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Abstract

For humans, imitating and adapting from another human is a natural task,
however the same task cannot be done for robots and offers great challenges in
robotic development that researchers strive to solve. Programming the robot
motion is difficult and requires analytical equations and it is time-consuming.
Imitation learning in robotic research field aims to solve such problems through
observation.

The thesis proposes a novel method that contributes in the field of imita-
tion learning using motion capture as reference for the robotic manipulator to
learn from. Taking inspiration from machine-learning and natural evolution,
the method introduces a weight-matrix that maps the relation in terms of kin-
ematics and other features between robotic manipulator and motion actor and
using GA to optimize for the mapping relation.

In order to test the proposed method, two experiments were conducted with
the aid of V-REP robotic simulator. UR5 robotic manipulator was used as the
main manipulator. The first experiment was designed to capture the relation
between motion capture actor and robotic manipulator. The second experiment
was extracting a human limb and designed to transfer the human limb motion
on the UR5-manipulator. The motion capture dataset used in both of the
experiment is HDM05 which is marker-based.

The proposed method shows promising results and the motion capture data-
set used in thesis is marker-based and as such, the proposed method manages to
handle different amount of markers which are different topology. The first ex-
periment managed to capture the motions unqiue characteristics and the second
experiment imitated to the motion capture motion in complex motion such as
workout and dancing.
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Chapter 1

Introduction

1.1 Motivation

Robots 1 are slowly growing to become a big part of our everyday life. They are
used in hospitals for surgery, drones for package delivery, autonomous vehicle
for transportation and even in small various software services and applications
such as Alexa 2. As the technology growth continues to advance so will the
interaction between robots and humans being more common. Even humans
have contemplated integrating robotic applications into human body such as
using smart robotic prosthetic arm to replace missing limb [7] or exoskeleton for
additional enchancement in mobility or physical strength for the handicapped
[24].

For humans, performing various activities such as walking, running, and etc
is a natural task. This comes natural from the idea humans are imitating other
humans behaviour and copy them to perform the exact same motion. For robots
however, it is far more difficult to make it move and recreate the same motion
and offers great challenges in robotic development that researchers strive to
solve. Programming every movement in a robot is tedious and time-consuming
[8] and to combat this, the term Programming by Demonstration(PbD)3 is tech-
nique of demonstrating a task for a robot learn from observations. This is also
known as imitation learning.

The field of imitation learning within robotics uses numerous methodological
where biology-based methods such as neural networks [18][56] and evolutionary
computing [42][52] are used for robot learning methods. Two studies conduc-
ted by [20] and [8] shows there are frequently more applications using neural
networks rather than evolutionary computing.

The motivational goal of the thesis is to contribute in the field of Program-
ming by Demonstration or Imitation Learning by using evolutionary computing

1Meaning ”forced labor” was first used to denote a fictional humanoid in 1920 play by
Czech Writer, Karel Capek and postulated the technological creation of artifical human bodies
without souls to fit the new class of manufactured, artifical workers

2Alexa is virtual assistant AI technology developed by Amazon first used in Amazon Echo
Smart Speakers

3Programming by Demonstration(PbD) appeared in software development as early as 1980s
and is defined as a sequence of operations where a user performs and the computer repeats
the process
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Introduction Chapter I

with motion capture data with an ambition that can enlighten other researchers
of adapting to evolutionary strategies approach.

1.2 Goal of the thesis

The goal in the thesis is to investigate if human motion capture data can be
mapped into robotic manipulator using variety of motion capture markers by
optimizing weights using evolutionary algorithm. The solution is determined by
how close the GA is approximating the distance of the robotic manipulator and
motion capture data. As such, the hypothesis is if using more markers could
improve the mapping. In order to answer this hypothesis, the thesis will be
investigating two goals to help answer this.

The first goal is observing how motion-capture data is mapped into lower
degree-of-freedom robots and if it is possible to capture the some unique char-
acteristics or the”essence”4 of the motion.

1. Create and implement weight-matrix for optimizing the parameters for
Full-Body motion onto 6-DOF robot manipulator with different amount of
motion-capture markers using Evolutionary Algorithm.

The second goal involves extracting a portion of the human motion capture
data for example human arm and determine if the robotic manipulator can im-
itate the same motion trajectory with different amount of markers.

2. Create and implement weight-matrix for optimizing the parameters for
Limb-body motion onto 6-DOF using different amount of motion-capture mark-
ers.

Fullfilling these two goals will achieve the goal of the thesis to be able to
prove or disprove the hypothesis.

1.3 Implementation

Short summary of what was done in the thesis to achieve the goal of the thesis.

1. Preprocessing Motion Capture Data

2. Finding the Forward-kinematics for UR5-manipulator

3. V-REP Simulation Setup

4. Implementation of the two proposed methods, EJDM and BCDM

5. Multiple experiments and tests were done on UR5-manipulator using the
two methods proposed

4Definition of Essence; The basic, real and invariable nature of a thing or its significant
individual feature or features
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1.4 Outline of the thesis

The structure of the thesis can be categorially be divided into a total of six
chapters including the introduction chapter. The other remaining five chapters
are Theoretical Background, Motion Capture Data, Methods and Im-
plementation, Experiments and Results, and Discussion.

Chapter II - Theoretical Background
An introduction to the relevant theory needed for the thesis.

Chapter III - Motion Capture Data
Overview over motion capture and motion capture dataset.

Chapter IV - Methods and Implementation
Describes the method proposed and implementation of the system.

Chapter V - Experiments and Results
Describes the experimental setup and the related results for the two main ex-
periments, full-body and BCDM using variety of motion capture markers.

Chapter VI - Discussion
Explains the general discussion around the experiments and results and finish-
ing the thesis with a conclusion of the work in the thesis and future work.
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Chapter 2

Theoretical Background

2.1 Robot Motion

Generating robotic motion1 is not trivial task because there are many different
types of motion. The various motions could be bipedal [47], four-legged [45],
upperbody [64] and last for robotic arm which the thesis will focus on. Some of
the challenges include how to properly map between human motion to robots.
The use of input-deviced for moving the robot such as [22] [2] could be used
where sensors register the movement or the signal from human and then the
robotic manipulator use the data to convert it.

The restrictions between human and robot in terms of kinematic and dy-
namic constraints appears to be more problematic than expected [59] due to
varying link-lengths, orientation and position of the joints. There are two meth-
ods of mapping movements, the first one is analyzing and finding the analytical
equations or mathematical modeling of robots and that may be difficult de-
pending on the amount of DOFs and the robots layout. The second approach
involves the use of learning algorithms such as the artifical neural networks [28]
for robot control or reinforcement learning [33] [19] for computing the inverse-
kinematics. The idea of these mentioned machine-learning algorithms is to find
the relation between the input data and ground truth to map the relationship
between kinematic models between human and robot.

A form of reference from motion can be used for the robot to learn form.
It is called motion-capture and will be explained in greater details at chapter
3. Even with the reference motion, there exists some underlying limitations for
using motion-capture.

Matsui et al. [34] experimented that by copying the joint-angles directly
from motion-capture, yielded worse results as the kinematics between human
and moCap-actor being vastly different. By copying the changes in positions
and using neural network, the robot managed to perform more human-like mo-
tions and realistic. Here, the authors used 20 markers on both the robot and
themselves. Similar in Stanton et al. [56], neural networks were used for every
robotic joint to map the relation between motion-capture and robotic. The
interesting aspect of that research mentioned are the lack of having analytical
model or the mathematical modeling of the robot, i.e the inverse kinematics,

1Motion is the phenomenon in which an object changes its position over time.
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Figure 2.1: UR5 Robotic Arm. Image taken from:
https://www.cobotnor.no/ur-og-ur-e-serien/ur5/

proving the capablilites of heuristic methods.
As such, using evolutionary computing or more specific, evolutionary ro-

botics is heuristic method designed for optimization problems. One algorithm
that comes to mind is genetic algorithm which will also be explained in this
chapter [23] later used. The objctive function or criterion function is minimiz-
ing the traveling time and space while not exceeding torque. While the GA was
able to solve their optimization problem, their fitness function required a lot of
constants meaning analytical knowledge of the robotic arm is needed.

2.2 Robot Design

Robot exists in various shapes and forms depending on its purpose. Given
their shape and forms they are commonly used to solve specific sets of tasks.
Robots that are intending to replicate humans tends to solve human related
tasks [1], [43]. Other robots draw inspiration from nature and animals such as
the 6-legged spider [6] and the 4-legged dog-like [45].

2.3 Introduction To Robotic Manipulators

The robotic manipulators are robots with mechanical arm connected by rigid
links connected by joints to form a kinematic chain such as the one shown in
figure 2.1. The joints can vary from revolute, prismatic to far more complex
joints such as sphere [37] or ball joint [13]. A revolute joint and prismatic joints
have only one degree-of-freedom(DOF). The revolute joint has one DOF and it
only rotates along the z-axis denoted by zi. Robotic manipulator are commonly
stationary where its initial position o0x0y0z0 is referred as base-frame. It is also
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the following notation which is going to be used when referring to coordinate
systems.

Since the links only has certain reach means the overall movement is also
limited to its space. Its total space of movement is known as configuration space
or workspace. In this thesis it will be focused entirely on revolute joints as it is
the one that is used.

A robot manipulator will have n joints and n+ 1 links and that means the
total amount of joints will be Ji i ∈ 1, ..., n and for links li i ∈ 0, ..., n. This
means every joint i connects link li−1 to link li. For each joint a coordinate
frame oixiyizi is attached to the link li and when the link li move so will its
attached coordinate frame.

2.3.1 Modeling Robot Manipulators

The derivation of the forward and velocity kinematics and the dynamics equa-
tions for the manipulators are well documented and established [54] whereas
the most popular approach is Denavit-Hartenberg convention(DH). It was first
introduced in 1955 in order to standardize the coordinate frames for spatial
linkages. The procedure can be seen as step-by-step operations. The homogen-
ous transformations and rigid motions represent the orientations and position
as matrix. Homogenous transformations combines both rotations and position
together it can be seen as transforming from one coordinate frame to the next
one. Here, each homogenous matrix represents the orientation and position for
one particular joint i.

2.3.2 Rigid motion and Euler-angles

Rigid motions and homogenous transformations are used to describe the relative
positions and orientations between the coordinate systems that are assigned to
each joint and link. By combining the operations of rotation and translation
into single matrix it can be used to derive the forward-kinematics. That is
explained later in section 2.3.5.

Rigid motions can be defined as an ordered pair (R, d) where d ∈ R3 and
R ∈ SO(3) is a rotation matrix of Special Orthogonal group of order three.
This means for any R ∈ SO(n) the following property must hold RT = R−1

and det(R) = 1. Rotation matrices, R can be used to represent orientation of
one coordinate frame with respect to another coordinate frame. As such it can
also be used to transform from one coordinate frame to another with respect to
previous coordinate frame.

For example, consider two frames oixiyizi as the first frame and ojxjyjzj as
the next where j is the successor from frame i, then the next successive frame
okxkykzk can be obtained with the previous two frames as,

Rik = RijR
j
k (2.1)

where the rotation, Rik is the rotation on frame k with respect to i frame.

2.3.3 Euler Rotation

The orientation of frame ojxjyjzj relative to frame oixiyjzi can be found with
three angles φ = [ϕ,ψ, ϑ]T known as Euler-angles. Using following angles, the
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rotation matrix can be obtained by three elemental rotations.
Rotation matrix for rotation around x-axis with θ degree and is considered

roll rotation.

Rotx,ϕ =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (2.2)

Rotation matrix for rotation around y-axis with θ degree and the pitch ro-
tation.

Roty,θ =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 (2.3)

Rotation matrix for rotation around z-axis with θ degree and the yaw rota-
tion.

Rotz,ϑ =

 cosϑ sinϑ 0
− sinϑ cosϑ 0

0 0 1

 (2.4)

2.3.4 Denavit-Hartenberg(DH)-Convention

Homogenous transformations are used to describe the relationship between co-
ordinate frames oixiyizi, and oi−1xi−1yi−1zi−1, ∀i ∈ 1, ..., n. To define a rigid
motion, a total of six parameters are needed to derive the where three paramet-
ers are for rotation and the remaining three for position.

The Denavit-Hartenberg(DH) is standardized procedure that simplifies the
handling of rigid motions as it reduces the amount of parameters required to
obtain the transformations matrices. DH-convention reduces the six parameters
down to four through exploitation of common geometry and choice between
origin and coordinate axes. The homogenous transformation matrix becomes
H ∈ R4×4

H =

[
R d
0 1

]
(2.5)

where R ∈ SO(3) and d ∈ R3 and finding its inverse H−1 is simple due to
the property of Special-Orthogonal group and only requires the transposed but
this is also known.

H−1 =

[
RT −RT d
0 1

]
(2.6)

To calculate the next transformation, the first step is to use matrix-multiplication
of the homogenous matrices

Hi
j = Hi

i+1 . . . H
j−1
j =

[
Rii−1 dii−1

0 1

]
. . .

[
Rj−1j dj−1j

0 1

]
(2.7)

This homogenous matrix, Ai, in DH-convention is represented as a product
of four basic transformations and it is known as transformation matrix
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Ai−1i = Rotz,θTransz,diTransx,aiRotx,α

=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1




1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1


1 0 0

0 cos θ sin θ
0 − sin θ cos θ



=


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sinαi

0 sinαi cosαi di
0 0 0 1


where the four parameters,ai, di, αi and θi can be seen in equation 2.8 above.

These parameters are the joint angle, link-length, link-offset and link twist of
joint i and link li. They are defined as

1. ai = distance along xi from the intersection of the xi and zi−1 axes to
coordinate frame i

2. di = distance along zi−1 from coordinate frame i − 1 to the intersection
of xi and zi−1 axes

3. αi = the angle from zi−1 to zi measured about xi

4. θi = the angle from xi−1 to xi measured about zi−1.

DH-convention requires also the following parameters to follow set of rules
that must be satisfied and can be described as:

1. The axis zi is the axis of revolute of joint ji+1.

2. The axis xi is perpendicular to the axis zi−1 and zi

3. The axis xi intersects the axis zi−1

4. The coordinate frames can be used with right-hand-rule (RHR)

Not only is it applicable to positions and orientations, but the Ai matrix
can also be used to derive the velocity kinematics. In this thesis, the dynamic
models and velocity kinematics will be excluded as it is not used. Hence, only the
forward-kinematics will be explained and derived in details. It is also assumed
the base-frame is fixed and the links are considered rigid.

2.3.5 Forward-Kinematics

Forward-kinematics describes the motion of the manipulator and are used to
determine the position and orientation of the end-effector by using joint variables
q.

For deriving forward-kinematics, it is assumed Ai matrices from equation
2.8 are known for every joint i and the Ai matrices can be plotted into equation
2.7 as series of matrix multiplication. As such the position and the orientation
of the end-effector are then given by
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T 0
n = Ai . . . An (2.8)

Assuming all of the joints are revolute, then equation 2.8 can be written as
function of joint variable qi and this yields the following equation 2.9,

T 0
n(qi) = Ai(qi) . . . An(qn) (2.9)

In the last transformation when T 0
n(q) is reached, that is the position and

orientation of the end-effector with respect to base-frame.

2.4 Genetic Algorithm

Genetic Algorithm, abbreviated GA, is inspired by natural selection in biology
[35] where selection of fittest individuals thrive in an environment and will
have much higher probability to produce offsprings. Weaker individuals must
therefore adapt to its given surrounding environment through mutation and
crossover. Section below 2.4.1 will go through some of the most common terms
in GAs.

2.4.1 Biological terminology

All living organisms consist of cells and each cell contains one or more of the
same set of one or more chromosomes that serves as the DNA for the organism.
Humans have 46 possible chromosomes while other living animals have different
amount of chromosomes. It is the combination of the chromosomes that defines
and shapes such personal traits and appearance as an individual. Looking at the
chromose in molecular level unveils the property of natural genetics. The outside
is that is the appearance of the individual is known as phenotypic features.
These phenotypic features can be described by genotype. Here, the genotype
represents the encoding of the sequence of genes. Every gene has possible set
of values known as alleles. Through recombination and mutation will cause the
phenotypic features to change.

2.4.2 Genetic Algorithm (GA)

Genetic algorithms is stochastic search method based on the prinicipal of nat-
ural genetic systems [17] where the idea is to maintain possible solutions that
evolves over time and improves on its previous successor in process of compet-
ition and controlled environment. The evolution process is applied to known
initial candidates where the evolution process explore for better candidates in
search space where there are many possibilities of good and more efficient can-
didates for one particular problem. For optimzation problems, the goal is either
minimizing or maximizing an objective function, the GAs has proven to yield
great results.

Fitness is defined as the genetic representation of an individual and measures
the quality of the represented solution. Fitness landscape can be seen as the
search space of all possible solutions which we will call S. In the search space
there exists a metric, or scalar fitness function defined over all the elements in
S [63]. These elements can be considered as peaks where some are higher than
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other as illustrated in fig 2.2. The smaller ones can be considered local optima
while the highest peak in the search space S is global optima. It is the global
optima in which the GA is trying to find as this is considered the best solution
for a given problem and it is by searching for the highest either by maximizing
or minimizing the fitness function.

2.4.3 Fitness Function

In order to verify whether the individuals are fit in the population the need
of an evaluation with respect to gene-encoding is required. In GA it is often
called fitness function and is a method of measuring the overall solution for
the individual. The fitness value returned from the evaluation is deciding its
probability of being in the next population for the next pool. Higher the fitness,
the higher the probability it is included in the next gene pool with the goal of
achieving optimal solutions. However, one fitness function cannot be applied to
every GA’s algorithm because every fitness function is dependent on the problem
it is trying to solve. The reason behind lies on the individual’s gene-encoding.

Knowing the fitness function is dependent on its gene-encoding, allows cre-
ation of fitness functions where function can include set of criterias for the
problem-solving. As such, through these criterias it has a goal in mind, hoping
to achieve with GA’s algorithm for optimization. For example, given a bit-string
of length L, and a fitness function whose goal is to maximize the decimal value
for bits. From this example it can be deduced the optimal way is to flip all
the bits to ”1”. However, assume the fitness function is to maximize only one
particular region within the bit-string and it can done so in the fitness function
adding a constraint that maximizes only the particular region. It does not in
general have to be one criteria but could expand to multiple criteras. Therefore
from this example, the more knowledge one has of the problem, the more can
one explore individual’s potential to optimal solutions. As mentioned the fitness
function is an objective function and usally returns real-valued scalar value.

Figure 2.2: Illustration of fitness landscape where horizontal axis, S, is the
search space and on the vertical axis, fitness, is the quality of the solution for
every element in S. The red areas indicates the local optima where the solutions
are subpar while the blue area is the desired fitness and known as global optima
for the given search space S
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Figure 2.3: Flowchart of the evolution process of genetic algorithm. Each box
is a step in the evolution process which we perform on the population. Notice
the green box around ’Crossover -and Mutation’ and selection. This is the step
where we apply genetic operators on individuals and select the next possible
solutions for the next population via reproduction. The arrows marks the cycle
of loop and each run is the next generation of evolution process. Termination
criteria is either when the population does not improve significantly over time
or even when the amount of certain generations has passed.

2.5 Genetic Operators

2.5.1 Selection

Selection is how the individuals within population are competiting towards an-
other to reproduce the next offspring for the next population. Most common
approach is by selecting the fittest individuals as these are considered the best
current solutions and let them pass the genes onto the next generation. This is
known as elitism and will be discussed further below.

During selection process one might be attempted to only select the fittest
candidates in the population, however choosing the fittest candidates might
risk getting premature convergence in local optima [50] and is an undesirable
condition. By having weaker solutions can in some cases prevent the extremely
fit solutions from taking over the population.

2.5.2 Elitism

The elitism selection guarantees the fittest candidates are mixed into the pool of
population for the next generation and the weakest one may risk being neglected
away entirely, thus reducing the diversity. A potential downside is the risk of
reaching local optima early on in the evolution process since the entire popula-
tion is dominated entirely by only the fittest candidates. The benefit however
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is its fast performance during simulation [35, p. 126] to reach convergence.

2.5.3 Roulette Wheel Selection

Roulette wheel selection is also known as fitness proportionate selection for
selecting potential candidates for recombination. By applying fitness function
on individuals we receive fitness for every candidates in the population. First we
sum up the total fitness for all the candidates and divide every candidate on the
summed fitness as shown in equation 2.10. After dividing we get probability for
selection between [0, 1] where the fittest candidate will have higher probability
of being selected for recombination marked by Pi. Fitness for one candidate is
noted by fi. N is the population of the algorithm.

Pi =
fi∑N
j=1 fj

(2.10)

Downside of using this selection is similar to elitism where one highly fit
candidate can dominate over other weaker candidates if their fitness are much
less, resulting in premature convergence. This is noticeable during the end of
runs in GA.

Tournament Selection

Tournament selection is another genetic operator for selecting possible can-
didates from a population as offsprings. It usually involves running multiple
tournaments for a given generation depending on how large the tournament size
is. Selection works as follows, we first select tournament size which is called k.
The size determines how many candidates are randomly selected from the pop-
ulation in order to compete towards one another in the tournament. There are
two ways to determine the champion of the tournament. One is always selecting
the fittest candidate. The second one is little more advanced.

First, we rank the fitness of the candidates in chronological order. Then we
assign a random probability between p ∈ [0, 1] and yields a scaled probability
based on candidates rankings. Value from the first probability ensures that the
fittest candidate always has higher probabilty of being elected than the lower
ones. We choose another random probability number r ∈ [0, 1].

Pindividual1 = p

Pindividual2 = p(1− p)1

Pindividual3 = p(1− p)2

...

Pindividualk = p(1− p)k−1

(2.11)

2.5.4 Genetic Recombination

This is the recombination process between two individuals and and gives birth
to offsprings which inherit traits from both of the individuals during the re-
combination. If we take human mating process, we inherit 50 % from one
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parent’s chromosome and the remaining 50 % from the other parent’s chromo-
some. The recombination of these two chromosomes selects the best traits from
chromosomes that increases the probability of survival given its surrounding
environment [39]. However in the GA’s one can decide how the individual is
recombined depending on the crossover method we select. In this section it will
walk through three of the most common crossovers in GA. There exists variety
of other crossovers in GA, but the thesis will not cover them. Umbarkar and
Sheth [60] did thorough research and review for many of the crossover operat-
ors and discussed their advantage and disadvantages. Operators are dependent
on the encoding type and as such is the major criteria for selecting the GA
operator.

2.5.5 Uniform Crossover

Given a string of genes, we assign an equal probability of selecting a gene from
both parents onto the next one with ramdonly chosen crosspover point. The
equal probability is fixed rating in which we can determine and select on before-
hand on the GA. However the rating, P , has to be ∈ [0,1]. Figure 2.4 shows the
simple uniform crossover with P = 50 % as fixed. Notice here, we essentially
inherit approximately half of the gene from parent 1 and the other half from the
parent 2. Uniform crossover does not generally have to be P = 50 % but could
for instance be P1 = 70 % from parent 1 and P2 = 30 % from parent 2. The
most common is P = 50 % because we have more variety from both parents,
and that results in more genetic diversity which allows for more exploration or
exploitation or maybe even both [60].

Figure 2.4: Genetic operator with Uniform-Crossover between two parents with
P = 50%.

2.5.6 One-Point Crossover

One-point crossover is one of the most common and simplest genetic operator in
GA. It uses single point in parents genetic string and then combine the parents
at the same crossover-point to create offsprings. Figure 2.5 shows how the
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genetic operator works. The green stapled line is the crossover-point for both
of the parents. It does not necessarily have to start on the same index on the
genetic string. It can be chosen at random where the crossover-point should
be placed during recombination step. Red and purple shows the two respective
parent’s genes and how the children inherit their genes.

Figure 2.5: Genetic operator with One-Point Crossover between two parents.

2.5.7 Two-Point Crossover

Similar to One-Point Crossover in previous section 2.5.6. Difference is two
crossover-points on both of the parents and then combine the parents to create
offsprings with more variation in gene.

Given One-point Crossover and Two-point Crossover, it can also be extended
it to K-Point Crossover. Select any arbitary K crossover-points within parent’s
string. This crossover provide great recombination of both parents to create the
offsprings yielding more varied genes in the offsprings. A potential downside is
risk of modifying the gene, losing the fittest candidate.

2.5.8 Genetic Mutation

Mutation process is the next genetic operator after recombination and is applied
on every offsprings in the population. During this process, every offsprings have
a probability of performing random mutation on their own gene. Similar to re-
combination, the mutation is dependent on the encoding type of the gene and as
such it cannot use the same mutation on every gene. Getting an understanding
of mutation, the example of using bit-flip will be used and explained in section
2.5.9. The actual mutation used, will be explained in section 2.5.10.

Role of mutation is to prevent the loss of diversity during GA evolution [35,
p. 23]. This means we may reach towards the same solution or similar solutions
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Figure 2.6: Genetic operator with Two-Point Crossover between two parents.

every run of GA, but however with mutation we add a probability of performing
a random mutation on random gene after recombination. In this way, ensure the
fixation of common gene is reduced. Usually, the mutation probability is low,≤
5, a common constant for most GA. Reason for low probability is to prevent
losing fit candidates in the population. With high mutation probability it may
risk the mutated gene to yield worse fitness than it was previous because the
change might have changed the an important gene that contributed to most of
the overall fitness [16]. Mutation allows for further exploration covering more
search space while maintaining the current fit candidates. During the end where
the GA algorithm might converge, will we notice that the mutation does not
affect the overall population because as we the algorithm is converging.

2.5.9 Mutation: Bit-Flip

Bit-flip mutation is flipping one random bit in the gene to either from 0 to 1
or 1 to 0. Given an offspring with sequence of binary gene with length L, we

assign probability of randomly flipping at one index in the sequence with p =
1

L
where p is probability. Thus every bit-position has equal probability of getting
randomly switched. Illustration of random bit-flip can be seen on figure 2.7.
Following up on the figure, the length of the gene is 16 and shows us three
random bit-flips.

2.5.10 Mutation: Gaussian

Mutation Gaussian is mutation operator designed for encoded genes operat-
ing with integer or floating number[60] rather than bits-string as previously
explained in section 2.5.9.

For the mutation the only two parameters to select are the values for µ and
σ and during the mutation it samples from the distribution. As such, given
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Figure 2.7: Mutation with bit-flip

a vector of length L with random floating numbers, similar to bit-flip, add a

probability of performing mutation at one index in the gene expressed by p =
1

L
where p is probability. Assuming further that at least one mutation or more
occurs we take that index position of that gene and we sample from N (µ, σ2).
Our new value in the gene becomes

X̂ = X +N (µ, σ2)

where X is the original value in the gene at the index position and X̂ is the
mutated value.

2.5.11 Evalutation of GA

From section 2.4.2 it is explained that the GA is stochastic. The evaluation
requires multiple runs with the same parameters to get good estimation of per-
formance [14, p. 126]. There are three methods used to evaluate the perform-
ance,

• Sucessrate (SR)

• Mean best fitness(MBF)

• Average number of evaluations to a solution (AES)

The used method for this thesis is the second one, mean best fitness. The
reason is it is applicable for most of the GA and suits best.

2.6 Robot Simulation

A simulation is estimation of a model or system by solving analytic equations.
[44]. It attempts to reproduce same behaviour of a mathematical model and to
estimate the performance of systems/models of analytical solutions or methods
[3]. A mathematical model is heavily influenced by large amount of data and
using predictive simulation from that data one can approximate a real-world
empirical system. Simulation runs and visualizes, animate and explore the tem-
poral behaviour and the benefit of computer simulation is to gain insight of the
proposed model and enhanced understanding of a problem.
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2.6.1 Virtual Robotic Experimentation Platform

Virtual Robotic Experimentation Platform abbreviated V-rep, is developed by
Coppelia Robotics [51] and is commercial robot simulator which offers great
functionalities for multiple programming languages. V-rep provides a simple
user-friendly GUI which allows for click and drag onto the environment. Com-
mon robots are also available in the local default library e.g UR5 manipulator
[49] and NAO-robot[48]. The official language of V-REP is .lua but as mentioned
earlier it allows remote-communication with multiple programming language
such as Python, Matlab, C++/C and etc. This flexibility is useful for robotic
projects where one can simultaneously use other software tools to transfer data
from one platform to another with relative ease.

2.6.2 V-REP Hierarchy

V-REP is hierarchical based which in definition means the structure of an object
in V-rep’s scene is divided into multiple levels in a tree-like form. For example,
given the figure 2.8.

Figure 2.8: Figure displays the hiearchical structure of an V-REP scene. Ob-
serve the UR5-manipulator overall structure of UR5 arm with its joint and
link’s lengths. Principle behind such structure can be comparable with Denavit
Hartenberg convention where we are transformning from one coordinate frame
to another with respect to its previous coordinate frame.
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2.6.3 V-REP versus Gazebo

Choosing a suitable simulator for a particular task is not trivial because each
simulator simulates the environment different from each other [46]. They ad-
dress the issue in terms of complexity, performance, programming language
support and documentation. Lenka Pitonakova [46] did comparison and showed
us V-rep simulator offers most features such as robot-libraries, scene editor,
mesh-manipulation and supports remote connection for multiple programming
langages with an active forum and documentation. In terms of performace it
uses CPU most efficiently by spawning more threads whenever possible, utiliz-
ing whole of CPUs capability for simulation. Gazebo demands more than 50%
CPU compared to V-REP and hence requires more powerful hardware for lar-
ger simulations [40]. Authors from [38] summarizes the key differences where
largest difference lies in sensors and ROS-integration where Gazebo definitely
has an advantage over V-REP.

Another downside with V-REP is performance and efficiency when simulat-
ing multiple robots especially with a large area. Lenka Pitonakova also invest-
igated simulations of varying robots and scene-sizes and the results concluded
that V-REP struggled with real-time simulation and used more memory and
hence was not feasible while Gazebo’s performance was affected only by small
margin and that is despite V-REP’s full utilization of CPU-cores.

2.6.4 Which physics engine is recommended in V-rep?

Before using V-REP simulation a physics engine must be determined because
V-rep offers four physics engine to select from. These are Bullet v2.78, Bullet
v2.83, Open Dynamics Engine(ODE) and Vortex. However Vortex is not free in
the educational version of V-REP and will be excluded from comparison. So the
question still remains which one do to choose from for our task and simulation?
Table 2.1 illustrates that simulating for larger and more robots decreases the
simulation time substantially.

From analyzation from table 2.1, the comparison between the two respective
physics engine is neglible if one only wants to simulate in smaller environment.
Later, in the experiments and results chapter the specified physics engine used
will be given.

2.6.5 Remote API

V-REP offers remote client API with other programming languages, meaing
other API can receive and send commands to V-reps environment using another
language than the default language in V-REP as explained in section 2.6.1. Since
remote client API requires one to transmit data from one platform to another,
there is the issue of ensuring whether the simulation is to be run asynchronous
or synchronous. V-rep provides the option to select which mode, but the entire
environment must be setup beforehand.

There are two ways V-rep handles asynchronous environment. First method
is where we are continously sending commands onto V-rep environment, but
the instructions can instantaneously be performed independent of previous in-
structions. Problem could be when we send sequence-based instructions which
varies over time and the instructions overlap. Here the sequence must be given
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Comparison between Bullet and ODE physics engine

Bullet v2.78+Bullet v2.83 Open Dynamics Engine (ODE)

1 robot + Small scene R ≥ 1
Usage of CPU: 180 %

R ≥ 1.0
Usage of CPU: 190%

5 robot + Small scene R ≥ 0.52
Usage of CPU: 395 %

R ≥ 0.37
Usage of CPU: 395%

10 robot + Small scene R ≥ 0.11
Usage of CPU: 400 %

R ≥ 0.099
Usage of CPU: 400%

50 robot + Small scene Not Feasible Not Feasible

1 robot + Large scene R ≥ 0.96
Usage of CPU: 200 %

R ≥ 0.53
Usage of CPU: 190%

5 robot + Large scene R ≥ 0.18
Usage of CPU: 400 %

R ≥ 0.1
Usage of CPU: 395%

10 robot + Large scene R ≥ 0.052
Usage of CPU: 400 %

R ≥ 0.036
Usage of CPU: 400%

50 robot + Large scene Not Feasible Not Feasible

Table 2.1: Table displays the performance during simulation where if R ≥ 1,
simulation could run faster than real-time. Observing the the amount of robots
one can notice the significant performance reduction by only adding few addi-
tional robots. CPU-usage higher than 100 % includes the core of the CPU. 400
% means the CPU is using the 4-cores in CPU from [46].
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at the correct timestep otherwise the simulation will not simulate the desired
movement for example trajectory. Benefit of method one is if we are sending
the same instruction repeatedly but is not time-dependent. Looking at figure
2.9 we observe the overall process of V-rep’s handling of the following method.

Figure 2.9: The figure shows simple illustration of the simplest asynchronous
method. The green boxes are the instructions or command we are sending to
the environment but as long as instructions are reaching the environment, V-rep
will run the instruction and indicated by the instruction 1 and 2. These two
instructions will overlap and as result V-rep will execute the first

The second method ensures the first instruction is applied and taken into
action before executing the next instruction in the sequence. Even though the
second method seem to have synchronous traits it does not. Underlying is-
sue with the second method is that V-rep will perform the instructions but
processing it and sending it to the environment takes time. The required com-
pletion time for the instruction is not something we can decide and we will call
this unwanted time delay for τ . If we are looking at figure 2.10 one will see
how V-rep sends back the additional completion-time of the execution and how
it affects the next instruction. If we accumulate all of the τ for every timestep
and we will notice considerable decrease in performance during simulation run.

2.6.6 Asynchronous Method I versus Asynchronous Method
II

Which asynchronous method to use, depends on the task of the application. If
we are dealing with time-dependent data it should be method two otherwise
we should select method one as it is faster to process than method two. Since
motion-capture is depenent of timesteps i.e. marker postions, marker velocities,
marker acceleration we want to ensure the motion is performed exactly at the
specified timestamp.
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Figure 2.10: The figure shows how V-rep’s method two handles the data to
be sent over to the simulation environment from remote client. The green
boxes marks the instructions in chronological order. First, the environment
simulates the first instruction it receives and this process is finished before the
next instruction is processed. The time upon completion is indicated by τ and
is the value included on the arrow back from environment to client. Arrow back
is V-rep’s verification of completed instruction.
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Motion Capture Data

3.1 Motion Capture

Motion Capture (moCap) is the process of recording sequential movement of
objects or person.The idea of motion capturing originates from the field of gait
analysis where movement patterns from animals and humans. It is often used to
record only the person’s movement and not by the person’s visual appearance.
Utilizing multiple cameras from multiple angles one can recreate and calculate
the 3D-positions of each marker’s movement over many videoframes. The higher
the sampling-rate between each consecutive frames, the faster it can capture
and accurately estimate the original movement [36]. As such, by using motion-
Capture system it can capture both complex and simple motion with low latency
in real-time.

3.1.1 Optical Marker-based Vicon System

Vicon motion capture system is one of the most commercially succesful optical
system for accurately recording 3D movement[61]. Vicon is marker-based which
means it records the blue markers in the entire motion. Looking at figure 3.1,
notice the markers and the grey triangles are the camera’s field of view. Each
marker is transmitted to computer and then processed to 3D-model.

3.2 Motion Capture Dataset - Hochschule Der
Medien

The Hochschule Der Medien(HDM05) motion capture dataset provides more
than three hours of systemtically and commented motion capture in .C3D,
.ASF and .AMC format and includes up to 70 motion classes performed by
various actors of various body sizes. The number 05 behind the name HDM,
states the year it was recorded. It was also processed and shot at Stuttgart,
Germany at Hochschule Der Medien [10] in 120 FPS. They used Marker-based
Vicon system to capture the different actor’s movement respectively.
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Figure 3.1: Simple illustration of Vicon Motion Capture system displays how
the cameras are contributing of capturing the MoCap-actor and notice the axis
XMoCap, YMoCap, ZMoCap. Every point, p(XMoCap, YMoCap, ZMoCap) is with
reference to MoCap coordinate-frame. The blue area(circle) marks the captured
volume space.

3.2.1 MoCap-Markers

The dataset provided was captured by non-professional actors of various sizes.
Every marker represents particular part of the body and could be interpreted as
joints on the human-body. The markers are recorded and estimated in 3D-space
using triangulation1. The more markers and cameras a moCap optical system
has, the more accurate can it recreate the original motion in computer processing
software because it has more availability in spatio-temporal data [4]. However,
by using more markers it increases the probability of getting missing markers
due to multiple reasons [21] known as marker-occlusion. The fault could lie in
the equipment such as hardware equipment or software applications not able to
properly track the markers or the markers are overlapping each other in way
the camera believes it is the same marker. Section 3.2.3 will discuss in further
details how to deal with this problem and why it is relevant for HDM05-dataset.

1Triangulation is the process of determining the location of a point by forming triangles
to the pont from known points.
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3.2.2 Feature Extraction

The motion capture data contains many features but in order to extract fea-
tures, a framework called MoCap Toolbox is used, developed by Toiviainen and
Burger in Matlab[57]. The following toolbox contains many functions such as
extracting the Cartesian Coordinates, marker names, joint-angles between the
markers and many more. To view the entire list of features, have a look at at
well-written documentation made by the authors[58]. However after 2015, the
toolbox has remained outdated and has not received any new updates, bug-
fixing or functions. Nymoen’s extended version of the original author’s MoCap
toolbox improved it further by implementing new features such as animation,
visualisation, plotting, statistical analysis and more [41].

3.2.3 Video Frames and Missing Markers

Each motion during the recording session is captured in video frames and the
cameras from HDM05 are captured120 fps. That means for each second, 120
frames are stored and the duration of seconds can vary depending on how long
the actor performs certain motion multiple times.

Some common known issue with MoCap data are missing markers during the
recording session as briefly mentioned in 3.2.1. If one actor has 44 markers while
another actor has 41 marker it creates a problem because the dataset-format
should be equal for every actor in the dataset. There are many workarounds
to this problem. One is by removing the actors with the different markers or
two is by equalizing the markers to default size on from MoCap-actor or third
perform linear interpolation to estimate where the missing marker could have
been in the sequence at the given timestep. The last one is removing the frames
at the given timestep at the time of marker occlusion occured.

3.2.4 Prepocessing Motion-Capture Dataset

Before using the data acquired from motion-capture dataset the MoCap data
must be processed using the MoCap Toolbox. The advantage of MoCap Toolbox
is its handling of multiple filetypes as explained in section 3.2. Every MoCap-
filetype has their own structure and format and MoCap-Toolbox handles such
filetypes effectively and in an organized manner.

3.2.5 Marker Position

The MoCap-markers are in an environment which has a local coordinate frame.
Every marker’s are Cartesian coordinates with reference to the local coordinates
with the unit scale mm. As such the position of every markers can be written
as,

p(x, y, z) = [p1(X1, Y1, Z1), p2(X2, Y2, Z2), . . . , pn(Xn, Yn, Zn)] (3.1)

where n = 1, 2, . . . , nmarkers and p1(X1, Y1, Z1) is 3×1 vector and the length
of p(x, y, z) is 3 ∗ nmarkers
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3.2.6 Marker Velocity

To calculate the velocity of the markers one can estimate time-derivative of
MoCap-data using the following method. By using the difference between two
successive frames and butterworth smoothing filter [12] one can estimate the
velocity of every markers. Velocity measures the displacement within a time-
interval.

ṗ(x, y, z) = [ṗ1(X1, Y1, Z1), ṗ2(X2, Y2, Z2), . . . , ṗn(Xn, Yn, Zn)] (3.2)

where n = 1, 2, . . . , nmarkers and ṗ(x, y, z) is time-derivative of p(x, y, z) and
ṗ1(X1, Y1, Z1) is 3 × 1 vector and the length of ṗ(x, y, z) is 3 ∗ nmarkers. The
following function in Matlab Toolbox that performs this is

Ve loc i ty = mcarrayFunc ( MoCap data , ’ mctimeder ’ )

3.2.7 Marker Acceleration

Acceleration is the rate of change of the velocity with respect to time. To find
the acceleration of a given marker, one can perform time-derivative of velocity of
the marker using Savitzky-Golay Filter [55]. This filter is used to smooth data
without distorting the signal by using convolution. During the convolution pro-
cess it tries fitting sub-sets of adjacent datapoint with a low-degree polynomial
using linear least squares(LLS)[30].

p̈(x, y, z) = [p̈1(X1, Y1, Z1), p̈2(X2, Y2, Z2), . . . , p̈n(Xn, Yn, Zn)] (3.3)

where n = 1, 2, . . . , nmarkers and p̈(x, y, z) is time-derivative of ṗ(x, y, z) and
p̈1(X1, Y1, Z1) is 3 × 1 vector and the length of p̈(x, y, z) is 3 ∗ nmarkers. As
similar in section 3.2 the function is almost identical, the main difference is the
added parameter ′2′ which is the second time-derivative of velocity.

Acce l e r a t i on = mcarrayFunc ( MoCap data , ’ mctimeder ’ , 2 )

3.2.8 Transformation of moCap-markers - Marker Reduc-
tion

The markers received from the HDM05 dataset are raw and unprocessed. This
may include multiple moCap-markers not corresponding exactly to human ana-
tomy as the moCap skeleton is different. Figure 3.3 displays all of the markers
and the ideal goal is to reduce the markers to represent actual joints or skeleton
of the human body.

In order to reduce the amount of markers, first grouptogether relevant mark-
ers into one common marker and let that marker represent the designated joint.
Now that the markers are grouped together, a method is required to find the
new coordinates to represent it. A common method is to take the Cartesian
coordinates for every markers and sum them up together in X, Y and Z axis.
At last step the average of the Cartesian coordinates in X,Y and Z-axis is
calculated for the grouped markers. Figure 3.2 shows the illustration of the
marker-reduction using four markers.
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Figure 3.2: Figure displays four blue markers M1, M2, M3 and M4 are trans-
formed into new yellow marker, M̂1, where it represents the four blue markers
to be represented as joint.

Given marker positions as described in section 3.2.5 and suppose one are
given set of grouped markers and calculating the Cartesian position for M̂1 one
get the general formulation of calculating the new Cartesian point.X̂Ŷ

Ẑ

 =


∑n

i=1Xi

n∑n
i=1 Yi

n∑n
i=1 Zi

n

 (3.4)

where n = 1, 2, ..., nmarkers and below one can take example from figure 3.2
and find its new coordinates and as one may notice.M̂1x

M̂1y

M̂1z

 =

M1x+M2x+M3x+M4x

4
M1y+M2y+M3y+M4y

4
M1z+M2z+M3z+M4z

4

 (3.5)

From equation 3.5 yields the new marker M̂i. Suppose there are many sets
of grouped markers and one wants to find the new coordinates, it can simply
be done using the same formula for all the grouped sets and as results from
transformation we get reduced markers and the markers forms reduced version
of MoCap-skeleton

3.2.9 44 MoCap-Markers

The 44-markers is the raw moCap-skeleton from HDM05-dataset and figure3.3
visualizes all of 44-markers. Notice how compact the markers are and how the
skeleton is asymmetrical especially at the torso region.

3.2.10 7, 20, 28 MoCap-Markers

From the 44-markers moCap-markers, marker reduction is performed on it using
the method from section 3.2.8 into three groups. They are 7, 20 and 28 markers
and figures 3.4, 3.5 and 3.6 shows the newly generated moCap-skeleton that is
symmetrical and body layout representing the human skeleton.
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Figure 3.3: Motion Capture skeleton with 44 Markers

Figure 3.4: Motion Capture skeleton with 7 Markers
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Figure 3.5: Motion Capture skeleton with 20 Markers

Figure 3.6: Motion Capture skeleton with 28 Markers
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3.2.11 Quantity of Motion

Quantity of Motion can be summarized as summing up different MoCap-data
features such as position, marker positions, marker velocity and etc. The idea is
to analyze the overall movement of the motion and decide whether the inform-
ation acquired could prove useful. For example, given a walking motion from
MoCap and summing up the velocity at every frame t. A moment is taken to
observe if there is a pattern in the motion in which may be interesting to ex-
tract from or could prove useful for getting an insight of different motions. For
example, walking motion might have repetitive peaks at frame t and t + tnext
where tnext is future timestep.

Summing up different elements of MoCap-data is useful especially if one has
multiple markers in which one want to observe the overall periodic response of
a motion. Visualizing all markers into one plot might difficult to interpret and
cause confusion, especially if there are more than 10 different graphs in one plot.
In general the features from section 3.2.5, 3.2.6 and 3.2.7 are commonly known,
so it is simple to sum up each of them.

Featuresum =

n∑
m=1

Pm(x, y, z) (3.6)

where Featuresum is 3×1 vector, n = 1, 2, . . . , nmarkers and each component
in Featuresum is the sum in X,Y ,Z-axes

Absolutesum =

n∑
m=1

|Pm(x, y, z)|

=

n∑
m=1

√√√√ 3∑
i=1

(Pm(i)2)

(3.7)

where Absolutesum is scalar, n = 1, 2, . . . , nmarkers, m is marker-index from
the MoCap-data and Pm(i) is value in the X,Y ,Z-axes.

3.2.12 Kinetic Energy

Human body assert forces and energy when performing a movement and using
the estimated velocity for every markers and the mass of the human MoCap
one can determine the kinetic energy of selected body parts or the entire body.
Using the basic equation of kinetic energy which is formulated, yields

K =
1

2
mv2 +

1

2
Iω2 (3.8)

where K is measured in Joule, m is mass, v is velocity, I is inertia and ω is
angular velocity.

3.2.13 Mass and Velocity

Problem with HDM05 documentation is its lack specifying the actor’s height
and weight. As a consequence it becomes problematic when one wants to meas-
ure the kinetic energy using the equation 3.8 which measures the general kinetic
energy. Since the marker’s velocity is known, the only remaining parameter
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needed is the the weight of the actor but it is not specified in the documenta-
tion. Using the average weight of a male in Germany, one can then calculate
the kinetic energy for every markers. A german male weighs on average 88.8
Kilograms (kg) [5].

3.2.14 Weight of Body Parts

The general weight of the human body is not uniformly-distributed as the weight
is distributed to differently arms, legs, head and more. Rudolfs et al. [9] and
[62] did thorough research and managed to measure the weight percentage of a
human body of different body parts. The thesis measures the kinetic energy with
the weight-percentage and based on the percentage from these two references
throughout the whole thesis.

3.2.15 Angles Between Two Markers

Now, calculating the angles between the markers requires two markers which
we can perform as follows. Given two markers M1 and M2 ...[

M1

M2

]
=

[
X1 Y1 Z1

X2 Y2 Z2

]
(3.9)

Then we find the difference in length between each of the respective com-
ponents, Xdiff

Ydiff
Zdiff

 =

X2 −X1

Y2 − Y1
Z2 − Z1

 (3.10)

θXθY
θZ

 =


arctan(

Xdiff

Ydiff
2 + Zdiff

2 + ε
)

arctan(
Ydiff

Xdiff
2 + Zdiff

2 + ε
)

arctan(
Zdiff

Ydiff
2 +Xdiff

2 + ε
)

 (3.11)

where ε = 2.2204e-16 which is approximately zero and the added element ε
prevents the function from returning an undefined value from dividing on zero
on the arctan-function. The MoCap-Toolbox has the feature implemented and
can be called using the following function below

jo int tmp = mcsegmangle (d , marker 1 , marker 2 ) ;
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Method and
Implementation

4.1 Proposed Method

A robot may have multiple degrees of freedom(DOF) and trying to transfer
the motion-capture joint angles directly onto the robot may yield poor results
because joint angles are directly affected by height, arm-length, and foot-length
of the actor. When one human acts, many of the joints are contributing to
perform that task. For example, when a human grabs an object, he can grab it
in many different ways and that means joint angles can also be different. This
idea could also be extracted onto the robot configuration. This can be solved by
solving a set of equations as in (4.1) where the θ are the moCap-angles and the
w is the weights. The length of n is variable and can be any arbitrary length
dependent on the number of moCap-angles selected

θ̂1 = w11θ1 + w12θ2 + · · ·+ w1nθn

θ̂2 = w21θ1 + w22θ2 + · · ·+ w2nθn

...

θ̂m = wm1θ1 + wm2θ2 + · · ·+ wmnθn

(4.1)

where m represents robot’s DOF and n the amount of joints for moCap-angles.
The purpose of the weights are uniquely defined for one actor, such that by

only solving W in (4.2) we can then apply any arbitrary motion capture angles
from one person and the robot manipulator will then attempt to recreate the
same motion based on the angles from the original human actor. The newly
solved θ-angles are the mapping from human to robotic configurations. Thus,
by solving and optimizing the weight matrix we do not have to scale the joint
angles for any other motion capture. the weight-matrix will implicitly describe
the overall relation between human actor and robotic manipulator.
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W =


w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

. . .
...

wm1 wm2 . . . wmn

 (4.2)

where W ∈ Rm×n and m-column represents robot’s DOF and n-row repres-
ents moCap-angles.

Simultanously, we can form the motion-capture angles, but in vector form
such as

θmocap =
[
θmocap1 θmocap2 . . . θmocapn

]
(4.3)

and by performing matrix multiplication θ̂ = WθTmocap the results are equal
to (4.1) which we are intending to solve and optimize.

θ̂ = WθT =


w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

. . .
...

wm1 wm2 . . . wmn

 [θmocap1 θmocap2 . . . θmocapn
]T
(4.4)

4.1.1 Weights Initialization

Initializing the weights for the weight-matrix in 4.2 can be done in multiple
ways and choosing which method that suits best for our problem is not trivial.
The most important step is to not assign all of the weight-components in W
to equal value. The reason is during recombination operation in GA when the
next offspring is being created, it will yield the same genes.

First initialize every element from 4.2 and then assign random number ran-
ging from [wlower, wupper] where wlower is a negative floating number and wupper
is a positive floating number.

4.1.2 MoCap Coordinate frame to Robotic Coordinate
frame

3D-points in the robotic coordinate frame is not equavalent to the moCap co-
ordinate frame because every 3D-point in the robotic coordinate frame is with
respect to its base frame. Hence, before working on the objective function, the
markers must be transformed to the right coordinate frame to avoid scaling
issues. Figure 4.1 displays the two respective coordinate frames.

In figure 4.2 transforms the moCap-points from motion-capture to the ro-
botic coordinate frame. The green arrow displays the direction in which the
transformation is performed from. There are multiple ways to transform from
one coordinate frame to another, but here the root from the motion-capture is
set to be the base of the robot coordinate frame. The root-marker from the
moCap can be any marker points can be determined and selected at will.
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Figure 4.1: Two coordinates frames

Figure 4.2: Transforming the points from human coordinate frame to robot
coordinate frame

Figure 4.3: Robot manipulator(left) is in robotic space and human-
markers(right) can be considered the moCap space.
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4.1.3 Transforming from moCap-Coordinate frame to Ro-
botic frame

Transforming from moCap-space to robotic space with respect to the base-
frame of the robot manipulator can be done using homogenous transformation
for every marker. The base-frame can be seen in fig 4.3 with frame o0x0y0z0,
meaning the origin is O(0, 0, 0). To transform from the moCap-frame to robotic
coordinate frame requires at least two known 3D-point in the human coordinate.
Reason for that is one of the two 3D-points become the root-marker and the
other 3D-point position is with respect to root-marker. The root-marker is
translated by its previous position in the 3D-space and becomes a point origin
O(0, 0, 0). Since the root-marker and base-frame have equal origin O(0, 0, 0),
this can be seen as the common-point for both.

As an example, extracting a small portion of human moCap-actor where
an arm is chosen, this can be viewed on figure 4.3. From the figure the arm
is represented by multiple moCap-markers and their position known from the
moCap-dataset. Since there are more than two 3D-point, a root-marker is pos-
sible to select. Choosing the shoulder-marker as root-marker, then all of the
new markers will be transformed with respect to the root-marker’s origin. By
subtracting the root-marker position for every marker on the human arm can
be considered as translation with respect to root-marker.

TBmarker =

[
R troot
0 1

] [
Pmarker

1

]
(4.5)

The homogenous transform can be seen in equation 4.5 where R ∈ R3×3,
is the rotation matrix, t ∈ R3×1, is the old position of the root-marker and
Pmarker ∈ R3×3, is the moCap-marker position in 3D. The equation 4.5 can be
written as equation 4.6 with the shape of vectors and matrix.

TBmarker =

[
R troot
0 1

] [
Pmarker

1

]
=


1 0 0 Pxroot

0 1 0 Pyroot
0 0 1 Pzroot
0 0 0 1



Pmarkerx
Pmarkery
Pmarkerz

1



=


Pxmarker

+ Pxroot

Pymarker
+ Pyroot

Pzmarker
+ Pzroot

1


(4.6)

Visualization of the process is displayed on figure 4.4, the blue points rep-
resents the original moCap-markers and the red points are the new transformed
points. The green line is the distance or the total translation between the old
and new markers. To differeniate them, the old markers are pn and the new
markers are p̂n.

4.2 Fitness Function

4.2.1 Euclidean Distance

Euclidean distance, also known as L2 norm, is the length between two points
p and q connected by line segment. The distance is given by the Pythagorean
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Figure 4.4: Every marker-positions is transformed into a new rescaled coordinate
frame with origin p(0, 0, 0)

formula.

d(p, q) = d(q, p) =
√

(q1 − p1)2 + (q2 − p2)2 + . . .+ (qn − pn)2

=

√√√√ n∑
i=1

(qi − pi)2
(4.7)

where p ∈ Rn, q ∈ Rn and n = 1, 2, . . ., dimensional space.

4.2.2 Every Joints’ Distance Minimization (EJDM)

A distance matrix 4.8 is computed where each component inside the distance
matrix represents the distance between the joint and the moCap-marker in
3D. This approach is inspired by Liarokapis et al. [29] where the distance is
minimized between human arm and robotic manipulator, but the difference is
they do not take into account multiple moCap-markers and only taking three
points.

As mentioned, the distance matrix Distance ∈ Rm×n is created with equi-
valant shape as the weight matrix in equation 4.2 and can seen in equation
4.8.

Distance =


d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...
dm1 dm2 · · · dmn

 (4.8)
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(a) (b)

Figure 4.5: figure 5.10a shows the translation for every marker with respect to
the root-marker indicated by the purple marker q0. Figure 4.5b on the right
shows the translation of robotic manipulator’s joint marked by red circles, pi,
where the base frame is placed on common marker indicated by the purple
marker q0. The green arrows on both figures are the translation-vector(s). The
blue circles, qi, are moCap-markers.

n moCap-marker

m Degrees-of-Freedom


d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...
dm1 dm2 · · · dmn


In order to get better understanding of distance matrix purpose, a few selec-

ted distance components will be selected and described further. For example,
given d11, d12 and dm2, the first term d11 is the distance between joint 1 and
moCap-marker 1 while the second term d12 is the distance from joint 1 to
moCap-marker 2. The last component dm2 is the distance from the joint m in
the robotic manipulator to moCap-marker 2. Every distance component, dmn
is calculated using the equation 4.9 and for each distance component in the
distance matrix, the goal is to minimize the distance between every joint and
moCap-marker the joint angles from equation 4.1. Figure 4.6 gives an illustra-
tion of the idea.

dm,n(p, q) =
√
p2m − q2n)

=
√

(pm,x − qn,x)2 + (pm,y − qn,y)2 + (pm,z − qn,z)2
(4.9)

where pm ∈ R3 is the manipulator joint position for joint m and qn ∈ R3

is moCap-position for moCap-marker n. pm is acquired from the Denavit-
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Link zi−1 θi−1 xi αi

1 z0 θ0 x1 α1

...
...

...
...

...
n zn−1 θn−1 xn αn

Table 4.1: DH-table with the four parameters

Hartenberg transformation matrix, T 0
m or more specific from forward-kinematic

for the robotic manipulator. From the DH-table 4.1, the transformation matrices
are found by just inserting the DH-parameters in 2.8 in background chapter for
modeling a robot. qn is extracted from the moCap-dataset.

Since the robot’s position is dependent by the joint angles in 4.1, means the
weights must be optimized to in order achieve lowest possible distance between
moCap marker and robotic joint. The distance between pm and qn is calculated
using Euclidean distance.

(a) (b)

Figure 4.6: 4.6a describes the distance from joint 2 (red) on the manipulator
to moCap-markers (blue) indicated by the orange arrows. di, j is the distance
component from eq. 4.9. To the right fig 4.6b shows the distance from the
end-effector P3 to moCap-markers(blue) indicated by the pink arrows. The
purple marker is the root-marker for moCap and also the base-frame for the
robotic manipulator and considered common point for both human and robot
manipulator.

For the linear velocity, a velocity matrix. V elocity ∈ Rm×n is created. It
may be desirable to let the robotic manipulator move with similar motion speed
as the moCap-actor. The same approach from distance matrix can be used
here because when a human arm moves, it does not move one joint at the time,
but rather multiple ones simultaneously each joint with their own velocity. For

Page 47



Method and Implementation Chapter IV

example, consider a motion of throwing a ball with human arm as far as possible.
The human arm is moving multiple joints at once, the shoulder, the elbow, the
hand in order to exert enough force through speed. By moving one joint at the
time will not yield the same result as the force exterted is not sufficient.

V elocity =


v11 v12 · · · v1n
v21 v22 · · · v2n
...

...
. . .

...
vm1 vm2 · · · vmn

 (4.10)

The velocity for the joints can be achieved using the same weight-matrix
from the moCap-angles and distance matrix. Thus, the velocity for every joint
m in the robotic manipulator has a velocity ˙̂qm calculated from equation 4.11.
Remaining step is to minimize the velocity difference between the robotic ma-
nipulator joint, ˙̂qm and moCap-markers, q̇n. For each velocity component, vmn,
in equation 4.10 the distance is measured using equation 4.12.

˙̂q = Wq̇T =


w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

. . .
...

wm1 wm2 . . . wmn

 [q̇marker1 q̇marker2 . . . q̇markern
]T

(4.11)

vm,n( ˙̂q, q̇) =

√
( ˙̂q2m − q̇2n)

=

√
( ˙̂qm,x − q̇n,x)2 + ( ˙̂qm,y − q̇n,y)2 + ( ˙̂qm,z − q̇n,z)2

(4.12)

where ˙̂qm ∈ R3 is the manipulator joint’s velocity for joint m and q̇n ∈ R3

is moCap-velocity for marker n. Now, in order to determine the fitness of
an individual a real-valued scalar is needed. Given the distance-matrix and
velocity-matrix, one can sum up every components for both of them. As such,
the fitness function becomes,

f(q, θmocap, q̇mocap) = Distance+ V elocity =

m∑
i=1

n∑
j=1

dij +

m∑
i=1

n∑
j=1

vij (4.13)

Given our fitness function we are minimizing the distance between the joints
and the error between the velocity. In order to get scalar we just sum up the
elements in the matrices and the lower the value it is, the better it is. Therefore
it would not make sense to maximize our fitness function but minimize. Hence
our GA will be minimizing the function as,

fitness = max f(q, θmocap, q̇mocap) (4.14)

4.2.3 Every Joints’ Distance Minimization With Joint Lim-
its (EJDM-JL)

Here, additional limitations to the robotic manipulator is added, restricting
its overall movement in workspace with the intention of letting the manipulator
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move with same restrictions as humans. However, the fitness is otherwise similar
to the previous. Using the same approach from [53], where for every joints in the
robotic manipulator, a joint-angle is assigned joint-limitation with lower bound
θlower and upper bound θupper. These two values θlower, θupper are variables
and can be changed to any arbitrary angles. Following up, means there has to
be 2 × m additional values to be added and table 4.2 gives an easy overview
consisting the joint limits. m is the total amount of joints on the manipulator.

Joint i θlower θupper
1 θ1,α θ1,β
2 θ2,α θ2,β
...

...
...

n θn,α θn,β

Table 4.2: Table displaying the joint limits for one particular joint link i. α
is joint minimum angle and β is joint maximum angle is measured in either
degrees or radians.

From equations 4.1 the joint angles for the robot manipulator are received,
and depending on the value must reduce or increase the joint angle if it exceeds
the limits according to table 4.2. One way of reducing is to multiply the joint
angle with number less than one, i.e γ < 1. As such, the new joint angle θn is
determined by equation 4.15. For every generation in GA, the joint angle θ̂ is
decreased or increased by γ. If the joint angle is within the bounds, then return
the joint angle as it is.

θ̂n =


θ̂nγ, if θ̂n ≥ θn,β .
θ̂nγ, if θ̂n < θn,α.

θ̂n, otherwise.

(4.15)

With the new joint angles the same approach applies as in previous section
4.2.2 where two matrices called distance from equation 4.9, and velocity from
equation 4.12 are created.

f(q, θmocap, q̇mocap) =

m∑
i=1

n∑
j=1

dij +

m∑
i=1

n∑
j=1

vij (4.16)

Similar to previous section 4.2.2 the fitness function is maximized and fitness
becomes,

fitness = max f(q, θmocap, q̇mocap) (4.17)

4.2.4 Body Segment Distance Minimization (BCDM)

Here, the mapping function is more similar to one-to-one meaning, looking at
one particular bodysegment of moCap-actor which can be interpreted as taking
one body-part of moCap-actor. In this function the intended goal is to let the
robotic manipulator follow trajectory with different amount of moCap-markers.
First step is taking all of the corresponding moCap-actor’s body limb which
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could either be foot, arm, leg and etc.. and take those moCap-markers. Then
use the same approach as in section 4.2.2 with equations 4.1, 4.8 and 4.10.

f(q, θmocap, q̇mocap) = Distance+ V elocity =

m∑
i=1

n∑
j=1

dij +

m∑
i=1

n∑
j=1

vij (4.18)

where dij and vij is derived from equations 4.9 and 4.12. Here we will explore
whether more or less moCap-markers contribute to the overall imitation.

(a) (b)

Figure 4.7: 4.7a shows the distance of the points with respect to the Common
point and 4.7b shows Euclidean distance between the points with respect to the
Common point.

4.2.5 Difference between BCDM and EJDM(-JL)

The main difference between BCDM and EJDM(-JL) is for the first one the
mapping-method attempts to let the robotic manipulator perform an exact mo-
tion(Following trajectory) from moCap-motion with different amount of moCap-
markers while the latter is attempting to perform creative movement.

What defines when the motion is ”creative”1 is vague and be interpreted.
There are two ways to analyze the motion which are quantitavely and qualitat-
ively. The first one is observing the data for instance the joint-angles and joint
velocity to notice if there are rhythmic pattern that is mapped into the lower
DOF robotic manipulator.

1Creative is defined as relating to or involving the use of the imagination or original ideas
to create something
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4.3 Implementation

With moCap-data, V-REP simulator and GA with mapping method, it is time
to combine all into one complete module. Figure 4.8 displays the simple system
overview of the setup and below will briefly explain each and every step in the
figure.

Figure 4.8: System Overview

4.3.1 Preprocessing moCap-data

This is the first step(orange) for loading the motion-capture file .c3d containing
the movement, structure and position of every markers into matlab. It is also
the step for processing the moCap-data and extracting it with the aid of moCap-
toolbox from matlab2 and create two files, one with the extracted data and the
second one the video of the motion in .mp4.

2MatLab is multi-paradigm numerical computing programming language and mainly used
for numerical computing.
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4.3.2 Python API

The moCap-data in .mat-format arrives in Python API. Python has libraries
and modules required to read the mentioned filetype. With the python API 3

there are perform two seperate tasks in this step but both of these tasks (4.3.3,
4.3.4) can be done independently and seperately offline.

4.3.3 Mapping Transformation

During this step and given the moCap-data the next action is to perform the
mapping transformation required for both the moCap-markers and robotic ma-
nipulator to have common point which recalls to section 4.1.3. After transform-
ing moCap-data appropriately, every data is in the right format and can be used
on GA.

4.3.4 Video Preprocessing

The moCap-video .mp4 is loaded and processed to be divided into the frames.
When it is time to perform the simulation, the frames are shown with the motion
with its corresponding moCap-data at the given timestep t. The movement from
the moCap-video can be visualized simultaneously with the motion of robotic
manipulator i.e. UR5 in V-REP as the settings for V-REP and parameters have
been set for synchronous mode.

4.3.5 Genetic Algorithm - GA

Now arrives the process of executing the algorithm for optimization for the
problem(green). The choice for GA is using DEAP [15] genetic algorithm library
and generate a population of inidividuals whose genomes are string of weights
with length L = markers×DOF , and when during evaluation, the genome is
reshaped the string into weight-matrix with shape as in equation 4.2. Given the
weight-matrix, the applied fitness functions for the mapping-transformation is
passed along with processed moCap-data from section 4.3.3. But, the important
step is that the genome will always be a string for recombination, mutation and
parent selection.

4.3.6 V-Rep

This is the last step in from the system overview(yellow) and here the applied
the proposed solution from the GA. V-rep has built-in UR5-manipulator and can
simply be extracted from the database and just ensure the robotic manipulator
is communicating through Python Remote-API. During simulation a side-by-
side frame from moCap-video and robotic movement and observe the mapped-
transformation of the robot compared to the moCap-video. With the aid of
V-rep it is also able to get feedback from the robotic manipulator for example
joint-angles, joint-velocity, position of the end-effector and more. Figure 4.9
shows the simulation.

3Python is high-level, general-purpose programming language created by Guido van Ros-
sum in 1991
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Figure 4.9: An UR5-manipulator is added to the environment and during sim-
ulation, packets are transmitted to the V-REP simulator containing the joint
angles of the moCap-motion. A side-by-side view can be seen where the small
left window is the moCap-motion and the V-REP is in the background. Due to
asynchronous method, it manages to almost reach real-time simulation of R =
0.97, meaning the simulator is simulating close to real-time.

Page 53



Chapter 5

Experiments and Results

5.1 Experiments

This chapter explains two main experiments, where in the first experiment we
apply full-body moCap-motion onto the robot manipulator, more specifically
UR5. The second experiment extracts small portion of the full-body moCap-
motion and attempts to recreate the same trajectory for that body-part. Here,
the suggested method of mapping us used and compared with euclidean distance
and other related works in the field. All results and parameters will be presented
in tables and graphs followed by analysis. At the end of this chapter will include
brief summary of results and what was observed with our experiments.

5.1.1 UR5 DH-parameters

The proposed method is applied on UR5-manipulator and we can assume identical
DH-table with the same DH-parameters as displayed on table 5.1 on every ex-
periments.

Table 5.1: DH parameters and their values for UR5-manipulator

Link di(m) θi ai(m) αi

1 d1 θ∗1 0 0
2 0 θ∗2 a2 α2

3 0 θ∗3 a3 0
4 d4 θ∗4 0 0
5 d5 θ∗5 0 α5

6 d6 θ∗6 0 α6

(a) DH-parameters overview

Link di(m) θi ai(m) αi

1 0.089 θ∗1 0 0
2 0 θ∗2 0.425 π/2
3 0 θ∗3 0.39225 0
4 0.10915 θ∗4 0 0
5 0.09456 θ∗5 0 π/2
6 0.0823 θ∗6 0 −π/2

(b) DH-parameters values

5.1.2 UR5-Joints Limits and Controller Values

The manufacturer of UR5-manipulator is also providing us the joint restrictions
or limitation [27, p. 48] for its maximum velocity, maximum acceleration and
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maximum torque of the joints. Here, we are interested in the physical properties
of UR5 manipulator in order to simulate as accurately as possible.

V-rep has built-in PID controller inside most of the robotic joints and sim-
ultaneously we can select any values for different mechanical properties such as
maximum allowed velocity for the joint, its torque and etc. Throughout every
experiments we will use only PD components making it Proportional-Derivative
controller.

Joint Properties Value
qmax 2πrad
q̇max 3.2πrad

q̈max 15
rad

s2
τ 150 Nm

Proportional(P ) 250
Integral (I) 0

Derivative (D) 150

(a) Limitations for the physical
joints of UR5

Joint i θlower θupper
1 −45 45
2 −75 75
3 −45 45
4 −75 75
5 −15 15
6 −35 35

(b) Joint limits for joint link i
for EJDM-JL

Figure 5.1: Overview of UR5-Joint properties

5.1.3 GA-parameters and V-REP physics engine

For each and every experiment, a table will be displaying the parameters used
and which fitness function we used. First, a brief explanation of every element
from the table in order to avoid any potential misinterpretations. Starting from
the top one has the generation count that shows long the GA is running the
evolution. The next one is population size and the parent selection. The tour-
nament size is written in parenthesis and specifiy the numbers of individuals
competing towards each other. Following up one have crossover function fol-
lowed by mutation operator. The percentage beside the Crossover probability
determines the odds of performing the actual crossover between two individu-
als, while the percentage beside the mutation probability determine the odds of
performing a random mutation after crossover. In the events of forgetfulness of
how each and every one of them function, recall back to the chapter 2 in section
2.4.

In the same table include simulator settings such as its dynamics engine or
in this instance, physics engine. First one is physics engine from V-REP. The
next setting is how accurately the simulator should estimate. Physics time-step
is how often it updates its values during simulation.

5.2 Experiment - Full Body

5.2.1 Testing Dancing-Motion with 7, 20 and 28 markers
with EJDM and EJDM-JL

In this experiment the dancing-motion is applied for the robotic manipulator
with 7, 20 and 28 moCap-markers and observe how the fitness EJDM and
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EJDM-JL affect the overall general movement. Table 5.2 visualizes the para-
meters set for tests. For the joint limits, there is a table 5.1b displaying the
desired joint angle to be within the bounded regions for the EJDM-JL function.
The following dancing motion consist of 7324 frames and in the motion sequence
it has periods of fast and slow moving movements.

GA Parameters Parameter value
GA Total Runs 3

Generation 50
Population 300

Parent Selection Tournament Selection (size=15)
Crossover Two-Point Crossover, Crossover Probability (50%)
Mutation Gaussian Mutation N (0, 1), Mut. Probability (5%)

WInit(wmin, wmax) -2, 2
Fitness Function EDJM, EDJM-JL
W7−markers W ∈6×7, L = 42
W20−markers W ∈6×20, L = 120
W28−markers W ∈6×28, L = 168

V-REP parameters Parameter
Physics engine Bullet 2.83

Physics settings Very Accurate
Physics time-step dt=10

Table 5.2: Genetic parameters for GA and V-REP parameters for 7, 20 and
28-markers

Motion: Dance Motion Description
1 4 basic steps waltz
2 4 basic steps waltz with turning
3 wait
4 4 basic steps cha cha
5 4 promenades cha cha
6 4 cha cha turns

Table 5.3: Description of Dancing-motion

5.2.2 Results and analysis From Dancing-motion with 7,20
and 28-markers

On average the tests was performed on three runs and then averaging all three in
order to get reliable average measurement from our test. The best total distance
was 2856.38 with joint limits and 2860.14 without joint-limits. However, by
comparing the average, there seems to be no difference between the two. The
results can be seen in table 5.3 and figure 5.2 and all the runs was iterated
over 50 generations and the total distance is reduced and show hints of going
beyond it, especially if one observes closely at 5.2. Looking at 7-markers, it
reached convergence rapidly after few generations, while for 20, and 28-markers
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Figure 5.2: Average performance of three runs with GA using the 7,20, and 28
moCap markers using dancing-motion.

the total distance can be potentially be even lower. A boxplot 5.7 shows the
comparison between the three different groups, with and without joint limit.
The results show no clear difference between the groups.

During simulation the UR5 acts rapidly and moves in all directions, but
through qualitative measurement finds there is evident of motion repeating itself
in short intervals. Figures 5.4 ,5.5 and 5.6 displays the response of the joint
angles from the UR5-manipulator.

Type Markers Avg min Avg max Avg mean Avg std
Dancing, EDJM-JL 28 2856.38 2970.20 2891.08 ± 5.02

Dancing, EDJM 28 2860.14 2968.15 2891.52 ± 5.04
Dancing, EDJM-JL 20 5256.48 5426.55 5275.73 ± 3.37

Dancing, EDJM 20 5247.73 5405.49 5277.28 ± 3.10
Dancing, EDJM-JL 7 3362.63 3412.04 3351.65 ± 1.26

Dancing, EDJM 7 3362.63 3422.49 3365.55 ± 1.16

Figure 5.3: Showing the average results of the three runs in dancing and the
fitness value.
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(a) (b)

Figure 5.4: Two plots displaying the joint angle values for Joint 1 and Joint 2
from UR5-robot with the Dancing-motion

(a) (b)

Figure 5.5: Two plots displaying the joint angle values for Joint 3 and Joint 4
from UR5-robot with the Dancing-motion
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(a) (b)

Figure 5.6: Two plots displaying the joint angle values for Joint 5 and Joint 6
from UR5-robot with the Dancing-motion

Figure 5.7: Boxplot showing the results from dancing with the various amount
of markers. The median is the orange line and while the outliers are displayed
with red squares.
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5.2.3 Testing Walking-motion with 7, 20 and 28 markers
using EJDM and EJDM-JL

Given the walking motion in 5.4 it consist of multiple steps and has in total 6995
frames. This motion is most simple where the movements are slow with some
duration of it being fast, but not much faster than in workout or dance-motion.
The same parameters for GA is the same from 5.2

Motion: Walk Motion Description
1 walk 5 steps
2 turn around (right)
3 walk 5 steps (ducked)
4 walk 5 steps (backwards)
5 walk 5 steps (sideways, to the right, feet cross over)
6 3 double steps (sideways, to the left, no cross over)
7 3 double steps (sideways, to the right, cross over)
8 walk 5 steps (happily)
9 turn around (left)
10 walk 5 steps (sadly)
11 turn around (right)
12 walk 5 steps (creep)
13 turn around
14 walk 5 steps (shuffle)

Table 5.4: Overview of walking-motion

5.2.4 Results and analysis from Walking-motion with 7,20
and 28-markers

Same as in previous test, the GA was performed on three runs and then aver-
aging of all the three in order to get an average measurement from this tests.
The best total distance yielded was 3310.05 and without the joint limits it was
3132.72. The results from GA can be seen in table 5.9 and fig 5.8 and the total
distance is reduced, but yields lower total distance than previous test. Looking
again at 7-markers, the convergence reached local optima very quick compared
to 20 and 28-markers. A boxplot 5.13 shows the comparison between the three
different groups, with and without joint limit in more systematic way.

Running the optimal solution into simulation, the UR5 acts rapidly and
moves in all directions but much slower, but there are no findings of motion
repeating itself in short intervals as in previous test with dancing-motion. The
joint response can seen on figures 5.10, 5.11 and 5.12.
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Figure 5.8: Average performance of three runs with GA using the 7,20, and 28
moCap markers using walking-motion.

Type Markers Avg min Avg max Avg mean Avg std
Walking, EDJM-JL 28 3132.72 3421.93 3256.42 ± 3.55

Walking, EDJM 28 3110.05 3408.59 3230.92 ± 10.73
Walking, EDJM-JL 20 3187.86 3425.84 3283.19 ± 2.71

Walking, EDJM 20 3209.59 3409.31 3286.72 ± 7.55
Walking, EDJM-JL 7 3678.01 3716.82 3683.07 ± 1.87

Walking, EDJM 7 3678.01 3715.91 3681.50 ± 2.26

Figure 5.9: Showing the average results of the three runs in dancing and the
distance is measured in millimeters.

(a) (b)

Figure 5.10: Two plots displaying the joint angle values for the Joint 1 and
Joint 2 from UR5-robot with the Walking-motion
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(a) (b)

Figure 5.11: Two plots displaying the joint angle values for Joint 3 and Joint 4
from UR5-robot with the Walking-motion

(a) (b)

Figure 5.12: Two plots displaying the joint angle values for Joint 5 and Joint 6
from UR5-robot with the Walking-motion
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Figure 5.13: Boxplot showing the results from Walking with the various amount
of markers. The median is the orange line and while the outliers are displayed
with red squares.

5.2.5 Testing Workout-motion with 7, 20 and 28 markers

For the last motion it is performed with workout-motion and all of the used
parameters are again given in5.2 and what is special about this motion is that
the human moCap-performer performs rapid movements, especially in step 1
and step 2 from 5.5. It consists consists of 3316 frames meaning, there are few
frames to learn from and more difficult.

Motion: Workout Motion Description
1 4 jumping jacks
2 4 times skiing exercise
3 4 times elbow-to-knee exercise
4 4 squats

Table 5.5: Overview of Workout-motion

5.2.6 Results and analysis From Workout-motion with 7,20
and 28-markers

The GA is run three times and taking the averaging of all three runs yields the
results from table 5.15 and fig 5.14. The best total distance yielded 2813.64
without the joint limits but with 2868.39. Further observations in the fig 5.15
shows the average distance for 20 markers is less than 28. However running
the GA for longer than 50 generations could have reversed the effect given the
graphs which seem to be reducing beyond the plot. A boxplot 5.19 shows the
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Figure 5.14: Average performance of three runs with GA using the 7,20, and 28
moCap markers using workout-motion.

comparison between the three different groups, with and without joint limit in
more systematic way.

After GA has run, the optimal solution is applied onto the simulation, and
the UR5 acts rapidly and moves even faster than both of the previous tests. The
joint response can seen on figures 5.16, 5.17 and 5.17. Again, the joint angles
are out of propotion, similar to previous tests.

Type Markers Avg min Avg max Avg mean Avg std
Workout, EDJM-JL 28 2868.39 3269.18 3069 ± 4.24

Workout, EDJM 28 2813.64 2813.64 3050.01 ± 4.65
Workout, EDJM-JL 20 2919.28 3148.05 3013.18 ± 2.55

Workout, EDJM 20 2950.82 3140.89 3018.501 ± 7.21
Workout, EDJM-JL 7 3341.42 3424.72 3353.39 ± 3.56

Workout, EDJM 7 3341.42 3424.30 3353.35 ± 1.18

Figure 5.15: Showing the average results of the three runs in dancing and the
distance is measured in millimeters.
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(a) (b)

Figure 5.16: Two plots displaying the joint angle values for Joint 5 and Joint 6
from UR5-robot with the Workout-motion

(a) (b)

Figure 5.17: Two plots displaying the joint angle values for Joint 5 and Joint 6
from UR5-robot with the Workout-motion
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(a) (b)

Figure 5.18: Two plots displaying the joint angle values for Joint 5 and Joint 6
from UR5-robot with the Workout-motion

Figure 5.19: Boxplot showing the results from workout with the various amount
of markers. The median is the orange line and while the outliers are displayed
with red squares.
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(a) (b) (c)

Figure 5.20: Figure(Left) 5.20a shows the total kinetic energy of Dancing-
motion. Second figure(middle) 5.20b shows the kinetic energy of Walking-
motion. Last figure(right) 5.20c shows the total kinetic energy of Workout-
motion

5.2.7 Similarity between Joint angle and Kinetic Energy

The tests from the experiment share some similarity with the total kinetic energy
of the motion from figure 5.20. The joint angles from all three motions seem to
match the kinetic energy from the actual motion without having prior knowledge
to it. The peaks from the joint angles seem to closely related to the actual
motion. Example, fig 5.4 is similar to dancing-motion and fig 5.11 is similar
to the total kinetic energy of walking-motion. Last, but not leastly fig 5.18 is
similar to workout-motion. Further details and analysis will be discussed in the
next chapter.
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5.3 Experiment - Body Segments

In this experiment, By extracting the right-arm moCap-markers from the moCap-
motion, the goal is to experiment whether various types of moving arm motion
is able to be mapped onto the UR5-manipulator and optimizing the weights
using GA for achieving the objective. The following experiment will primarily
focus on 2,4 and 8 markers using EJDM and Euclidean distance.

It is worth mentioning the method EDJM has been tweaked for this test.
Here the velocity term is excluded from the test and only the distance term
remain. This is specified in the table 5.6. The same limitations for UR5-
manipulator remains the same. Additional data with the distance or fitness
table as in for example tables 5.9, 5.15, 5.3 is excluded as the comparison is
done using another metric.

GA Parameters Parameter value
GA Total Runs 3

Generation 50
Population 300

Parent Selection Tournament Selection (size=15)
Crossover Two-Point Crossover, Crossover Probability (50%)
Mutation Gaussian Mutation N (0, 1), Mut. Probability (5%)

WInit(wmin, wmax) -2, 2
Fitness Function EDJM (Velocity excluded), Euclidean
W2−markers W ∈6×2, L = 12
W4−markers W ∈6×4, L = 24
W8−markers W ∈6×8, L = 48

V-REP parameters Parameter
Physics engine Bullet 2.83

Physics settings Very Accurate
Physics time-step dt=10

Table 5.6: Genetic parameters for GA and V-REP parameters for 2, 4 and
8-markers using BCDM

5.3.1 Testing I: Workout-motion with BCDM

In this experiment the right-arm motion is extracted using 2,4 and 8 markers
to observe the proposed solution is able to follow the same trajectory as the
workout-motion. Description of the motion can be seen in 5.5.

5.3.2 Results and analysis From Workout-motion with BCDM

Every test is run three times and the average data is measured to gain reliable
data for the motion trajectory generated by the UR5. The results can be seen
from table 5.7 where the mean-squared error (MSE) is used for the difference
in position between moCap-markers and the joint position. The total distance
from fig 5.21 show rapid convergence towards an optimal solution. All of the
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joint’s response from workout motion can be seen on figures 5.22, 5.23, 5.24,
5.25 and 5.26.

The best result is by using 4 markers and the second best is 6 markers and
on third place it is 8-markers.

Method Markers MSE(pos) MSE (rad)
EJDM 8 Markers 881.21 1.10

Euclidean 8 Markers 501.05 0.85
EJDM + Euclidean 8 Markers 569.36 0.79

EJDM 4 Markers 353 7.8
Euclidean 4 Markers 117 1.47

EJDM + Euclidean 4 Markers 183.07 1.38
EJDM 2 Markers 743 1.38

Euclidean 2 Markers 823.04 0.07
EJDM + Euclidean 2 Markers 826.39 0.09

EJDM 3 Markers 318.02 11.41
Euclidean 3 Markers 312.64 5.94

EJDM + Euclidean 3 Markers 352.57 5.02
(One-to-One mapping) 6 markers 520.107 0.0

Table 5.7: Overview of mean square error for Workout-motion

Figure 5.21: Figure showing how the different methods performs during GA
using BCDM with workout.
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(a) (b)

Figure 5.22: Two plots displaying the joint angle values for dancing for the Joint
1 from UR5-robot using BCDM with the three different methods by using 4 and
8 markers.

(a) (b)

Figure 5.23: Two plots displaying the joint angle values for dancing for the Joint
1 and Joint 3 from UR5-robot using BCDM with the three different methods
by using 2 and 8 markers.
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(a) (b)

Figure 5.24: Two plots displaying the joint angle values for dancing for the Joint
3 from UR5-robot using BCDM with the three different methods by using 2 and
4 markers.

(a) (b)

Figure 5.25: Two plots displaying the joint angle values for dancing for the Joint
3 and Joint 5 from UR5-robot using BCDM with the three different methods
by using 2 and 8 markers.
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(a) (b)

Figure 5.26: Two plots displaying the joint angle values for dancing for the Joint
5 from UR5-robot using BCDM with the three different methods by using 2 and
4 markers.

5.3.3 Testing II: Dance-motion with BCDM

Similar to previous test 5.3.1 In this test the right-arm motion is extracted
using 2,4 and 8 markers with dancing-motion. The description of dancing-
motion is described in table 5.5 but here the same right arm markers is extracted
from dance-motion and table 5.8 shows the results from the different test and
comparison with the same related works as in workout-motion.

5.3.4 Results and Analysis From Dance-motion using BCDM

Similar to previous test, every test with dancing-motion was run three times
to get reliable data and the results from dancing motion with BCDM can be
seen on tab 5.8 and fig 5.27 where the first table displays the mean-square-
error between the moCap-markers and joint positions. Looking at fig 5.27, the
fitness decreases and converges rapidly towards a solution. The pattern of rapid
convergence can be compared to workout-motion where the GA is stuck in local-
optima. All of the joint’s response from workout motion can be seen on figures
5.28, 5.29, 5.30, 5.31 and 5.32.

Comparing by MSE, the best result is with 4-markers and followed up by
6-markers and then on third with 8-markers.
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Method Markers MSE(pos) MSE (rad)
EJDM 8 Markers 925.41 6.21

Euclidean 8 Markers 463.79 0.71
EJDM + Euclidean 8 Markers 458.10 1.60

EJDM 4 Markers 287.98 1.28
Euclidean 4 Markers 213.25 1.40

EJDM + Euclidean 4 Markers 227.69 0.97
EJDM 2 Markers 904.94 0.11

Euclidean 2 Markers 529.58 0.02
EJDM + Euclidean 2 Markers 724.01 0.18

EJDM 3 Markers 230.22 11.41
Euclidean 3 Markers 461.54 5.94

EJDM + Euclidean 3 Markers 432.82 5.02
(One-to-One mapping) 6 markers 276.05 0.0

Table 5.8: Overview of mean square error for Dance-motion

Figure 5.27: Figure showing how the different methods performs during GA
using BCDM with Dancing.
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(a) (b)

Figure 5.28: Two plots displaying the joint angle values for dancing for the Joint
1 from UR5-robot using BCDM with the three different methods by using 4 and
8 markers.

(a) (b)

Figure 5.29: Two plots displaying the joint angle values for dancing for the Joint
1 and Joint 3 from UR5-robot using BCDM with the three different methods
by using 2 and 8 markers.
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(a) (b)

Figure 5.30: Two plots displaying the joint angle values for dancing for the Joint
3 from UR5-robot using BCDM with the three different methods by using 4 and
8 markers

(a) (b)

Figure 5.31: Two plots displaying the joint angle values for dancing for the Joint
3 and Joint 5 from UR5-robot using BCDM with the three different methods
by using 2, 8 markers
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(a) (b)

Figure 5.32: Two plots displaying the joint angle values for dancing for the Joint
5 from UR5-robot using BCDM with the three different methods by using 2, 4
markers

5.3.5 Summary

The two experiments presented in this chapter were testing with multiple amount
of moCap-markers and fitness function and weight matrix size. Through extens-
ive experimentation, more markers do contribute to the mapping relations as
the additional spatiotemporal data prove to increase the performance and the
total distance minimized. In the first experiment, the larger the weight-matrix,
the more of the total distance can be minimized between the robotic manipu-
lator and moCap-actor with 28-markers. 7-Markers proved to be the worse. For
the second experiment, the results varied depending on the amount of mark-
ers. After testing both of the experiments, the proposed method encountered
new problems and challenges that was not considered. These new problems and
challenges will be discussed in the next chapter.
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Chapter 6

Discussion

6.1 General discussion

This chapter concludes the thesis with a general discussion of results, limitations,
discoveries and issues, followed by a conclusion and suggestions for future work.

6.1.1 Full Body motion

The UR5-manipulator is used as the main robot for this experiment and dur-
ing simulation the robot behaved unrealistically which comes mainly from the
optimized weight matrix. The GA is stochastic in nature and require multiple
runs in order to get reliable data. Looking at joint angles from the results one
can notice the radians is out of proportion compared to experiment II-BCDM.
The results demonstrate two things. First, this suggests that the velocity term
from the fitness function is the only term contributing to the overall fitness
that can be minimized the most. Second, the moCap-velocity is absolute and
since the velocity term sums them, yields higher values. As such, the analysis
from result during GA may suggest there are other methods for inhereting the
velocity term. The total distance minimized with EJDML-JL always yielded
larger total distance than without. A way to counter the velocity term from
dominating is to implement velocity constraints.

However, looking apart from the scaled joint angles, there are findings from
the joint angles that show similarity between the joint angles and the kinetic
energy from the moCap-actors without the GA ever having prior knowledge of
the kinetic energy. Comparing kinetic energy from figure 5.20c and joint 1, joint
3 and joint 5 from figures 5.16a 5.17a, and 5.18a it can be seen that the joint
angle share the same peak at the different frames from the kinetic energy. One
might argue that the weights just scale the joint angle from the moCap-data and
hence yields the similarity of kinetic energy. However, this does not neglect that
the total distance between the robotic manipulator and motion capture motion
is minimized simultaneously. Alternatively, it could simply mean that the GA
minimizes the velocity term the most or that the velocity term dominates as
both distance and velocity is integrated together. This may imply that the
total distance and velocity minimized is associated with characteristics of the
moCap-motion.
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From the GA’s performance, the results from table 5.3, 5.15 and 5.9 demon-
strate two things. First, the more moCap-markers that are available or used in
the moCap structure, the more GA manages to minimize the distance from all
of the markers. Second, the weights for the motion are used to minimize the
total distance and create unique movements and motion to lower DOF robot.
These results indicate that more markers do contribute to the overall motion
as more weights are initialized and thus, more values to be optimized with the
GA. Figures 5.2, 5.8 and 5.14 shows the total distance and velocity being min-
imized. For 7-markers, the convergence is reaching its solution between 5 - 7
generations. This is due to lack of few weights and illustrating that the one way
or even perhaps the only way to reach out of the solution is through mutation.
Solely relying on mutation with 5 % probability of getting out or finding solu-
tions is unreliable. For 20-markers, the total distance and velocity seem to go
down or show some traits of going further below after generation 50. But the
GA is finished when the generation reaches 50. At last, 28-markers the total
fitness is minimized even further and similar to 20-markers, the total fitnesscan
go beyond 50 generations.

6.1.2 BCDM

From the experience from the first experiments, the velocity term from EDJM
was excluded due to overshoot of the joint angles, leading to unrealistic move-
ment from the robotic manipulator. The results in previous chapter at the table
5.6 in the fitness function clearly visualizes that.

The results from the second experiment proved to be far better as the joint
angles generated were reasonably good as can be seen on figures 5.28, 5.29, 5.30,
5.31 and 5.32 for dancing motion. The joint angles did not overshoot, and since
the manipulator is now being mapped according to the right arm movement,
means the fitness function or the approached method can be used to compare
towards other related research within the area. This will be explained later in
section 6.1.4. The Mean-squared-error (MSE) was calculated and it was done
by taking the distance between the joints of the UR5-robot and the moCap-
markers and yielding the error in millimeters (mm). The MSE for joint angles
was also performed and this one was calculated different. This was done by using
the quantifying of motion, the joint angle is summed as explained in chapter
2 from section 3.2.11 where the sum from UR5 joint angles and moCap-angles
was performed and then the MSE used to measure the difference between them.
Again from the results, the fitness function with Euclidean distance prove to
yield the least difference between joints and moCap-markers.

This was done with various amount of markers and the table 5.7 from results
section with workout motion revealed that using different amount of markers
does impact the performance GA. 4-markers proved to yield the best result
with the fitness function using Euclidean distance. From the table 5.8 featuring
dance-motion yields similar results. 6-markers or the one-to-one mapping prove
to give quite good results but this is because the joint angles can be applied
directly and the manipulator just copy them and hence reaches lower MSE. One
issue with MSE is that the more markers, the higher the value as the amount of
markers accumulate the MSE. Under certain assumptions can this be construed
as good way of estimating the performance of BCDM. One such assumption is
when comparing the values from two different marker groups occurs.
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The plot from fig 5.27 for dancing and the plot from fig 5.21 show that fewer
markers gives high total fitness which is the total distance and then it reaches
towards early convergence after 3 - 4 generations. The total distance for the more
markers seem to go towards zero or are closer to zero while fewer markers points
towards in the opposite direction. Many of results seem to also overlap and these
are very small and difficult to observe because the GA manages to minimize more
distance of the markers and joint from the manipulator. Especially from the
orange line that does not show on figures 5.27, 5.21. This is due to the orange
line being behind the green line or equal to the orange line.

6.1.3 Limitations Of The Experiment(s)

There are several limitations to the proposed approach. The main concern are
the weights and comparing to machine learning algorithms which consists of
millions of parameters such as AlexNet [26] to solve more complex functions,
the few weight parameters cannot search for optimal solutions because of the
vast search space of the thesis’ problem.

Another limitation of approach are the fitness functions with both EJDM(-
JL) and BCDM, the fitness functions is the lack of time-term. The moCap-data
may be time-dependent while the fitness function does not. The fitness func-
tion can be interpreted as minimizing the distance of posture between robotic
manipulator and moCap, however the time duration between reaching it in the
initial frame to the final frame is excluded. Certain trajectories require more
time to reach and some trajectory requires slower, however this is not the case
in the EJDM and BCDM methods.

A potential problem that may arise is if the robotic manipulator is much
larger than the moCap-skeleton. Since EJDM(-JL) and BCDM are minimizing
the distance between the joints and moCap markers it could cause the robotic
manipulator to collide with itself. The fitness function does take collision into
consideration.

One concern about the findings are the BCDM fitness function proving to
yield inferior results than standard Euclidean distance between the pairs of
markers and joints, despite varying the count of moCap-markers. Regarding
this limitation, it could be argued the distance between the pairs of marker and
joint is sufficient enough for minimizing the distance moCap-markers and joints
and not with every joint as is the proposed approach.

6.1.4 Comparison of previous studies

A recent discovery from Chih Liu et al. [32] has a more complex objective
function the potential issue with EJDM(-JL) and BCDM by implementing the
collision and self-collision. This proved to be succesful for their experiment
and robust. However, they matched the amount of skeleton coordinate i.e 6
reference markers with 6 DOf robot. This produces similar results using BCDM
with 6-markers as it performed reasonably well. A similar pattern of results
was obtained [34] where 20 markers were used on both the human and android
upperbody. This indicate one-to-one mapping is a robust approach for mapping
and heuristic methods or optimization methods are used to refine the kinematic-
relation between the human and the robot manipulator.
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6.2 Benefits of weight-matrix, EJDM(-JL) and
BCDM

Using the EJDM(-JL) and BCDM reduces the amount of analytical equations
required to make the mapping as one only needs the DH-parameters for a robotic
manipulator. The forward-kinematic can be derived from DH-parameters and
also the Jacobian matrix can also be found. These are procedural steps and
is simple to follow given one has some knowledge about robot modeling. The
fitness function is easily extendable by adding more features, and since the genes
are random floating numbers, allows possibilities of exploitation. This means
the weights can be represent anything. However, the weight-matrix in this thesis
can be thought as mapping-matrix, where its values represent the relationship
between moCap-actor and robotic manipulator.

The following approach is easily customizable for selecting markers and ini-
tializing the weight matrix. The proposed function solves minimizing distance
between markers and joints even if the DOF from the robotic manipulator does
not match the moCap-markers(DOF 6= markers). Not only does it excels at
following imitating moCap-motion, but it is also quick to optimize with GA.

6.3 Conclusion

The thesis researched if using different amount of motion capture markers affects
the performance of mapping to robotic manipulator by optimizing weights using
evolutionary algorithm. From the introduction section in chapter, an hypothesis
was set for the thesis to prove and disprove by fulfilling the two required goals.

The first goal was Observing how the motion-capture data is mapped
into lower degree-of-freedom robots and if it is possible to capture the
some unique characteristics or the ”essence” of the motion. The first
experiment presented in the thesis proved that the evolution algorithm with
EJDM managed to capture kinetic energy representation while reducing the
distance between the joints and markers using various amount of markers. By
using more markers, it is able to capture more of the nature of the motion
whereas using fewer did not. During simulation, the joint angles generated were
higher than expected and was not satisfactory. Given the accomplishments, the
first goal of the thesis can lightheartedly be considered successfully.

The second goal was Extract a portion of the human motion capture
data for example human arm and determine if the robotic manipu-
lator can imitate the same motion trajectory with different amount
of markers. The second experiment performed much better as a results of its
predecessor i.e first experiment. By excluding the velocity term from BCDM,
the joint angles were within reasonable range. As such, the results proved that
BCDM manages to imitate human motion where using more markers does help
its adaptation to the motion capture through minimizing distance. This goal
proved to be successful.

The thesis addressed that mapping from motion capture to robotic manip-
ulator is challenging and there are a lot of exploration or further investigation
needed to gain desirable results. The question remains if the hypothesis is
proved or disproved. The results from the first goal of the thesis was subpar,

Page 80



General discussion Chapter VI

however the second goal was fulfilled as the robot manipulator managed to fol-
low the trajectory of the motion capture through optimization from GA. Thus,
the hypothesis was achieved.

6.4 Future Work

GA is stochastic and needs to be run multiple times in order to receive re-
liable data to measure from. This is very time-consuming process and as a
consequence, not every planned features or experiments were carried out. If the
continuation of the thesis would resume again, there are several suggestions for
improvement and ideas to create. The following section will describe the most
important ones.

6.4.1 Jacobian-Matrix

There are plentiful of work that can be improved in our fitness function. First
one is deriving the jacobian using the forward-kinematics from Denavit-Hartenberg
and include in the fitness function or its values. What the jacobian provide is an-
gular velocity and linear velocity with respect to base-frame. With the Jacobian
Matrix it can prevent singularities from occuring. That is the robotic manipu-
lators losing one degree-of-freedom. But the jacobian can also be used to solve
inverse-kinematics [11]. This means the jacobian of the robotic manipulator
contain a lot of analytical equations that can be used to solve additional tasks if
it were to be implemented into the fitness function. An idea worth investigating
is to see if the inverse-kinematics can solved with only motion-capture data.

6.4.2 Other motion capture limbs

An interesting aspect of the method is removing some of the limbs i.e markers
from the motion-capture and observe if the response is different and observe how
the robotic manipulator adapts to its new skeleton or layout. As it stands now,
the thesis only experimented with different amount of markers at full-body and
right arm motion. The idea is to remove some of the markers in the structure
either from various places and explore the robotic manipulators adaptation with
the fitness function.

6.4.3 Synchronized motion from Simulation

For the motion trajectory generated from the motion it is possible to implement
Recurrent Neural Network [25] abbreviated RNN for synchronized movement by
predicting the next joint angles for the time-step in the motion. During simu-
lation, the frame and the video does not match perfectly. RNNs have yielded
great results for sequential predictions based on the reviews from Zachary et al.
[31].

6.4.4 Experimenting with Robotic Manipulator

Similar to motion-capture limbs, another future work could be to test fitness
function on multiple robots with different amount of Degree-of-Freedoms in
attempt to compare the performances between two robot manipulators. A few
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mentioned robotic manipulators to be experimented on could perhaps be 6 DOF
KUKA-arm 1 and 7-DOF Panda-arm 2. This is to test different limb-length and
possible offsets that may exists in the manipulator, and prismatic joints could
also be used.

6.4.5 Third Fitness Function

During the development phase, there were planned to implement three methods
in total, but the third one was excluded due to time-constraints. What if it was
possible to generate unique movements from the knowledge of kinetic energy?
The idea was to take the kinetic energy and only pass it as the only input for
the GA and generate a motion that maximizes the movement with respect to
kinetic energy based of a moCap-actor.

1Developed by KUKA Robotics
2Developed by FRANKA EMIKA
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