future events had daily average precipitation of 94 and

92mmday21.

A visual inspection of the IVT patterns of the selected

events confirmed the initial assumption that the events

were caused by atmospheric rivers, shown as the strong

filaments of IVT originating in the Atlantic (Fig. 4). For

each selected event, 10 alternative realizations were

generated in EC-Earth by stochastically perturbing the

model physics tendencies (SPPT) 5 days prior to the

selected event in EC-Earth. The SPPTmethod is similar

to that used for the operational ensemble forecasting

at the European Centre for Medium-Range Weather

Forecasts (ECMWF; Persson 2015).

c. Regional model

To obtain more realistic values of extreme precipi-

tation, AROME-MetCoOp a nonhydrostatic weather

forecasting system (Müller et al. 2017), was utilized for

downscaling the 4 3 10 realizations from EC-Earth.

AROME-MetCoOp is the operational weather fore-

casting system for Norway, Sweden and Finland (do-

main defined in Fig. 4) and is used as input for the

operational hydrological forecasting systems in Norway.

The AROME-MetCoOp model has a spatial resolution

of 2.5 km and is initialized and forced at the lateral

boundaries by ECMWF IFS in the operational setup,

which was replaced by the EC-Earth realizations for this

model setup. The simulations were initiated 36 h before

the extreme event and simulated over a period of 144 h.

Müller et al. (2017) compared precipitation intensity

from AROME-MetCoOp, ECMWF IFS, and observed

FIG. 2. The 98% percentile of the daily mean IVT (kgm21 s21)

for (a) ERA-Interim 1976–2016, (b) 30 years of EC-Earth present

day, and (c) 30 years of EC-Earth future are shown.

FIG. 3. The gray shaded area defines grid cells in the EC-Earth

model used to select the atmospheric river events over the west

coast of Norway, whereas the location and catchment area of the 37

catchments are marked in blue with a pink outline. The red box in

Fig. 4 defines the extent of this map.
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station data for an atmospheric river event in October

2014 and in addition, by using a spatial verification

technique over a longer time span, they showed that

ECMWF IFS predicts large-scale patterns reasonably

well. There is, however, a significant advancement using

the high-resolution system, which could mainly be ex-

plained by better representation of orographic pre-

cipitation forcing. In Fig. 5, the 24-h accumulated

precipitation during the 2005 atmospheric river event

is presented, and shows that the AROME-MetCoOp

model, forced with ERA-Interim, is able to reproduce

the precipitation pattern compared to the gridded ob-

servations (seNorge; Lussana et al. 2018). The seNorge

data are, however, too smooth, since they use a spatial

interpolation scheme in an area of complex topography

in order to grid the relative sparse observational net-

work. From the above evaluation, we find that precipi-

tation is reasonably well represented in this study, even

though precipitation amounts fromAROME-MetCoOp

forced with ERA-Interim are low compared to the

gridded observations, and therefore should be consid-

ered as lower limits.

The AROME-MetCoOp gridded temperature and

precipitation data were prepared for the hydrological

model by first aggregating the gridded data to daily time

resolution, and thereafter calculating the average for

each catchment. All four atmospheric river events,

which each consist of 10 realizations with a duration of

6 days, were used as forcing for the hydrological model.

d. Hydrological model

The conceptual precipitation–runoff model HBV

(Hydrologiska Byråns Vattenbalansavdelning) (Bergström
1976) as described in Sælthun (1996) andBeldring (2008)
and implemented in the operational Norwegian flood-

forecasting service, was used to estimate the streamflow.

HBV has model components describing snow, soil

moisture, and groundwater processes. The model is

forced with daily catchment average temperature and

precipitation.Within theHBVmodel, each catchment is

FIG. 4. The figure illustrates the EC-Earth model integrated water vapor transport (IVT) for the selected atmospheric river events:

(a) pr-1, (b) pr-2, (c) fu-1, and (d) fu-2. The blue box indicates the AROME-MetCoOp domain, whereas the red box in (a) indicates the

domain used to present the results of this study and includes western Norway.
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subdivided into 10 elevation zones, each elevation is

chosen to yield 10 equal areas, and thereby account for

vertical temperature and precipitation gradients.

All hydrological model parameters are optimized using

seNorge observational precipitation and temperature data

(Tveito 2002; Tveito et al. 2005; www.seNorge.no) as

forcing, and streamflow observations from the hydrologi-

cal database at NVE (https://www.nve.no/hydrology/) as

the reference. The seNorge dataset is observational

in situ data interpolated to a 1 3 1km2 grid available

from 1 January 1957 until today. The Nash–Sutcliffe

efficiency (Nash and Sutcliffe 1970) and volume bias are

used as calibration and validation metrics. The Nash–

Sutcliffe efficiency (positively oriented with an optimal

value of 1) averaged for all catchments is for the cali-

bration period 0.74 with zero volume bias, and 0.71 with

2.2% volume bias for the validation period. The cali-

bration is done for all year daily data for the period

1996–2012, whereas the validation is conducted from

1980 to 1995. This study used the same setup and pa-

rameters as the operational flood-forecasting model.

Catchments in the western region, as defined in

Vormoor et al. (2016), were used to evaluate the hy-

drological impact of the atmospheric river events. We

chose to include catchments situated outside the event

selection area (as in Fig. 3) to give a better description of

the spatial impact of the events. The 37 catchments are

part of the operational flood-forecasting service for

Norway and most of them are located in unregulated or

weakly regulated rivers. Figure 3 shows the location and

area of these catchments, defined by the natural drain-

age area for a measuring point in the river (the gauging

station). The upstream areas vary in size and elevation,

and for western Norway, the catchments are steep and

relatively small (from 3 to 2400km2). Both elevation

gradient and size can affect the timing and magnitude

of a flood peaks. Most of the western catchments will

reach the flood peak within one day of extreme precip-

itation. When the response time in a catchment is

smaller than the model time steps, the model underes-

timates the flood peaks. However, current practice

shows that we still get useful information on daily av-

erage flood sizes. In addition, we are evaluating the

impact of atmospheric river events, lasting 24–72h, as

opposed to convective precipitation events where the

subdaily time step is more critical.

In Norway, flood warnings are issued when floods

exceed three predefined thresholds for daily average

floods. Since there can be a discrepancy between the

hydrological flood estimate and the observed values

during floods, operational warning threshold are based

on hydrological simulations using 60 years of seNorge

FIG. 5. Precipitation accumulated over 24 h for 0600 UTC 14 Sep 2005 from (a) seNorge v2.0, interpolated observations and (b) AROME-

MetCoOp, run with ERA-Interim as boundary conditions. The geo reference in seNorge 1 3 1 km2 grid is WGS84, UTM33 (m).
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observations as input. In this study, we used the opera-

tional warning levels as flood references, for example,

the mean annual flood (RM), the 5-yr return level (R5),

and the 50-yr return level (R50). To enable an easy

comparison, the same flood thresholds were used for the

present and the future events. Associated warning colors

are yellow, orange and red; green is used to indicate

streamflow below RM. We also extracted the maximum

flood (Rmax) from these simulations and used Rmax

as a reference maximum flood.

e. Hydrological initial conditions and evaluation

In operational flood forecasting, the hydrological ini-

tial states are established by either assimilating the ob-

served states, or by running the hydrological model with

meteorological observations. The hydrological initial

conditions describe the state of the water storages in

catchments and are important for the catchment re-

sponse to rain and snowmelt. For events of short dura-

tion, here less than 6 days, the hydrological initial

conditions will affect simulated streamflow, and in this

study, we wanted to investigate the impacts of this effect.

The HBV model has storages for soil moisture,

groundwater, and snow. We selected a set of four dif-

ferent characteristic initial conditions that we combined

with all atmospheric river events. The hydrological ini-

tial conditions were selected to represent characteristic

combinations of snow and soil moisture storages, and

they were established by running the hydrological model

with selected years of seNorge observational data. We

selected years that represent contrasting combinations

of temperature (low, high) and precipitation (dry, wet).

The selection basis was the October weather statistics

for western Norway. Table 1 presents the October av-

erage temperature and precipitation for the four se-

lected year (2014, 1992, 1983, and 1960), as well as the

deviation from the normal period. We hereafter label

the hydrological initial conditions as A, B, C, and D,

respectively. Figure 6 illustrates the state of snow

storage and soil moisture deficit for the four initial

conditions on 24 October, calculated by a distributed

HBV model (seNorge.no). The internal states from the

distributed model can differ, but only slightly, from the

internal states of the catchment models. From Fig. 6 we

see that hydrological initial condition B and D are rel-

atively dry, whereas A and C are wet. The snow storage

depends on past precipitation and temperature. There is

little snow present in A and D, whereas larger areas are

snow covered for both B and C. In the following the

initial conditions will be described as SNOW or BARE

(no snow), and the soil moisture deficit as WET or

DRY. The four initial conditions can be described as A:

BARE-WET, B: SNOW-DRY,C: SNOW-WET, andD:

BARE-DRY.

Different sets of hydrological initial conditions

allowed us to evaluate how future floods are affected not

merely by the dynamical forcing, as precipitation and

temperature, but also by the initial states, like soil

moisture and snow, in the hydrological modeling. We

used the spread in the flood realizations to evaluate the

contribution caused by hydrological initial conditions

and ensemble realizations. We recall that for each

catchment and event, 40 different flood realizations

were created by using input data from 10 realizations

(the perturbations in the EC-Earth model) and four

different hydrological initial conditions. We used rela-

tivemean absolute deviation (RMAD) around themean

of the flood realizations as a dimensionless measure of

ensemble spread.

The RMADe caused by the ensemble realizations

(i.e., the meteorological forcing), was calculated as fol-

lows. First, the mean of the floods qic simulated by the

10 ensemble realization, was calculated for each hy-

drological initial condition separately and used as the

central tendencies. Thereafter, the relative deviation

around each qic caused by the ensemble realizations was

calculated. Finally, the average of the four RMAD by

the four hydrological initial conditions was calculated:

RMAD
e
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1

4
�
4

ic51

1
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10
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q
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ic

q
ic

�
�
�
�
. (1)

Similarly, the RMADic for the hydrological initial con-

ditions were assessed by first calculating the deviation

TABLE 1. A summary of precipitation and temperature for the selected historical years. The anomaly refers to the normal (reference

period is 1961–90). The values represent statistics for the whole year (annual), season (autumn), andmonth (October) (https://www.yr.no/

place/Norway/Sogn_og_Fjordane/Aurland/Fl%C3%A5m;124317/climate.html?spr5eng).

Annual Autumn October

Ic Year P T (8C) DT (8C) P T (8C) DT (8C) P T (8C) DT (8C)

A 2014 102.1% 5.3 2.5 87.7% 6.0 2.6 142% 6.2 2.3

B 1997 110.9% 3.4 0.8 96% 2.9 20.3 115.8% 1.3 22.3

C 1983 141.8% 2.9 0.3 161% 3.2 0.0 226.3% 3.1 20.5

D 1960 65.5% 2.9 0.3 37.3% 3.3 0.1 22.7% 1.9 21.6
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around each ensemble realizations due to the hydro-

logical initial conditions, using themean of the ensemble

realizations qe as the central tendency:

RMAD
ic
5

1

10
�
10

e51

1
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�
4

ic51

�
�
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�

q
ic,e

2 q
e

q
e
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We calculated the RMAD only at the time of the flood

peak for each event. By comparing RMADe to RMADic

in a scatterplot, we can assess the importance of the

ensemble realizations and the hydrological initial condi-

tions to the spread in simulated flood sizes. Both RMADe

and RMADic will have a value between 0 and 1.

3. Results and discussion

a. The precipitation events

Figure 7 illustrates the spatial distribution of 132h

accumulated precipitation during the four atmospheric

river events simulated with AROME-MetCoOp and

averaged over the 10 realizations. The future (fu) events

fu-1 (Fig. 7c) and fu-2 (Fig. 7d) have more precipitation,

and especially coastal precipitation is higher compared

to present (pr) events pr-1 (Fig. 7a) and pr-2 (Fig. 7b).

The IVT of both future events are higher (Figs. 4c,d),

and are located more to the north, compared to the

present events. The higher moisture content in the fu-

ture events means that precipitation will fall out at lower

elevation. (i.e., closer to the coast). This finding is sup-

ported by Sandvik et al. (2018) conducting a study for

the Norwegian west coast. They find that an increase in

temperature (as in a future climate) causes a larger in-

crease in near-coastal precipitation compared to more

inland precipitation.

Pr-1 has overall less precipitation than the other

events. Whereas pr-2, which has below zero tempera-

tures for larger parts of the domain, has some precipi-

tation peaks, located at the highest elevations, and over

glaciered areas. The peaks in pr-2 seem to be induced by

the downscaling, but do not affect flood magnitudes,

since the temperatures are well below zero.

b. Flood evaluation

1) FLOOD WARNING LEVELS

For all catchments and realizations, we determined

the floods exceedance of operational flood warning

thresholds. Figure 8 gives an overview of catchments

FIG. 6. (top) Snow storage and (bottom) soil moisture deficit, illustrating the four different hydrological initial conditions used in

the HBV model. For snow (mm), the blue colors indicate snow, and green bare ground. For soil moisture deficit, the red color indicates

very dry conditions, whereas blue indicates wet. The soil moisture deficit indicates to which percentile, defined by a reference period

(1980–2010), the daily value categorizes. The 5th, 25th, 50th, 75th, and 95th percentiles of the reference period define the categories from

‘‘very small/wet’’ to ‘‘very large/dry.’’
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with no floods (green) and catchments where at least one

flood realization reached the warning levels of mean

annual flood (yellow), 5-yr flood (orange), and 50-yr

flood (red), which are the official warning levels in

Norway. In each colored cell, the number indicates the

percentage of realizations (10members in each cell) that

exceeded the red level. The columns in Fig. 8 represent

both present and future events combined with the four

different initial conditions, A–D (Table 1). Each row

shows the results for one catchment. The last row,

however, represents the percentage of R50 exceedances

that includes all catchments and is therefore a summary

of the combined effect of initial conditions and events on

floods over the larger area. Figure 8 highlights that the

FIG. 7. Accumulated precipitation (132 h) for present events (a) pr-1 and (b) pr-2 and future events (c) fu-1 and

(d) fu-2. All values are the average of 10 realizations of AROME-MetCoOp precipitation.
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red warning level is reached for more catchments in the

future compared to the present events, from 23 to 11,

respectively. Moreover, for the future events, a higher

number of the realizations reached the highest warning

level (% mbrs . R50), totally 18.9% in the future and

6.1% in the present climate (see % mbrs . R50 in col-

umns 10 and 20 in Fig. 8). By dividing the total number

of realizations from Fig. 8 by the number of catchments

impacted summarized from Table 2, we find that on

average there are 3.8 realizations per red warning in the

FIG. 8. An overview of warning levels for the combination of events and initial conditions (columns A–D) for all 37 catchments (rows).

The colors indicate the floodwarning level exceeded, while the numbers within the red cells indicate the percentage of ensemblemembers

reaching a red warning level for that specific combination of event and initial condition. The total red warning levels reached for each

catchment (% mbrs . R50), and the maximum flood level (m3 s21; Qmax) estimated for any of the events is presented in columns. The

gray colored cells indicate the highest Qmax value for each catchment comparing future and present events, whereas pink colored cells

indicate the highest streamflow value comparing Qmax to Rmax (m3 s21). The last row represents the percentage of R50 exceedances for

all catchments and is therefore a summary of the combined effect of initial conditions and events on floods for the larger area.
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present climate, and 5.1 realizations per red warning in

the future climate. Overall, the results show that more

catchments andmore realizations reached a red warning

level in the future events.

The flood magnitude is important for the assessment

of flood impact, since the magnitude directly relates to

damage potential. To evaluate the possible maximum

impact from the present and the future realizations, we

select the highest flood value (Qmax; m3 s21) for each

catchment; hence, each Qmax was selected from two

events and 40 realizations per event. Qmax representing

the present and the future climate (Fig. 8) were com-

pared with each other and to the reference maximum

floods (Rmax). Note that Rmax is the highest daily flood

value estimated running the hydrological model with 60

years of seNorge temperature and precipitation observa-

tional data and is not constrained to atmospheric river

events. The evaluation shows that Qmax for the future

events is higher thanQmax for the present events for 22 of

23 catchments that reached a red warning for the future

events (gray or pink colored cells in the last column in

Fig. 8). The future highest floods are larger than the ref-

erence floods (Rmax) for 14 of the same 23 catchments,

whereas none of the present climate floods exceeds Rmax.

In summary, these results show that for the future

atmospheric river events, more catchments will reach a

red warning level during the same event. For these

catchments, the daily flood peaks will be higher, and

more realizations will reach a red warning level, indi-

cating that extreme floods coinciding in multiple catch-

ments are more likely in the future. It is important to

note that the results are conservative and might under-

estimate the flood risk for two reasons: (i) we are using a

moderate RCP4.5 scenario and (ii) the extreme pre-

cipitation of the events seems to be low compared to the

gridded interpolated observations (Fig. 5).

2) HYDROLOGICAL INITIAL CONDITIONS

Figure 8 moreover holds information on the sensitiv-

ity of floods to initial conditions, expressed by the

change in warning colors with the initial conditions A–D

for several of the catchments. Table 2 summarizes the

catchments from Fig. 8 exceeding a red level. Snow in

the catchments clearly contribute to increased floods,

the total number of catchments exceeding red level for

all events was 96 for SNOW (B and C) versus 61 for

BARE (A and D). The difference between catchments

exceeding the red level for SNOW-DRY (46) and SNOW-

WET (50) is relatively small; illustrating that snow is the

most important hydrological initial condition in this area.

The soil moisture is more important when there is little or

no snow available, for BARE-WET 38 catchments exceed

the red warning level compared to BARE-DRYwhere 23

exceeded, which indicate an increase in number of ex-

ceedances of 65% when conditions are wet. By contrast,

when snowpack is significant, there is an increase of only

11% under wet versus dry soil moisture conditions.

The initial conditions for a future scenario are more

likely to be similar to A (BARE-WET), since climate

projections indicate a warmer and wetter west coast

climate (Baatsen et al. 2015; Hanssen-Bauer et al. 2017).

However, variabilities in weather in the future should

also be anticipated, and the exceptional October 2018

flood event in western Norway exemplified (see section 1)

the importance of the variability in temperature and

precipitation during autumn. The presence of snow that

is available for melt followed by a warm and moist atmo-

spheric river event (extreme precipitation) has historically

shown to cause some of the most severe flood impacts

(Roald 2008). Figure 8, thus, illustrates that accounting for

different hydrological initial conditions in the climate–

hydrologicalmodeling chain adds value to the flood impact

evaluation. The antecedent conditions and the memory of

the catchment, for example, groundwater, soil moisture,

water levels in lakes, and snow, are all important for the

catchment response to extreme precipitation.

3) SPATIAL FLOOD IMPACT

Historical atmospheric river events clearly show that

the spatial impact and severity of the events varies.

Which and to what extent catchments are affected by an

atmospheric river depends on several factors: the at-

mospheric conditions (e.g., the placements of pressure

systems), the extent and duration of the atmospheric

river, the moisture content, the temperature, and the

intensity and duration of precipitation during the event.

TABLE 2. Total number of catchments where streamflow exceeds red warning levels, indexed by initial conditions and events. Initial

conditions (ic) are based the soil moisture and snow conditions from Fig. 7, which refers to Oct data for selected years (Table 1).

Ic event A: BARE-WET B: SNOW-DRY C: SNOW-WET D: BARE-DRY Red/event

Pr-1 5 7 7 2 21

Pr-2 6 7 8 5 26

Fu-1 13 19 20 7 59

Fu-2 14 13 15 9 51

Red/ic 38 46 50 23 157
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We used the maximum flood level reached at each

catchment to visualize the spatial impact of the four

atmospheric river events, presented by separate maps in

Fig. 9. SNOW-WET (C) was used as hydrological initial

condition for all events, since it was the hydrological

initial condition that resulted in the highest number of

catchments exceeding the red flood level in both present

and future climate (Table 2).

Figure 9 shows that the future events affect more

catchments closer to the coast than the present events.

This seems to be in line with Sandvik et al. (2018). They

used an idealized temperature perturbation to study the

effect of temperature increase on precipitation and

found that near-coastal, high-elevation areas experi-

enced the highest increase in extreme precipitation.

Apart from higher future floods for the coastal catch-

ments, there are no other clear patterns to be seen in

Fig. 9. Not all catchments were affected by all events,

mainly because each landfall is unique, and some areas

are missed by the most intense precipitation. In a few

catchments, however, a temperature below freezing at

higher elevations cause precipitation to classify as snow

FIG. 9. The spatial distribution of the warning levels for catchments in western Norway, SNOW-WET (C) used to

establish initial conditions. The highest warning level reached for each catchment is presented for all events: (top)

pr-1 and pr-2 (present climate) and (bottom) fu-1 and fu-2 (future climate). Yellow (RM), orange (R5), and red

(R50) diamonds define floods exceeding the warning thresholds, whereas green diamonds indicate no floods.
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in parts of catchment, and for these catchments high

precipitation does not generate floods. Event pr-2 is

relatively cold, which resulted in fewer floods even if the

precipitation was high (Fig. 4b).

We find that Fig. 9 demonstrates an advantage of the

event-based approach by providing a plausible image of

the possible impact of single events, using a well-known

modeling chain and flood exceedance levels. This way, it

is easier to present how future atmospheric river events,

that containmore precipitation due to a warmer climate,

have a higher impact over a larger spatial area with se-

vere floods occurring in multiple catchments within a

short time span.

c. Sensitivity to ensemble spread and hydrological
initial conditions

The spatial differences in precipitation combined with

the hydrological initial conditions will determine how

floods evolve and unfold in different catchments. To

visualize the different flood impacts and the range of

possible outcomes, detailed results for six catchments

are presented in Fig. 10, with catchment characteristics

shown in Table 3. Each boxplot in Fig. 10 represents

40 realizations and reveals the range in streamflow

estimates due to the combination of meteorological

ensemble realizations and the hydrological initial

conditions.

Øye and Lovatn are located north in the study domain

and outside the event selection area. Despite a spatial

proximity (35-km distance, but in different fjords), they

reveal different streamflow response to the same at-

mospheric river events. The spread in the streamflow

response to meteorological forcing and hydrological

initial conditions are larger for Øye than Lovatn.

Nautsundvatn, Hovefoss, and Røykenes are all near-

coastal catchments with similarities in catchment char-

acteristics. The high future floods are representative for

the increased near-coastal precipitation seen in fu-1 and

fu-2 (Fig. 4). The three catchments all show a similar

response to the precipitation, with respect to both

magnitudes and timing. Røykenes and Bulken, on the

other hand, illustrate contrasting flood responses.

Røykenes is an example of a small and steep catch-

ment with a quick streamflow response to precipita-

tion, whereas for Bulken, with a larger catchment

area, streamflow rises slower and the high streamflow

lasts longer. Bulken is positioned central within the

event selection area and is affected by high floods in

both the present and future simulations.

The large spread in the flood estimates (boxplots in

Fig. 10) indicates sensitivity to the hydrological initial

conditions and/or the temperature and precipitation

forcing. The large spread demonstrates that an ensemble

of realizations is important to capture the highest floods

that pose the highest damage potential. The spread can

be attributed both to the ensemble realization and to the

hydrological initial conditions. In Fig. 11, using RMAD

as ameasure of spread [see Eqs. (1) and (2)], we find that

for most events and catchments, the ensemble realiza-

tions contribute most to the spread, however, for some

events and catchments, the hydrological initial condi-

tions contribute more. Figure 11 does not reveal any

clear pattern that would explain whether spread caused

by ensembles realizations or hydrological initial condi-

tions weremore important for any catchments, however,

for all catchments in pr-1 and fu-2 the ensemble spread

has the highest contribution to the spread in the flood

estimates. For the catchments and events in Fig. 11, we

find that ensemble realizations can change the stream-

flow estimates by over 60% (Øye, pr-1), whereas the

initial conditions can alter the estimates by nearly 30%

(Nautsundvatn, pr-1). Mostly the contribution to spread

caused by both hydrological initial conditions and en-

semble realizations are between 10% and 20%. An eval-

uation that included all catchments gave similar results.

d. Final remarks on the event-based approach

In this study, we used a small sample size, which in a

traditional setupwouldmean that we could not draw any

conclusions to whether our results are due to natural

variability or from climate change. We present 40 EC-

Earth realizations per catchment, whereof 20 are set in a

future and 20 in a present climate. All realizations are

from one climate model, compared to multimodel en-

sembles used in most climate projection studies (e.g.,

Sillmann et al. 2013), and our results represent only one

emission scenario (RCP4.5). Nevertheless, we believe

that the event-based approach provides supplemen-

tary information about future flood risk in western

Norway. First, our results are in accordance with

previous studies of climate change in this region.

They show increased precipitation in western Norway

independent of model or emission scenario (e.g.,

Hanssen-Bauer et al. 2017), and our events are hence

representative for these scenarios. Moreover, Whan

et al. (2020) show that the extreme precipitation and

atmospheric river statistics in the present climate EC-

Earth simulations is similar to the observed relation-

ship (ERA-Interim), and that in a future climate the

frequency of atmospheric rivers and the intensity of

each event increases. We further know that the high-

resolution EC-Earth model is suitable to model the

precipitation onto the topography of the west coast of

Norway, and we can assume that the events are plau-

sible under both the present and the future climate. In

addition, we used the operational AROME-MetCoOp
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weather prediction model, which improves the repre-

sentation of extreme precipitation events (Müller et al.
2017), and the operational HBV models to finally es-

timate the floods. We kept the physical consistency of

the variables throughout the modeling chain and could

hence provide physically plausible flood events. The

similarities to the operational modeling chain, makes

the results easily accessible to both flood management

and scientist.

4. Summary and conclusions

We compared possible flood events in a future warmer

climate to those in a present climate by analyzing four

FIG. 10. Hydrographs of boxplots showing the 43 10 estimated floods for six selected catchments. Present events are colored blue: pr-1

is light blue, pr-2 is blue, and future events are colored green: fu-1 is light-green (pink), and fu-2 is green (red). The horizontal orange and

red lines are the thresholds for 5- and 50-yr floods, while the gray line is the reference maximum floods (Rmax), which is calculated from

60 years of seNorge data for respective catchments; the y axis is streamflow and x axis is days of the simulated event. Each box contains

40 values, the box itself defines the 25th–75th percentile, and the whiskers max 1.5 times the box extension with any values outsides

indicated as circular outliers.
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representative extreme precipitation events associated

with atmospheric rivers reaching thewest coast ofNorway.

In addition, we introduced four different hydrological ini-

tial conditions, established using historical data, to evalu-

ate the importance of antecedent weather on floods, and

thereby uncertainties introduced by the hydrological initial

conditions. We followed an event-based approach that

particularly facilitates the use of a modeling chain similar

to the operational weather- and flood-forecasting chain.

This approach enabled us to easier interpret the possible

impact of such events and makes the results accessible to

both a scientific and a management audience.

This study shows the following:

d The future atmospheric river events affect larger areas

compared to the present events. We found that the

future events caused floods in more catchments, and

the floods were at a higher magnitude.
d As each event is unique, the landfall of the atmo-

spheric rivers is difficult to determine beforehand.

Hence, applying hydrological modeling to several

catchments within a larger area was important to

capture the total spatial flood impact of each event.
d Hydrological initial conditions, for example, soil sat-

uration and snow storage, affected the flood magni-

tude for most of the catchments and for all events.

Available snow increased the number of catchments

in flood due to the added contribution from snowmelt,

whereas dry and snow free conditions reduced the

number of catchments in flood. Snow storage was the

most important initial condition, showing that an

atmospheric river event following a period with snow

accumulation has the highest damage potential.
d The ensemble realizations, representing different pre-

cipitation intensities, were the major contributor to

spread in the flood estimates for most catchments,

however, for one quarter of catchments and events,

the hydrological initial conditions exhibited an impor-

tant contribution to the spread.

We acknowledge that this event-based approach, which

contains results from a few plausible events, based on only

one climate model and only one emission scenario, will

not provide enough data to provide any probabilities for

future floods. We do, however, provide high-resolution

modeling, well adopted to describe atmospheric rivers in

both the present and the future climate. Further event-

based studies could include events simulated in different

emission scenarios like the RCP8.5, which projects even

more extreme precipitation for western Norway.

The benefit of the event-based approach is that the

events are easier to visualize and to communicate, than

for example multimodel ensemble probabilities. The

event-based approach is therefore a useful supplementary

to raise the awareness of possible future impact, caused by

physically plausible extreme events. The chosen approach

TABLE 3. Catchment characteristics for catchments in the case study. Area is the catchment area upstream the gauging station,

annual precip is the annual catchment average precipitation, lake fraction is the lake covered area in percent of total area, steepness is

(max elev 2 min elev)/area, min elev is minimum catchment elevation, and max elev is maximum catchment elevation.

Catchment

Area

(km2)

Annual precip

(mm)

Lake fraction

(%)

Steepness

(m km22)

Min elev

(mMSL)

Max elev

(mMSL)

Øye 138 976 0.26 12.25 147 1848

Lovatn 234 2041 4.5 8.59 52 2071

Hovefoss 234 2796 0.45 6.18 20 1469

Nautsundvatn 219 3043 2.16 3.92 45 904

Bulken 1092 2037 0.87 1.42 47 1602

Røykenes 50 3176 2.24 18.12 53 960

FIG. 11. The same catchments as in Fig. 10, but here the contri-

butions to spread seen in the boxplots are separated to that caused

by the ensemble realizations representing the meteorological

forcing (e) and the hydrological initial conditions (ic). Relativemean

absolute deviation caused by the ensemble realizations (RMADe) is

on the x axis, and the relative mean absolute deviation caused by the

hydrological initial conditions (RMADic) is on the y axis.
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operates very closely to current operational procedures,

using a strategic modeling chain ranging from GCMs over

RCMs to hydrological models; this makes it accessible to

both the scientific community and a management audience.

Floods, which are often accompanied by landslides, are de-

manding situations for rescue and emergency preparedness

and cause high economic and social losses in affected areas.

By providing information that implies that future events

most likely will affect more catchments, and hence involve

more municipalities simultaneously, such information can

reveal some future challenges for, for example, municipali-

ties and railwayand roadauthorities.These future challenges

underline the need for joint preparedness across, for exam-

ple, community boarders for exposed and vulnerable areas.
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