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Abstract

Radar Imager for Mars’ Subsurface Experiment (RIMFAX) is a Ground Pen-
etrating Radar created for the Mars Perseverance rover mission. RIMFAX
consists of an antenna and an electronic box which contains the transmit-
ter/receiver of the radar. The objective of RIMFAX is to gather information
about the subsurface of Mars. One piece of this information is the dielec-
tric constant, which defines the electric properties of a material. In order to
estimate the dielectric constant, it is important to have accurate models of
the waves that are transmitted from the antenna. Thus, we have attempted
to characterize the antenna of RIMFAX.

Measured radiation patterns have been interpolated with Spherical Har-
monic functions. This method yielded good results at frequencies 150-
220 MHz and 465-570 MHz. A Spectral Domain Fitting Model (SDFM)
was used to interpolate the frequency behavior of the antenna. Due to
difficulties in estimating the radiation efficiency of the antenna and inac-
curate phase-information in the measured radiation patterns, this method
was deemed unreliable. Far-field considerations led to two suggested fre-
quency bands for estimating the dielectric constant; 465-570 MHz and 465-
780 MHz.

The electronic box of RIMFAX separates the receiver, transmitter and an-
tenna with a gate. This gate switches access to the antenna between the
transmitter and receiver periodically. If the gate is set to transmit while a
wave reflects back to the antenna, some proportion of the reflected wave
will not be received. To correct for this, we have characterized the behavior
of the gate. The lost energy due to gating results in an an amplitude change
in the radar traces. We call this amplitude change the gate-function. The
gate-function was estimated from measurements and showed similarities
to its theoretical counterpart. It also seemed to have features that were not
present in the theoretical function, indicating that the amplitude could be
corrected more accurately with the estimated function.
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Chapter 1

Introduction

1.1 Background

1.1.1 The Mars Perseverance mission

The journey to Mars

Between 20. July and 5. August 2020, an Atlas V541 rocket will launch from
Cape Canaveral Air force station in Florida. After the first stage of the
rocket is done, the second stage will fire its engine twice. The first firing
will get it into low earth orbit, and the second will propel the vehicle to
Mars [3].

Figure 1.1: The Atlas V541 in parts. Credits: NASA

Upon reaching Mars the large heatshield will have to convert most of the
kinetic energy into heat. When the payload has slowed down sufficiently,
the descent vehicle of Fig. 1.2 will fire its engines and carry the rover safely
to the surface. If all goes well, the Perseverance rover will reach the surface
of Mars Feb. 18, 2021.

1



Figure 1.2: Descent vehicle. Credits: NASA

The Mars Perseverance rover

The MARS Perseverance rover is about the same size as a car, with a length
of 3 meters and a width of 2.7 meters. It has six wheels, a robotic arm, and
a mast standing about 2.2 meters tall [4]. Many instruments are mounted
to the mast, the arm, and the body of the rover. All is powered by a gen-
erator that converts heat from the natural radioactive decay of plutonium
to electricity. This power system charges the two primary batteries with
approximately 110 watts. The rover can communicate directly with Earth,
or via satellites that orbit Mars. The latter option provides considerably
higher data-rates.

Perseverance has seven different science instruments [5]. RIMFAX is the
instrument which is the object of this thesis. It is a ground-penetrating
radar, meaning that it uses microwaves to "see" into the ground. In the
next section this will be explained in more detail. Mastcam-Z can take ste-
reoscopic pictures and video, and has the ability to zoom at distant targets.
This can enable scientists to discover rocks that might contain evidence of
past life. It is mounted on the mast of the rover, at a height of 2 meters.
MEDA makes weather measurements. It can measure wind speed and dir-
ection, temperature, humidity, and can estimate the amount and size of
dust particles in the atmosphere. Accurate prediction of weather will be
important for future manned missions. The third instrument is MOXIE. It
is a demonstration of how oxygen may be produced if we send people to
Mars.

PIXL is an instrument that identifies chemical elements at a tiny scale. It
is mounted at the end of the robotic arm. It has a camera that can take
pictures up-close, and uses an X-ray spectrometer to analyze the chemical
composition of rocks. This allows PIXL to detect signs of microbial life.

2



SHERLOC is another instrument that is mounted on the end of the robotic
arm. SHERLOC also utilizes a fluorescence spectrometer, but it uses an UV-
laser instead of the X-ray. It combines the spectrometer and the laser with a
camera to search for organics, and minerals that may have been altered by
watery environments.

SuperCam is the secondary instrument that is mounted on the mast of the
rover. Similarly to SHERLOC, SuperCam uses spectrometers, laser and a
camera to find rocks that may have been formed or changed in water. Su-
perCam is, however, a remote-sensing instrument, meaning that it is aimed
at longer-range measurements compared to SHERLOC. In addition, Super-
Cam can provide data about atmospheric molecules that may be used for
weather prediction.

Figure 1.3: The instruments in the rover. Credits: NASA.

1.1.2 What is RIMFAX?

Radar Imager for Mars’ Subsurface Experiment (RIMFAX), is a Ground
Penetrating Radar developed by Norwegian Defence Research Establish-
ment (FFI). The name is inspired by Hrímfaxi, a horse from Norse mytho-
logy, that draws Nótt (night) across the sky. Radar is an instrument used to
detect objects with electromagnetic waves. It relies on an antenna, which
directs the EM-waves in a particular direction, a signal transmitter and a
receiver. There is also a duplexer, which is responsible for the signal flow
between the transmitter/receiver and the antenna. A duplexer can either
be a "gate" that periodically switches between the transmitter and receiver,
or it can be a circulator, which gives continuous access to the antenna for
both the transmitter and receiver.

3
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Figure 1.4: Radar system diagram

RIMFAX is "gated", in order to prevent leakage from the transmitter to the
receiver. The antenna, which is located underneath the rover (see Fig. 1.3),
emits microwaves into the ground, and captures the waves that return. The
receiver can then generate a trace of measurements. The depth of each of
these measurements is proportional to the sampled time, by the wave ve-
locity. By moving the rover and repeating this process, we can stack many
traces on top of each other to generate an image of the subsurface. An ex-
ample of this is illustrated in Fig. 1.5.
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Figure 1.5: RIMFAX data from Coral Pink Sand Dunes in Utah. The sloping
single reflector which starts at ∼ 100 ns is likely to be bedrock [6]. As the
rover moves over the sand dunes the distance to bedrock changes.

In this figure, the traces are stacked column-wise. The x-axis represents
distance from the original position of the rover.
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To understand what this image shows us, we need to know how EM-
waves behave. When electromagnetic waves propagate in the ground, they
travel through many different mediums. Upon entering a new medium, the
wave will split into two waves, a reflected wave and a transmitted wave.

Figure 1.6: Wave reflection

The waves that reflect back to the receiver at some point are possible to
measure. All radars rely on this principle, that EM-waves reflect when
entering a medium with different electromagnetic properties. By gathering
data about the reflected wave, we can characterize the medium it has
traveled through.

1.1.3 The research objective of this thesis

The main goal of this thesis is the following: Laying the groundwork for
measuring the dielectric constant of the surface layers on Mars. The prin-
ciple illustrated in Fig. 1.6 will be used to accomplish this.

Electromagnetic wave theory posits that the strength of a reflected wave
is related to the strength of the incident wave by the dielectric constant. We
can, inversely, compute the dielectric constant if we know the strength of
the two waves. The same result can be achieved by not modeling the trans-
mitted/reflected waves directly, but instead relating the received/transmit-
ted power to the dielectric constant using Friis transmission formula or the
radar equation. These models are described in chapter 2.

For some of these models, the spatial behavior of antenna gain is required.
Because the transmitted signal may have a large bandwidth, we also need
to characterize the frequency behavior of the antenna. The received data
also need to be corrected for the gate, which removes some of the signal
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energy during transmit and receive. Finally, the surface reflection needs to
be found in the corrected data. In summary, the procedure is:

1. Model the power of the received wave relative to the transmitted
wave. (Suggestions for this are in chapter 2)

2. Characterize the spatial/frequency behavior of antenna gain. (See
chapter 3)

3. Correcting the received data for the gate. (See chapter 4)

4. Extracting the surface reflection. (This part has not been done)

Step 3 of this list is not only necessary for estimating the dielectric constant.
To properly "see" what is underground, the amplitude change applied by
the gate needs to be corrected.

1.1.4 The history of Ground Penetrating Radar

The first reported attempt at measuring subsurface features with radar was
in 1956, where the interference pattern, along with knowledge about the av-
erage dielectric constant of the medium was used to estimate the distance
to the underground water table [7].

A few years later, in 1961, the US Air Force reported altimeter errors when
attempting to land aircraft on the Greenland ice sheet. This was the first
repeatable indication of subsurface penetration through a naturally occur-
ring material. Electromagnetic waves attenuate little when propagating
through ice, and thus can reflect detectable responses at large depths.

Further research was done on ice glaciers in the 1960s. Other use-cases,
such as coal- and salt-mines were explored, as they contain low-loss dielec-
tric materials in some instances.

It was believed that the lunar subsurface had similar electrical character-
istics to that of ice. Thus, techniques similar to that of [7] was used on the
lunar orbiter. Interpretation of the radar images led them to find features
that had been formed by surface volcanic flows [8]. The lunar orbiter car-
ried a pulsed radar, similar to the ice sounders that were used in the 60s.

In the 1970s The Geological Survey of Canada explored many applications
for Ground Penetrating Radar. One example was the need for pipelines to
carry oil and gas through the Canadian arctic. Ground Penetrating Radar
was used to better understand the permafrost terrain in the region. An-
other example was the use of borehole radar to investigate rock quality for
proposed nuclear disposal sites.

The interest for Ground Penetrating Radar declined at the beginning of the
1980s, as people realized that many environments were not suitable. As the
90s came, a new interest sparked for Ground Penetrating Radar, as many
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organizations utilized the rapidly increasing computational power. One of
the developments was the commercial use of Ground Penetrating Radar
for landmine detection.

In 2019 the Norwegian Institute for Cultural Heritage Research (NIKU)
found a Viking ship in Norway [9]. It was discovered from the images
generated by a Ground Penetrating Radar; the MALÅ 3D Imaging Radar
Array (MIRA). This system, developed by Guideline Geo, does imaging in
all three spatial dimensions. Similarly to an MRI, it can create slices of the
underground and show these as images at different depths.

The main source of information for this section has been [10, p. 3-7].

Figure 1.7: Viking ship image. Credits: NIKU.
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1.2 Motivation

1.2.1 The objectives of RIMFAX

The Mars Perseverance rover project has four stated objectives [11]:

• Looking for Habitability: Identify past environments capable of
supporting microbial life.

• Seeking Biosignatures: Seek signs of possible past microbial life in
those habitable environments, particularly in special rocks known to
preserve signs of life over time.

• Caching Samples: Collect core rock and "soil" samples and store
them on the Martian surface

• Preparing for Humans: Test oxygen production from the Martian
atmosphere

RIMFAX aims to contribute to the first two objectives. As there is not much
water on Mars, the microwaves that RIMFAX produces can penetrate far
into the ground. It will be the first instrument to extract high-resolution
stratigraphic information about the Martian subsurface. Before this, we
have only been able to "see" a few cm into the subsurface of Mars. RIMFAX
can, in comparison, receive data from several meters below the surface.

The layers of sediment, rock, ice, water or saltwater reveal a record of
the ancient climate conditions on Mars. RIMFAX can access this informa-
tion because the waves that are reflected reveal electromagnetic properties
about the materials and their structure.

Water is one of the building blocks for all life on Earth. Thus, the detection
of water, or an environment that has contained water, is a major advance-
ment for our knowledge about the possibility for life on Mars; past, present,
or future. It is ironic that water is in one sense a "curse", when dealing with
radar, but at the same time is the very objective of this mission.

1.2.2 How this thesis contributes to the RIMFAX objectives

The problem to be solved in this thesis was introduced in section 1.1.3. Be-
low is one of the reasons why obtaining estimates of the dielectric constants
is important. The density of the surface can be calculated from the dielec-
tric constant and it is one component of information about the "regolith".
Regolith is a term that was coined in 1897 by the geologist R. B. Merrill. The
regolith designates the fragmental layer of rock that mantles the Earth’s
surface. On Earth this is manifested as soil. The Earth’s soil contains large
amounts of organic carbon and weathered rocks, that have been moved by
wind or water. Living organisms have also played a major role in the form-
ing of the Earth’s regolith. In contrast, the Moon’s regolith has never been
disturbed by wind, water or organic life. It consists of rock fragments that
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range from submicron dust to meter-sized blocks. The Moon’s regolith is
maintained by meteorites and the radiation from open space [12, p. 276].

Because of how organic life, water, etc. shapes the regolith, we may gain
insight about a planet’s history by inspecting it.
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1.3 Outline

• Chapter 1 - Introduction
The introduction is aimed at sparking the readers interest, by
explaining the greater context of this project. It presents the research
objective of this thesis and relates it to the goals of the Mars
Perseverance mission.

• Chapter 2 - Estimating the dielectric constant
This chapter presents three suggestions for calculating the dielectric
constant from the measurement data on Mars and the antenna
characteristics.

• Chapter 3 - Characterizing the antenna
Starts with a description of how measurements of the antenna
radiation pattern was obtained. Furthermore, the geometry of these
measurements is defined mathematically, and it is shown how these
can be transformed into more useful coordinate systems. Finally, a
method of using Spherical Harmonic (SH) functions to interpolate
the full 3D radiation pattern from the measurements is detailed, in
addition to a Model Based Parameter Estimation (MBPE) approach
for interpolating the frequency characteristics of the antenna.

• Chapter 4 - Characterizing the gate
Explains some of the inner workings of the gate, which is used to
switch between transmit- and receive-mode. Some models for how
the gate works "ideally" are presented. Finally, we derive a method
to estimate the gate-function using measurements, and then show its
DSP-implementation.

• Chapter 5 - Results
This chapter shows the SH-interpolation results at three frequencies;
150, 500 and 1130 MHz. The results from the SDFM-interpolation
are also displayed. Finally the estimated gate-function is shown for
several configurations of the gate.

• Chapter 6 - Discussion
This chapter discusses the results of the SH- and SDFM-interpolation.
The accuracy of the interpolated radiation pattern is evaluated.
The features of the estimated gate-function are compared to the
theoretical one. Finally the results are discussed with regard to
estimating the dielectric constant.

• Chapter 7 - Conclusion and future works
The conclusion summarizes the discussion and presents ideas for
improving the methods used in this thesis. Some proposals for future
projects are then stated.
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Chapter 2

Estimating the dielectric
constant

2.1 Overview

Three suggestions for estimating the dielectric constant will be presented
in this chapter . The first model only uses the measured boresight gain to
estimate the dielectric constant. The two other models require interpolation
of the antenna gain, and are thus important motivations for chapter 3.

2.2 Using the Normal incidence model

The simplest method to estimate the dielectric constant is to calculate the
Fresnel reflection coefficient Γ at normal incidence, with the transmit and
receive gain set to maximum gain. Friis transmission formula can be then
be used to relate the received/transmitted power to the Fresnel reflection
coefficient:

Pr

Pt = G2
max

(
λ

4πR

)2

Γ (2.1)

The reflection coefficient can then be used to calculate the intrinsic
impedance:

Γ =

∣∣∣∣ηt − ηi

ηt + ηi

∣∣∣∣2 (2.2)

which can be used, under the assumption that the medium is lossless1, to
calculate the dielectric permittivity ε = ε′ε0 of the transmit2 medium:

η =

√
µ0

ε′ε0
(2.3)

The magnetic permeability in free-space is µ0 = 4π × 10−7H/m, and the
permittivity of free-space is ε0 = 8.85× 10−12F/m.

1Probably a fair approximation due to the absence of liquid water in the Martian
subsurface.

2Here referring to Fig. 1.6.
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Figure 2.1: Reflection at normal incidence.

2.3 Taking the mean of the interpolated gain

The gain of the antenna may vary a lot for different directions, and the
distance R ≈ 60cm is quite small relative to the size of the antenna
l ≈ 20cm. Because of this, even specular reflections will return back to
the antenna, for small angles. We suggest averaging the antenna gain over
a small surface on the ground to improve the normal incidence model.

Pr
p

Pt
q
= mean

{
G(θm, φm)

2}( λ

4πR

)2

Γpq (2.4)

The surface should at least be smaller than the Fresnel zone (See Fig. 2.2),
as this marks the surface from which reflections will add constructively.
However, the Fresnel zone is rather large for a large part of the frequency
band of this radar. For example, at 500 MHz the Fresnel angle is θ f ≈
37◦. For this frequency, a smaller surface should be used, because of the
incidence angle dependency of the reflection coefficient, distance, etc.

Figure 2.2: The Fresnel zone corresponds to values of theta θ < θ f .
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2.4 Applying the I2EM back-scattering model

A third option for estimating the dielectric constant is to apply a backscat-
tering model of the surface. We can then average the radar equations model
of received/transmitted power. This may give more accurate results, as we
can average over a much larger surface. The following equation is often
referred to as "the radar equation":

Pr
p

Pt
q
= mean

{
G(θm, φm)2λ2

(4π)3R4 σpq(θm)

}
(2.5)

The Improved IEM Scattering Model (I2EM) can estimate back-scattering
as a function of the dielectric constant, RMS height, RMS-slope and the cor-
relation length of the surface. It also takes frequency, incidence angle and
polarization parameters.

Because of this, we can create a forward model of back-scattering, relat-
ive to the dielectric constant when the roughness of the surface is known.
These features can perhaps be estimated by using image analysis tech-
niques on pictures of the surface of Mars. By putting the back-scattering
model into the right-side of Eq. 2.5, we can find the dielectric constant that
makes the right-side equal to the left-side.

Figure 2.3: Back-scattering σ(θ) and specular reflection Γ(θ).
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Chapter 3

Characterizing the antenna

3.1 Overview

In subsection 1.1.3 one of the tasks of this thesis was presented: ’Model the
spatial/frequency behavior of the antenna gain’. The intended application of
this is to estimate the dielectric constant with better accuracy than when
using the normal incidence model from Eq. 2.1. Knowledge of how the
transmitted radiation is distributed might also be beneficial for general in-
terpretation of the received signal.

The following section in this chapter explains how the characteristics of
antennas depend on distance, and how we can model their radiation in the
far field. Then, it is explained how measurements of the radiation pattern
was obtained, and how this data can be represented in different coordinate
systems. A few spatial interpolation methods are discussed, and the chosen
interpolation method is explained in detail. Finally, a method to interpolate
the radiation pattern in the frequency domain is outlined.

3.2 Electromagnetic characteristics

The electromagnetic characteristics of antennas vary with distance, and are
typically divided into three regions [13]:

1. The reactive near field is the region adjacent to the antenna. The E-
field and H-field are 90-degrees out of phase in this region. To radiate
the E- and H-field need to be orthogonal and in phase with each other.

2. The radiative near field is the region where the electromagnetic fields
start to transition from reactive to radiating fields. The radiation
pattern still varies with distance.

3. The far field is where the electromagnetic fields are dominated by
radiating fields. The E- and H-fields and the direction of propagation
are orthogonal. The radiation pattern changes very little with
distance.
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If we are in the far field of an antenna, we can treat it as a direction- and
frequency-dependent amplifier. The gain of the antenna can be written as,

G(θ, φ) = ε · D(θ, φ) (3.1)

where ε = Prad/Pin is the amount of radiated power relative to input power
(efficiency), and D(θ, φ) is the radiation intensity in a particular direction,
relative to the mean radiation intensity.

D(θ, φ) =
U(θ, φ)

U
(3.2)

3.3 Far field region

There are many models for determining the boundary between the near
field and the far field. Charles Capps [14] has explained the theoretical
background for some of these definitions.

3.3.1 Phase difference model

Under the assumption that the length of an antenna is much shorter than
the distance to an object of interest, Charles Capps [14] has shown that we
can approximate the far field boundary with respect to antenna length. If
we allow a phase error of π/16, the far field is,

r =
4l2

λ

where l is the length of the antenna. In our case the antenna size is
not that small relative to the distance to the ground. Its longest side is
approximately one third the distance to the ground. However, the term
that has been removed in the approximation from [14, Eq. 9] is the square of
the antenna length, so that makes it less significant. Still, this estimation of
the far field should only be seen as a rough estimate, and it should only be
used for a relatively small solid angle. This is because the phase differences
increase substantially when waves approach the antenna at greater angles.

3.3.2 Wave impedance model

The wave impedance model for estimating the far field boundary looks at
how the wave impedance changes with distance. The wave impedance is
used to calculate the Fresnel reflection coefficient, so we should investigate
this method for defining the far field. To calculate the far field boundary
we need to determine how high an error in wave impedance we deem ac-
ceptable. If we are willing to accept a higher error, we get a closer far field.

From [14, Fig. 2] we see that an acceptable error of ±20% in wave imped-
ance puts the far field at:

r =
3λ

2π
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Setting the error margin to ±10%, gives:

r =
5λ

2π

These far-field estimates were derived in [14] by calculating the electric
and magnetic field equations of a short current element in a vacuum. As
long as there are no other conductors, these equations can be scaled by
the dielectric permittivity and magnetic permeability to obtain the field
equations of any medium. This means that the statement that the wave
impedance is proportional to the intrinsic impedance of a vacuum [14], can
be extended to any lossless medium:

ηwave = c · ηintrinsic

c depends on range, frequency and antenna length. Thus, the Fresnel
reflection equation will give the same result even if the wave impedance
hasn’t yet converged to the intrinsic impedance of the medium:

Γ =

∣∣∣∣ cηt − cηi

cηt + cηi

∣∣∣∣2 =

∣∣∣∣ηt − ηi

ηt + ηi

∣∣∣∣2
When the medium is lossy it is much more challenging to estimate the
potential errors in the Fresnel reflection coefficient. One of the reasons
for this is that [14, p. 96] has only derived the electric- and magnetic-
field equations for the case where the medium is a vacuum. If there is
conductance in other places than the antenna, Maxwell’s equations will
give different results. Also, the errors that arise in the Fresnel reflection
coefficient are very much dependent on the true impedance. We suggest
that a detailed analysis of the wave impedance errors is performed if the
dielectric constant is to be estimated.

3.3.3 The estimated far field

In Table 3.1 we see that the phase difference far field doesn’t limit the
frequency band we can use, as every frequency, except 1200MHz, puts
the far field above ground level. As we discussed in subsection 3.3.2 the
wave impedance doesn’t constrain the far field if the medium is lossless.
This doesn’t hold generally, so we will investigate the far-field for the two
error margins. If the transmitted frequency is above 220 MHz, the far-field
is above the ground for the 20% error model. This constrains us to the
frequency band 220-1130 MHz. The 10% error margin requires a frequency
of 430 MHz or higher to put the far-field above the ground.
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Frequency Phase difference Impedance 20% Impedance 10%
150 0.08 0.95 1.59
220 0.11 0.65 1.08
290 0.15 0.49 0.82
360 0.19 0.39 0.66
430 0.22 0.33 0.55
500 0.26 0.28 0.47
570 0.30 0.25 0.41
640 0.34 0.22 0.37
710 0.37 0.20 0.33
780 0.41 0.18 0.30
850 0.45 0.16 0.28
920 0.49 0.15 0.25
990 0.52 0.14 0.24
1060 0.56 0.13 0.22
1130 0.60 0.12 0.21
1200 0.64 0.11 0.19

Table 3.1: The second column shows the estimated far field in meters, for
the phase difference model from subsection 3.3.1. The third and fourth
column shows the far field for the impedance model, from subsection 3.3.2,
with 20% and 10% error margin, respectively.

3.4 The antenna measurements by Comrod

3.4.1 Overview

Comrod has performed electric field measurements of the RIMFAX an-
tenna in receive-mode. They placed the antenna on top of a rotating mast,
with a coaxial cable for recording the received signal. By transmitting from
another antenna, and rotating the mast, they obtained directivity patterns
for several cuts of the full 3D-pattern.

Measurements were made in both the E-plane and the H-plane of the an-
tenna, by rotating the antenna relative to the mast, like in Fig. 3.2a and
Fig. 3.2b. The E-plane is defined by the electric field lines of the antenna
(See Fig. 3.1), while the H-plane is in the same plane as the curl of the elec-
tric field. Horizontal polarization was used in the E-plane configuration
while vertical polarization was used in the H-plane configuration.
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Figure 3.1: The E-plane is defined by the electric field lines of the antenna.

(a) Measurement configuration for
the E-plane pattern.

(b) Measurement configuration for
the H-plane pattern.

Figure 3.2: The E-plane and H-plane antenna configurations. Source: [15]
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3.4.2 The coordinates of the measurements

The mast was tilted at three different angles, −20◦, 0◦,+20◦ to change the
axis of rotation. Tilting the mast, and rotating the antenna, produced in
total six different orientations. We call these orientations Hm20, H, Hp20,
Em20, E and Ep20. The p20 or m20 suffix represents the angle orthogonal
to the plane specified in the prefix (H or E). For the H-plane, this angle is
the β-angle from Fig. 3.3a. In the E-plane it is α from Fig. 3.3b.

The geometry of these orientations can be seen in the radiation pattern il-
lustrated in Fig. 3.4. Most of this information was interpreted from [15] and
the MATLAB code that accompanied it.

(a) YZ-plane (H-plane) coordinates. (b) XZ-plane (E-plane) coordinates.

Figure 3.3: Tilting and rotating the mast with the receiver antenna is
physically equivalent (with respect to the antennas’ relative positions) to
keeping the Rx-antenna in a fixed position, and moving the transmitter
antenna along the circles.

3.4.3 Measurement files

The measurements were stored in files which had a layout like Fig. D.1.
Each file has a specified frequency-range; 150-500 MHz or 500-1200 MHz.
An overview of these frequency-ranges can be seen in Fig. D.2. The cuts
of the radiation patterns are stored as complex electric field measurements,
scaled such that the maximum gain is zero decibels. The relation between
electric field strength and gain is presented in subsection 3.8.4. The true
max gain and boresight gain has been stored in an excel file, so it is
straightforward to correct the radiation patterns.

3.4.4 Geometry relative to RIMFAX and the rover
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Figure 3.4: The color of each point represents the gain for that direction
(yellow is higher). Each point is on the surface of a sphere with unit radius,
to illustrate the spherical expansion of waves. At the center is an image of
the antenna, with correct orientation relative to the coordinate system and
the data.

Figure 3.5: Cartesian coordinates relative to the rover. Rendered with
blender, using the model that was created by Brian Kumanchik, NASA/JPL-
Caltech.
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3.5 Resampling the measurement data

Each cut of the radiation pattern has a different number of sample points
(somewhere in the 300-500 region), and the angle coordinates of the end-
points differ. To make plotting and debugging easier, and balance the least-
squares algorithm to avoid one cut being more dominant than the others in
the radiation pattern model (See subsection 3.8.7), we chose to resample all
the cuts to the same angles.

Because of the high number of samples in the radiation pattern cuts, the
errors introduced by resampling should be negligible in comparison with
the errors introduced by SH- or SDFM-interpolation. Cubic interpolation is
a natural choice, as it is already implemented in many libraries and the ra-
diation patterns bear a closer resemblance to cubic polynomials than linear
polynomials. The resampled measurements are represented as polar plots
in Appendix A.

3.6 Transforming the radiation pattern

Before the measured data can be interpolated into a full 3D-pattern, we
need to transform the coordinates from Fig. 3.3 into a single coordinate
system that contains all the measurement points.

3.6.1 Cartesian coordinate representation

We start by representing the circles from Fig. 3.3 in Cartesian coordinates.
We set the radius of the circles to 1. By studying the case of the XZ-plane
we get:

x = sin(β)

y = sin(α)cos(β)

z = cos(α)cos(β)

under the constraint |α| < π
2 . In the YZ-plane we get:

x = sin(β)cos(α)

y = sin(α)

z = cos(α)cos(β)

under the constraint |β| < π
2 .
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3.6.2 ISO spherical coordinates

We also need a representation in ISO-standard spherical coordinates, as it
is required for the SH-interpolation from Section 3.8.

φiso = arctan
(y

x

)
θiso = arccos

( z
r

)
r = 1

(3.3)

Figure 3.6: ISO spherical coordinates

3.6.3 Azimuth-Elevation spherical coordinates

A commonly used coordinate system for antenna radiation patterns is
Azimuth-Elevation spherical coordinates. The transform from Cartesian
coordinates is:

θazel = arcsin(x)

φazel = atan2(y, z)

r = 1

Figure 3.7: Azimuth-Elevation spherical coordinates.
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3.7 The necessity of interpolation

The tests performed by Comrod produced gain-estimates for a set of dis-
cretized directions and frequencies. Discretization is inevitable, both in
simulation and real-world measurements. The problem is that some math-
ematical operations are only defined for analytical functions. Integration is
an example of this, which we need in order to evaluate the mean in Eq. 2.5.

The methods that estimate the integral of a discrete function, always ap-
plies some form of curve- or surface-fitting. The Riemann-sum uses step-
functions, while the trapezoidal rule assumes a piece-wise linear behavior
(See Fig. 3.8a and 3.8b). This means that the discrete version of integra-
tion always makes assumptions about how the function behaves between
known points.
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(a) Riemann integration. Created by:
Qef.
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(b) Trapezoidal rule. Created by:
Cdang (CC BY-SA 3.0).

Figure 3.8: Two methods of discrete integration.

We have chosen to use Spherical Harmonic functions to interpolate the ra-
diation pattern spatially, while a Spectral Domain Fitting Model has been
used for frequency interpolation. A discussion of two other spatial inter-
polation methods can be found in Section D.2.
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3.8 Spherical Harmonic interpolation

3.8.1 Overview

The method we chose to perform spatial interpolation of the radiation
pattern of RIMFAX was inspired by [16], and then implemented based on
the work in [17]. The idea behind it is to use spherical waves as a basis for
surface-fitting the measured electric field. We start with a brief overview of
Maxwell’s equations, as this is the theoretical origin of the method.

3.8.2 Maxwells equations

∇× H =
∂D
∂t

+ J (3.4)

∇× E = −∂B
∂t

(3.5)

∇ · D = ρv (3.6)

∇ · B = 0 (3.7)

(a) The magnetic field
curls around the cur-
rent vector. Created by:
Stannered. (CC BY-SA
3.0)

+ -+ -

(b) Faraday’s ring experiment. Created by:
Eviatar Bach. (CC0 1.0)

3.8.3 The wave equation

Before we get to the spherical waves, we introduce the wave equation. This
equation describes the behavior of electromagnetism in a vacuum, and can
easily be derived from Maxwell’s equations (see Section D.1). We will use
the scalar version because we just want to model gain, and not the electric
field vectors.

∇2E = εµ
∂2E
∂t2 (3.8)
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3.8.4 Solving the equation for spherical coordinates

According to [18, p. 427] the general solution to this equation, for spherical
coordinates, is:

E(~r, ω) = ∑
lm

[
A(1)

lm h(1)l (kr) + A(2)
lm h(2)l (kr)

]
Ylm(θ, φ) (3.9)

where k is the wave number, and r, θ, φ are ISO-standard spherical
coordinates. We observe in Eq. 3.9 that the angular dependence is separable
from the radial dependence. Because of this we can simply set the radius
and wave-number to constants, and reduce the bracketed expression to a
coefficient. [

A(1)
lm h(1)l (kr) + A(2)

lm h(2)l (kr)
]
= clm

Under the constraints from the derivation of the wave-equation, we can
expand any scalar electric field onto a basis of spherical harmonics. This is
quite similar to how the Fourier series solves the heat equation. We split
the sum to obtain this final representation of the solution:

E(θ, φ) =
∞

∑
l=0

l

∑
m=−l

clmYm
l (θ, φ) (3.10)

To interpolate the electric field we just need to find the right coefficients clm
that matches our measured electric field. The spherical harmonic functions
are defined as,

Ym
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l + m)!
Pm

l (cosθ)eimφ (3.11)

where Pm
l are the associated Legendre polynomials. It is a simple process

to get the gain pattern when we have the electric field radiation pattern.
Because a superposition of plane waves also form a general solution to the
wave equation [19], we can decompose the wave front into plane waves.
The radiation intensity of a particular direction is then the magnitude of
the time-averaged Poynting vector [18, p. 298]:

U(θ, φ) = 〈S(θ, φ)〉 = 1
2η
|E(θ, φ)|2 (3.12)

By using Eq. 3.1 and Eq. 3.2 we see that the electric field strength is the only
directionally dependent factor in gain. We just need to find the right factor
Gadjust so that the boresight gain is correct. Because we know the true gain
at boresight, this is trivial exercise.

G(θ, φ) = |E(θ, φ)|2 · Gadjust
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3.8.5 Truncating the series

If we are to find the spherical harmonic coefficients numerically, the series
in Eq. 3.10 needs a truncation order L. The recommended truncation index
is limited by the amount of measurement points, and their geometry.

Consider a radiation pattern that we have measured along nφ number
of circles orthogonal to the φ-plane. Each circle is defined for the ISO-
spherical coordinates,

φ ∈ {φi, φi + π} θ ∈ [0, π]

where φi ∈ [0, π] is the orientation of each circle as seen in Fig. 3.10.

Figure 3.10: A radiation pattern measured at nφ = 4 cuts orthogonal to the
φ-plane.

For this measurement geometry [20] suggests the optimal truncation index
is (ignoring noise-induced error):

Lopt,exact = min{nφ, nθ ,
√

M + 1− 1} (3.13)

nθ represents the number of measurements in each constant-φ cut, while M
is the total number of measurement points. Using only the E- and H-plane
orientations, we then get Lopt,exact = 2. This should be a rough estimate
of what truncation order we can expect to work. By adding the Ep20-,
Em20-, Hp20- and Hm20-planes we will probably be able to go for a higher
truncation order.

3.8.6 Expanding the series as a matrix equation

A method for decomposing a sparse data-set into spherical harmonics is
detailed in [17]. This method expresses Eq. 3.10, for M measurement points,
as a set of linear equations:

y = Ax (3.14)
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where the measurements of the electric far field are

y =


E(θ0, φ0)
E(θ1, φ1)

...
E(θM, φM)

 (3.15)

Furthermore, x is defined as:

x =
[
k0, k1, · · · , kL

]T (3.16)

with,
kl =

[
c−l

l , · · · , c0
l , · · · , cl

l

]
(3.17)

Finally, A is defined as,

A =


Y(0; θ0, φ0) Y(1; θ0, φ0) · · · Y(L; θ0, φ0)
Y(0; θ1, φ1) Y(1; θ1, φ1) · · · Y(L; θ1, φ1)

...
...

...
...

Y(0; θM, φM) Y(1; θM, φM) · · · Y(L; θM, φM)

 (3.18)

where Y is a row-vector:

Y(l; θ, φ) =
[
Y−l

l (θ, φ), · · · , Y0
l (θ, φ), · · · , Yl

l (θ, φ)
]

(3.19)

3.8.7 Least Squares Solver

We want to solve Eq. 3.14. As discussed in subsection 3.8.5, the optimal
truncation order probably is slightly higher than L = 2 (not taking errors
into account). The number of columns in A is L2 = 4, while the number of
rows is Nrows ≈ 300 · Ncuts = 600. Because of the higher number of rows,
the system is over-determined and we will not get an "exact" solution to
the equation. We can find approximations to the coefficients by projecting
our measurement data onto the range of A. In simpler terms, we ignore
the behavior of the data that does not coincide with the spherical harmonic
functions. A least squares solver is an algorithm that does this. It finds the
x̃-vector that minimizes the expression,

||y − Ax̃||2 (3.20)

where ||u||2 is the euclidean 2-norm, and y and A are known. Eq. 3.18 and
Eq. 3.15 clearly shows us that these can be calculated purely from the meas-
ured scalar electric field and the spherical harmonic functions.

An estimator that minimizes this norm is the Ordinary least squares (OLS)
estimator,

x̃ = (AT A)−1ATy (3.21)

We have from [21]: ‘The Gauss–Markov theorem states that the OLS
estimator has the lowest sampling variance within the class of linear
unbiased estimators, if the errors in the linear regression model are
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uncorrelated, have equal variances and expectation value of zero.’ In
essence this means that by treating the measured electric field strength as a
probability distribution,

E(θi, φi) = Eantenna(θi, φi) + Enoise(µ = 0, σ) (3.22)

OLS will find the minimum variance estimate with respect to the determ-
inistic behavior of the antenna. Using more data for estimating the SH-
coefficients should thus improve our model.

3.8.8 Deterministic error sources

Eq. 3.22 only considers the kind of errors that arise when the experiment
is performed "perfectly". If θi, φi are not the only parameters that change,
we may get deterministic errors in the measurements. For example, the
distance between the antennas may slightly change for each measurement.
Furthermore, there may be objects that cause reflections which interfere
on the receiver antenna. The range deviation has been partly corrected
for in our model, as each cut of the radiation pattern has been normalized
to boresight. However, the range deviation within each cut has not been
corrected.

3.8.9 Python implementation

Eq. 3.14 was solved using a least-squares solver in Python. A function
to reconstruct the radiation pattern, for any θ, φ-grid, using the spherical
harmonic coefficients, has also been written. One implementation in cupy
(CUDA-accelerated numpy) showed up to 3x perfomance increase over
numpy for reconstructing the radiation pattern (See Table C.1).
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Figure 3.11: "Spherical Harmonics" by Inigo.quilez is licenced under CC BY-
SA 3.0. The function Ym

l is at row l and column m.
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3.9 Spectral interpolation

3.9.1 Overview

The method we have chosen to interpolate the frequency behavior of the
antenna is based on the Padé rational function:

F(s) =
N0 + N1s + N2s2 + · · ·+ Nnsn

D0 + D1s + D2s2 + · · ·+ Dd−1sd−1 + sd (3.23)

Ni, Dj are the filter coefficients, and s = jω is the complex frequency. We
call Eq. 3.23 a Spectral Domain Fitting Model (SDFM).

According to [22], pole-series arise as wave-equation solutions in EM and
similar physical phenomena. However, the objects measured are never
purely resonant, but are partly excited by sources. While this can theoret-
ically be eliminated in the time-domain by measuring at "late-time", when
the object is no longer excited by an incident field, the frequency domain
cannot be so clearly separated into driven or source-free behavior. Thus,
the numerator part of the function is added to approximate the effect of the
non-pole term.

The rest of this chapter will present some of the research that has been done
on SDFM. Then the implementation will be outlined, along with some con-
siderations made when applying this method to the measurements data.
Finally, there will be a discussion of the possible errors that may arise.

3.9.2 Research on SDFM

E. K. Miller [23] has shown that the input impedance of antennas can be
interpolated with the function from Eq. 3.23.

In [24] this method has been applied at the electric field strength of the
antenna. It has been used to do simultaneous spatial and frequency inter-
polation of radiation patterns by curve-fitting the Padé rational function in
each spatial direction. The method then interpolates the filter coefficients
spatially with binomial functions.

This method was further improved in [16] by separating the spatial and
frequency interpolation, such that MBPE methods can be used in both do-
mains. Multiple rational filters were used, each constructed from 3 or 4
sampling frequencies. In one case 7 sampling frequencies were used, with
three 3-coefficient filters. The first filter used the first three samples, while
the second filter used the middle three samples, etc. Each filter was then
defined within the range of the frequency samples used to create it.

3.9.3 Why this could benefit RIMFAX

As discussed in subsection 3.9.2, SDFM interpolation can be used to
interpolate the electric field in each direction. This is the type of frequency
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interpolation we find most interesting, as it is a theory-based interpolation
method that could further generalize the radiation pattern model. If
successful, the gain of the antenna could be estimated in every possible
direction and at every frequency within the measured frequency-range.
Because RIMFAX is an FMCW radar it makes sense to extend the Fresnel
reflection and backscattering models in chapter 2 for frequency-modulated
signals. This would require that the mean is evaluated for direction and
time/frequency.

3.9.4 Estimating the filter coefficients numerically

In every spatial direction the electric field, F(s), has been sampled at N f
different frequencies:

s ∈
[
s0, s1, · · · , sN f

]
The coefficients in Eq. 3.23 can be calculated by putting measurements from
a particular direction in a set of linear equations,

Ax = b (3.24)

where

b =


F(s1)sd

1
F(s2)sd

2
...

F(sN f )sd
N f



x =



N0
N1
...

Nn
D0
D1
...

Dd−1



A =


1 s1 . . . sn

1 −F(s1) −F(s1)s1 . . . −F(s1)sd−1
1

1 s2 . . . sn
2 −F(s2) −F(s2)s2 . . . −F(s2)sd−1

2
...

...
...

...
...

...
...

...
1 sN f . . . sn

N f −F(sN f ) −F(sN f )sN f . . . −F(sN f )sd−1
N f


3.9.5 Solving the equation

If the number of coefficients are fewer than the number of frequency
samples, the equation can be solved by the OLS estimator discussed
in subsection 3.8.4. A least squares solution was able to smooth noisy
frequency domain data in [23], but a much higher number of frequency
samples were used to estimate the filter coefficients (512 samples with
BW of ∼ 1 GHz). This kind of spectral estimation is similar to spectral
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factorization. Some experimentation with least-squares was done on the
measured data of RIMFAX without success. Thus, we will try finding an
exact solution, which requires A to be a square matrix. The number of filter
coefficients are then constrained by the number of frequency samples N f :

N f = d + n + 1 (3.25)

3.9.6 The method that has been implemented

The electric field measurements have been normalized to make the max-
imum magnitude of the radiation pattern cuts equal to 1 (See Appendix A).
This was not a problem for the spatial interpolation in subsection 3.8.4,
as the radiation efficiency appears as a directionally independent constant
in the radiation pattern. The way we dealt with this problem in sub-
section 3.8.4 was to scale the interpolated radiation pattern such that the
boresight gain was correct at each frequency. In this case it doesn’t work
because of the frequency dependence of radiation efficiency.

From Eq. 3.2 and Eq. 3.12, we see that the electric field is the only frequency
dependent variable in antenna directivity. If we know what the antenna ef-
ficiency and gain is, we can calculate the magnitude of the electric field
scaled by a frequency-independent constant. The phase of the electric field
doesn’t change when it is scaled, so we can get this directly from the scaled
electric field. The electric field can then be expressed as,

E(jω) · C = P(ω)
√

G(ω)/ξ(ω) (3.26)

where P(ω) is the phase of the electric field and C is a constant. A constant
scaling doesn’t change the pole-zero positions. Thus one could apply the
same SDFM-interpolation of [24] on the right-hand side of Eq. 3.26. The
gain is easily recovered by:

Ginterp(ω) = ξ(ω)|Einterp(jω) · C|2 (3.27)

In order to perform this interpolation we need to model the radiation effi-
ciency. The best methods for estimating radiation efficiency require special
measurement setups, such as the Wheeler cap, which was introduced in [1],
or the waveguide around the antenna in [25]. According to [2, p. 83] it is
possible to estimate the directivity when the antenna has a single mainlobe
pointing in the z direction,

D ≈ 4π

βxzβyz

where βxz, βyz are the half-power beamwidths. However, [26] showed
that this method had a high uncertainty varying between 15-28% for small
patch antennas, while the Wheeler cap method gave an uncertainty of 2%.
We also observe that our radiation pattern measurements, in Appendix A,
do not have a single mainlobe at higher frequencies.
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If the interpolated radiation pattern was accurate enough in all directions,
it could also be used to estimate radiation efficiency, due to the fact that the
mean of gain is equivalent to radiation efficiency. Before we had interpol-
ated the radiation pattern, this was thought to be a viable option, however
the results we got from this method were not realistic (see Table B.1).

Thus, as we cannot perform new measurement experiments, we have
chosen to treat the radiation efficiency as constant in Eq. 3.26 and Eq. 3.27.
If the difficulties related to accurate estimation of radiation efficiency had
been known beforehand, another frequency interpolation method would
probably have been selected. However, it might be reasonable to assume
that the antenna efficiency is relatively unchanging with frequency com-
pared to the electric field strength.

3.9.7 Deterministic error sources

As discussed in subsection 3.8.8, the distance between the antennas will
probably not remain constant for all the measurements. Small changes in
distance will presumably not have a big effect on the gain of the antenna. In
some instances, we do still observe several decibels of difference between
measurements in the same direction (see Fig. A.2e at 0◦).

However, the biggest errors are likely to be found in the phase measure-
ments of the electric field. In Table 3.2 we see large differences in the
wavelengths between the frequencies used for RIMFAX. For instance, if
the antenna is 10 cm out of position the electric field measurements at 1200
MHz will be shifted by a phase of 144◦. At 150 MHz this distance would
amount to a mere 18◦ of phase difference.

frequency [MHz] 150 500 1200
λ 2.0 0.60 0.25

Table 3.2: Table showing the wavelengths of different frequencies.

3.9.8 Noise-induced errors

The radiation patterns are constructed from noisy measurements, but
as discussed in subsection 3.8.7, the spatial interpolation takes this into
account when constructing the full radiation pattern model. Still, as
long as the SH-interpolation isn’t "perfect", there will be errors in the
radiation pattern which propagate through the frequency interpolation.
Also, the boresight gain measurements that were used to adjust the
radiation pattern, varies between the E-plane and H-plane configuration
(See Fig. 5.18).
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Chapter 4

Characterizing the gate

4.1 Overview

4.1.1 FMCW radar

RIMFAX is a Frequency Modulated Continuous Wave (FMCW) radar,
meaning it sends and receives signals continuously, and modulates the fre-
quency of the transmitted signal. When a signal is received, it is mixed
down, such that the Instantaneous Frequency (IF) can be measured. This
frequency is used for range discrimination. When the radar has modulated
the frequency across the whole specified bandwidth, we call this a "sweep".
FFT can then be used to get the delay-response trace of the radar.

The sampling rate of the A/D converter is limited, so all ranges can not
be detected at the same time. The signal that is used to demodulate the
received signal can be delayed such that the IF corresponds to a different
range [27]. The delay of the mixer signal is kept constant throughout the
sweep.

Figure 4.1: Linear Frequency Modulated Continuous Wave (LFMCW)
radar for static targets. The IF corresponds to reflections with delay dτ.
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4.1.2 The gate

Between the signal generator and receiver is a gate, which switches access
to the antenna periodically. This can remove the early strong reflections
to better utilize the dynamic range of the system [28]. The switch (or gate)
can be described mathematically as two rectangular periodic window func-
tions, one for Tx and one for Rx.

Only a fraction of the signal energy passes through the two gates, depend-
ing on the range/IF of the reflections. When the received signal has been
mixed down and Fourier-transformed this results in an amplitude change
of the delay-response trace, which can be mathematically described as a
convolution of the Tx- and Rx- gate windows [28].

g(t) = (gTx ∗ gRx)(t)

It is desirable to correct the received signal for the amplitude change g(t),
as this would give a more accurate image of the reflective properties of the
ground. It is especially important for estimating the dielectric constant, as
the power of the received signal is the deciding factor in the models from
chapter 2.

The remaining part of this chapter is concerned with characterizing the
gate-function g(t) from measurements of the RIMFAX electronics. First,
we describe the gate-configurations that have been used to obtain meas-
urements. Then, an analysis of how the gate ideally operates is presented.
Finally, the measurements are analyzed and a method to estimate the gate-
function is described.

Figure 4.2: Gated FMCW radar. Source: [27]
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4.2 Gate configuration

The gate of RIMFAX is constructed from three gates that separate the an-
tenna from the transmitter and receiver (See Fig. 4.3). The gates can be con-
figured to switch at different times, for example by delaying the Rx gate
"On" after Tx has been set "Off". This is done to reduce ringing before the
receiver comes on. Some of the modes used for our measurements have
delayed the Rx "On" switch by 10 ns, and the antenna Rx-to-Tx switch by
10 ns (See Fig. 4.4). All the other modes have the gates configured to switch
simultaneously. When we just use the word "gate", we refer to the three
gates within the dashed rectangle in Fig. 4.3.

The switching rate of the entire system can be changed, but the modes we
have chosen (see Table 4.1) have a gate-frequency of 12500 kHz. All the
configurations uses the frequency band 150-1200 MHz, with a sweep time
of Ts = 3.125 ms. This means the radar has a ramp-rate of α = 336 MHz/s.
We can also calculate the number of gate-cycles, Ts · Fgate ≈ 39000. The
sampling rate, Fs, of the receiver is 97.656 kHz. The information from this
section is based on [29], [30].

Figure 4.3: This diagram shows the actual gate-configuration of the radar.
There are separate gates for the receiver and transmitter, in addition to an
antenna gate. The Rx- and Tx-gates have attenuators but these are not
illustrated. Source: [29]

CID Fgate τrx2 τan1 Tx att. Rx att.
# [kHz] [ns] [ns] [dB] [dB]
14 12500 0 0 31 11
16 12500 0 0 31 1
18 12500 0 0 22 0
24 12500 10 10 31 11

Table 4.1: Each row is signed with a different Configuration ID (CID),
designating the mode of the gate and measurement setup. Fgate is the
repetition frequency of the gate-function. τrx2 delays the "off"-"on" switch
of the Rx-gate. τan1 delays the Rx-to-Tx switch of the antenna gate. The two
last columns show the attenuation in Tx and Rx respectively. Source: [30]
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4.3 How the gate ideally operates

4.3.1 The ideal gate-function

The following two figures show how the gate-configurations from Table 4.1
are supposed to work ideally. Fig. 4.4 shows the operation of the three gates
with CID 24. Fig. 4.5 displays the ideal gate-functions for CID 24 (delayed)
and CID 14, 16, 18 (simultaneous).

Figure 4.4: The Rx gate is delayed by 10 ns, relative to Tx "Off". The antenna
gate is delayed by 10 ns relative to Tx "On".

Figure 4.5: The lower graph shows the theoretical gate-function g(t) when
all the gates switch simultaneously. The upper graph displays the same
function when the Rx-gate and antenna gate have been delayed.
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4.3.2 The gate-windows in the frequency domain

For the moment we make the assumption that all the electronics works
ideally. Under this assumption the gate can be modeled as a rectangular
pulse wave, representing the Tx- and Rx- windows together. The pulse
width, W, is determined by the range to the object observed, which
corresponds to the IF. We call this pulse-wave the "total gating window".

Figure 4.6: The total windowing function applied at a reflection at a certain
range.

The limited sweep time can be seen as a rectangular window for the total
gating window. The effects of the total gating window and the sweep
window are best analyzed in the frequency domain. The fourier coefficients
of the total gating window are,

an = 2
W
T

sinc(nπ
W
T
)

where 1/T = Fgate is the gate-frequency. The frequency of the harmonics
that the gate produces are integer multiples of Fgate. Because Fs << Fgate,
these harmonics cannot be detected unless the mixer signal is delayed.

In the frequency domain the Fourier coefficients of the gating window are
convolved with the continuous sinc-function of the rectangular window of
the sweep. Each harmonic has sidelobes which depend on the length of
the sweep. The sidelobes of the harmonics do not have a big impact on the
measured IF, because of the number of gate-cycles and the spectral distance
between them. Other reflectors are a bigger issue and these are discussed
in the next subsection.
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4.3.3 A simulation of the gate

We have simulated the gate to analyze how reflectors behave in ideal cir-
cumstances. The total gating window from Fig. 4.6 has been used as a win-
dow on two sinusoids, which represent reflectors with different IF. The gate
has been configured with the same gate-frequency and sweep time as the
real modes, which are described in Section 4.2.

A window has then been applied before taking the FFT to get range-
discrimination. As one would expect, the Chebyshev window produces
a wider mainlobe and lower sidelobes. We also see that the reflectors from
Fig. 4.7b distort each other due to sidelobe interference. For the measure-
ments that will be discussed later, there are a discrete number of reflectors.
For this application, the lower sidelobes of the Chebyshev window could
provide more accurate measurements of reflection strength as long as the
mainlobes do not interfere. The code for the simulation has been written in
MATLAB and can be found in Appendix C.
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(a) Reflectors with Chebyshev-window.

-10 0 10 20 30 40 50

Time [ns]

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
a
g
n
 [
d
B

]

Gate-sim, rect

(b) Reflectors with Rect-window.

Figure 4.7: A simulation of two identical reflectors, 5 ns apart, with the
same pulse-width. The number of gate-cycles were the same as all the
configurations in Table 4.1. The gate-function which has been used is a
square-wave for both of the reflectors. Note that in reality the pulse-waves
of the reflectors would have different widths, but this would only increase
the sidelobe influence on the weaker reflection.
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4.4 Measurements of the gate

4.4.1 A description of the measurements

The Norwegian Defence Research Establishment (FFI) have made meas-
urement in order to characterize the RIMFAX electronic box. They gener-
ated radar traces with the Engineering Qualification Model (EQM) of the
electronic box connected to a network of cables, replacing the antenna in
Fig. 4.2. These cables were shorted to ground at the ends, so they appear as
reflectors in the time-domain. This setup is illustrated in Fig. 4.8a. We refer
to the measurements made in this setup as the "gated signal".

FFI also measured S11 of the cable network with a Vector Network Analyzer
(VNA). When the data is transformed to the time-domain, we get the im-
pulse response of the cable reflectors. This setup is illustrated in Fig. 4.8b.
We will refer to the signal measured in this setup as the "direct signal".

(a) Measurements done with the
EQM electronic box connected to the
reflectors.

(b) Measurements done with the re-
flectors connected to the VNA.

Figure 4.8: Measurement setup

The cable that connects the EQM to the cable network in Fig. 4.8a was then
swapped for a longer cable. This delayed the reflections, such that both the
rise and fall of the gate-function could be measured. The cable was also
swapped in the measurement setup from Fig. 4.8b. Four different cable
lengths were used.

4.4.2 Analyzing the measurement setup

All the cables used in the measurement can be seen as transmission lines,
with a certain characteristic impedance. If a short impulse is sent through
the coaxial cable, we can model the time-domain response with a planar
wave. This wave will propagate through the cable until the characteristic
impedance changes, such as at a connector, or at a ground interface. A
wave will then reflect, with an amplitude which depends on the imped-
ance of the two mediums.

Because the cables are of different lengths but have the same character-
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istic impedance, the reflections will return at different times through the
receiver. There might be other impedance mismatches in the circuit, which
are different in the two setups. For example, we might have stronger S22
on the antenna gate than we have on the VNA.

To minimize these other reflections, we will extract only the peaks of the
cable reflections from the direct signal and take the corresponding ones
from the gated signal. To remove the effects of the cable network, the direct
signal peaks are subtracted. The other reflections are irrelevant as long as
they do not interfere with the peaks of the shorted cable reflections. This is
because the estimated gate-function will be normalized, such that only the
relative reflective properties of the shorted cables matter.

Z0

ZL
ZSVS

Figure 4.9: Coaxial cable. If the end is shorted, ZL = 0, there is an
impedance mismatch and a reflection will occur. Created by: Omegatron
(CC BY-SA 3.0).

4.4.3 Signal processing of the measured data

This subsection describes the DSP algorithm used to estimate the gate-
function.

The direct signal is stored as a complex signal, while the gated signal only
contains the real part of the original signal. Because of this, the real part of
the direct signal is extracted such that both signals are processed the same
way. Then Chebyshev windows are applied on both functions to reduce
sidelobes, as we discussed in subsection 4.3.3.

IFFT is performed on the positive-frequency direct signal in order to obtain
the envelope in the time-domain. The same is done for the positive-time
gated signal to get the envelope of the delay-response trace. The positive-
time samples are extracted, and a time-shift is applied on the gated signal,
in order to align the peaks of the reflectors. The peaks are found in the dir-
ect signal and the corresponding peaks are extracted from the gated signal.
The decibel values of the direct signal peaks are subtracted from the gated
signal peaks.

The result is a sampled gate-function, with a sample rate corresponding
to the physical distance between the reflectors. A flowchart of the DSP-
algorithm is displayed in Fig. 4.10.
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Figure 4.10: DSP flowchart of the gate-function estimator.
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Chapter 5

Results

5.1 Spherical Harmonic interpolation

5.1.1 Chart choices

We have decided to use 3 types of chart to display the model. The first is
a polar plot that compares the input data to the model’s predictions (See
Fig. 5.4). The second is a 3D-plot of the radiation pattern, that maps each
direction to its spherical coordinates, with the radial axis representing gain.
The gain is also mapped onto a colorbar (See Fig. 5.2). Finally, we have
chosen to represent our model in Azimuth-Elevation coordinates, restric-
ted to ±90◦ on both axes. This is displayed as an image, with the gain
mapped to a colorbar (See Fig. 5.3).

The first chart type was selected because it makes it easy to evaluate to
which degree the SH-functions can describe the measured data. The second
was selected because its geometry bears a close relationship to how the an-
tenna radiates waves in the real world. The third type gives a more precise
image of how the model predicts radiation in the forward direction. We
will also use the charts from Appendix A to understand the important spa-
tial/frequency features of the real radiation pattern.

Figure 5.1: The antenna orientation of the following 3D-plots.
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5.1.2 Parameter choices

In Fig. D.2 we see that there are measurements for 21 unique frequencies.
For a single frequency and truncation order, we want to display 8 charts,
spanning two pages. If we were to display these charts for all the
frequencies, we would end up with 42 pages at a single truncation order.
Because of this we have limited ourselves to three frequencies. At 150
MHz and 500 MHz the measured data has a low-order behavior. Gain
changes smoothly in the spatial domain, which should make it easier for
the low-order SH-functions to approximate the pattern. At 1130 MHz the
radiation pattern has a higher order behavior. There are more lobes and
dips in the pattern, and the patterns change radically for different antenna
orientations (See E, Ep20 and Em20 in Fig. A.4, compared to Fig. A.3). We
have also chosen to use three different truncation orders at 500 MHz; 2, 3
and 5. This was done to illustrate the convergence of the interpolation to
the measurement data and to show the effects of the higher-order functions
in the full radiation pattern.

5.1.3 The results
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Figure 5.2: Antenna radiation pattern model, interpolated using spherical
harmonics at order L = 2. The radius corresponds to gain [dB], with -30 dB
representing zero radius.
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Figure 5.3: Antenna radiation pattern model in azimuth and elevation
coordinates, interpolated using spherical harmonics at order L = 2.
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Figure 5.4: These plots display comparisons between the spherical
harmonic model and the input data, at 500 MHz. The order of the model is
L = 2. Each subfigure charts the gain for a different plane.
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Figure 5.5: Antenna radiation pattern model, interpolated using spherical
harmonics at order L = 3. The radius corresponds to gain [dB], with -30 dB
representing zero radius.
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Figure 5.6: Antenna radiation pattern model in azimuth and elevation
coordinates, interpolated using spherical harmonics at order L = 3.
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Figure 5.7: These plots display comparisons between the spherical
harmonic model and the input data, at 500 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure 5.8: Antenna radiation pattern model, interpolated using spherical
harmonics at order L = 5. The radius corresponds to gain [dB], with -30 dB
representing zero radius.
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Figure 5.9: Antenna radiation pattern model in azimuth and elevation
coordinates, interpolated using spherical harmonics at order L = 5.
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Figure 5.10: These plots display comparisons between the spherical
harmonic model and the input data, at 500 MHz. The order of the model is
L = 5. Each subfigure charts the gain for a different plane.
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Figure 5.11: Antenna radiation pattern model, interpolated using spherical
harmonics at order L = 3. The radius corresponds to gain [dB], with -30 dB
representing zero radius.
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Figure 5.12: Antenna radiation pattern model in azimuth and elevation
coordinates, interpolated using spherical harmonics at order L = 3.
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Figure 5.13: These plots display comparisons between the spherical
harmonic model and the input data, at 1130 MHz. The order of the model
is L = 3. Each subfigure charts the gain for a different plane.
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Figure 5.14: Antenna radiation pattern model, interpolated using spherical
harmonics at order L = 3. The radius corresponds to gain [dB], with -30 dB
representing zero radius.
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Figure 5.15: Antenna radiation pattern model in azimuth and elevation
coordinates, interpolated using spherical harmonics at order L = 3.
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Figure 5.16: These plots display comparisons between the spherical
harmonic model and the input data, at 150 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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5.2 Frequency interpolation

5.2.1 Chart choices

The charts in this section display the frequency interpolated gain, along
with measurement data. Four models based on SDFM interpolation are
charted, in addition to a model that uses cubic interpolation. The red
dots from the charts designate measurements of the antenna in the E-plane
orientation (See Fig. 3.2a). The green dots represent the measurements from
the H-plane orientation.

5.2.2 Parameter choices

The frequency interpolation has been performed on boresight gain meas-
urements. These measurements were made in both the E-plane and H-
plane orientation. The H-plane has vertical wave polarization, which has a
Fresnel reflection coefficient that is much greater at higher incidence angles
than horizontal polarization (See [2, Fig. 2-19]). This can cause stronger
constructive/destructive interference on the receiver antenna. This is an
undesirable effect, as it makes the gain measurements dependent on the
specific surroundings of the measurement setup. The interpolation has
therefore been performed on the measurements in the E-plane. The 4dB
difference at 365MHz might be a consequence of destructive interference,
although more data would be needed to be sure.

The interpolation was performed with rational filters that had different
numbers of poles and zeros. Four results have been charted, two with
phase and two without phase. These four charts were selected out of all
possible combinations of n (zeros) and d (poles) such that N f = d + n + 1
(See subsection 3.9.5). From the results with phase, we picked two charts
that seemed representative of what the interpolated gain generally looked
like for different numbers of poles and zeros. From the results without
phase we have charted two of the most reasonable-looking results.

5.2.3 The results
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(a) SDFM interpolation with 8 zeros and 12 poles.
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(b) SDFM interpolation with 15 zeros and 5 poles.

Figure 5.17: SDFM interpolation with phase.
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Figure 5.18: SDFM interpolation of the red measurements, with a 18-zero,
2-pole rational filter.
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Figure 5.19: SDFM interpolation of the red measurements, with a 6-zero,
14-pole rational filter.
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Figure 5.20: Cubic interpolation of the red measurements.
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5.3 Characterizing the gate

5.3.1 Chart choices

In this section we have chosen to use three different charts. The first shows
the direct signal and gated signal. The two others display the estimated
gate function in linear and dB respectively. The peaks of the direct signal
reflections have been marked with pink dots, and the corresponding times
of the gated signal are marked with purple dots. Dashed lines have been
drawn between these dots to illustrate their connection. The light colored
lines represents the gated signals, while the dark colored lines represents
the direct signals.

Signals from two different measurement setups are shown. The blue lines
are signals representing the measurement setup with a short cable connec-
ted to the reflectors, while the green lines represents the signals with an
added 5m cable.

The two charts showing the estimated gate-function use separate colors for
the signals with different cable lengths. This was done so we can analyze
the two measurement setups separately. A theoretical gate-function was
added on top, which has its peak set to the maximum value of the meas-
ured gate function. It’s worth mentioning that we might not have sampled
the true peak of the gate-function. If this is the case, the theoretical function
we have charted will be slightly wrong relative to the estimated one.

5.3.2 Parameter choices

The RIMFAX electronics has many configurations which specifies what
kind of gating shall be applied. These are listed in Table 4.1. We have
chosen to display results for Configuration ID 14, 16, 18 and 24. The peak
of the theoretical and estimated gate function has been set to -3dB, as this
identifies that the maximum received power for this gated system is half of
what an equivalent Continuous Wave system could provide.

5.3.3 The results
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(a) The light blue and light green is the gated signal measured with two different
cable lengths. The dark blue and dark green traces are the measurements of the
direct signal, with the same cables. The gated signal is in dBFS, while the direct
signal is simply the reflection coefficient in dB.
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Figure 5.21: Gate function for CID=14
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(a) The light blue and light green is the gated signal measured with two different
cable lengths. The dark blue and dark green traces are the measurements of the
direct signal, with the same cables. The gated signal is in dBFS, while the direct
signal is simply the reflection coefficient in dB.
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Figure 5.22: Gate function for CID=16
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(a) The light blue and light green is the gated signal measured with two different
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signal is simply the reflection coefficient in dB.
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Figure 5.23: Gate function for CID=18
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(a) The light blue and light green is the gated signal measured with two different
cable lengths. The dark blue and dark green traces are the measurements of the
direct signal, with the same cables. The gated signal is in dBFS, while the direct
signal is simply the reflection coefficient in dB.
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Figure 5.24: Gate function for CID=24
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Chapter 6

Discussion

6.1 Overview

In this chapter we first present a method to evaluate the results from the
Spherical Harmonic interpolation. This method is applied and discussed at
three different frequencies. The same process has been repeated for every
frequency in our measured radiation patterns, and the performance of the
interpolation has been graded (see Table 6.1).

The next part lays out a discussion of the SDFM interpolation with and
without phase information. A few suggestions for improving the frequency
characterization of the antenna are then presented.

The third part of the discussion is concerned with the gate-function. Gate-
function estimates from four different gate configurations are compared
and discussed in relation to their theoretical counterpart.

Finally we present our suggestions for estimating the dielectric constant,
in light of the interpolation results and the gate-function estimates.

6.2 Spherical Harmonic interpolation

6.2.1 Evaluating the accuracy of the interpolation

We do not know the true gain pattern, so we cannot calculate the exact
error of our model. If a more uniform distribution of data-points of the
radiation pattern was sampled, one could randomly extract points to not
use as input to the interpolation algorithm. Then an MSE of the model’s
predictions could be estimated. Unfortunately, the antenna was rotated on
just six different axes. It would therefore only be misguiding to estimate an
MSE from these measurements.

However, we can still assess some degree of accuracy of the model, un-
der certain assumptions. We have chosen to chart the model’s predictions
on top of the measured data, which is the input of the algorithm generat-
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ing the model. Similarities between these does not by itself indicate that the
model has good accuracy, but it does reveal that the data is well described
by the functions.

The projection of measured data onto the SH-functions is an example of
dimensionality reduction, which is essentially what we do when we ab-
stract out information. It is the attempt to find a pattern, a simpler way
of representing the information we are processing. For example, when we
view the image in Fig. 6.1, we abstract out the 3d-object of a staircase. This
works locally, for each turn of the staircase, but it clearly doesn’t work for
the whole figure. We must be careful when trying to evaluate the accuracy
of our model. The true gain of the antenna is known for just a few cuts of
the radiation pattern, and these were used to create the model. To evalu-
ate whether our model is accurate in general, we need to do so under two
assumptions:

1. The "nulls" can be roughly located from the measured radiation
patterns.

2. The data has a dominant behavior of spherical waves.

We have also chosen three sectors of the interpolated radiation pattern for
which we will evaluate its accuracy.

A) θazel , φazel ∈ (90◦, 270◦)

B) θazel , φazel ∈ (135◦, 225◦)

C) θazel , φazel ∈ (160◦, 200◦)

Figure 6.1: The Penrose stairs is an impossible object created by Lionel
Penrose and his son Roger Penrose. Credits: Sakurambo.

6.2.2 The shape of the dips

We can localize the nulls by characterizing the dips in the radiation pattern.
By comparing the lowest dips in Fig. A.1c, Fig. A.1d,Fig. A.1f and Fig. A.2d,
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we can get an idea of the shape of the dips. Generally we see that the dip
gets steeper as you get closer to its lowest point, and the -10dB level seems
to be approximately 22.5◦, or more, away from the bottom. If we assume
the dips are approximately symmetric around their lowest point, we can
get an idea of how far away the nulls are by looking at the gain level at any
point. If the gain is above -10dB, we should expect that the null is more
than 22.5◦ away from this point.

6.2.3 At 500 MHz

The location of the nulls

From the E,Ep20 and Em20 planes in Fig. A.2 and Fig. A.3 we see that the
nulls in the E-plane move when the frequency changes. They never seem
to move into sector A until the frequency reaches 710MHz. In the H-plane
of Fig. A.2, the null on the right-hand side seems to move backward, as the
frequency increases. On the left-hand side of the chart we observe that the
null at 360 MHz also seems to move backward as the frequency reaches
430MHz. In all the charts of Fig. A.2, it seems clear that the radiation pat-
tern becomes of lower order as the frequency approaches 500 MHz. How-
ever, there still seems to be nulls within sector A, as the Hm20 chart at
465MHz show us. Due to the general tendency of lower order behavior
and the nulls moving backward as the frequency increases, in addition to
there being no nulls within sector B in any of the charts, it seems fair to
assume they are not within the sector B.

Assumption: Nulls are outside sector B.

Analyzing the model

We start by inspecting Fig. 5.4. Even at L = 2 the spherical harmonic func-
tions seem to capture the most important behaviors in the E, Ep20 and
Em20 planes. The mainlobe is much narrower in the H-plane, which ex-
plains why the low-order spherical harmonic functions are less able to cap-
ture the general pattern of the measurements. Still, the differences seem to
be quite minimal within sector C. The small differences in the comparison
plots and the low-order behavior observed in Fig. 5.3, seem to indicate rel-
atively good performance for sector C.

When the truncation order is increased to L = 3, we observe that the model
has a narrower backlobe (See Fig. 5.5 compared to Fig. 5.2). This is clearly
closer to the truth, judging by the comparison in Fig. 5.7 (E,Ep20,Em20).
The model also seem to perform better than L = 2 in sector B, with a max-
imum difference of about 2dB between the model and measurements. We
still see a low-order behavior in Fig. 5.6, so it seems appropriate to use the
model for sector B.

By increasing the truncation order to L = 5, we observe that the model
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converges well to the measurements in Fig. 5.10. This supports our as-
sumption that the data has a dominant behavior of spherical waves. How-
ever, we do see signs of overfitting, judging by the two lobes in Fig. 5.8.
Because the lobes are quite far from the coordinates of the measurements,
it seems likely they are simply a bi-product of the least-squares algorithm
misusing the higher-order functions. The interpolated radiation pattern at
all the other frequencies have used a limited truncation order of L = 3 to
avoid this issue.

6.2.4 At 1130 MHz

The location of the nulls

As the frequency increases, we get a more and more complex radiation
pattern. For example, at 920 MHz a dip appears in the radiation pattern at
around 160◦ (See Fig. A.4f). At 1130 and 1200 MHz, the pattern forms a tiny
lobe in the forward direction. The dips observed in these figures indicate
that there are nulls within sector C for all frequencies between 920 MHz
and 1200 MHz.

Assumption: Nulls are within sector C.

Analyzing the model

By observing Fig. 5.13, we generally see that the SH-interpolation performs
much worse than at 500 MHz, due to the increased complexity of the ra-
diation pattern at this frequency. Higher order SH-functions are clearly
needed to describe the tiny forward lobe, and the radical changes between
the ±20-planes.

The difference between model and measurement is consistently high in
sector C. In Fig. 5.13f, we see a difference of up to 10 dB. Because the SH-
functions do not seem to capture important features of the radiation pat-
tern, even at boresight, the model should be classified as unsuccessful at
this frequency.

6.2.5 At 150 MHz

The location of the nulls

By observing the Em20 plane in Fig. A.1, we see a dip at ≈ 45◦, which
cannot be detected in the E and Ep20 planes. The dip seems to be around
−18 dB at its lowest point. We use the dip on the red graph in the Hm20
plane as reference for what the radiation pattern looks in close proximity of
a null. The −18 dB point is around 20◦ away from the bottom of the low-
est point. It should be kept in mind that this is a different frequency, but
by comparing the red and purple dips from the Hm20 plane we see that
the dip is quite similar for close frequencies. It therefore seems reasonable
to assume that the dip in Fig. A.1c is somewhere around 20◦ away, which
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keeps it out of sector A. Using a similar analysis on the dip in the Hm20-
plane, at around 90◦, we cannot be sure that this null is outside sector A. It
should, however, be a fair distance from sector B.

Assumption: Nulls are outside sector B.

Analyzing the model

In Fig. 5.16 we see small differences within sector B for all charts. The
maximum difference seems to be around 2 dB, at 135◦ in Hm20-plane. The
model is likely to be accurate within sector B, as long as our assumption
about the nulls’ location is correct. In sector C, there is virtually no
difference between model and measurements.

6.2.6 Summary

A similar analysis to these have been carried out on the other frequencies
for which we have interpolated the radiation pattern. The interpolation
has been rated with numbers ranging from 0 to 3, where 3 is best and 0
is worst (see Table 6.1). These should not be seen as absolute evaluations
of the interpolation, but only to rank the inter-frequency results relative
to each other. None of the models produced good results within sector
A. Two frequency bands; 150-220 MHz and 465-570 MHz gave relatively
good results within sector B. All the interpolated models with frequencies
ranging from 150-780 MHz, except 255 and 290 MHz, gave acceptable
results within sector C.

6.2.7 How the interpolation could be improved

The big limiting factor to the interpolation algorithm is data. As discussed
in subsection 6.2.3, lobes appeared in the interpolated radiation pattern.
Even though we had better correspondence between model and measure-
ments for a truncation order of L = 5, the lobes are likely not present in
the true radiation pattern. Thus, we seem to have reached a limit for how
accurate our model can become with current measurements.

If a more accurate and more general model of the radiation pattern is de-
sired, the measurement process should be changed so that a more uniform
distribution of angular coordinates are sampled. For example, one might
employ the "igloo" sampling scheme from [17].
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Frequency [MHz] Nulls absent Grading in B Grading in C
150 B 3 3
185 A 3 3
220 B 2 2
255 B 0 0
290 B 0 0
325 B 1 2
360 C 0 1
395 C 0 2
430 C 0 1
465 B 2 3
500 B 2 3
570 B 2 3
640 B 0 2
710 B 0 1
780 C 0 1
850 C 0 0
920 0 0
990 0 0
1060 0 0
1130 0 0
1200 0 0

Table 6.1: This table shows the results after having went through the same
evaluation procedure as subsection 6.2.3 for each frequency. The second
column shows the largest sector for which nulls are presumed to be absent.
The grading of the interpolated radiation pattern in sector B and C are in
the succeeding two columns.
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6.3 Frequency interpolation

6.3.1 SDFM with phase

The two charts displaying frequency interpolation with phase, from
Fig. 5.17, look unreasonable. Removing the phase seems to improve the
interpolation, so we will investigate some of the reasons why the phase
may cause this behavior. The cables between transmitter/receiver and the
antennas has the effect of a linear-phase filter on the measured signal. If
this has not been corrected for in the measurements, the poles and zeros
will not be placed correctly. A change in distance between the antennas
has the same effect on the phase that these cables have. However, the
distance between the antennas fluctuates, while the cable lengths remain
the same. The phase is more sensitive to distance perturbations at higher
frequencies, due to the reduced wavelength. At 1200 MHz a mere 12.5
cm change in distance would cause a 180◦ phase-shift. This might explain
why the interpolated gain seems to get more unrealistic behavior as the
frequency increases.

6.3.2 SDFM without phase

When the interpolation is performed without phase, the results look more
reasonable, as can be seen in both Fig. 5.18 and Fig. 5.19. Fig. 5.19 has two
instabilities, where the one at 920 MHz is especially out of order. Fig. 5.18,
on the other hand, seems to grasp the general behavior of the frequency
measurements quite well. The cubic interpolation in Fig. 5.20 gives a
similar general behavior. One difference is the almost linear curve through
the 5 rightmost points, which might be more realistic than the added peak
in the SDFM-interpolated curve. We also see that the valleys at 600 and 800
MHz are deeper in the SDFM interpolated curve. This is a natural feature
of the zeros in rational filters.

6.3.3 Summary

We have seen that the phase had a deteriorating effect on the SDFM inter-
polation, and that removing it gave at least one quite reasonable-looking
result. Before we conclude our evaluation of the SDFM interpolation,
there are two things we must remember. First, the radiation efficiency
will in reality not be a constant, as we have assumed (see subsection 3.9.6).
Secondly, the phase is important for placing the poles and zeros correctly.
These two facts delegitimizes the method as an MBPE approach. Thus, we
can not use this method to interpolate every direction of the radiation pat-
tern with our current measurements. If interpolation of the boresight gain
is desired, cubic interpolation should be a more reliable option.

6.3.4 Improving the SDFM interpolation method

The most important step to improving SDFM interpolation is to do more
measurement experiments. We suggest using a cavity based method,
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such as the one in [31] to estimate efficiency. Smaller frequency steps
between gain measurements could also be beneficial for interpolating the
gain/frequency behavior. If the amount of samples is adequate, a least-
squares approach could be used. A piece-wise interpolation scheme, like
the one in [16], would perhaps be the easiest to apply on radiation patterns,
as the number of poles and zeros is fixed.

6.4 The gate-function

6.4.1 Comparing the peaks of the reflectors

In this section we discuss charts of the direct signal and gated signal and
relate them to the estimated gate-function. We start by looking at Fig. 5.21.
In the two blue graphs we see that the peaks of the gated signal is right on
top of the direct signal from the fourth peak and on.

With the added cable, the green gated signal has a more unclear pattern.
The first peak is right on top of the direct signal, but from then on we ob-
serve a pattern which does not resemble the direct signal. Observe the
valleys that go down below−60 dB, at around 50 and 55 ns. Between them
we see something that looks very much like the two first reflectors, but
dampened. To the right of the 55 ns valley, this pattern is repeated. This
might be a consequence of impedance mismatch, perhaps at the connector
between the added cable and the short cable. If this is the case, reflec-
tions might go back and forth between the connector and the RIMFAX elec-
tronic box, which reflects much stronger than the VNA. This can cause the
same reflectors to appear multiple times in the time-domain signal. These
layered reflections might also cancel each other. This may be what has
happened at the third peak of the green direct signal, which overlaps with
a valley in the gated signal. A similar pattern of the the first two reflectors
can be seen in Fig. 5.22a and Fig. 5.23a. Because of this, the second part
of the estimated gate-function cannot be used, unless new experiments are
done. A more thorough analysis could be done if other windowing func-
tions were used, but we already know from the analysis in subsection 4.3.3
that the sidelobes alone are not strong enough to produce these effects.

6.4.2 The estimated gate-function

In Fig. 5.21b the estimated gate-function starts off slower than the theoret-
ical model. This might be caused by the electric properties of the gate. Near
the top of the estimated gate-function it overshoots the theoretical one. It is
worth mentioning that the peak value of the true gate-function might not
have been sampled. If this is the case, the estimated function may actually
not overshoot the theoretical one.

The configurations in Fig. 5.22 and Fig. 5.23 have a different attenuation
(see Table 4.1), and this seems to change the estimated gate-function some-
what. The most noticeable change is the linear behavior near the top in
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Fig. 5.23b. The measurement setup used to generate this gate-function es-
timate had a lower attenuation in both Rx and Tx. This suggests a non-
linear behavior somewhere in the gate. It might even be that the gate-
function changes based on the amplitude of the received signal.

However, the estimated gate-functions correlate better with each other than
with the theoretical one. The slower ascent of the estimated gate-functions
can be explained by the electronics being non-ideal. Thus, we would sug-
gest that this behavior is indicative of how the gate physically works, and
is not just induced by the measurement setup. This is supported by the
observation that the peaks of the direct signal and the gated signal overlap
well from the 4th peak and on.

The estimated gate-function from Fig. 5.24 looks remarkably similar to
those discussed above, even though the theoretical functions from Fig. 4.5
are quite distinct. We will compare it to the estimated gate-function with
CID 14, as this mode has the same Rx- and Tx-attenuation. By observing
the gate-functions at 20-30 ns, we generally see that CID 24 is "slimmer".
CID 24 also has lower decibel values around 0-10 ns. These observations
are signs that the Rx-gate switches "on" later for CID 24. One reason for
why the gate-functions are not as distinct as Fig. 4.5 might be that the Rx-,
Tx- and antenna-gates do not switch simultaneously. In Fig. 4.4 we see that
the antenna gate switches earlier than the Rx-gate, which might cause some
proportion of the signal to be "leaked" to the receiver before the Rx-gate is
"on".

6.4.3 Summary

When the gates switch simultaneously, the estimated and theoretical
gate-functions have distinct features which may be caused by electrical
properties of the gate. This suggests that there should be room for
improving received signal correction by employing an estimated gate-
function. We observed less differences than expected when the gates
were configured to switch at different times. A new experiment could
confirm/deny our proposition that this might be caused by leakage
through the Rx-gate. Before the estimated gate-function is used to correct
the received signal, we suggest to do measurements of the gate in several
other configurations. It is important that the non-linear properties are
further characterized, such that we may know how much the gate-function
varies with signal amplitude.

6.5 Estimating the dielectric constant

In subsection 3.3.3, we showed that the far field model that accepted 10%
error in wave impedance put the far field above the ground for frequencies
higher than 430 MHz. The phase difference model sets the far field above
the ground for frequencies lower than 1130 MHz. Because of this, we
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suggest two different approaches for estimating the dielectric constant:

1. Use the frequency band 465-780 MHz with the Fresnel reflection
model from Section 2.3.

2. Use the frequency band 465-570 MHz, and apply the I2EM model
from Section 2.4 on a surface that is within sector B.

The first approach will probably produce results which are just marginally
better than the normal incidence model from Section 2.2, as the gain isn’t
changing very much in sector C. The second, however, might be a signific-
ant improvement if a proper roughness estimate of the surface is used. The
radiation pattern cuts fall off by up to 10dB, relative to boresight, at the 225◦

and 135◦ polar angles (see Fig. 5.7). These effects are not taken into account
with the simple forward gain model from Section 2.2. Thus, even if the
model does not perfectly overlap with the measurements, it might still bet-
ter predict the relative received/transmitted power than the forward gain
estimate of Fresnel transmission. Depending on whether the transmit me-
dium is lossy, a narrower frequency band might be advisable.

Because SDFM interpolation cannot be theoretically justified on our radi-
ation pattern measurements, we instead suggest using nearest-neighbour
interpolation of SH-interpolated radiation patterns, as the near-frequency
radiation patterns look quite similar. The mean can then be estimated, both
along frequency and spatial dimensions.

In our discussion of the gate-function we found that there should be po-
tential for improving received signal correction by using an estimated gate-
function rather than the simple theoretical model. Measured signal amp-
litude is the deciding factor in the equation of Fresnel reflection, so it should
be especially important for estimating the dielectric constant.
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Chapter 7

Conclusion and future works

7.1 Conclusion

In subsection 1.1.3 we stated the overarching goal of our thesis: ’Laying
the groundwork for measuring the dielectric constant of the surface layers
on Mars’. The second step of the procedure was to characterize the spatial
and frequency behavior of the antenna gain. We have seen that spherical
harmonic functions were able to describe the measured data well at certain
frequencies, when the radiation pattern was of low order. The best results
appeared around frequencies 150-220 MHz and 465-570 MHz.

The frequency interpolation did not provide useful results. The lack of ra-
diation efficiency measurements means the SDFM interpolation could not
be implemented as a true MBPE interpolation scheme. Not having accurate
phase measurements further delegitimatizes the interpolation as an MBPE
approach. Thus, interpolating each direction of the radiation pattern can
not be said to have the same theoretical rigour as the application in [16].

The third step of the procedure was to correct the received signal for the
gate-function. We have seen that the estimated gate-function is similar to
what one would expect from theory, while still having features that dis-
tinguishes it from the theoretical gate-function. This shows potential for
improving received signal correction by using the estimated one. Delaying
the antenna- and Rx-gates did not seem to change the estimated gate func-
tion much, and we speculated whether this was caused by leakage in the
Rx-gate.

In Section 6.5 we suggested two approaches for estimating the dielectric
constant, which due to far-field considerations applied frequency bands
at the middle of the frequency spectrum. We proposed to use a nearest-
neighbour selection of which SH-interpolated radiation pattern to use at a
particular frequency.
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7.2 Future works

The Spherical Harmonic interpolation we used in this thesis is arguably the
best method to interpolate our measurements, due to its theoretical origin
and its ability to surface-fit an arbitrary set of coordinates. Still, it would
be interesting to compare it to other methods, like the "summing method".
The only way to improve our interpolation method is to get more measure-
ments, but this would be a complex and tedious task. It would be neces-
sary to have an automated measurement setup which could measure the
radiation pattern quite uniformly. We would perhaps employ the "igloo"
sampling scheme from [17].

The frequency interpolation also necessitates more measurements for im-
proval. The first thing we would want to do is to estimate the radiation
efficiency. We would then use a cavity based method, like the one in [31].
Secondly, we would try to estimate the electric field with properly calib-
rated phase. Finally, we would measure the boresight gain with small fre-
quency steps. This would give us the ability to evaluate the performance
of SDFM interpolation with different number of samples as input.

More insight into the gate-function would also be desirable. We have
already expressed that the estimated gate-function has features which dis-
tinguishes it from the theoretically "ideal" gate-function. By doing more
measurement experiments with different configurations and different cable
reflectors, it would perhaps be possible to characterize the non-linear prop-
erties of the gate-function. If the second part of the gate-function needs to
be estimated, it would be important to find the cause of the undesired re-
flections which were discussed in subsection 6.4.1.

In subsection 1.1.3, we stated the fourth step of the procedure to estim-
ate the dielectric constant: ’Extracting the surface reflection’. This needs to
be done to estimate the dielectric constant. To extract the surface reflection,
we need to find the surface in the radar traces. This could perhaps be done
with image analysis techniques on radar images, like the one in Fig. 1.5.
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Appendix A

Comrod measurements
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Figure A.1: These plots show the gain across all 6 cuts of the radiation
pattern for the frequency range 150-325MHz. Rx: Radar Imager for Mars’
Subsurface Experiment (RIMFAX), Tx: LPDA antenna. The mast height of
rimfax was≈ 4m in the H-plane measurements and≈ 0.82m in the E-plane.
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Figure A.2: These plots show the gain across all 6 cuts of the radiation
pattern for the frequency range 360-500MHz. Rx: RIMFAX, Tx: LPDA an-
tenna. The mast height of rimfax was ≈ 4m in the H-plane measurements
and ≈ 0.82m in the E-plane.
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Figure A.3: These plots show the gain across all 6 cuts of the radiation
pattern for the frequency range 500-850MHz. Rx: RIMFAX, Tx: LPDA
antenna. The mast height of rimfax was ≈ 0.58m in the H-plane
measurements and ≈ 0.28m in the E-plane.
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Figure A.4: These plots show the gain across all 6 cuts of the radiation
pattern for the frequency range 920-1200MHz. Rx: RIMFAX, Tx: LPDA
antenna. The mast height of rimfax was ≈ 0.58m in the H-plane
measurements and ≈ 0.28m in the E-plane.
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Appendix B

Spherical Harmonic charts

Frequency [MHz] Efficiency (ξ)
150 0.754
185 0.561
220 0.404
255 0.444
290 0.603
325 0.918
360 1.41
395 1.45
430 1.55
465 1.90
500 2.67
500 2.28
570 1.27
640 1.44
710 2.30
780 1.08
850 0.874
920 1.46
990 1.26
1060 0.919
1130 0.884
1200 0.631

Table B.1: Estimates of the mean gain from the interpolated radiation
pattern model (efficiency). Note that the efficiency will in reality always
be less than one.
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Figure B.1: These plots display comparisons between the spherical
harmonic model and the input data, at 150 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.2: These plots display comparisons between the spherical
harmonic model and the input data, at 185 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.3: These plots display comparisons between the spherical
harmonic model and the input data, at 220 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.4: These plots display comparisons between the spherical
harmonic model and the input data, at 255 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.5: These plots display comparisons between the spherical
harmonic model and the input data, at 290 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.6: These plots display comparisons between the spherical
harmonic model and the input data, at 325 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.7: These plots display comparisons between the spherical
harmonic model and the input data, at 360 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.8: These plots display comparisons between the spherical
harmonic model and the input data, at 395 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.9: These plots display comparisons between the spherical
harmonic model and the input data, at 430 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.10: These plots display comparisons between the spherical
harmonic model and the input data, at 465 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.11: These plots display comparisons between the spherical
harmonic model and the input data, at 500 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.12: These plots display comparisons between the spherical
harmonic model and the input data, at 570 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.13: These plots display comparisons between the spherical
harmonic model and the input data, at 640 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.14: These plots display comparisons between the spherical
harmonic model and the input data, at 710 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.15: These plots display comparisons between the spherical
harmonic model and the input data, at 780 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.16: These plots display comparisons between the spherical
harmonic model and the input data, at 850 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.17: These plots display comparisons between the spherical
harmonic model and the input data, at 920 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.18: These plots display comparisons between the spherical
harmonic model and the input data, at 990 MHz. The order of the model is
L = 3. Each subfigure charts the gain for a different plane.
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Figure B.19: These plots display comparisons between the spherical
harmonic model and the input data, at 1060 MHz. The order of the model
is L = 3. Each subfigure charts the gain for a different plane.
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Figure B.20: These plots display comparisons between the spherical
harmonic model and the input data, at 1130 MHz. The order of the model
is L = 3. Each subfigure charts the gain for a different plane.
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Figure B.21: These plots display comparisons between the spherical
harmonic model and the input data, at 1200 MHz. The order of the model
is L = 3. Each subfigure charts the gain for a different plane.
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Figure B.22: These charts display the interpolated radiation patterns at
frequencies 150-325 MHz and L=3.
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Figure B.23: These charts display the interpolated radiation patterns at
frequencies 360-570 MHz and L=3.

108



−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 640.0 [MHz] , L=3 

(a)

−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 710.0 [MHz] , L=3 

(b)

−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 780.0 [MHz] , L=3 

(c)

−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 850.0 [MHz] , L=3 

(d)

−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 920.0 [MHz] , L=3 

(e)

−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 990.0 [MHz] , L=3 

(f)

Figure B.24: These charts display the interpolated radiation patterns at
frequencies 640-990 MHz and L=3.
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Figure B.25: These charts display the interpolated radiation patterns at
frequencies 1060-1200 MHz and L=3.
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Figure B.26: These charts display the interpolated radiation pattern at
frequencies 150-325 MHz and L=3.
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Figure B.27: These charts display the interpolated radiation pattern at
frequencies 360-570 MHz and L=3.
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Figure B.28: These charts display the interpolated radiation pattern at
frequencies 640-990 MHz and L=3.

113



−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 1060.0 [MHz] , L=3 

Azimuth

El
ev

at
io

n

(a)

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 1130.0 [MHz] , L=3 

Azimuth

El
ev

at
io

n

(b)

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

−30

−25

−20

−15

−10

−5

0

5

10
Gain [dBi]

Radiation pattern at 1200.0 [MHz] , L=3 

Azimuth

El
ev

at
io

n

(c)

Figure B.29: These charts display the interpolated radiation pattern at
frequencies 1060-1200 MHz and L=3.
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Appendix C

Code

SphericalRadPattern

datasets: dict

theta_emp: float array

phi_emp: float array

data_emp: float array [num_freq,*]

frequency: float array [num_freq]

spherical_coeff: complex array

L: int

theta_SH_grid: float array [N,N]

phi_SH_grid: float array [N,N]

data_SH_grid: complex array [num_freq,N,N]

__import_patterns(): void

__to_spherical_coords(self,pattern,dataset)

__generate_3d_pattern(self)

resample_dataset(self,num_samples)

set_render_grid(self, *args, **kwargs)

sh_reconstruct(self, *args, **kwargs)

sh_coeff(self, L, cuda)

sdfm_interpolate(self,freqs,gain,write)

CircularRadPattern

plane: String

tilt: float

freq_vec: float[0..*]

scale: float[0...size(freq_vec)]

theta_import: float[0..*]

data_import: complex[0..*]

n_resampled: int

theta_resampled: float[0..n_resampled]

data_resampled: complex[0..n_resampled]

scale_vec_global: float[0..size(freq_vec)]

data_scaled: complex[0..n_resampled]

__init__(self,fname)

__read_pattern_from_file(self,fname)

resample_data(self,N=300)

get_plane()

get_tilt()

get_data()

get_theta()

str: freq_range

orientations : dict

str: orientation

Figure C.1: UML diagram for the Spherical Harmonic interpolation.

L coeff reconstruct-cuda reconstruct-cpu
5 0.01s 0.37s 0.19s
10 0.05s 0.20s 0.59s
15 0.11s 0.46s 1.42s
20 0.20s 0.88s 2.51s

Table C.1: Table showing the time taken to compute SH-coefficients and to
reconstruct the model from the coefficients.
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datasets : dict

str: freq_range

orientations : dict

str: orientation

orientations : dict

str: orientation

"150-500" "500-1200"

"Hp20" "Hm20""H"

"Em20""Ep20""E""Em20"

"Hm20""Hp20""H"

"Ep20""E"

CircularRadPattern
= 

Figure C.2: The structure of the objects in the datasets dictionary from
the SphericalRadPattern class in Fig. C.1. Each blue, rounded rectangle
corresponds to a CircularRadPattern object, which represents one cut of the
radiation pattern. Each of these objects have imported their data from a
single file in the "Meas" directory, located within the "jupyterlab" directory.

1 self.L=L
2

3 N = int(np.power(L+1,2))
4 M = np.size(theta)
5 x = np.cos(theta)
6 e_i_phi = np.exp(1j*phi)
7 A = np.zeros([M,N],dtype=complex)
8 y = np.absolute(data[:,:])
9

10 i = 0
11 for l in range(0,L+1):
12 for m in range(-l,l+1):
13 #print(f"i: {i}, N: {N}")
14 f = np.sqrt((2*l+1)*special.factorial((l-m))/ \
15 (4*math.pi*special.factorial((l+m))))*\
16 special.lpmv(m,l,x)*np.power(e_i_phi,m)
17 A[:,i] = f
18 i += 1
19 self.spherical_coeff = np.linalg.lstsq(A,y,rcond=-1)

Figure C.3: This algorithm finds the spherical harmonic coefficients from
the preprocessed measurements.
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1 num_freq = np.size(self.frequency)
2 theta = self.theta_render
3 phi = self.phi_render
4 spherical_coeff = self.spherical_coeff[0].T
5 data_modeled = np.zeros([num_freq,self.num_phi,self.num_theta],
6 dtype=complex)
7

8 i=0
9 for l in range(0,self.L+1):

10 for m in range(-l,l+1):
11 data_modeled = data_modeled+ \
12 (spherical_coeff[:,i,None,None]* \
13 special.sph_harm(m,l,phi,theta)[None,:,:]))
14 i+=1
15 self.theta_SH_grid = theta
16 self.phi_SH_grid = phi
17 self.data_SH_grid = data_modeled

Figure C.4: The algorithm that reconstructs the radiation pattern from the
SH coefficients. This the standard implementation that uses numpy and
scipy.
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1 num_freq = np.size(self.frequency)
2 theta = cp.asarray(self.theta_render)
3 phi = cp.asarray(self.phi_render)
4 x = np.cos(cp.asnumpy(theta))
5 e_i_phi = cp.exp(1j*phi)
6 spherical_coeff = cp.asarray(self.spherical_coeff[0].T)
7 data_modeled = cp.zeros([num_freq,self.num_phi,self.num_theta],
8 dtype=complex)
9

10 i=0
11 for l in range(0,self.L+1):
12 for m in range(-l,l+1):
13 C = cp.sqrt((2*l+1)*\
14 cp.asarray(special.factorial((l-m))/ \
15 (4*math.pi*special.factorial((l+m)))))
16 f_legendre = cp.asarray(special.lpmv(m,l,x))
17 cp.cuda.Stream.null.synchronize()
18 ### The SH coefficients are constant for all
19 ### (theta,phi), while the two preceding functions
20 ### are constant for all freq
21 data_modeled = cp.add(data_modeled,
22 C*spherical_coeff[:,i,None,None]*\
23 f_legendre[None,:,:]*\
24 cp.power(e_i_phi,m)[None,:,:])
25 i+=1
26 cp.cuda.Stream.null.synchronize()
27 self.theta_SH_grid = cp.asnumpy(theta)
28 self.phi_SH_grid = cp.asnumpy(phi)
29 self.data_SH_grid = cp.asnumpy(data_modeled)

Figure C.5: The algorithm that reconstructs the radiation pattern from the
SH coefficients. This one was written in the CUDA-enabled library cupy.
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1 def SDFM_interpolate(self,freqs,gain,write=False):
2 """Interpolates a set of of gain/frequency measurements
3 with a rational filter. Uses the same number of filter
4 coefficients as the number of sampled frequencies."""
5 field_strength = np.power(10,gain/10)
6 num_freqs = 1000
7 freq_interp = np.linspace(freqs[0],freqs[np.size(freqs)-1],
8 num_freqs)
9 gain_interp = np.zeros([num_freqs,np.size(freqs)])

10 nd_matrix = np.zeros([np.size(freqs),2],dtype=int)
11 s_in = 2j*math.pi*freqs
12

13 for n in range(0, np.size(freqs)):
14 d = np.size(freqs)-1-n
15 A = np.ones((np.size(freqs),n+d+1),
16 dtype=complex)
17 B = np.ones((np.size(freqs),n+d+1),
18 dtype=np.dtype('U100'))
19 for i in range(0,n+1):
20 A[:,i] = np.power(s_in,i)
21 B[:,i] = f's^{i}'
22 for i in range(0,d):
23 A[:,i+n+1] = -field_strength*np.power(s_in,i)
24 B[:,i+n+1] = f'-F(s^{i})s^{i}'
25 b = field_strength*np.power(s_in,d)
26 x = np.linalg.solve(A,b)
27 top_coeff = x[0:n+1]
28 bottom_coeff = np.append(x[n+1:n+d+1], 1.0)
29 s_out = 2j*math.pi*freq_interp
30 freq_top = np.ones((np.size(freq_interp),n+1),
31 dtype=complex)
32 for i in range(0,n+1):
33 freq_top[:,i] = np.power(s_out,i)
34 freq_bottom = np.ones((np.size(freq_interp),d+1),
35 dtype=complex)
36 for i in range(0,d+1):
37 freq_bottom[:,i] = np.power(s_out,i)
38 top_eval = np.matmul(freq_top,top_coeff)
39 bot_eval = np.matmul(freq_bottom,bottom_coeff)
40 field_strength_interp = np.absolute(top_eval/bot_eval)
41 gain_interp[:,n] = 20*np.log10(field_strength_interp)
42 nd_matrix[n,:] = [n,d]
43 return freq_interp,gain_interp,nd_matrix

Figure C.6: Function that interpolates a set of gain/frequency measure-
ments using the Padé rational function.
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1 function [] = gate_sim(win,length,pulse_width)
2 Fs = 97.656e3;
3 T_sweep = 3.125e-3;
4 max_f = 1200e6;
5 min_f = 150e6;
6 ns = 1e-9;
7 Fgate = 12500e3;
8 FsGate = Fgate*1000;
9 T = 1/Fgate;

10 W = T/pulse_width;
11 ramp_rate = (max_f-min_f)/T_sweep;
12

13 reflector_if = ramp_rate*15*ns;
14 reflector_if2 = ramp_rate*20*ns;
15

16 t_pulse = -T/2:1/FsGate:T/2;
17 pulse = rectpuls(t_pulse,W);
18 num_periods = round(T_sweep/T);
19 pulse_wave = repmat(pulse,1,num_periods);
20 t_sine = linspace(0,numel(pulse_wave)/ ...
21 FsGate,numel(pulse_wave));
22 reflectors = cos(2*pi*reflector_if*t_sine)+ ...
23 cos(2*pi*reflector_if2*t_sine);
24 pulse_wave = pulse_wave.*reflectors;
25 pw_windowed = pulse_wave;
26 if win == 0
27 pw_windowed = pulse_wave;
28 elseif win == 1
29 pw_windowed = pulse_wave.* ...
30 chebwin(numel(pulse_wave),72)';
31 end
32 magn_pw = db(abs(fftshift(fft(pw_windowed))));
33 max_pw = max(magn_pw);
34 magn_pw = magn_pw - max_pw;
35 n_pw = numel(magn_pw);
36 freq_pw = linspace(-FsGate/2,FsGate/2,n_pw);
37 n_samples = length;
38 freq_pw_extract = freq_pw(round(n_pw/2-n_samples): ...
39 round(n_pw/2+n_samples));
40 magn_pw_extract = magn_pw(round(n_pw/2-n_samples): ...
41 round(n_pw/2+n_samples));
42 delay = freq_pw_extract/ramp_rate;
43 end

Figure C.7: Gate-simulator written in MATLAB.
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Appendix D

Miscellaneous

D.1 Derivation of the wave equation

Proof. The first step to derive the wave equation is to take the curl of
equation 3.5.

∇×∇× ~E = −∂(∇× ~B)
∂t

By combining equation 3.4 with the constitutive equations, ~D = ε0~E,
~H = ~B/µ0, and assume zero current J = 0, we get:

∇× ~B = εµ
∂~E
∂t

Hence,

∇×∇× ~E = −εµ
∂2~E
∂t2

We introduce the identity [18, p. 1]:

∇× (∇× A) = ∇(∇ · A)−∇2A

Because we assume there are no charges (∇ · E = 0), we can make the
following simplification:

∇2~E = εµ
∂2~E
∂t2 (D.1)

�
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### This file explains how the empirical measurements
### of the RIMFAX antenna is encoded. Every extensionless
### file in the /Meas directory has the same encoding.
### Line 7 and out is repeated for each frequency.

Line 1-4: Header
Line 5: Number of samples - N
Line 6: Text - "Azimuth"

Line 7 to N+6: Every sampled direction in degrees
Line N+7: Frequency [MHz] <Space> Scale
Line N+8 to 2N+7: Every sampling of the electric field

strength as a complex number

Figure D.1: The layout of the antenna measurement files.

Frequency [MHz]
150
185
220
255
290
325
360
395
430
465
500

(a) 150-500MHz

Frequency [MHz]
500
570
640
710
780
850
920
990

1060
1130
1200

(b) 500-1200MHz

Figure D.2: The measurement frequencies
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D.2 Spatial interpolation methods

The methods in this section were first thought to be viable options for
interpolating the radiation patterns. We will now discuss some of the issues
with both of these methods.

D.2.1 The summing method

The simplest method for interpolating from plane cuts of the radiation
pattern to full 3d directivity is the "summing method". The main idea is
to assume the pattern is separable to orthogonal cuts,

G(θ, φ) = GXZ(θ)GYZ(φ)

Variations of this method has been shown to give a good overall approxim-
ation of the pattern, especially in the main lobe [32]. The problem with this
method is that it only uses two orthogonal cuts as input. We would like a
method that takes all the cuts illustrated in Fig. 3.4 into account.

D.2.2 Binomial interpolation

Binomial interpolation is a set of techniques that are very common in image
processing. They have several implementations in python, so it is natural to
explore whether they could be applied to solve our problem. Bilinear and
bicubic are perhaps the most common examples of this type of interpola-
tion. Bilinear requires four known values in a rectangular grid to compute
the polynomial coefficients while bicubic requires 16.

(a) Linear interpolation takes four
values and interpolates between
them.

(b) Bicubic interpolation takes 16
points and interpolates between the
four outermost points.

Figure D.3: Two interpolation methods. Created by: Cmglee (CC BY-SA 4.0).
The original image displayed six interpolation methods.

Among the coordinate systems discussed in Section 3.6, Azimuth-Elevation
brings the data closest to a rectangular grid. Close to the center of Fig. D.4,
we have something that is almost a 9-point rectangular grid. Due to the 16-
point restriction, it is clearly impossible to perform bicubic interpolation on
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our data.

Linear interpolation can be performed in each of the four sub-rectangular
shapes. The interpolated gain in each of these rectangles would only be
based on the gain at the four edges of the rectangles. Because we can-
not incorporate more than 9 data points into our model by using stand-
ard binomial interpolation, and because the model would be restricted to
|θ|, |φ| < 20◦, we have chosen not to use this method.
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Figure D.4: The measured radiation pattern in the Azimuth-Elevation
coordinates (from Fig. 3.3).
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Figure D.5: RIMFAX antenna, rendered with blender.
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Figure D.6: A wumpa fruit. Credits: Traveller’s tales.
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