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Abstract 
The world desperately needs new sources of renewable energy. One renewable source that has not 

been studied a lot, is pyroelectric phase-transforming materials (PTM). The purpose was to find a 

material that went through a phase change in the investigated temperature and pressure range, 

where the two phases have different pyroelectric vectors. This may cause a large electrical field over 

the material upon the phase change and by connecting it to an extrinsic circuit, a current may be 

produced. In order to find a pyroelectric PTM, many properties are needed. Some of these are the 

coefficient of thermal expansion (CTE), the piezoelectric tensor, the third order force constants at, 

and the Gibbs free energy. These have been found. In addition, the specific heat capacity at constant 

volume as a function of temperature has also been found. The CTEs and heat capacities were 

calculated as a function of temperature for diamond and three “Heusler alloys”. The Gibbs free 

energies were found in the same temperature ranges for each material, and as a function of pressure 

too. The CTEs were found because thermal expansion leads to strain in the material that changes the 

electric dipole moment by a piezoelectric process1. This process is what the secondary pyroelectric 

vector accounts for. The Gibbs free energy was found as a function of temperature and pressure to 

see if some of the materials would go through a phase change in the temperature and pressure range 

investigated. The third order force constants were investigated because they are needed for the 

primary pyroelectric vector. The primary effect is the change in electric dipole moment by a change 

in the temperature at constant strain, so that expansion or compression are not possible1. The heat 

capacities were plotted because they are automatically calculated during the process of the present 

work and are interesting in many cases. The present work has used density functional theory (DFT) 

like calculations through the Vienna ab initio simulation program (VASP)2-5 and the temperature 

dependent effective potential (TDEP) package6-8. 

Experimental values of the CTE of diamond exists, and the CTE of diamond in the present 

investigation could therefore be validated to experimental values. It turned out to fit extraordinary 

well in the whole temperature range considering that this CTE is calculated from completely ab initio 

assumptions and the deviations do not exceed the spread in the datapoints. The CTEs of the Heusler 

alloys were also found. The Gibbs free energy and heat capacity were also calculated successfully. 

Due to instability of some of the structures more materials than originally planned were investigated, 

which led to the primary pyroelectric vector not being calculated because of the thesis deadline. 

From the CTEs and the piezoelectric tensors the secondary pyroelectric vector was found. It was 

however only GaCuSe2 which had a phase where this was nonzero, but the other phase of this 

material was not stable within these calculations. Therefore, a large change in the pyroelectric vector 

due to a phase change was not found in this study. A phase change could not be found either, 

because only one phase of each material was stable. However, the method used works impressively 

well and that brings hope for the future in finding a pyroelectric material that can convert heat into 

power effectively. None of the calculations needed unattainable central processing unit (CPU) time. It 

was shown that the number of supercell calculations needed could be reduced drastically for the 

anisotropic systems. 

In conclusion, the CTE, Gibbs free energy, the secondary pyroelectric vector and heat capacity have 

been found for diamond, TiFe2Si, GaNaTe2 and GaCuSe2. Where there have been experimental results 

to compare with, the calculations have shown to give results that are close to these. The required 

CPU time has turned out to be significantly less than what could be expected from such advanced 

calculations, and the calculations in this work are highly attainable for both isotropic and anisotropic 

materials. 
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1. Introduction 

1.1. Goal of thesis 
The goal of the task is to find a large change in the pyroelectric vector by a change in temperature. 

This will tell how effectively the material theoretically can produce electricity during heating. From 

the theoretical schemes by Born9 and Szigeti10; to calculate the full pyroelectric coefficient, you need 

to calculate some other coefficients. These are: 

1. The Born effective charge. 

2. thermal expansion coefficients (CTE). 

3. Piezoelectric coefficients. 

4. Third-order force constants. 

5. Thermodynamic properties at a given temperature. 

So, the sub goals will be to calculate these. 

1.2. Problem and hypothesis 
The problem in this thesis will be to compute: 

1. The CTE 

2. The pyroelectric vector 

3. The Gibbs free energy from ab initio calculations 

The CTE is calculated because it is needed to calculate the secondary pyroelectric vector. These goals 

will be performed for a material that hopefully is a phase-transforming material (PTM) with bandgap 

in both phases. This will give a material that is able to produce electricity from heat and can reduce 

greenhouse gas through more energy efficient devices. The main hypothesis is that it is possible to 

calculate the CTE and the pyroelectric vector for a PTM. The secondary hypothesis supporting this 

are: 

1. Calculation of the CTE, Gibbs free energy and the pyroelectric vector can be done very 

efficiently with the temperature dependent effective potential (TDEP) method. 

2. All the algorithms being developed by our in-house code work properly for all solid materials 

which have not much more than eight atoms in the unit cell. 

3. The CPU and memory requirements are not prohibitive to perform all the steps of the 

calculations required to achieve the pyroelectric coefficients. 

1.3. Motivation for investigating phase-transforming materials 
One of the hardest tasks these days is to deliver enough electricity without making too much impact 

on the environment. One very environment friendly approach is the direct conversion of heat to 

electricity, as it produces no waste products during use. This approach can increase efficiencies 

remarkable and also lead to new renewable heat sources, as it is a large and expanding area11. This is 

efficient because heat that is produced during a process which normally is not used to anything, can 

now produce electricity. It is like collecting energy that is lost in the process. Earlier, fluids and 

moveable compounds have been used for this but is now being challenged by solids, where the 

energy conversion happens inside the materials. Using solid-state heat engines instead may have a 

lot of potential benefits12, but it can only be used in a small area because it is expensive, has low 

efficiency and has many system-dependent questions to answer13. The most known technology in 

this area is thermoelectricity14. This master thesis will however focus on phase-transforming 

materials instead, which change their electric and magnetic fields during phase transformation. The 

reason why such materials are more interesting is that PTMs have an efficient heat-conversion at 
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temperature differences from 10 K to 100 K around the transition temperature. For this to happen, 

the change in the electric field must be large. The larger the better, as this gives larger electric field 

and more electrical current. This electric field will be large if the change in pyroelectric vector is large 

when going from one phase to the other. In the case of thermoelectric devices, the conversion is 

most efficient at a lot larger temperature differences, which is not always optimal. 

1.4. Phase-transforming materials 
Phase-transforming materials are materials that undergo structural phase transformations without 

diffusion of atoms. The phase transformation is due to external impact like stress or temperature. 

This leads to change in properties, which corresponds to a change in energy. Some changes that are 

important are the change in shape, change in magnetic field or change in electrical polarization. It is 

the last change that will be investigated as the pyroelectric effect. 

1.5. Reversibility of Phase-transforming materials 
The problem with phase-transforming materials, is often the reversibility. Fracture often occurs after 

a few cycles, the transformation temperature moves and fails completely in the end. The hysteresis 

can also be at a 70 K range, which makes the conversion efficiencies bad. But recently, a new PTM 

alloy that can go through many million cycles has just emerged15, 16. This alloy closely satisfies the 

“cofactor conditions” derived by Chen and James17, 18 and theorized to be important to the 

reversibility of phase transformations. The first cofactor condition is that the middle eigenvalue of 

the transformation stretch tensor is 118. This corresponds to restrictions on the lattice parameters of 

the two phases so that the interfaces between them don’t generate stress. For this to be fulfilled, a 

martensitic phase transformation is required. 

1.6. Pyroelectricity explained 
The pyroelectric effect is defined as the temperature dependence of the spontaneous polarization in 

certain anisotropic solids1. Many pyroelectric materials do exist, as tourmaline, triglyne sulfate and 

lead zirconate1. The reason pyroelectric materials are interesting, is because they can be used to 

generate electricity through a change in temperature of the pyroelectric materials. One way to do 

that is given by the following. The unit cells in a pyroelectric crystal has a dipole moment1. If you cut 

a pyroelectric material such that it has parallel surfaces, and the parallel surfaces are perpendicular 

to the crystallographic symmetry axes, then the dipole moment of the unit cells will cause a 

spontaneous polarization perpendicular to the surfaces1. A spontaneous polarization is the dipole 

moment per unit volume1. This will be equal to having opposite charges on the two surfaces. If you 

then put electrodes on the surfaces and connects them with a wire, a circuit will flow if the 

spontaneous polarization changes. In most materials, an increase in temperature causes a decrease 

in spontaneous polarization1, and current will flow. If the temperature decreases, the spontaneous 

polarization will decrease instead, and the electric current will flow in the opposite direction1. 
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Figure 1: Illustration of the pyroelectric effect1. A pyroelectric material is attached to a circuit on the negative and positive 
charged surfaces. While the temperature T are constant, the electric dipole moment stays constant and no circuit flows. As 
the temperature changes, the dipole moment changes, and the charged particles moves through the circuit to compensate 
for the new surface charge. 

1.7. Temperature dependent effective potential introduced 
The TDEP package is a collection of programs to calculate finite temperature lattice dynamics. It 

contains programs as generate_structure, canonical configuration, extract_forceconstants, 

phonon_dispersion_relations and more. Along with VASP it can be used to calculate the pyroelectric 

coefficient amongst other properties from ab initio calculations. The coefficient of thermal expansion 

(CTE) is an important factor in the second term of the pyroelectric coefficient and has been 

calculated from ab initio assumptions using VASP and TDEP with great success. The results of 

Shulumba et. Al19 who used DFT which is implemented in VASP, and TDEP to calculate the CTE, is 

shown in Figure 2. It shows how their theoretical line is within the experimental accuracy range for 

the temperatures experimental data exist. 

 

Figure 2: CTE of different combinations of TixAl1-xN from the studies by Shulumba et al19. 

1.8. First principles pyroelectric vector 
The pyroelectric vector has been calculated from first principles by Liu et al.20 in 2016 and by Liu and 

Pantelides21 in 2018 both for wurtzite GaN and ZnO. In 2016 they used the QUANTUM ESPRESSO 
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package22 within the local density approximation (LDA)23 for electronic structure calculations and 

density functional perturbation theory (DFPT)24 for calculations of the phonons. The third order 

anharmonic coefficients (𝑉3 (
0 𝒒 𝒒
𝑗 𝜆 𝜆

) in Equation 43) were calculated by displacing atoms along 

the displacement pattern 𝑢𝜅𝛼(𝟎j) from Equation 42 and taking the finite difference of the dynamical 

matrix from this. The pyroelectric vector is given by Equation 42 and Equation 45. The results of the 

2016 work are shown in Figure 3 and Figure 4. In the 2018 article a third term was added which was 

supposed to account for the electron-phonon renormalization contribution. The results of this article 

are shown in Figure 5 and Figure 6.  

 

Figure 3: The pyroelectric coefficient of GaN from Liu et al.’s work20. The primary part equals the first term and the 
secondary equals the second term of the pyroelectric vector as described in theory of pyroelectricity. The triangle 
experimental value is from Matocha et al.25 and the square experimental value is from Bykhovski26. 
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Figure 4: The pyroelectric coefficient of ZnO from Liu et al.’s work20. The experimental values are from Heiland and Ibach27. 
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Figure 5: The pyroelectric coefficient of GaN from Liu and Pantelides work21. The experimental value is from Matocha et al.25 
The added term increases the pyroelectricity significantly and makes it a little higher than the experimental values. 
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Figure 6: The pyroelectric coefficient of ZnO from Liu and Pantelides work21. The experimental line is from Heiland and 
Ibach27. The added term makes the total pyroelectric coefficient a little higher than the experimental values. 

1.9. Materials investigated 
In this thesis, there is searched for a material with nonzero piezoelectric tensor at low temperature 

and with zero piezoelectric tensor at high temperature, so that a phase change will give a large 

change in the pyroelectric vector. The material must have bandgap, else it cannot have a dipole 

moment. The materials investigated are presented here. 

1.9.1. Diamond 
Diamond was used just to demonstrate the method since it has a simple structure to work with and 

there is a lot of experimental data to compare with. It does not belong to a space group which lack 

inversion symmetry which is needed to have a non-zero piezoelectric tensor, which again is needed 

to have a nonzero secondary pyroelectric coefficient. 

1.9.2. TiFe2Si 
One phase of TiFe2Si was investigated. That material has a Heusler structure and has space group 

𝐹𝑚3̅𝑚 [225] with the titanium atoms at the (0,0,0) position and the silicon atoms at the (0.5,0.5,0.5) 

positions. TiFe2Si was originally the main material in this master thesis. Its cubic phase has bandgap 

which is needed for it to work as a pyroelectric material. It was supposed to be compared to a 

tetragonal or orthorhombic structure, but it was found that it was reported metastable28. Therefore, 

it was decided that it was not worth investigating another phase of this material. 
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1.9.3. GaNaTe2 

Two phases of GaNaTe2 were investigated and both were tetragonal. The first structure of GaNaTe2 is 

referred to as the α-structure and had space group 𝐼4̅2𝑑 [122] with the Natrium atoms located at 

the positions (0,0,0) and (0.75,0.25,0.25) and the Gallium atoms located at (0.25,0.75,0.5) and 

(0.5,0.5,0). The second structure is referred to as the β-structure and had space group 

𝐼4/𝑚𝑐𝑚 [140] with the natrium positions at (0.25,0.25,0) and (0.75,0.75,0) and the gallium positions 

at (0.25,0.75,0.5) and (0.75,0.25,0.5). GaNaTe2 did originally have all the properties searched for. 

Two phases, one with a non-zero piezoelectric tensor and the other with a zero piezoelectric tensor 

and both structures with bandgap. However, the piezoelectric material turned out not being stable. 

Therefore, the secondary pyroelectric coefficient was again zero. 

1.9.4. GaCuSe2 
Two phases of GaCuSe2 were investigated, one tetragonal phase and one cubic phase. The tetragonal 

GaCuSe2 had space group 𝐼4̅2𝑑 [122] with the gallium atoms at (0.25,0.75,0.5) and (0.5,0.5,0) and 

the copper atoms at (0,0,0) and (0.75,0.25,0.5). The cubic GaCuSe2 had the same space group as 

TiFe2Si with the gallium atoms at the silicon positions and the copper atoms at the titanium positions. 

The tetragonal GaCuSe2 was the material in which a pyroelectric coefficient was found. It has 

bandgap, although low, the correct symmetry and it exists experimentally. The cubic phase of it was 

made from the structure of the TiFe2Si, and it was not known if this phase actually existed. However, 

because it is an easy structure to deal with, it was considered to be worth investigating. It has the 

same symmetry as TiFe2Si, its secondary pyroelectric vector is zero and could possibly with the 

tetragonal phase, be a system with all properties wanted. However, the cubic phase was also shown 

to be dynamically unstable. 
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2. Formalism 
In this section the theory behind the CTEs and the secondary pyroelectric vector is explained. It starts 

with explaining DFT and VASP calculations. Density functional perturbation theory (DFPT), which is 

used by compared methods and when calculating the elastic tensor, is introduced. It is demonstrated 

how the elastic constants can be calculated and how those are further used by VASP and TDEP to 

calculate the force constants and free energies. The Birch-Murnaghan equation of state is introduced 

to show how the Helmholtz free energy can be found as a function of volume at constant 

temperature. It is explained how the Birch-Murnaghan equation of state can be used to calculate the 

Gibbs free energy as a function of pressure and temperature. The theory behind the pyroelectric 

vector is introduced. 

2.1. Density functional Theory (DFT) 
The time-independent nonrelativistic Schrödinger equation for a system of electrons affected by 

many nuclei can be written as29 

[−
ℏ2

2𝑚
∑∇𝑖

2 +∑𝑉(𝒓𝑖) +∑∑𝑈(𝒓𝑖 , 𝒓𝑗)

𝑗<𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 

𝑁

𝑖=1

]Ψ = 𝐸Ψ 

Equation 1 

where m is the electron mass, the first term is the kinetic energy of each electron, the second term is 

the affection on each electron from the collection of nuclei and the last term is the affection of the 

electrons on each other. Ѱ is the wavefunction of the electrons and is a function of the spatial 

coordinates of each electron. So, for a system consisting of 10000 electrons, Ѱ is a function of 30000 

variables. E is the ground state energy of the electrons. 

Density functional theory is based on two theorems by Kohn and Hohenberg30, 31. The first theorem is 

as follows; “The ground-state energy from Schrödinger’s equation is a unique functional of the 

electron density”31. It states that there is a one-to-one mapping between density of the electrons and 

their wavefunction in the ground-state, which further means that all ground-state properties are 

decided by the electron density of the ground-state31. The second theorem states; “The electron 

density that minimizes the energy of the overall functional is the true electron density corresponding 

to the full solution of the Schrödinger equation”31. So the true electron density could be found if the 

true functional was known, by varying the density until the minimum energy was found31. This is very 

useful, since this means that the original 3*N dimensional problem where N is the number of 

electrons, can be reduced to a three-dimensional problem if the functional was known. 

The electronic wavefunction Ѱ = Ѱ(r1,…,rN) can be approximated by Ѱ = Ѱ1(r)Ѱ2(r),…,ѰN(r), where Ѱi 

is the wavefunction for the i’th single electron29. This approximation is known as the Hartree 

product29. Further the density can be approximated by these single electron wave functions as30 

𝑛(𝒓) = 2∑𝜓𝑖
∗(𝒓)𝜓𝑖(𝒓)

𝑖

 

Equation 2 

This is used by Kohn and Sham who proved that the correct electron density can be found solving a 

set of equations which only includes one electron each32. This expression is32 
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[−
ℏ2

2𝑚
𝛻2 + 𝑉𝑡𝑜𝑡𝑎𝑙(𝒓)]𝜓𝑖 (𝒓) = 𝜀𝑖𝜓𝑖(𝒓) 

Equation 3 

Where 𝜓𝑖(𝒓) is the wavefunction of the i’th electron, εi is its energy and Vtotal is 

𝑉𝑡𝑜𝑡𝑎𝑙(𝒓) = 𝑉(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑋𝐶(𝒓). 

Equation 4 

The first term is the kinetic energy of the electron, the second term is the interaction between the 

electron and all nuclei. The third term is the interaction between the electron and all electrons and is 

given as33 

𝑉𝐻(𝒓) = 𝑒
2∫

𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑3𝑟′. 

Equation 5 

It is called the Hartree potential and includes a self-interaction error because the electron considered 

is included in the electron density33. This error is corrected in the exchange-correlation potential 

VXC
33. This potential is not known and has to be approximated by a model34. 

There have been several attempts to approximate the exchange-correlation potential35. However, 

there exists a system where it is known perfectly34. The free electron gas. This is not a very physical 

system, since it is the interaction between electrons and nuclei that makes the species. But it gives 

decent results. In a free electron gas, the density is constant. Using the exact free electron gas 

exchange-correlation and the local density is called the local density approximation (LDA)35. Further 

the generalized gradient approximation (GGA) uses information about the gradient of the local 

density in addition35. There are several different GGA functionals since there are many ways the 

gradient of the electron density can be used35. 

As seen in the expression for the Hartree potential, an initial density is needed to solve the Kohn-

Sham equations. Once the Kohn-Sham equations is solved, a new density can be made from Equation 

2. If this density is the same as the one used to solve the Kohn-Sham equations, this density 

corresponds to the ground state. If it does not, the density need to be adjusted somehow. With the 

adjusted density, the Kohn-Sham equations can again be solved and the calculations starts all over 

again until the self-consistent density is found33, 34. 

2.2. Vienna ab initio simulation package (VASP) 
Vienna ab initio simulation package (VASP) is a package that contains algorithms which has 
succesfully calculated the Kohn-Sham ground state of many different systems using pseudopotentials 
and a plane-wave basis set5. It solves the Kohn-Sham equations by two independent calculations. The 
first one is to find the eigenenergies and the eigenfunctions while the other is to find the density5. 

2.3. Density functional perturbation theory (DFPT) 
The Kohn-Sham equations from Equation 3 is used in DFT. However, if there is a periodic 

perturbation potential Vp, the potential Vtotal will get an additional term 𝑉𝑡𝑜𝑡𝑎𝑙
𝑝  and 

 from nondegenerate first order perturbation theory36 the first order equation will look like this 
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(−
ℏ2

2𝑚
𝛻2 + 𝑉𝑡𝑜𝑡𝑎𝑙(𝒓) − 𝜀𝑖)𝜓𝑖

𝑝
(𝒓) = (⟨𝜓𝑖(𝒓)|𝑉𝑡𝑜𝑡𝑎𝑙

𝑝
(𝒓)|𝜓𝑖(𝒓)⟩ − 𝑉𝑡𝑜𝑡𝑎𝑙

𝑝
(𝒓))𝜓𝑖(𝒓). 

Equation 6 

Linearizing the original Kohn-Sham equations  𝑉𝑡𝑜𝑡𝑎𝑙
𝑝

 can be obtained as37 

𝑉𝑡𝑜𝑡𝑎𝑙
𝑝 = 𝑉𝑝(𝒓) + 𝑒

2∫
𝑛𝑝(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ + 𝑛𝑝(𝒓) [

𝑑𝑉𝑥𝑐
𝑑𝑛

]
𝑛=𝑛0(𝒓)

 

Equation 7 

where np is the linear modification of the electron density and n0 is the electron density resulting 

from the original Kohn-Sham equations. np can be written as38 

𝑛𝑝(𝒓) = 2 𝑅𝑒 ∑𝜓𝑖
∗(𝒓)𝜓𝑖

𝑝(𝒓)Θ(𝜖𝐹 − 𝜖𝑖)

𝑖

 

Equation 8 

where Θ is the occupation function and ϵF is the fermi energy. These equations can be solved self-

consistently after the unperturbed problem is solved by starting with a trial np and then solve 

Equation 6 until a self-consistent density is found. 

2.4. Calculation of Elastic tensor 
The elastic tensor is defined, as seen from Equation 9, from the stress tensor and the strain tensor39 

𝜎𝑖 = ∑ 𝐶𝑖𝑗𝜖𝑗
6
𝑗=1 . 

Equation 9 

Here σi is the i’th component of the stress tensor, ϵj is the j’th component of the stress tensor and C 

is the elastic tensor. There are six independent components of the strain tensor, as it is a symmetric 

3x3 tensor40. The components of it is just the distortion of a point from the original structure in the 

different directions and can be easily controlled. There are six independent stress components by the 

same reason as for the strain tensor41. These components are forces per unit area in different 

directions42 and can be calculated from DFPT calculations within VASP. The elastic tensor can be 

considered as a 6x6 matrix. This is also symmetric which gives it 21 independent components43. 

Equation 9 therefore gives six equations with 21 unknown variables. Solving this equation can be 

done using IBRION 6 and ISIF >= 3 in VASP. This generates six configurations of the original structure 

with only one strain component present for each configuration and so that all strain components are 

generated39. Then the stresses are calculated for each configuration39. Each configuration will make it 

possible to solve six components of the elastic tensor39. The method described for the elastic tensor 

is valid for the triclinic case, which means that it holds for all other cases too. 

2.5. Calculation of Debye temperature from elastic tensor 
The elastic coefficients can be used to find the bulk moduli (𝐵) and the shear moduli (𝐺). They are 

given by 

𝐵 =
1

9
((𝐶11 + 𝐶22 + 𝐶33) + 2(𝐶12 + 𝐶31 + 𝐶23)) 

Equation 10 

and 
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𝐺 =
1

15
((𝐶11 + 𝐶22 + 𝐶33) − (𝐶12 + 𝐶31 + 𝐶23) + 3(𝐶44 + 𝐶55 + 𝐶66)). 

Equation 11      

These can again be used to find the longitudinal (𝑣𝑙) and shear (𝑣𝑠) sound velocities as44 

𝑣𝑙 =
√
𝐵 +

4
3
𝐺

𝜌
 

Equation 12 

and 

𝑣𝑠 = √
𝐺

𝜌
 

Equation 13 

where 𝜌 is the materials density. From the longitudinal and shear sound velocities, the Debye 

temperature can be calculated as45 

ΘD =
ℎ

𝑘𝐵
(
9𝑚

4𝜋
)

1
3
(
1

𝑣𝑙
3 +

2

𝑣𝑠
3)

−
1
3

 

Equation 14 

2.6. Force constants from Debye temperature 
Force constants are used to generate the canonical configurations46. This is done by Shulumba et al.’s 

method46. They are using a pair potential U(r) that must fulfil two needs: 

𝜕𝑈(𝑟)

𝜕𝑟𝑖𝑗
= 0, 

Equation 15 

𝜕2𝑈(𝑟)

𝜕𝑟𝑖𝑗
2 =

𝜂

𝑟4
. 

Equation 16 

The first precondition is that the potential must be zero at pair distances of the equilibrium crystal 

and the second is that the second derivatives should be positive and decrease quickly with increasing 

distance. As these preconditions are fulfilled, the crystal is forced to be stable in this configuration. 

From these pair potentials the force constants are calculated analytically as 

Φ𝑖𝑗(𝒓) = −
𝜂

𝑟6
(

𝑟𝑥
2 𝑟𝑥𝑟𝑦 𝑟𝑥𝑟𝑧

𝑟𝑥𝑟𝑦 𝑟𝑦
2 𝑟𝑦𝑟𝑧

𝑟𝑥𝑟𝑧 𝑟𝑦𝑟𝑧 𝑟𝑧
2

), 

Equation 17 

where r is the vector between atom i and j. In this method, the force constants are given by η alone 

which is given by numerically matching the zero-point energy of the phonons to a Debye model, 
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1

𝑁𝑎
∑

ℏ𝜔𝑖(𝜂)

2𝑖 =
9𝑘𝐵𝑇𝐷

8
, 

Equation 18 

where TD is the Debye temperature and ωi is the phonon eigenfrequencies. 

2.7. Frequencies 
The frequencies are found by solving the eigenequation47 

𝜔2(𝒌, 𝜈)𝒆(𝒌, 𝜈) = 𝑫(𝒌)𝒆(𝒌, 𝜈), 

Equation 19 

where e is a 3n vector which consists of the displacements of the atoms weighted by the square root 

of the atomic mass and equals47 

𝒆(𝒌, 𝜈) =

(

 
 
 
 
 

√𝑚1𝑈𝑥(1, 𝒌, 𝜈)

√𝑚1𝑈𝑦(1, 𝒌, 𝜈)

√𝑚1𝑈𝑧(1, 𝒌, 𝜈)

√𝑚2𝑈𝑥(2, 𝒌, 𝜈)

⋮

√𝑚𝑛𝑈𝑧(𝑛, 𝒌, 𝜈))

 
 
 
 
 

. 

Equation 20 

In this expression m1 is the mass of atom 1 and so on up to atom n, Ux(1,k,ν) is the displacement 

vector in direction x of atom 1. n is the number of atoms per unit cell. D is the dynamical matrix 

which is a 3𝑛 𝑥 3𝑛 which is written as a 𝑛 𝑥 𝑛 matrix of 3 𝑥 3matrices. The elements of the 3 𝑥 3 

matrices are given by48 

𝐷𝛼𝛽(𝑗, 𝑗
′, 𝒌) =

1

(𝑚𝑗𝑚𝑗′)
1
2

∑𝜙𝛼𝛽 (
𝑗𝑗′

0𝑙′
) exp(𝑖𝒌[𝒓(𝑗′𝑙′) − 𝒓(𝑗0)])

𝑙′

, 

Equation 21 

where α, β is the cartesian directions x, y, z, 𝜙 (
𝑗𝑗′

0𝑙′
) is the force constant of atom j in the reference 

unit cell 0 and atom j’ in unit cell l’. 

2.8. Canonical configurations 
The canonical configurations are snapshots of the supercell at a given temperature46. The distribution 

of the atoms was first given by West and Estreicher49 and is found by using a harmonic normal mode 

transformation to generate positions 𝑢𝑖  and velocities 𝑢𝑖̇  given by46 

𝑢𝑖 =∑𝜖𝑖𝑠〈𝐴𝑖𝑠〉√−2 ln 𝜉1 sin 2𝜋

3𝑁𝑎

𝑠=1

𝜉2 , 

Equation 22 

𝑢𝑖̇ = ∑𝜔𝑠𝜖𝑖𝑠〈𝐴𝑖𝑠〉√−2 ln 𝜉1 cos 2𝜋𝜉2

3𝑁𝑎

𝑠=1

. 

Equation 23 
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Here ωs
2 and ϵis are eigenvalues and eigenvectors of the dynamical matrix corresponding to mode s 

and atom i. ξn represent uniform random variables between zero and one, and 〈𝐴𝑖𝑠〉 are the thermal 

average of the normal mode amplitudes49: 

〈𝐴𝑖𝑠〉 =
1

𝜔𝑠
√
𝑘𝐵𝑇

𝑚𝑖
, 

Equation 24 

where ℏ𝜔 ≪ 𝑘𝐵𝑇 is in the classical limit and this approximation for the amplitude is valid. 

2.9. Force constants from canonical configurations 
The following description of TDEP comes from Hellman’s articles about TDEP6-8. In the TDEP method, 

a model Hamiltonian is introduced, 

𝐻𝑚𝑜𝑑𝑒𝑙 = 𝑈0 +∑
𝒑𝑖
2

2𝑚𝑖
𝑖

+
1

2!
∑ 𝜙𝑖𝑗

𝜎𝜌
𝑢𝑖
𝜎𝑢𝑗

𝜌

𝑖𝑗𝜎𝜌

+
1

3!
∑ 𝜓𝑖𝑗𝑘

𝜎𝜌𝜉
𝑢𝑖
𝜎𝑢𝑗

𝜌
𝑢𝑘
𝜉

𝑖𝑗𝑘𝜎𝜌𝜉

, 

where U0 is the potential of the static lattice. pi, ui and mi are the momentum, the displacement and 

the mass of the i’th atom respectively. σ, ρ and ξ denotes cartesian directions, and φ and 𝜓 are the 

second and third order force constants respectively. This model Hamiltonian can be set equal to the 

Hamiltonian from Born-Oppenheimer molecular dynamics at a given temperature. This is done 

within TDEP by minimizing the difference of the forces from the model Hamiltonian and the forces 

from Born-Oppenheimer. Since there is a lot of force constants, symmetry reduction is vital, at least 

for force constants of higher order. The symmetry relations are7, 50 

𝜙𝑖𝑗
𝜎𝜌
= 𝜙𝑗𝑖

𝜌𝜎
 

Equation 25 

𝜓𝑖𝑗𝑘
𝜎𝜌𝜉

= 𝜓𝑖𝑘𝑗
𝜎𝜉𝜌

= 𝜓𝑗𝑖𝑘
𝜌𝜎𝜉

= 𝜓𝑗𝑘𝑖
𝜌𝜉𝜎

= 𝜓𝑘𝑖𝑗
𝜉𝜎𝜌

= 𝜓𝑘𝑗𝑖
𝜉𝜌𝜎

. 

Equation 26 

For tensors that are related by symmetry operation S, their components are related by 

𝜙𝑖𝑗
𝜎𝜌
=∑𝜙𝑘𝑙

𝛼𝛽
𝑆𝛼𝜎𝑆𝛽𝜌

𝛼𝛽

 

Equation 27 

𝜓𝑖𝑗𝑘
𝜎𝜌𝜉

= ∑ 𝜓𝑙𝑚𝑛
𝛼𝛽𝛾
𝑆𝛼𝜎𝑆𝛽𝜌𝑆𝛾𝜉𝛼𝛽𝛾 . 

Equation 28 

The acoustic sum rules will also be obeyed by the force constants 

∑𝝓𝑖𝑗 = 0

𝑗

, 

Equation 29 

and 
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∑𝝍𝑖𝑗𝑘 = 0

𝑘

, 

Equation 30 

where 𝝓𝑖𝑗 and 𝝍𝑖𝑗𝑘  are the force tensors which consist of all directional components. 

The forces resulting from the model Hamiltonian can be expressed as 

𝐹𝑖
𝜎 =∑𝜙𝑖𝑗

𝜎𝜌
𝑢𝑗
𝜌
+
1

2
∑ 𝜓𝑖𝑗𝑘

𝜎𝜌𝜉
𝑢𝑗
𝜌
𝑢𝑘
𝜉

𝑗𝑘𝜌𝜉𝑗𝜌

 

Equation 31 

and by introducing 𝜃𝑘 as the irreducible force constants the forces are 

𝐹𝑖
𝜎 =∑𝜃𝑘𝑐𝑘𝑖

𝜎

𝑘

(𝑼) 

Equation 32 

 

where cki
σ(U) is a polynomial function of all the atoms within a cutoff radius rc and depends on the 

atoms and the structure of the material. For a supercell of the material, the forces can be collected 

into a matrix and represented as a matrix equation: 

𝑭𝑚𝑜𝑑𝑒𝑙 = 𝑪(𝑼)𝚯. 

Equation 33 

C is a matrix that holds the elements of cki
σ in Equation 32 and is then a function of all the 

displacements in the supercell, while Θ is a vector that consists of all the 𝜃𝑘. Fmodel is the matrix that 

consists of all the forces from the model Hamiltonian. As the forces from the model Hamiltonian are 

expressed, it can be compared to the forces from the Born-Oppenheimer molecular dynamics. The 

forces from the molecular dynamics are calculated from different canonical configurations of the 

supercell46. All these along with the displacements will be used to overdetermine the force constants 

from the model. They are determined by minimizing the difference between the forces from 

molecular dynamics and the forces from the model: 

Δ𝑭 =
1

𝑁𝑐
∑|𝑭𝑀𝐷

𝑐 − 𝑭𝑚𝑜𝑑𝑒𝑙
𝑐 |2 =

1

𝑁𝑐

𝑁𝑐

𝑐=1

∑|𝑭𝑀𝐷
𝑐 −

𝑁𝑐

𝑐=1

𝑪(𝑼𝑀𝐷
𝑐 )𝚯|2 =

1

𝑁𝑐
‖(

𝑭𝑀𝐷
1

⋮

𝑭𝑀𝐷
𝑁𝑐  
) − (

𝑪(𝑼𝑀𝐷
1 )
⋮

𝑪(𝑼𝑀𝐷
𝑁𝑐 )

)𝚯‖

2

. 

Equation 34 

In Equation 34, Nc is the number of configurations used, and the subscript c corresponds to 

configuration c. Differentiating with respect to Θ gives that 

𝚯 = (

𝑪(𝑼𝑀𝐷
1 )
⋮

𝑪(𝑼𝑀𝐷
𝑁𝑐 )

)

+

(

𝑭𝑀𝐷
1

⋮

𝑭𝑀𝐷
𝑁𝑐
) 

Equation 35 
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is the Θ that minimizes the forces. By substituting back to 𝝓𝑖𝑗 and 𝝍𝑖𝑗𝑘 the quadratic and cubic force 

constants are determined. So, both orders of force constants can be determined at the same time. 

2.10. Quasiharmonic approximation 
In the quasiharmonic approximation the Helmholtz free energy F which is the free energy at constant 

volume is given by51 

𝐹 = 𝐸0 +
1

2
∑ℏ𝜔(𝒌, 𝜈) + 𝑘𝐵𝑇∑ln [1 − 𝑒𝑥𝑝 (−

ℏ𝜔(𝒌, 𝜈)

𝑘𝐵𝑇
)]

𝒌,𝜈𝒌,𝜈

. 

Equation 36 

Here E0 is the potential energy of the crystal, k is the wavevector, ν is the mode of the wavevector, ω 

is the frequency of wavevector k and mode ν and T is the temperature. The two last terms are 

referred to as the vibrational free energy. 

2.11. Birch-Murnaghan equation of state 
The Birch-Murnaghan equation of state relates the volume and pressure of a body using strain 

components up to third order52. The equation is given by52 

𝑃(𝑉) =
3𝐵

2
[(
𝑉0
𝑉
)

7
3
− (
𝑉0
𝑉
)

5
3
] [1 +

3

4
(𝐵′ − 4)((

𝑉0
𝑉
)

2
3
− 1)] 

Equation 37 

where P is the pressure, B is the bulk modulus, V0 is the reference volume, V is the volume caused by 

the pressure and B’ is the derivative of the bulk modulus with respect to pressure. The Helmholtz 

free energy, E(V), can be found by integrating the pressure and is given by52 

𝐸(𝑉) = 𝐸0 +
9𝑉0𝐵0
16

[((
𝑉0
𝑉
)

2
3
− 1)

3

𝐵0
′ + ((

𝑉0
𝑉
)

2
3
− 1)

2

(6 − 4(
𝑉0
𝑉
)

2
3
)]. 

Equation 38 

2.12. Gibbs free energy 
The pressure can be calculated by53 

𝑃 = −(
𝜕𝐹

𝜕𝑉
)
𝑇
, 

Equation 39 

where F is the Helmholtz free energy. This expression for pressure is equivalent to Equation 37 

setting the Helmholtz free energy equal to Equation 38. From this the Gibbs free energy, G, can be 

calculated from54 

𝐺 = 𝐹 + 𝑃𝑉. 

Equation 40 

From this it is seen that at zero pressure the Gibbs free energy equals the Helmholtz free energy. The 

Gibbs free energy decides what phase is stable at the given temperature and pressure. For two 
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phases of a material it is the one with lowest Gibbs free energy that is the stable one and the phase 

the material goes to if it is not hindered. 

2.13. Pyroelectric coefficient 
The pyroelectric vector represents how the macroscopic dipole moment P changes with respect to 

temperature10. This can be expressed at constant stress σ as10 

(
𝑑𝑃𝛽

𝑑𝑇
)
𝜎

= (
𝜕𝑃𝛽

𝜕𝑇
)
𝜌

+∑(
𝜕𝑃𝛽

𝜕𝑠𝛼
)
𝑇

(
𝜕𝑠𝛼
𝜕𝑇
)
𝜎

𝑖

= 𝑝1
𝛽(𝑇) + 𝑝2

𝛽
(𝑇), 

Equation 41 

where Pβ is the β component of the macroscopic dipole moment, ρ indicates constant strain, sα is the 

α component of the macroscopic strain tensor that have full crystalline symmetry, α and β are the 

cartesian directions, T is the temperature, p1 is the primary pyroelectricity and p2 is the secondary 

pyroelectricity. The primary part is the contribution at constant strain and is given to first order by20, 

55 

𝑝1
𝛽(𝑇) =

𝑒

Ω
∑ 𝑍𝜅

𝛽𝛼
(
⟨𝜕𝑢𝜅𝛼(𝑶𝜈)⟩

𝜕𝑇
)

𝑗,𝜅𝛼

, 

Equation 42 

where e is the elementary charge, Ω is the temperature dependent volume of the unit cell, Zκ is the 

Born effective charge of the κ atom, u(0j) is the displacement given mode ν of the phonon 

momentum at q = 0 = (0,0,0). The derivative factor can further be written as20, 56 

(
〈𝜕𝑢𝜅𝛼(𝟎𝜈)〉

𝜕𝑇
) =

2

ℏ𝜔𝟎𝜈
√

ℏ

2𝑀𝜅𝜔𝟎𝜈
𝜖𝜅𝛼(𝟎𝜈)∑𝑉3 (

𝟎 𝒒 −𝒒
𝜈 𝜆 𝜆

)
𝜕(2𝑛𝒒𝜆 + 1)

𝜕𝑇
𝒒𝜆

, 

Equation 43 

where ℏ is Planck’s constant divided by 2π, ω0ν is the frequency of the phonon at momentum point 0 

and mode ν, Mκ is the mass of atom κ, ϵκα(0j) is the normalized α component of the (0ν) eigenvector 

of the harmonic dynamical matrix of atom κ, nqλ is the Bose occupation factor and V3 is20, 56 

𝑉3 (
𝟎 𝒒 𝒒
𝜈 𝜆 𝜆

)

= ∑ √
ℏ3

8𝑀𝜅0𝑀𝜅1𝑀𝜅2𝜔𝟎𝜈𝜔𝒒𝜆𝜔−𝒒𝜆
𝜖𝜅0𝛼0(𝟎𝑗)𝜖𝜅1𝛼1(𝒒𝜆)𝜖𝜅2𝛼2(−𝒒𝜆)(

𝜕3𝐸

𝜕𝑢𝜅0𝛼0
𝑙0 𝜕𝑢𝜅1𝛼1

𝑙1 𝜕𝑢𝜅2𝛼2
𝑙2

) 𝑒𝑖𝒒(𝝉𝑙1−𝝉𝑙2)

𝜅0𝜅1𝜅2,𝛼0𝛼1𝛼2,𝑙1𝑙2

 

Equation 44 

where E is the energy and its third derivatives are the third order force constants, and 𝝉𝑙1and 𝝉𝑙2are 

position vectors of the two atoms in the triplet that is not atom zero. The second order primary part 

which is the electron-phonon renormalization contribution is not considered in this study21. 

The secondary part is caused by the unit cell expanding, and is given as20, 21, 56 

𝑝2
𝛽
(𝑇) = 𝛾𝛽𝛼

𝑑𝑠𝛼
𝑑𝑇

 

Equation 45 
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where γβα is the βαα component of the piezoelectric tensor and 
𝑑𝑠𝛼

𝑑𝑇
 equals the CTEs of material. 

2.14. Summary of the formalism 
The theory behind the methods is now presented. The idea is to use VASP and TDEP to calculate the 

free energy as a function of temperature and lattice parameters. From there, by minimizing the 

energy as a function of lattice parameters at each temperature, the lattice parameters are found as a 

function of temperature. TDEP calculates the phonon eigenfrequencies at a given temperature, then 

uses the quasiharmonic approximation to calculate the vibrational free energy at all temperatures. 

The CTEs is straight forwardly calculated from the lattice parameters vs temperature. The 

piezoelectric tensor and born effective charges are calculated in the calculations where DFPT is used.  

The force constants are calculated from TDEP. From this the pyroelectric vector can be calculated. 
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3. Method 
The method started with finding a proper energy cutoff for the plane wave basis set and the k-point 

density. Then the equilibrium structures were found and used for further calculations. Calculations to 

find the elastic and piezoelectric tensors amongst others were done. From the elastic tensor the 

Debye temperature was found, and the first set of canonical configurations were made with TDEP. 

From VASP calculations of these configurations, the assumed correct force constants of the 

equilibrium structure were found. The vibrational free energy was converged with respect to number 

of configurations, cutoff radius of atoms included in the calculations and the Debye temperature. 

From the assumed correct force constants, canonical configurations of cells with expanded and 

compressed lattice parameters were made and total energy calculations of these were performed. 

The vibrational free energy and the heat capacity as a function of temperature for each lattice 

parameters were found. Total energy calculations of the expanded and compressed unit cells were 

also done. From the total energy calculations and the vibrational free energy, the energy as a 

function of volume were minimized to find the lattice parameters and CTEs as a function of 

temperature. The number of volumes needed to find the CTEs was reduced drastically. The third 

order force constants were investigated, and the heat capacity was also minimized at each 

temperature. The Gibbs free energy as a function of pressure was found from Birch-Murnaghan 

equation of state and the secondary pyroelectric vector was found from Equation 45.  

3.1. Convergence with respect to energy cutoff 
First convergence of relative energy, pressure, force and bandgap were checked with respect to 

energy cutoff for the planewave basis set in eV and k-point density. By relative energy it means the 

absolute value of the difference of the energies from two comparable species. For the TiFe2Si system 

it was between one formula unit of Heusler TiFe2Si and one formula unit of orthorhombic TiFeSi2. 

TiFeSi2 was used because it is a material with cheap atoms to do calculations for. For diamond it was 

between one carbon atom in its original structure and one carbon atom in a structure with the atom 

at the origin slightly displaced 0.02 Å along the first translation vector. For GaNaTe2 it was between 

α-GaNaTe2 and β -GaNaTe2. For tetragonal GaCuSe2 it was between one formula unit of the original 

structure and one formula unit of the structure with a cupper atom displaced 0.02 Å along the first 

translation vector. For cubic GaCuSe2 it was between one formula unit of its structure and one 

formula unit of the tetragonal phase. The convergence criterions for TiFeSi system, GaNaTe2 and 

GaCuSe2 was that relative energy should change less than 1 meV, pressure less than 3 kbar, force less 

than 0.005 eV/Å and band gap less than 0.01 eV. For diamond the convergence criterions were the 

same for relative energy and force, but pressure should change less than 17.5 kbar and bandgap less 

than 0.02 eV. These changes are for a change in energy cutoff of 50 eV. 

The convergence criterion was fulfilled for diamond with energy cutoff at 400 eV, while it was 

fulfilled when the energy cutoff was at 450 eV for the TiFeSi system. For GaNaTe2 all criterions were 

fulfilled for a cutoff value at 400 eV, for tetragonal GaCuSe2 they were fulfilled for an energy cutoff at 

450 eV and for cubic GaCuSe2 they were fulfilled for an energy cutoff at 500 eV. For the TiFeSi 

system, the GaNaTe2 system and GaCuSe2 the k-point density was set to 4 during these calculations 

while it was set to 5 for diamond. For TiFeSi normal Ti, Si and Fe pseudopotentials were used, for 

diamond normal C potential was used, for GaNaTe2 Ga_d, Na_pv and Te pseudopotentials were used 

and for GaCuSe2 Ga_d, Cu_pv and Se pseudopotentials were used. These pseudopotentials were 

used for all other calculations of these materials too, unless for the TiFeSi system which used Ti_pv, 

Fe_pv and Si for the other calculations except convergence of k-point density. In Appendix A the 

parameters in the INCAR file for all materials during these calculations are shown. 
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3.2. Convergence with respect to k-point density 
Relative energy, pressure, force and bandgap should also be converged with respect to k-point 

density. The convergence criterions for TiFeSi system, GaNaTe2 and GaCuSe2 was that relative energy 

should change less than 1 meV, pressure less than 3 kbar, force less than 0.005 eV/Å and band gap 

less than 0.01 eV. For diamond the convergence criterions were the same for relative energy, 

pressure and force, but bandgap should change less than 0.02 eV. These changes are for a change in 

k-point density of 1 Å-1. These parameters were converged for the TiFeSi system when the k-point 

density was at 4 Å-1, and for diamond when the k-point density was at 3 Å-1. For the GaNaTe2 system 

the parameters were only converged for these criterions when the k-point density was at 13 Å-1. This 

is a very high k-point density. Therefore, the convergence criterion for bandgap was raised to 0.1 eV 

so the convergence criterions were satisfied for a k-point density of 4 Å-1. For tetragonal GaCuSe2 a k-

point density of 3 was sufficient. For cubic GaCuSe2, convergence considering the relative change in 

energy between the two phases was very hard to get. Therefore, the relative energy was between 

the original structure and the structure with the copper atom displaced 0.02 Å in the negative x-

direction. Using this relative energy, a k-point density of 7 Å-1 was needed for convergence of all 

parameters and even then, it was not stably converged. Meaning the convergence criterion was not 

fulfilled for a k-point density of 8 Å-1 and 9 Å-1. Anyway, for a k-point density of five the change in 

bandgap was around 0.3 eV, the change in pressure at 3.22 and the change in relative energy was 

below the convergence criterion. So, a k-point density of five were considered to be good enough. 

The parameters in INCAR were the same as for the energy cutoff test with the converged energy 

cutoff value. 

After convergence all further calculations were done with energy cutoff and k-point density at least 

as big as the lowest converging value. 

3.3. Relaxation of the structures 
The next step was relaxation of the structure. That is to find the lattice constant and atomic positions 

that lead to lowest energy. This is done by specifying more parameters in the INCAR file. This was 

done twice, first for the initial POSCAR, then with the relaxed POSCAR as the initial lattice constants. 

This is because artificial forces and pressures can remain if the initial lattice constants change a lot 

after the first relaxation57. 

Parameter values in the INCAR file during relaxation are shown in Appendix A. For the TiFe2Si 

structure the POTCAR file was made with Ti_pv, Si and Fe_pv pseudopotentials as this seemed to be 

necessary to get real phonon frequencies, and in the INCAR file GGA was set to PS to use the Perdew-

Burke_Ernzerhof revised for solids exchange-correlation potential.  

The relaxed lattice constant of the different materials is shown in Table 1. All materials have at most 

two different lattice parameters. 

Table 1: The relaxed lattice parameters of the materials. 

Material: Lattice parameter a: Lattice parameter c: 

Diamond 3.572 Å a 

TiFe2Si 5.632 Å a 

α-GaNaTe2 7.181 Å 10.173 Å 

β- GaNaTe2 8.079 Å 6.7504 Å 

Tetragonal GaCuSe2 5.573 Å 11.075 Å 

Cubic GaCuSe2 6.506 Å a 
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3.4. Calculation by density functional perturbation theory 
After convergence and relaxation, the DFPT calculations were done to calculate the elastic tensor, 

the piezoelectric tensor and the Born effective charge. This was done by specifying the parameters of 

the DFPT calculations as tabled in Appendix A. The Debye temperature calculated from the elastic 

tensor was zero for cubic GaCuSe2. Therefore, the phonon eigenfrequencies of this material was 

checked, and they were imaginary, which means that cubic GaCuSe2 is unstable. 

3.5. Calculations of canonical configurations 
The elastic parameters were then used to calculate the Debye temperature as described in theory by 

the program Elastic_debye.py. A supercell of each material was created by the program 

generate_structure which is in the TDEP package, with 200 as the desired number of atoms in the 

cell. Diamond got a supercell of 216 atoms, TiFe2Si got a supercell of 56 formula units, both GaNaTe2 

stuctures got supercells of 60 formula units and GaCuSe2 got a supercell of 54 formula units. The 

program canonical_configuration, also in the TDEP package, used the supercell and force constants 

derived from the Debye temperature to create configurations that were canonical ensembles of the 

supercell at 300 K. It created 20 configurations for diamond, TiFe2Si and GaCuSe2. For each of these 

configurations, a standard total energy calculation was done using VASP. For GaNaTe2, 100 

configurations were made for each structure. However, for the α-structure, the total energy was only 

calculated for eight of the configurations. For the β-structure, the total energy was only calculated 

for five of the configurations. The parameters of the INCAR files are tabled in Appendix A. Parameters 

for electronic relaxation are the only parameters needed for these calculations. When these 

calculations were finished, the program process_outcar_5.3.py from the TDEP package was used to 

evaluate the OUTCAR files and create input files for the another TDEP program, 

extract_forceconstants. This program then used those files, with a cutoff radius for the atoms 

included in the calculations for the second order force constants at 7 Å, to find the correct second 

order force constants. These force constants were used by phonon_dispersion_relations to calculate 

the phonon dispersions and the vibrational free energy at 300 K. The dispersion relations were then 

plotted to see that there were no imaginary phonon frequencies. If there were, the material is 

dynamically unstable. 

3.6. Convergence of phonon free energies 
For TiFe2Si and GaNaTe2 convergence of phonon free energy at 300 K, 1500 K and 3000 K with 

respect to number of configurations were done to ensure that the free energies were converged at 

the whole temperature specter. For GaCuSe2 the convergence was checked at 300 K, 1500 K and 

2000 K. The convergence criterion was that the free energy should change less than 1 meV/formula 

unit for one more configuration. This was fulfilled for 3 configurations used for TiFe2Si and for 4 

configurations for β-GaNaTe2. Difference in free energy vs number of configurations is shown in 

Appendix B. For GaCuSe2 it was problematic to make the phonon free energy converge with this 

criterion at 1500 K and 2000 K. Therefore, the relative convergence was checked at the different 

temperatures. The relative change going from five configurations to six at 300 K was bigger than the 

relative change at this step for the other temperatures. At five configurations the original 

convergence criterion was fulfilled at 300 K. Therefore, five configurations were considered to be 

sufficient. For α-GaNaTe2, the force constants corresponded to imaginary phonon frequencies even 

when they were extracted from 19 canonical configurations which means that the structure is 

dynamically unstable for this material. To check if it was stable at 100 K or 1000 K, 20 canonical 

configurations were made at these temperatures too and used to calculate force constants in the 

same approach as at 300 K. These force constants also corresponded to imaginary phonon 

frequencies. Therefore, there was done no further calculations on this structure. Convergence of free 
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energy at 300 K with respect to the cutoff radius of the second order force constants were also done 

for TiFe2Si. The cutoff values were chosen so that they exactly included the next layer of neighbor 

atoms in the calculations. From Appendix B it can be seen that the free energy is converged under 1 

meV/formula unit for a cutoff value at 2.81594 Å, which is far below the value used here. So, these 

calculations are well converged with respect to cutoff value of the second order force constants. This 

convergence test was based on information from the calculations of all 20 configurations. How much 

the final free energies changed with respect to the Debye temperature were also explored for 

primitive rhombohedral TiFe2Si. That means the Debye temperature used to create the first 

configurations was varied and the final free energies originating from different Debye temperatures 

were compared. The dependence is shown in Appendix B. 

3.7. Volume grid 
Five new unit cells were created for diamond, one where the lattice parameter was one percent 

longer than the lattice parameter at 0 K, one where it was two percent longer, one where it was 

three percent longer, one where it was one percent shorter and one where it was two percent 

shorter. For TiFe2Si nine new unit cells were made, those as for diamond and in addition four that 

were four to seven percent longer. For each of the different sizes of the unit cell, including the 

original one, a supercell was made as before. From these supercells 20 canonical configurations were 

made for diamond and three for TiFe2Si as the convergence test showed that three were sufficient. 

These canonical configurations were not made using the Debye temperature, but with the extracted 

force constants used to find phonon dispersions and free energies as described earlier. They were 

extracted from information about all 20 configurations for both TiFe2Si and for diamond and a cutoff 

value of 7 Å for the second order force constants. Then the same method as above was used for each 

of these lattice parameters to calculate free energies in the range from 0 K to 3000 K with steps at 1 

K. The total energy calculations for each canonical configuration were done with the INCAR values 

from table 7 for these materials. Also, a standard total energy calculation was done for each of the 

different sizes of each material at the small unit cells that the supercells were made from, also these 

with INCAR parameters from table 7. Then for both materials, the program read_data.py read these 

total energies at 0 K, the free energies from 0 K to 3000 K and the lattice parameters of the different 

sizes of the material in for further analysis as described below. 

3.8. Finding the lattice parameter and coefficient of thermal expansion 
For each temperature, the total energy, that is the energy from the 0 K calculation plus the free 

energy, was plotted as a function of size. These points were then used to fit a Birch-Murnaghan 

equation of state expression for the energy and decide the lattice parameter at that temperature 

based on the minimum energy. For a reliable fit it was required that the minimum of the curve was 

within the range of the expanded lattice parameter. This was ensured for all materials within in 

temperature range used. The lattice parameter could then be plotted as a function of temperature 

and further the coefficient of thermal expansion from the derivative of it. To get a continuous CTE, 

the natural logarithm of the lattice parameter had to be interpolated by polynomials that matched 

on their endpoints. For diamond this interpolation was from 0 K to 3000 K with steps at 100 K for 

each polynomial. For TiFe2Si, the interpolation was from 0 K to 3000 K with steps at 30 K. For both 

materials, polynomials of third order were used. Both polynomial degree and their range were tested 

to find those which gave lowest mean squared error. These interpolations gave a high accuracy, with 

a mean squared error of 7.14202*10-15 for diamond and of 2.51678*10-15 for TiFe2Si. 

3.9. Reduction of volumes 
For more complicated lattice systems, such as tetragonal and orthorhombic, there are, respectively 

two and three lattice parameters to find as a function of temperature. To find the lattice parameters, 
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canonical configurations must be made for the different sizes of the unit cell. However, the number 

of unit cells needed to span the whole temperature scale for a material with one lattice parameter, 

will now be to the power of two and three for materials with two and three independent lattice 

parameters respectively. That means for a material with two or three lattice parameters that 

expands like TiFe2Si, where ten unit cells were needed, 100 and 1000 unit cells are now needed. And 

from these, several canonical supercell configurations have to be made and calculated for. It would 

be nice if not all different sizes of the lattice parameters were needed. This was checked for TiFe2Si, 

including the unit cell with lattice parameter three percent shorter than the lattice parameter at 0 K. 

As 3000 K probably is outside the temperature range of interest, 2000 K was the highest temperature 

included in this test. In this temperature range, lattice parameters from -2 percent to 5 percent 

should be more than enough to get good Birch-Murnaghan equation of state fit at all temperatures. 

It was found that only using the lattice parameter that was three percent shorter, one percent 

shorter, one percent longer, three percent longer and five percent longer, gave a coefficient of 

thermal expansion which differed below 2 % except for the very lowest temperatures as shown in 

Figure 7.  At the lowest temperatures the values are very small, so the percentage difference is not a 

good measurement of the error. Therefore, starting at compression of 3 % and increasing the volume 

with 2 % of the 0 K structure for each step, was considered to be a sufficient approximation. 

 

Figure 7: Difference between CTE calculated using the eight original unit cell sizes from -2 % to 5 %, and CTE calculated using 
the selected five sizes for TiFe2Si. 

3.10. Volume grid for β-GaNaTe2 
For β-GaNaTe2, unit cells with lattice parameters from minus three percent to three percent with two 

percent between each step were made. That gives four different lengths of each independent lattice 

parameter. β-GaNaTe2 has a tetragonal crystal system, which means that four to the power of two 
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different unit cells were needed to find the free energy as a function of the two independent lattice 

parameters. For each of these unit cells a supercell was created, and from them the six canonical 

configurations were created at first because the total energy calculations of them were sometimes 

hard to converge. The canonical configurations were made with force constants extracted from four 

of the canonical configurations of the supercell made from the relaxed structure. With six cells and 

expecting only four to be needed, it should be possible to get enough equations for the force 

constants even if not all calculations did converge. The result was that three calculations did not 

converge, all corresponding to different volumes. That means the phonon free energies for each 

volume originated from at least five configurations, which should be sufficient. For those which all six 

calculations converged, all six configurations were used. However, for the unit cell with three percent 

longer a-lattice vector and one percent longer c-lattice vector, five configurations were not enough 

to get only real phonon frequencies. So, eleven new configurations were made for it and calculated 

for. Out of the eleven new configurations, nine converged successfully. It was sufficient with six 

configurations to get proper free energies, so six configurations were used. These total energy 

calculations were done with INCAR values from table 7 for this material. Then the free energies for 

each unit cell were found as before in the range from 0 K to 1500 K. Total energy calculations were 

done on the original unit cells with different sizes of this material. These calculations were also done 

with INCAR values from table 7 for this material. Then the program CTE.py read these total energies 

at 0 K and phonon free energies in, to get the total energy for each size at each temperature. At each 

temperature the total energies were fitted to a polynomial with all combinations of the two lattice 

parameters to second order. From this polynomial the total energy was minimized as a function of 

lattice parameters using scipy.optimize’s function minimize. From this the lattice parameters as a 

function of temperature was found. The natural logarithm of the lattice parameters as a function of 

temperature was interpolated by third order polynomials from 0 K to 1500 K with steps at 50 K. This 

gave a mean squared error of 6.205*10-11 for the fit of the a-lattice parameter and of 6.626*10-11 for 

the fit of the c-lattice parameter. From these interpolations the CTE of each lattice parameter was 

found. 

3.11. Volume grid for GaCuSe2 
For GaCuSe2 the independent lattice parameters varied from minus three percent to five percent 

with two percent between each step. As this structure also is tetragonal, it has two independent 

lattice parameters, which gives 25 different unit cells needed to find the lattice parameters as a 

function of temperature. For each of these unit cells, a supercell was made as usual. Before making 

canonical configurations of these supercells, they were relaxed with respect to the atomic positions 

with fixed lattice parameters. Most of the supercells were able to be relaxed using 64 cpu’s from 

SAGA with time limit of three days. However, for four cells this was not sufficient, neither with the 

blocked Davidson algorithm (ALGO = Normal in INCAR). These cells were the one with three percent 

shorter a-lattice parameter and three percent longer c-lattice parameter, the one with one percent 

longer a-lattice parameter and five percent longer c-lattice parameter, the one with three percent 

longer a-lattice parameter and three percent longer c-lattice parameter and the one with three 

percent longer a-lattice parameter and five percent longer c-lattice parameter. Therefore, they were 

tried relaxed using lighter convergence parameters in the INCAR first. That is lowering the energy 

cutoff to 400 eV and setting PREC to normal instead of accurate. Using these parameters in the 

INCAR, these cells were relaxed successful too. Then these structures were relaxed with the INCAR 

values that were used for all supercells shown in Appendix A. For the supercell with three percent 

shorter a-lattice parameter and three percent longer c-lattice parameter, this did not work 

immediately. SYMPREC, which determines the accuracy the atomic positions, had to be specified to 

10-8. Then it did work. 
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After relaxation of the atomic positions in the supercells, the position of the atoms in the original 

sized cells did no longer correspond to the position of the atoms in the supercells. Therefore, the 

correct position of the original sized cells had to be found. This was done by combining the different 

directionally positions in the non-relaxed supercell and multiplying with an integer. Then for the 

correct combination and integer, the position in the x-direction of the first and last selenium atom in 

the original structure was found. The idea behind this is that by the correct combination, the original 

shape of the unit cell was restored, and at least one of the atoms should be positioned at a fraction 

of the atoms mentioned position in the original cell. Combining the directions can for example be the 

z-position minus the y-position. Once the combination and integer were found, the atomic position in 

the relaxed supercell that corresponded to the atomic position in the non-relaxed supercell, was 

combined and multiplied by the combination and integer found. The result of this was then the 

correct relaxed position in the original sized cell. After that the usual procedure could be performed, 

where the supercells were made from the original cells with the new correct positions. For each of 

these supercells, five canonical configurations were made, and their total energies were calculated. 

Some of these cells needed more than 60 electronic self-consistency steps to converge, which is the 

standard limit of steps in VASP. Therefore, this limit was set to 300. However, this did not make the 

cells converge. Therefore, the limit was put back to 60 and other configurations were run until at 

least five configurations were converged for each volume. From these configurations, force constants 

and free energies were calculated as before. Using the program CTE.py again, the CTEs could be 

plotted by using a spline interpolation of the natural logarithm of the lattice constants and take the 

derivative of these. The interpolation was done by using third order polynomials with steps of 100 

from 0 K to 2000 K. This gave a mean squared error of 4.289*10-11 for the fit of the a-lattice 

parameter and a mean squared error of 2.034*10-10 for the fit of the c-lattice parameter. 

3.12. Calculation of third order force constants 
To calculate the third order force constants, the same method as when calculating the second order 

force constants was used, except two deviations. One, more configurations were needed since there 

are many more third order force constants than of second order. For TiFe2Si, 150 configurations were 

created to check convergence of the third order force constants with respect to number of 

configurations used. Two, extract_forceconstants were used to calculate third order force constants 

too with a cutoff value at 5 Å. The INCAR values when calculating the total energy of the 

configurations used to calculate the third order force constants are the same as when calculating the 

total energy of the supercell configurations of the 0 K structure for this material. The third order 

force constants were only calculated for TiFe2Si. 

Maximum of the absolute difference of the third order force constants with respect to number of 

configurations used, is shown in Figure 8 for TiFe2Si. It shows that the absolute difference is very 

small at 40 K. The relative difference was also considered. However, it was very high for the lowest 

force constants and those will probably give less contribution because they are small. To investigate 

this, the third order force constants were sorted from highest to lowest and their values were plotted 

alongside their relative differences, extracting the third order force constants from ten more 

configurations. This is shown in Figure 9 using 40 configurations of TiFe2Si. It shows that the highest 

values are well converged under 2 % using 40 configurations. The smaller values are probably less 

important. Therefore, 40 configurations were considered sufficient for this material. 
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Figure 8: The maximum of the absolute difference between the third order force constants extracted from the number of 
configurations corresponding to the x-axis and extracted from ten more configurations for TiFe2Si. The first point is at 10 and 
goes up to 140. That means that the last force constants compared are extracted from 150 configurations. 
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Figure 9: Third order force constants in descending order extracted from 40 configurations of TiFe2Si. The red line shows 
their value while the blue line shows the relative difference extracting them using ten more configurations. 

3.13. Method of heat capacity 
When the free energies were found, TDEP automatically also calculated the heat capacity per atom 

at constant volume at all temperature steps specified. Therefore, the heat capacity could also be 

plotted. This was done by investigating how the heat capacity depended on the volumes at constant 

temperature. For almost all volumes, this dependency was approximated well by a cubic polynomial. 

Therefore, for each temperature step, the heat capacity was found by constructing a cubic fit of the 

heat capacity as a function of the lattice constant and selecting the heat capacity from this fit given 

the optimized lattice constant which was found as before. The cubic fit seems to be a good 

approximation at all temperatures for both cubic materials. For the tetragonal materials, polynomials 

which depended on all combinations of the two lattice parameters up to third order were considered 

to be sufficient from the investigation of the cubic materials. It was also checked that this fit gave a 

decent mean squared error and r2 score also for the tetragonal materials. The mean squared error 

for GaNaTe2 was at 4.995*10-18 and the r2 score at 0.9999558. Figure 10 shows the real points and 

cubic fit at 1 K for diamond, Figure 11 at 50 K and Figure 12 at 500 K. The maximum mean squared 

error of these fits is at 5.727*10-17 and the smallest r2 score is at 0.9997691, and these do not get 

much better by more complex fits. When the heat capacity was found for each temperature a spline 

which consisted of cubic polynomials, was used to smoothen the curve. For all materials the 
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polynomial intervals were at 10 K, which gave a mean squared error of 0.3242 for diamond, 0.1172 

for TiFe2Si, 0.0008292 for GaNaTe2 and 0.0005894 for GaCuSe2. 

 

Figure 10: Heat capacity calculated within TDEP and the cubic fit at 1 K for diamond. 
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Figure 11: Heat capacity calculated within TDEP and the cubic fit at 50 K for diamond. 
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Figure 12: Heat capacity calculated within TDEP and the cubic fit at 500 K for diamond. 

3.14. Gibbs free energy as a function of temperature and secondary pyroelectric 

vector 
The Gibbs free energy as a function of temperature and pressure was found by compressing the 

volume from 0 % to 10 % for cubic materials, while from 0 % to 30 % for the tetragonal materials 

with hundred steps between. From this the pressure was calculated from Equation 37 and the Gibbs 

free energy from Equation 40 at each temperature. The secondary pyroelectric vector was directly 

calculated from Equation 45 after the CTEs were found for GaCuSe2. 

3.15. Summary of method 
The method which has led to the results has been demonstrated. In this method the calculation of 

the primary pyroelectric vector is not included. What goes again for each material are: 

1. Convergence of VASP parameters. 

2. Relaxation of structure. 

3. Calculation of elastic parameters and finding the Debye temperature. 

4. Calculate “fake” force constants from Debye temperature. 

5. Make a supercell of the material and generate canonical ensembles from it and the fake 

force constants and calculate their total energy. 

6. Calculate “correct” force constants from these configurations. 

7. Make unit cells with expanded and compressed lattice parameters. 

8. For each of these, do step 5 with correct force constants. 

9. Calculate the vibrational free energy as a function of temperature for each combination of 

lattice parameters. The heat capacity will also be calculated. 
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10. For the unit cells in step 7, do a total energy calculation. 

11. Add the total energy of the small cell and the vibrational free energy to get the Helmholtz 

free energy as a function of temperature for each volume. By minimization the CTEs will be 

found. 

12. Use Birch-Murnaghan to calculate the Gibbs free energy as a function of temperature and 

pressure. This can predict a phase change if there are more phases to compare. 

13. Use Equation 45 to calculate the secondary pyroelectric vector. 
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4. Results 
The main results of each material are presented here. Those are the CTEs as a function of 

temperature, the lattice parameters as a function of temperature, the Helmholtz free energy as a 

function of temperature (Gibbs free energy at zero pressure), the heat capacity and Gibbs free 

energy as a function of temperature and pressure. The secondary pyroelectricity is also presented for 

GaCuSe2. Uncertainty origins are given in tables, and the resulting uncertainties for each result are 

included in all results except for the Gibbs free energy vs temperature and pressure.  

4.1. Results of diamond 
For diamond the coefficient of thermal expansion is shown in Figure 13 with error bars. The 

uncertainty originates from the uncertainty of the total energy at 0 K due to the final energy cutoff 

and the final k-point density. The uncertainty of the total energy at 0 K is shown in Table 2. The 

uncertainty also comes from the uncertainty in the vibrational free energy due to the uncertainty in 

the Debye temperature, variation with number of configurations used and final cutoff value of the 

second order force constants. The uncertainty of the vibrational free energies is shown in Table 3. 

The uncertainty in the phonon free energy due to uncertainty in the Debye temperature and due to 

the final cutoff value of the second order force constants is only calculated for TiFe2Si, and the 

relative uncertainty from this is considered to be universal for all materials in this study. For diamond 

convergence with respect to configurations is not done, so the uncertainty in phonon free energy 

due to number of configurations for TiFe2Si is considered to hold for diamond too. Considering that 

20 configurations are used for diamond which is a more symmetric material than TiFe2Si with less 

force constants, this uncertainty is definitively not too small.  

Further the relative uncertainty of the phonon free energy for TiFe2Si is calculated at 300 K, which 

seems to represent the relative uncertainty well at all temperatures. For all these, the convergence 

criterion is that the change in relative energy or the total phonon free energy should be less than 1 

meV per change specified to the parameter looked at. However, sometimes the change is less and 

then this smaller change has been used in calculating the relative change. The change in total energy 

due to energy cutoff is 0.4519 meV for a raise in energy cutoff from 400 eV to 450 eV. This is then the 

absolute change considered, and the total energy at 450 eV was -9091.18 meV, while it gives an 

absolute relative energy change of 4.97*10-5 using the formula 𝜎 =
Eend−Estart

𝐸𝑒𝑛𝑑
, where σ is the 

uncertainty, Eend is the energy after the raise and Estart is the energy before the raise. This is how the 

uncertainty is calculated for the uncertainties named above. Then the total uncertainty in total 

energy and free energy is calculated by adding the squares of each uncertainty and taking the square 

root of this sum. The uncertainty in the CTE in the positive direction will be the absolute difference in 

the CTE calculated using the calculated energies at 0 K and phonon free energies vs the CTE from the 

maximum deviated energy at 0 K and the maximum deviated phonon free energy in the positive 

direction. The uncertainty in the CTE in the negative direction is the same, but here the compared 

CTE originates from the maximum deviated energies in the negative direction. The uncertainty for 

other properties is calculated in the same way, just considering the maximum deviations for that 

property. 

Since the structure of diamond has inversion symmetry, its piezoelectric tensor is zero and following 

the second term of the piezoelectric coefficient zero at all temperatures. The lattice parameter as a 

function of temperature is shown in Figure 14. The Gibbs free energy at zero pressure per atom is 
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shown in Figure 15, the heat capacity at constant volume per atom is shown in Figure 16 and the 

Gibbs free energy per atom as a function of temperature and pressure is shown in Figure 17. 

Table 2: Uncertainties in the static lattice for diamond. 

Uncertainty origin: Energy cutoff K-point density Total uncertainty in 
the static lattice 

Uncertainty (%): 0.00497 0.00368 0.00619 

 

Table 3: Uncertainties in the phonon free energy of TiFe2Si. The uncertainty due to the uncertainty in Debye temperature and 
cutoff value of second order force constants are universal for all materials. 

Uncertainty 
origin: 

Debye 
temperature 

Number of 
configurations 

Second order 
force constants 
cutoff value 

Total 
uncertainty in 
phonon free 
energy 

Uncertainty (%): 1.511 0.0846 0.147 1.520 

 

 

Figure 13: Coefficient of thermal expansion for diamond plotted with error bars. 
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Figure 14: The lattice constant of diamond as a function of temperature with error bars. 
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Figure 15: Gibbs free energy at zero pressure per atom as a function of temperature for diamond. 
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Figure 16: Specific heat capacity at constant volume per atom for diamond. 
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Figure 17: Gibbs free energy per atom as a function of temperature and pressure for diamond. 

4.2. Results of TiFe2Si 
The CTE of TiFe2Si is shown in Figure 18 with error bars resulting from the uncertainties in Table 3 

and Table 4, except that free energies from the volume with 7 % longer lattice constant was 

calculated using information from only two configurations as only two of the calculations of the 

configurations converged for this volume. This makes the uncertainty in the free energy originating 

from number of configurations go from 0.0846 % to 1.24 % which makes the total uncertainty in the 

free energies from this volume go from 1.52 % to 1.96 %. This was accounted for by using this 

uncertainty only for the free energies from that volume, and resulted in a significant larger 

uncertainty at the highest temperatures. TiFe2Si has inversion symmetry so its pyroelectric second 

term is zero just as for diamond. 
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Figure 18: Coefficient of thermal expansion for TiFe2Si plotted with error bars. The uncertainty becomes very large at high 
temperatures due to the free energies of the 7 % larger volume only being calculated from two configurations. 

Table 4: Uncertainties in the static lattice of TiFe2S which is used to calculate the uncertainties of the other properties. 

Uncertainty origin: Energy cutoff K-point density Total uncertainty in 
the static lattice 

Uncertainty (%): 0.00413 0.0490 0.0492 

 

Since the structure of TiFe2Si has inversion symmetry its piezoelectric tensor is zero and following the 

second term of the pyroelectric coefficient zero at all temperatures. The lattice parameter as a 

function of temperature is shown in Figure 19, the Gibbs free energy as a function of temperature at 

0 pressure in Figure 20, the heat capacity as a function of temperature in Figure 21 and the Gibbs 

free energy as a function of temperature and pressure in Figure 22. 
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Figure 19: The lattice constant of TiFe2Si as a function of temperature with error bars. The uncertainty gets very big at high 
temperatures resulting from the free energies from the 7 % larger volume which were only calculated from two canonical 
configurations. 
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Figure 20: Gibbs free energy per formula unit at 0 pressure as a function of temperature for TiFe2Si. 
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Figure 21: Specific heat capacity at constant volume for TiFe2Si. 
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Figure 22: Gibbs free energy as a function of temperature and pressure for TiFe2Si. 

4.3. Results of GaNaTe2 
The CTE of β-GaNaTe2 is shown in Figure 23 and Figure 24. As this material is tetragonal, the CTE is 

different in the direction of the a-lattice parameter and the c-lattice parameter. The uncertainty 

origins are shown in Table 5. This was the structure of GaNaTe2 which did have inversion symmetry 

and therefore the second term of the pyroelectric coefficient equal to zero. These CTEs only goes up 

to 600 because the unit cells only were expanded up to 3 percent, while the expansion started to 

exceed this around 600 K. The lattice parameters and the Gibbs free energy at 0 pressure are shown 

as functions of temperature in Figure 25, Figure 26 and Figure 27 respectively. The heat capacity as a 

function of temperature and the Gibbs free energy as a function of temperature and pressure are 

shown in Figure 28 and Figure 29 respectively. 
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Figure 23: Coefficient of thermal expansion for β-GaNaTe2 along the a-lattice parameter plotted with error bars. 
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Figure 24: Coefficient of thermal expansion for β-GaNaTe2 along the c-lattice parameter plotted with error bars. 

Table 5: Uncertainties in the energy of β-GaNaTe2 which are used to calculate the uncertainties of the other properties. 

Uncertainty 
origin: 

Energy cutoff K-point 
density 

Total 
uncertainty in 
the static 
lattice 

Number of 
configurations 

Total 
uncertainty in 
phonon free 
energy 

Uncertainty 
(%): 

0.0114 0.00340 0.0188 0.0773 1.520 
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Figure 25: The a-lattice parameter of β-GaNaTe2 as a function of temperature with error bars. 
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Figure 26: The c-lattice parameter of β-GaNaTe2 as a function of temperature with error bars. 
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Figure 27: Gibbs free energy at 0 pressure as a function of temperature for β-GaNaTe2. 
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Figure 28: Specific heat capacity at constant volume for β-GaNaTe2. 
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Figure 29: Gibbs free energy as a function of temperature and pressure for β-GaNaTe2. 

4.4. Results for GaCuSe2 

The CTE with respect to the a-lattice parameter and the c-lattice parameter as a function of 

temperature is shown in Figure 30 and Figure 31 respectively. The error bars are calculated using the 

uncertainties in Table 6. The lattice constants as a function of temperature are shown in Figure 32 

and Figure 33. The Gibbs free energy as a function of temperature at 0 pressure is shown in Figure 

34. The heat capacity as a function of temperature is shown in Figure 35. The Gibbs free energy as a 

function of temperature and pressure is shown in Figure 36. The components of the pyroelectric 
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vector are shown in Figure 37. The piezoelectric tensor is shown in Table 7.

 

Figure 30: Coefficient of thermal expansion for GaCuSe2 along the a-lattice parameter plotted with error bars. 
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Figure 31: Coefficient of thermal expansion for GaCuSe2 along the c-lattice parameter plotted with error bars. 

Table 6: Uncertainties in the energy of GaCuSe2 which is used to calculate the uncertainties of the other properties. 

Uncertainty 
origin: 

Energy cutoff K-point 
density 

Total 
uncertainty in 
the static 
lattice 

Number of 
configurations 

Total 
uncertainty in 
phonon free 
energy 

Uncertainty 
(%): 

0.0193 0.0424 0.0466 0.479 1.592 
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Figure 32: The a-lattice parameter of GaCuSe2 as a function of temperature with error bars. 
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Figure 33: The c-lattice parameter of GaCuSe2 as a function of temperature with error bars. 
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Figure 34: Gibbs free energy at 0 pressure as a function of temperature for GaCuSe2. 
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Figure 35: Specific heat capacity at constant volume for GaCuSe2. 
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Figure 36: Gibbs free energy as a function of temperature and pressure for GaCuSe2. 
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Figure 37: The components secondary pyroelectric vector for GaCuSe2 as a function of temperature. The X and Y components 
are completely overlapping. 

Table 7: The piezoelectric tensor of GaCuSe2. 

 XX YY ZZ XY YZ ZX 

X -0.00072 0.00035 0 0 -0.74916 0 

Y 0.00037 -0.00074 0 0 0 -0.74915 

Z 0.00113 0.00113 0.00001 -2.59009 0 0 

 

4.5. Summary of the results 
The main results are plotted as a function of temperature, and in addition as a function of pressure 

for the Gibbs free energy. The cubic structures do only have one CTE and lattice parameter, while the 

tetragonal has two which gives more results. The only material with nonzero secondary 

pyroelectricity is GaCuSe2. 
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5. Discussion 
Diamond is the only material that had comparable data for the CTE and will be discussed first to 

demonstrate how well the method works. Its Gibbs free energy will be discussed briefly. The CTE of 

the other materials will be discussed, and their Gibbs free energy will be discussed briefly. The 

secondary pyroelectricity of GaCuSe2 will be discussed as it was the only material with nonzero 

secondary pyroelectricity. The lattice parameters and the heat capacity will also both be discussed 

short for each material. In the end, the central processing unit (CPU) time used by each calculation 

will be looked at. 

5.1. Discussion of coefficient of thermal expansion of diamond 
Jacobsen and Stoupin have collected experimental data on the coefficient of thermal expansion for 

diamond and fitting models based on them to create Figure 3858. Their data only goes up to 2000, 

which is actually a little overdoing because the bulk structure of diamond only is intact up to 1800 

K58. That means the coefficient of thermal expansion above that temperature is only a theoretical 

result that would have existed if the structure was unchanged. The experimental data and fitting of 

them in Figure 38 and the coefficient of thermal expansion from this work are put together in Figure 

39  for the whole temperature range plot and Figure 40 for the low temperature plot. 

 

Figure 38: Collection of experimental data on the coefficient of thermal expansion for diamond and fitting models based on 
them58. 
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Figure 39: The collection of experimental data and fitting models shown in Figure 3858, and the coefficient of thermal 
expansion for diamond from this work shown as the blue coherent line with red error bars. 



75 
 

 

Figure 40: The low temperature plot in Figure 38 compared with the CTE from this study shown as the blue coherent line 
with red error bars. 

5.1.1. Low temperature discussion 
From Figure 39 it seems like the coefficient of thermal expansion from first principles calculated in 

this work agrees very well with the experimental data in the range 0 K to 300 K. The data from 

Stoupin and Shvyd’ko ranges from 10 K to 300 K and have an accuracy of less than or equal to 4*10-9 

and was performed on synthetic diamond of type IIa that was nearly perfect with nitrogen impurities 

below 1 ppm and on synthetic diamond of type Ia that has impurities of nitrogen clusters with 

concentration in the range from 10 ppm to 3000 ppm59, 60. The differences in the coefficient of 

thermal expansion for the different diamond samples were within the measurement accuracy59, 60. 

The plotted points from these measurements in Figure 38 are the average value from the four 

samples58. The coefficient of thermal expansion of diamond in this study is based on a perfect 

diamond structure with no impurities, so the data from Stoupin and Shvyd’ko are good for 

comparison and will be used as the reliable points in its temperature range. Having a closer look at 

Figure 40, it is seen that the CTE from this study is not right on the points from Stoupin and Shvyd’ko 

at all temperatures, but it seems like they are inside or at least not far from the accuracy range. The 

blue stippled line which is the fit of the experimental points from Stoupin and Shvyd’ko is almost 

inside the shown error bars of this study for all temperatures, except below 40 K. There the CTE from 

this thesis is negative from 10 K to 29 K with uncertainty considered, which is not in agreement with 

theory59, 61, which says that diamond should always have positive thermal expansion since it only has 

positive Gruneisen parameters. 

Reasons that this study and the Stoupin and Shvyd’ko data do not fit perfectly can origin from 

multiple reasons. First, there is always an uncertainty in the calculations from VASP that is due to 

numerical error and an approximated energy functional which is not included in the error bars. 

Second, for diamond a lower energy cutoff than the converging energy cutoff limit was used, the 

same for the k-point density. The energy at 0 K should not be very much affected by this as it is well 



76 
 

converged for the used energy cutoff and k-point density, but the force constants might have been 

more affected. Third, the method within TDEP calculates the force constants at 300 K and then uses 

the quasi harmonic approximation to calculate the phonon free energy at all temperatures from 0 K 

to 3000 K. This is beyond the normal quasi harmonic approximation as the force constants normally 

originates from 0 K calculations. However, to go even further, the force constants could have been 

calculated at more temperatures, and been interpreted between the points by the quasi harmonic 

approximation e.g. Even more, the force constants could have been calculated at all temperatures. 

Fourth, the materials in the present study are in a completely perfect structure, which does not exist 

in reality. 

5.1.2. Middle temperature discussion 
In the temperature range from about 300 K to 1000 K, the spread in the points is less than 10 %58. 

The coefficient in this study seems to be bit larger than these points, at least after 600 K, but well 

inside the spread of 10% comparing the error bars from Slack and Bartram’s62 fit which is at 15%. The 

Skinner data and the Thewlis and Davey data do at least have one point in the range of Stoupin and 

Shvyd’ko data. Comparing these points, the Skinner data and the Thewlis and Davey data are a little 

bit lower than the Stoupin and Shvyd’ko data and outside their accuracy range. Stoupin and Shvyd’ko 

claim to use a very pure diamond structure59, 60 which makes it very comparable to this study. Skinner 

used two different samples, one that was a commercial grade that consisted of many corns less than 

one micron from many different diamonds63. The purity of this sample is not stated, however, the 

other sample was a colourless piece from an south west African diamond and described as 

exceptionally pure63 although the diamond stuctures used in Stoupin and Shvyd’ko’s studies are a lot 

purer. The content of the south west African diamond piece is shown in Table 8. The data are from 5 

spectrographic analysis of the one area of the sample, each independent of each other63. The Skinner 

data have an accuracy of 0.3 % for each sample63, that means the thermal expansion obtained here is 

out of the accuracy range. It is not stated if the points from Skinner in Figure 38 are from the 

commercial grade diamond, the south west African diamond or an average of these. The variation in 

the coefficient of thermal expansion for those samples is as big as 10 %63. 

Table 8: Impurities in the south west African diamond from Skinner’s studies63. 

Analysis 
number 

Impurities in ppm. 

Mg Si Fe Al Cu Ca 

1 2 20 1 10 <1 2 

2 1 10 1 <10 <1 4 

3 15 40 2 <10 <1 <0.5 

4 4 <10 <0.5 <10 <1 <0.5 

5 2 150 5 <10 <1 <0.5 

 

The first three points of Krishnan’s studies in the range from 300 K to 1000 K, seem to be close to or 

on the line from the present studies in Figure 39. There is found no information about the purity of 

the diamond used in the studies published in 194464, either because it is not stated or because part 

of the article is not accessible. In Krishnan’s article from 1946 it is stated that the diamond used is 

opaque to ultra-violet radiation and has the least fluorescence65. Further it is stated that these 

diamonds are shown to have the least angular divergence, which is just a little higher than that of the 

ideal crystal65. However, the exact pureness of the diamond used is not stated. The coefficient of 

thermal expansion Krishnan’s study is a mean from a range of 100 K, which starts at about 300 K and 

ends at about 878 K, which also raises the uncertainty of the points actual value. The uncertainty in 
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the points from Krishnan’s articles is not stated, but the points from his two studies corresponds very 

well. 

5.1.3. Critic of most samples’ pureness 
Sato et al.66 also ask questions to the investigations of diamond’s lattice parameter performed before 

Skinner’s study in 1957. They state that the samples used at that time were not chemically analysed 

and if they were it was not investigated if the impurities were macroscopic clusters or spread out as 

vacancies. Further they compared the thermal expansion between a diamond of the same type as 

Stoupin and Shvyd’ko’s diamond, which they also investigated with infrared spectroscopy to verify 

that the nitrogen concentrations was below a few ppm, with two less pure diamonds in the 

temperature range from 4.2 K to 300 K. One with nitrogen impurity of about 100 ppm, and the other 

with boron impurity of about 100 ppm. From about 160 K and above, their thermal expansion of pure 

diamond was larger than the thermal expansion of both the less pure diamonds as shown in Figure 

41. This can be an explanation to why the thermal expansion obtained here is larger than the 

compared ones for temperatures above 300 K. The accuracy of Sato et al.’s lattice parameter was 10-

6, and the accuracy of the temperature was within 0.1 K. 

 

Figure 41: Thermal expansion coefficient of diamond from Sato et al.'s studies66. 

For temperatures above 1000 K, this study’s coefficient of thermal expansion seems to fit well with 

the experimental data. 
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5.1.4. Discussion of other theoretical methods 
There have been other theoretical attempts to calculate the coefficient of thermal expansion of 

diamond. Pavone et al.38 used density functional perturbation theory with LDA as the exchange 

correlation potential along with plane waves as the basis set and nonlocal pseudopotentials to 

calculate the lattice constant of diamond at 0 K, as well as the phonon dispersion curves and phonon 

eigenvectors. The force constants were calculated considering displacements of an atom as a 

periodic perturbation. Further the quasiharmonic approximation was used to calculate the thermal 

expansion, using the expression 𝛼(𝑇) =
1

3𝑉

𝜕𝑉

𝜕𝑇
≈

1

𝐵0
∑ 𝛾𝑗(𝒒)𝑐𝑣𝑗(𝒒, 𝑇)𝒒,𝑗  where B0 is the bulk modulus 

at equilibrium, cvj(q,T) is the contribution of the mode qj to the specific heat at constant volume and 

γj(q) is the mode Gruneisen parameter, for the coefficient of thermal expansion from 0 K to 1600 K as 

shown in Figure 42. Compared to the slope from this study it seems to be below already at around 

150 K with the distance between the slopes becoming bigger and bigger as the temperature raises. 

After 750 K it deviates more and more even from the lowest experimental values. At lower 

temperatures it is very similar to the CTE of this study except, it does not have negative CTE below 40 

K which is in agreement with theory and experiment59-61. 

Another study used almost the same approach as Pavone et al. to calculate the coefficient of thermal 

expansion of diamond with quite different results. Mounet and Marzari67 used a combination of DFT 

and DFPT with GGA as the exchange correlation potential with plane waves as the basis set and 

ultrasoft pseudopotentials from Vanderbilt68 to calculate the lattice constant at 0 K, the phonon 

dispersion curves and interatomic force constants. PBE69 was the type of GGA used. The 

quasiharmonic approximation was used to calculate the coefficient of thermal expansion from 0 K to 

3000 K. However, the method in finding the coefficient of thermal expansion differs from Pavone et 

al.’s method. Mounet and Marzari calculated the Helmholtz free energy and the phonon frequencies 

as a function of the lattice parameter. Then the free energy could be minimized directly as a function 

of the lattice parameter to find its length at any temperature. The coefficient of thermal expansion 

was found through numeric differentiation. 
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Figure 42: CTE of diamond from Pavone et al.’s38 study as the dashed line, Mounet and Marzari’s67 as the solid line, 
experimental points from Slack and Bartram62 as the filled circles, a path integral Monte Carlo study from Herrero and R. 
Ramírez70 as the open squares and the dotted line is Mounet and Marzari’s study as well calculated from the analytical 
expression Pavone et al. used. 
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Figure 43: The collection of theoretical CTEs of diamond in Figure 42 in the same plot as the CTE of diamond from this study, 
and the experimental collection of from Jacobsen and Stoupin58, in the temperature range from 0 K to 2000 K. 

From Figure 43 it is seen that the CTE from Mounet and Marzari is very close to the CTE of this study 

all the way. From about 1500 K it goes outside the accuracy range of this study. Also it does not have 

a negative CTE even at the lowest temperatures, which is in agreement with theory and 

experiments59-61. 

5.2. Discussion of Gibbs free energy of diamond 
From Figure 15 it is seen that the Gibbs free energy of diamond becomes lower and energetically 

more favorable as the temperature increases. Figure 17 also shows that the Gibbs free energy 

generally gets lower at lower pressures and higher temperatures. It also shows that when the 

pressure increases the Gibbs free energy gets a local minimum with respect to temperature between 

0 K and 500 K. 

5.3. Discussion of TiFe2Si 
The CTE of TiFe2Si is large as the temperature grows compared to diamond. The shape of the curve is 

however very similar to the curve of diamond. It is small close to 0 K then grows fast from about 40 K 

to about 300 K. This behavior is seen clear from Figure 44. After 300 K it grows more slowly while it 

grows faster and faster as it reaches higher temperatures. From Figure 45 it is seen that even though 

the curve is negative for the lowest temperatures, the uncertainty goes very close up to 0 K-1. 

Checking the uncertainties from 0 K to 10 K more closely, it is seen that the maximum uncertainty is 

slightly above 0 K-1 also in that range. Therefore, it cannot be concluded if the CTE of TiFe2Si is 

negative at the lowest temperatures according to this study. Note that the uncertainty is relatively 

big for the smallest temperatures. This is probably the first study of CTE of TiFe2Si, therefore there is 

no data of this material to compare with. However, similar materials will be used for comparison. The 
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material was reported metastable by V. Raghavan28, so it was decided that it was not worth to try to 

find another phase that was pyroelectric.

 

Figure 44: Coefficient of thermal expansion for TiFe2Si with error bars in the temperature range from 0 K to 500 K. 
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Figure 45: Coefficient of thermal expansion for TiFe2Si with error bars in the temperature range from 0 K to 40 K. 

Five other materials with similar structures and containing both iron and silicon have been studied 

through ab initio calculations using DFT recently by Noui et al71. They used the linearized augmented 

plane wave (LAPW) method that is in Wien2k72, local spin density approximation (LSDA)73 and the 

quasi-harmonic Debye model74, 75 to calculate the CTE. The materials are Fe2MnxNi1-xSi where x = 

[0,0.25,0.5,0.75,1]. In addition, Noui et al. investigated the same compositions in a very similar 

structure as they explain in their article. The structure investigated in this thesis have the iron atoms 

at sites with similar chemical surroundings. However, there is also the possibility for having the iron 

atoms at sites with different chemical surroundings. That is, the atoms are ordered such that the 

space group will be 𝐹4̅3𝑚, where the iron atoms occupy the 4a and 4c Wyckoff positions. That space 

group has the symmetry to be piezoelectric. Figure 46 shows the CTE from this study in the same plot 

as the CTE of the Noui et al.’s material with the same structure. This CTE is with respect to volume, 

not lattice constant as the other CTE’s have been. This CTE is just three times the CTE with respect to 

lattice constant for a cubic cell. From Figure 46 it is seen that the behaviour of the curves is very 

similar. Since Noui et al.’s study only includes every 100 temperature it is hard to compare the CTE 

below 200 K which is the area where the CTEs is least linear. Still it is seen that the characteristics 

from the CTE of TiFe2Si are present in the CTE of Fe2MnxNi1-xSi with the quick increase from 0 K to 

around 200 K and then a slowly linear increase for higher temperatures. It is also seen that the CTE of 

these materials seems to be of equal size to the CTE of TiFe2Si below 200 K, but above this 

temperature the CTE of Fe2MnxNi1-xSi is higher. Figure 47 shows the CTE from this study in the same 

plot as the CTE of the Noui et al.’s material with the iron atoms at sites with different chemical 

surroundings. The discussion for Figure 46 holds for the CTEs in Figure 47 too. The material that 

seems to have the overall closest CTE to the CTE of this material is the structure which have the iron 
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atoms at the same positions and with x = 0.75. The uncertainties in Noui et al.’s studies are not 

stated. The Bulk modulus of this material is 2477.8 kbar and the Debye temperature is 647.85 K at 0 

K for both properties. This is not so far from the Bulk modulus of this material which is at 2537.24 

kbar from this study. The Debye temperature is more different as it is 494.03 from this study. There 

are some differences in Noui et al.’s study and this thesis. Noui et. Al uses the LAPW method and the 

LDSA to calculate the ground state properties of the materials, while this study uses the PAW method 

and PBEsol GGA to calculate properties of TiFe2Si in the ground state and at 300 K. When finding the 

volume as a function of temperature, the benchmarked method uses the phonon density of states or 

phonon frequencies at 0 K to calculate the free energy, while this method uses the phonon 

frequencies at 300 K. The benchmarked method used the Debye-Slater model to calculate the free 

energy as a function of temperature on a volume grid and found the minimum volume from this, 

while this study used to quasi harmonic approximation which is stated to be more accurate75. Also, 

the CTE is found by the analytical expression for CTE, while it is found by direct differentiation in this 

study. Since Noui et al. uses different methods than in this thesis it cannot be concluded if the higher 

CTE of their materials is due to the materials they use or due to the method. 

 

Figure 46: CTE with respect to volume for Fe2MnxNi1-xSi from Noui et al.’s study71 and the CTE of TiFe2Si from this study as 
the solid light blue line with red error bars. This plot is when the atoms are ordered in the same way as for TiFe2Si in this 
study. 
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Figure 47: CTE with respect to volume for Fe2MnxNi1-xSi from Noui et al.’s study71 and the CTE of TiFe2Si from this study as 
the solid light blue line with red error bars. This plot is for the structure with the iron atoms at sites with different chemical 
surroundings. 

Another study of a Heusler structure with some of the same atoms as TiFe2Si is a study from Yan et 

al.76 This study was experimental and the material was TiFe2Al which was investigated by neutron 

diffraction over a range of temperatures. TiFe2Al also had an amount of Laves phase. The Heusler 

phase dominated in the temperature range from 300 K to 1300 K, while the Laves phase dominated 

above 1350 K. The CTE of this material is only calculated from 300 K 1100 K, where the amount of 

Heusler phase is close to 100 %. Further, the iron atoms occupied the sites that gives the space group 

𝐹𝑚3̅𝑚 which is the same as for the TiFe2Si structure studied here. Most of the Ti atoms were placed 

at the 4a site, but some on the 4b site. In the TiFe2Si structure in this study, the Ti atoms are at the 4a 

site. The CTE of TiFe2Al is from Yan et al.’s study is derived from a linear fit of the lattice parameter as 

a function of temperature and is therefore constant at 1.4552*10-5 K-1 and plotted with the CTE of 

this study in Figure 48. The CTE of TiFe2Si does not reach this value until around 2600 K and is not 

constant in the temperature range considered. The uncertainty is not stated. 
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Figure 48: The CTE of TiFe2Si and the CTE of TiFe2Al from Yan et al.’s76 study. 

A third study of a material with a similar structure as TiFe2Si is a study of Fe2CrX where X = [Al, Ga]77. 

In this study by Paudel and Zhu, the Cambridge Serial Total Energy Package78 (CASTEP) was used to 

perform DFT like calculations. The exchange-correlation potential used was the Perdew-Wang23, the 

Perdew-Burke-Ernzerhof69 (PBE) and the local density approximation, but PBE was used for all 

calculations of physical properties as it gave the best result. The ultra-soft pseudo-potential and 

plane wave basis sets68 were used in the calculations and the ground state was found by using 

Broyden-Fletcher-Goldfarb-Shanno79 optimization method. The thermodynamic characteristics were 

calculated using the quasi-harmonic Debye model by the GIBBS program80, 81. The iron atoms in these 

structures were also ordered in the same way as TiFe2Si in this study. 

The phonon dispersion relations of these materials will be compared to see if it can help to explain 

the CTEs. Figure 49 compares the phonon dispersion relations of Fe2CrAl and TiFe2Si. From that it is 

seen that the wavevectors in Fe2CrAl have frequencies between 4 THz and 8 THz on the wavevectors 

between W and L, X and W, and W and K. These wavevectors in TiFe2Si have frequencies from round 

6 THz to a little below 14 THz. Further the wavevectors in Fe2CrAl do not have frequencies between 8 

THz and 11 THz, but some around 12 THz. This is not the case for TiFe2Si where the wavevectors have 

frequencies all the way from 0 THz to a little below 14 THz. Altogether, the wavevectors of TiFe2Si 

have higher frequencies than those of Fe2CrAl. Except the difference in value, the structure of the 

two dispersions is rather equal. The curves going from gamma increasing on both sides, then 

stabilizing around a certain value. Also, the densely packed curves to the right of the X point. 

The phonon dispersion relations of Fe2CrGa and TiFe2Si are compared in Figure 50. The comparison 

shows that the frequencies for the wavevectors between W and L, X and W, and W and K are 
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between 3 THz and 9 THz ca. for Fe2CrGa. There is no gap of frequencies for this material phonon 

dispersion relations as the three highest curves only go up to around 9 THz. The sum of the 

frequencies of the wavevectors in Fe2CrGa seems to be less than those of Fe2CrAl which again is less 

than those of TiFe2Si. Here also the shape of the curves of the two materials has similarities, like the 

raising curves from the gamma point that stabilizes at a certain value. All three materials have three 

acoustical and 9 optical curves, which is expected as there are 4 atoms in the primitive cells for all the 

materials. The acoustic branches are those that are 0 at the gamma point. 

 

Figure 49: Phonon dispersion relations of Fe2CrAl from Paudel and Zhu’s77 study as the red lines and the phonon dispersion 
relations of TiFe2Si from this study as the green lines. The phonon dispersion relations of this study results from 3 
configurations that were made based on calculated force constants from the 20 configurations that were made based on 
the Debye temperature and the unit cell in its original size. 
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Figure 50: Phonon dispersion relations of Fe2CrGa from Paudel and Zhu’s77 study as the red lines and the phonon dispersion 
relations of TiFe2Si from this study as the green lines. The three highest curves from this study are not in the plot as they only 
go up to 10.5 THz. 

The CTE of Fe2CrAl and the CTE of TiFe2Si are compared in Figure 51. It will be the curve calculated at 

0 GPa that will be the most comparable to the CTE of TiFe2Si in this study, as the pressure over its 

relaxed structure is around 0. Again, the shape of the CTEs of the two materials is very equal with the 

fast increase from 0 K to around 200 K, then a more and more linear increase. For this material as for 

Fe2MnxNi1-xSi, the behaviour is hard to compare below 100 K as the CTE of TiFe2Si is least linear here. 

This behaviour holds for all pressures. The CTE of Fe2CrAl is a lot higher than the CTE of TiFe2Si right 
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from the start which stands out from the behaviour of the CTEs of Fe2MnxNi1-xSi, which were of equal 

size with the CTE of TiFe2Si at 100 K. 

 

Figure 51: CTE with respect to volume for Fe2CrAl from Paudel and Zhu’s77 study at different pressures shown by the labels, 
and the CTE with respect to volume for TiFe2Si as the blue line with red error bars. 

The CTEs of TiFe2Si and Fe2CrGa compared in Figure 52, show the same behaviour as the CTEs in 

Figure 51. One interesting observation in this plot is that the CTE at 30 GPa is very close to the CTE 

TiFe2Si at all temperatures. The CTE at 0 pressure is higher for Fe2CrGa than for TiFe2Si, but not as 

high as for Fe2CrAl. The uncertainty in the CTE from this study is not stated. There has not been found 

any clear coherence between dispersion relations and CTE just from studying these three materials. 

Maybe it could be found by studying more materials, and maybe consider more properties as well. 

Also, the methods used are different, which makes the results less comparable. Different GGAs and 

optimization methods were used. The free energy is found using the quasi harmonic Debye model 

which is equivalent to the Debye-Slater model mentioned earlier, which is less accurate than the 

quasi harmonic approximation used in this study. Else the method for finding the optimized volume 

is rather equal. Also, the CTE is found by the analytical formula 𝛼 =
𝛾𝐶𝑣

𝐵𝑇𝑉
 in the benchmarked paper, 

while it is found by direct differentiation in this study. In the analytical formula from the 

benchmarked paper, γ is the Grüneisen parameter, Cv the heat capacity, BT the isothermal bulk 

modulus and V the volume. All these are functions of temperature. 
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Figure 52: CTE with respect to volume for Fe2CrGa from Paudel and Zhu’s77 study at different pressures shown by the labels, 
and the CTE with respect to volume for TiFe2Si as the blue line with red error bars. 

The bulk moduli of Fe2CrAl is 2149.9 kbar, the shear moduli 1338.7 kbar and the Debye temperature 

is 571.18 K at 0 K and 0 GPa. The bulk moduli of Fe2CrGa is 2137.7 kbar, the shear moduli 1173.2 kbar 

and the Debye temperature is 517.75 K at 0 K and 0 GPa. This is lower than the bulk and shear moduli 

of TiFe2Si but higher than its Debye temperature. 

5.4. Discussion of Gibbs free energy of TiFe2Si 
From Figure 20 it is seen that the Helmholtz free energy of TiFe2Si becomes more negative as the 

temperature increases. It can however not be concluded that this structure will be more stable with 

rising temperature, even though the lowering of the energy is favourable, since another phase can 

have even lower energies. The Gibbs free energy vs temperature and pressure is shown in Figure 22. 

As the pressure increases, the Gibbs free energy increases with temperature first, then decreases, 

like a second order polynomial with a vertex. At the highest pressures the temperature decreases at 

the lowest temperatures, before it increases to a vertex and decreases again.  

5.5. Discussion of GaNaTe2 
The calculated curves of the CTEs of β-GaNaTe2 shown in Figure 23 and Figure 24 do not follow 

exactly the same trend as the CTEs of diamond and TiFe2Si. While the CTEs of diamond and TiFe2Si 

started rather flat, the CTEs of β-GaNaTe2 increase fast immediately, especially for the one along the 

a-lattice parameter. The CTE along the c-lattice parameter has a touch of the behaviour of diamond 

and TiFe2Si as it increases faster and faster below around 50 K. However, this acceleration of the 

increase is not as clear as for the two earlier discussed materials which increase slower in the start. 

Then after a certain temperature the CTE along the a-lattice parameter increases slower like for 

diamond and TiFe2Si. The CTE along the c-lattice parameter does not reach a temperature where it 
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starts to slowly increase, it rather flattens out and decreases after 400 K. The large uncertainty 

around 600 K for the CTE along the c-lattice parameter may origin from the expansion starting to 

exceed the range of expanded unit cells. The CTE along the a-lattice parameter is clearly negative 

with uncertainty considered for the very lowest temperatures. The CTE along the c-lattice parameter 

is negative at 1 K and below. The uncertainty in CTE increases with temperature for the a-lattice 

parameter. The uncertainty in the CTE of the c-parameter increases while the CTE increases, then it 

decreases as the CTE drops after around 350 K and gets surprisingly small around 550 K. It does 

however get very big in the downward direction at the last point. It is the a-lattice parameter that 

expands fastest, except from at the lowest temperatures where it is negative. There has been no 

found calculations of the CTE of this phase of GaNaTe2 to compare with. This material has the biggest 

expansion of the materials considered so far. 

Sadly, the other phase of this material was found to not be stable within these calculations. However, 

it is important to state that this cannot be concluded to be true in reality. If the other phase of the 

material was found to be stable and the free energies could be calculated, everything calculated for 

the β-structure would be calculated for the α-structure too. Then if Gibbs free energy could be 

compared as a function of temperature and pressure, a phase change may have been found. The 

Gibbs free energy would have decided what phase is stable at the given temperature and pressure 

and from this a phase diagram of temperature and pressure could have been constructed. If a phase 

change was found in the temperature and pressure grid investigated, this material would 

theoretically be able to generate elctricity as described in the introduction since it would have all the 

properties searched for in this study. That is, a material that changes phase in the temperature and 

pressure grid investigated, has bandgap in both phases, and a change in pyroelectric coefficient 

during phase change. 

5.6. Discussion of Gibbs free energy of GaNaTe2 
From Figure 27 it is seen that the Gibbs free energy at 0 pressure becomes more negative for the β-

structure with increasing temperature, which is energetically favourable. From Figure 29 it is seen 

that the Gibbs free energy increases with increasing pressure. The temperature dependence as the 

pressure increases is so that the Gibbs free energy decreases slowly at low temperatures, and then 

decreases more dramatically after a certain temperature. 

5.7. Discussion of GaCuSe2 
The CTE of the a-lattice parameter of GaCuSe2 starts being negative, then quickly increasing linearly 

to a little above 10-5 K-1 around 150 K. Then it increases more slowly to about 1250 K where it reaches 

ca. 15*10-6 K-1 before it slowly starts to increase faster again and reaches ca. 25*10-6 K-1 at 2000 K. 

The behaviour is similar to that of the CTE of TiFe2Si except at the very lowest temperatures. It 

should be noted that it is at the lowest temperatures the shape of the CTE is most affected by the 

intervals of the spline interpolation. It is also very similar to the CTE of the a-lattice parameter of β-

GaNaTe2 in the temperature range it is plotted for, which is very clear from Figure 53. The CTE of the 

a-lattice parameter of GaCuSe2 is larger than the CTE of diamond and TiFe2Si, but lower than the CTE 

of the a-lattice parameter of β-GaNaTe2. Except at the lowest temperatures, it is clearly higher than 

the CTE of the c-lattice parameter of the same material. The uncertainty of the CTE of the a-lattice 

parameter gets bigger as the temperature and CTE gets bigger. It is below 3 % up to ca. 1300 K and 

always below 5 % up to 2000 K. It is much bigger at the lowest temperatures, but here relative 

uncertainty measures bad as the values are very small. The CTE of the c-lattice parameter of GaCuSe2 

is unlike any of the other CTEs calculated before. It starts around 0 K-1 at 0 K, then decreases fast to 

ca -2*10-6 K-1 around 100 K before it increases fast to ca 2*10-6 K-1 around 200 K. From there, it 

increases more slowly but still fast to ca. 13*10-6 K-1 at ca. 1500 K before it decreases a little bit faster 
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to around 7*10-6 K-1 at 2000 K. It is lower at all compared temperatures than the CTE of the c-lattice 

parameter of GaNaTe2 and different in shape as shown in Figure 54. It is bigger than the CTE of 

diamond after ca. 150 K and above. It gets bigger than the CTE of TiFe2Si at ca. 1000 K and then gets 

smaller again at around 1800 K. The uncertainty of the CTE of the c-lattice parameter doesn’t follow 

a particular trend, it varies with temperature. For the error bars shown in Figure 31 the largest is at 

1200 K. The uncertainty of the c-lattice parameter is below 5 % at most temperatures. The 

uncertainty came up to a little below 10 % around 1900 K. 

 

Figure 53: CTE of the a-lattice parameter of GaNaTe2 as the blue line and the CTE of the a-lattice parameter of GaCuSe2 as 
the orange line. It clearly shows that the CTE of GaNaTe2 is higher at all temperatures compared, but that the behaviour is 
very similar. 



92 
 

 

Figure 54: CTE of the c-lattice parameter of GaNaTe2 as the blue line and the CTE of the c-lattice parameter of GaCuSe2 as 
the orange line. It clearly shows that the CTE of the c-lattice parameter of GaNaTe2 also is higher than that of GaCuSe2 at all 
temperatures compared. 

5.8. Discussion of Gibbs free energy of GaCuSe2 

The Gibbs free energy at zero pressure as a function of temperature is shown in Figure 34. It shows, 

just as for the other materials, that the energy decreases with temperature. The uncertainty 

increases with temperature. The Gibbs free energy as a function of temperature and pressure is 

shown in Figure 36. It shows that as the pressure increases, the Gibbs free energy gets higher and 

increases faster with temperature. 

5.9. Discussion of secondary pyroelectricity of GaCuSe2 
The pyroelectric components are given by the αββ components of the piezoelectric tensor (shown in 

Table 7) where α, β = (x,y,z) as it is only the diagonal terms of the CTEs that are nonzero. The x-

component of the second term of the pyroelectric vector is equal to the y-component for GaCuSe2. It 

behaves like a negative CTE of diamond or TiFe2Si except around 0 K. That is, it starts a little above 0 

C/m2K, then rapidly decreases as the temperature increases until around 4*10-9 C/m2K at ca. 200 K. 

Then the curve decreases more slowly, but as the temperature increases the curve decreases faster 

and faster until it reaches a little under -10-8 C/m2K at 2000 K. The behaviour of the x- and y-

component is not a surprise, as these components turns out to be -37*10-5 times the CTE of the a-

lattice parameter. The z-component follows the same pattern, but in the opposite direction. It starts 

at around -7*10-9 C/m2K, then increases fast as the temperature increases until around 25*10-9 C/m2K 

at ca. 200 K. Then the curve increases more slowly, but as the temperature increases, it increases 

faster and faster until it reaches around 57*10-9 C/m2K at 2000 K. The behaviour of the z-component 

is easy to predict too, as it is almost just a positive number times the CTE of the a-lattice parameter. 

The influence of the CTE of the c-lattice parameter is well below 1 %. The uncertainty seems to 
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increase as the absolute value of the pyroelectricity increases, even though the error bar is larger at 

1800 K than at 2000 K. The uncertainty seems to be very much the same in the negative and the 

positive direction. In this study the temperature dependence of the pyroelectric vector comes alone 

from the temperature dependence of the CTEs, while the piezoelectric tensor is calculated at 0 K and 

is constant at all temperatures. 

5.10. Lattice parameter as a function of temperature 
Figure 39 shows the lattice parameter of diamond as a function of temperature from multiple 

experimental studies. It is clear from this plot that the lattice parameter from this work is too high 

and outside the uncertainty range of the experimental data. In comparison, the lattice parameter 

from this study at 25 degrees Celsius is 3.584842 Å, while the experimental lattice data from the high 

accuracy data of Stoupin and Shvyd’ko is around 3.5671 at this temperature. This disagreeing will be 

rather constant or even increase as the CTEs of the experimental data and from this calculation are 

quite equal with this calculation’s CTE being a little above most of the experimental points. This is 

expected as it is normal that the lattice parameter calculated with VASP is not quite correct82. It is 

only the CTE that is hypothesised to be very correct. The uncertainty gets generally bigger as the 

lattice constant gets bigger, just as for the CTE of diamond. 

 

Figure 55: The lattice parameter of diamond as a function of temperature from the Jacobsen and Stoupin collection of 
experimental data58. 
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The lattice parameter of TiFe2Si has very much the same form as the CTE of diamond, except that the 

lattice parameter of TiFe2Si increases faster. This is nothing new as the shape of the lattice parameter 

vs temperature is decided by their CTEs. It is only the starting point that gives new information. The 

uncertainty increases as the lattice parameter increases, as for the CTE of this material. The lattice 

parameter of TiFe2Si has been found experimentally to be 5.709 Å at ca. 300 K28. The lattice constant 

from this study at the same temperature is 5.650 Å. From Figure 56 one sees that the lattice constant 

from this study does not reach the experimental value until around 1500 K. The phase has been 

reported to only form at or below 800 K83. 

 

Figure 56: Lattice parameter vs temperature for TiFe2Si with the experimental value28. The experimental value is higher and 
outside the uncertainty range, which again confirms the disagreement between experimental lattice parameters and DFT 
lattice parameters. 

The a-lattice parameter is higher than the c-lattice parameter of β-GaNaTe2 at 0 K, and expands 

relatively faster as discussed from the CTEs. At 0 K the a-lattice parameter is at 8.113 Å while the c- 

lattice parameter is at 6.765 Å. At 600 K the a-lattice parameter is at 8.212 Å and the c-lattice 

parameter is at 6.812 Å. For GaCuSe2 the c-lattice parameter is highest at 0 K, and expands just most 

up to 2000 K, but the relative expansion is smaller as shown from the CTEs. The a-lattice parameter 

at 0 K is 5.602 Å while the c-lattice parameter is 11.063 Å. At 2000 K, the a-lattice parameter is 5.773 

Å while the c-lattice parameter is 11.241 Å. 

5.11. Discussion of the heat capacity 
The specific heat capacity at constant volume of diamond has a very similar shape as the CTE of 

diamond. It starts around 0 and stays almost constant to around 150 K before it starts to quickly 

increase until it increases slower and slower from around 500 K. It seems to converge to just above 

500 J/K kg as the temperature increases. The shape of the heat capacity of TiFe2Si is similar, but the 
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increase starts much faster, around 50 K. The increase is also steeper, so that it is almost finished 

around 500 K. It seems to converge toward a little above 2000 J/K kg. The shape of the heat capacity 

of β-GaNaTe2 is also similar to the two others. The increase starts early, around 20 K and is almost 

finished around 200 K. It converges toward a little above 500 K. It is the same for GaCuSe2. The 

increase starts early around 20 K and is almost finished at 250 K. The converging value is a little 

above 500 K. 

5.12. Drawbacks of the method 
Although the method used works very well, there are some fundamental drawbacks of it. First, the 

materials that are being investigated are perfect crystals, because the cell that is used in each 

calculation is repeated periodic to generate the material. A perfect crystal does not exist in nature, it 

does not even form theoretically, simply because the entropy term in the Gibbs free energy makes 

the material more stable if there exist vacancies in the material. Also, the eigenfrequencies are 

calculated at a certain temperature, 300 K for the stable materials. Therefore, we do not know for 

what temperatures the materials exist at, except diamond which was mentioned to destabilize at 

1800 K. That is why the α-phase of GaNaTe2 was calculated for at 100 K and 1000 K. We do not know 

at what pressures the materials exist at either. The exchange-correlation functionals used when 

doing calculations with VASP are not the correct exchange-correlation functionals. It is just an 

approximation. The fact that the correct exchange-correlation functional is not known is a limitation 

for all DFT calculations. Another limit is the numerical accuracy.  

5.13. Central processing unit time 
The calculations performed in this thesis have in total used a lot of CPU time. Some of the 

calculations are cheap while some are very expensive. The CPUs used by the calculations will be 

discussed in this section. Since calculations are done on both the supercomputer Abel, which is shut 

down now, and Saga, a time factor is calculated so that it is possible to compare calculation time on 

the two computers. This is calculated by dividing the total CPU time used for the total energy 

calculation on the first supercell configuration of diamond in its relaxed structure at 0 K made from 

force constants based on the Debye temperature performed on Saga, by the total CPU time used for 

the same calculation on Abel. This time factor is calculated to be 0.61494. The tables in Appendix C 

shows the CPU time used for the different materials. It is clear from these that it is the supercell 

calculations that take up the time while they also have to be done for different configurations. The 

CPU time on the small original cells are negligible compared to the CPU time of the supercells. It is 

the calculations of the supercells of TiFe2Si which are clearly most expensive. However, the expensive 

calculation of the supercell of TiFe2Si was done with 8 tasks and 10 CPU’s per task and four tasks per 

node. The cheap calculation and many of the other supercell calculations for other materials were 

done with 64 tasks and 2 nodes. Therefore, it seems like the second setup is the most effective one, 

at least for these calculations. For almost all other supercell calculations, 64 tasks on two nodes or 36 

tasks on 1 node were used, as both setups seemed to be effective. Also, the relaxations of the 

supercells were expensive calculations, most expensive after the total energy calculations of TiFe2Si. 

5.14. Summary of discussion 
The CTEs, the Gibbs free energy, the lattice parameters and the heat capacity of the different 

materials have been discussed. The secondary pyroelectricity of GaCuSe2 and the CPU time of the 

different calculations have been discussed. 
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6. Conclusion 

6.1. Conclusion of diamond 
Diamond is the only material that has experimental values to compare the CTE with. The calculated 

CTE of diamond in this study is tremendous close to the experimental points. It is also the only 

material with other theoretical CTEs to compare with. It is very similar with these too. Diamond was 

only a test material and was not expected to or had the symmetry to have a non-zero pyroelectric 

vector. It does however show that the method used works extremely well for calculating CTEs. The 

uncertainty of the CTE of diamond is below 3 % above 300 K. Below this temperature the values are 

so small that the relative uncertainty is not a good measure of the uncertainty. 

6.2. Conclusion of TiFe2Si 
The CTE of TiFe2Si does have a very similar shape as that of diamond. It is negative below 5 K. 

Compared to the other similar materials, the CTE of TiFe2Si is lower at temperatures above 200 K 

which means that it expands less above this temperature. Under 200 K it was more equal. The 

frequencies of the phonons in TiFe2Si are higher than for the compared materials. There has not 

been found any coherence between the dispersion relations of the materials and their CTE. This may 

be due to different methods of the investigations. The symmetry of TiFe2Si is so that the piezoelectric 

tensor is zero and the second term of the pyroelectric vector is zero. 

6.3. Conclusion of GaNaTe2 

The CTE of the lattice parameters of β-GaNaTe2 does have some similarity to the CTEs of diamond 

and TiFe2Si, but is not quite the same. The CTE of the a-lattice parameter is the largest of the 

materials in this study and the CTE of the c-lattice parameter is the next highest for most 

temperatures, only preceded by the CTE of the a-lattice parameter of GaCuSe2 around 600 K. Only 

the non-pyroelectric phase of β-GaNaTe2 was found to be stable within these calculations. Therefore, 

it has not been proven that this system could potentially produce electricity from heat. If the other 

phase is stable in reality, cannot be concluded. 

6.4. Conclusion of GaCuSe2 

The CTE of the a-lattice parameter of GaCuSe2 does have a similar behavior to that of the a-lattice 

parameter of diamond, TiFe2Si and β-GaNaTe2. The CTE of the c-lattice parameter on the other hand 

shows a behavior that has not been seen for the other materials. The expansion is higher along the a-

lattice parameter than along the c-lattice parameter. The expansion along the a-lattice parameter is 

lower than the expansion along the a-lattice parameter of β-GaNaTe2, but for most temperatures 

higher than the expansion of diamond and TiFe2Si. The expansion along the c-lattice parameter was 

lower for GaCuSe2 compared with β-GaNaTe2, higher than that of diamond for most of the 

temperatures, and dependent on temperature compared to TiFe2Si. The uncertainty was below 5 % 

for most temperatures. The symmetry of GaCuSe2 made it possible to have a non-zero piezoelectric 

tensor. Indeed, it was nonzero, and the second term of the pyroelectric vector was calculated as a 

function of temperature. It is very promising for the future that it can be calculated from purely ab 

initio assumptions. 

6.5. Main conclusion 
The motivation for this study was to find a PTM with bandgap in both phases and a large change in 

the pyroelectric vector upon the phase change. This was to achieve high energy efficiency by the 

electric field that will be caused by this phase transformation and design a heat harvesting 

technology to reduce the greenhouse gas that is a large problem for the world. To do this, four 

materials have been investigated. Those are diamond, a Heusler TiFe2Si in the space group 225, two 
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phases of GaNaTe2 with space group 122 and 140, and two phases of GaCuSe2 with space group 122 

and one with space group 225. For the phases that were stable, ab initio molecular dynamics and the 

TDEP package have been used to find different properties. The CTE has been found as a function of 

temperature from 0 K up to at least 600 K. The Gibbs free energy as a function of temperature and 

pressure has been found in the same temperature range as for the CTE and from 0 GPa to 18.8 GPa. 

The heat capacity has been found as a function of temperature in the same range as the CTE. The 

lattice constant has also been found as a function of temperature in the same range, although it is 

not expected to be correct. The piezoelectric tensors of the materials have been found, and by 

combining it with the CTEs, the secondary pyroelectric vectors have been found. The third order 

force constants have been calculated and converged with respect to configurations for TiFe2Si. 

The Gibbs free energy was found for each material. If there were two phases of the materials, the 

Gibbs free energy would be compared for the two phases to see if there was a phase change at a 

given temperature and pressure. However, only one phase for each material was stable and a phase 

change could not be found. The instability of the other phases was found from the eigenfrequencies 

which were imaginary, and this is called dynamical instability. The secondary pyroelectric vector was 

found for each phase to check if going from one phase to another would cause an electrical field in 

the material that would make it possible to create an external current. The heat capacity was found 

because it is interesting in many situations and because it is automatically calculated within TDEP 

when calculating the free energies and therefore easy to plot. The CTE is found from the lattice 

constant and is therefore a result that automatically comes using the method in this thesis. The third 

order force constants are necessary to calculate the first term of the pyroelectric coefficients and is 

therefore interesting to investigate for further work finding the complete pyroelectric coefficients. 

The method used works very well. That is, the CTE has been found with impressive similar results to 

experimental data where they existed, from completely ab initio principles with no parameters from 

experimental data over a wide temperature range. That is, for diamond, the low temperature high 

accuracy data from Stoupin and Shvyd’ko were very close to being inside the accuracy range of this 

study for almost all points. For higher temperatures it followed the trend of the experimental points 

all the way up to 2000 K. This shows how good GGA exchange-correlation potentials works for 

calculation of properties that are not dependent of the bandgap. The CTE of diamond was plotted up 

to 3000 K in this study, even though it is only stable up to 1800 K as mentioned earlier. Further the 

CTE was found for TiFe2Si up to 3000 K and even for the β phase of GaNaTe2 and GaCuSe2 which are 

anisotropic materials. For GaNaTe2 the CTE was found for both independent lattice parameters up to 

600 K. Calculating the CTEs of anisotropic materials from ab initio calculations are not something that 

have been done often earlier. The number volumes that are required for calculating the CTE for an 

isotropic material have to be raised to the second and third power for an anisotropic material with 

two and three independent lattice parameters respectively. This study has shown that instead of 

using volumes with lattice parameters with one percent gap, lattice parameters with two percent gap 

have been sufficient, not including the equilibrium structure at 0 K and adding a compression at 

minus three percent. This reduces the volume grid for an expansion up to 5 percent from 8^2 = 64 to 

5^5 = 25 for a tetragonal structure. That is, the CPU hours needed are less than half of what was 

originally assumed. The piezoelectric tensor was found, and from those the secondary pyroelectric 

vector which was zero for most materials. Further, the Gibbs free energy has been found as a 

function of temperature and pressure for all materials. Also, the CPU and memory requirements 

were not prohibitive to perform all the steps of the calculations required to achieve the second term 

of the pyroelectric coefficients. So, the conclusion is that it is very possible to calculate the second 

term of the pyroelectric coefficient. This was also done for GaCuSe2 in the range from 0 K to 2000 K, 

with the temperature dependence from the CTEs. 
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7. Future work 
Unfortunately, the other phase of the materials investigated was not stable shown from the 

imaginary phonon frequencies. Therefore, the Gibbs free energy of the two phases could not be 

compared to make a phase diagram with respect to temperature and pressure and the change in 

pyroelectricity could not be measured. Future work will be to find a material with two phases that 

are stable and have bandgap, then calculate the secondary pyroelectric vectors for them which 

hopefully are different for the two phases. Even further, the other terms of the pyroelectric 

coefficient could be calculated too. 
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Appendix A 
The tables in this appendix specifies the INCAR input used for the different calculations. The NPAR 

parameter, which decides the number of bands that are treated parallel, is not specified as this 

varied to be as close as possible to the square root of the number of cores for each calculation. 

- Table 9 shows the input for the energy cutoff of the planewave basis set test. 

- Table 10 and Table 11 shows the input for the relaxation of the materials. 

- Table 12 and Table 13 shows the input for the DFPT calculations. 

- Table 14 shows the input for the calculations of the canonical configurations. 

- Table 15 and Table 16 shows the input for the relaxation of the supercells. 

Table 9: INCAR input for diamond, TiFeSi system, GaNaTe2 system and GaCuSe2 for the energy cutoff test. ALGO decides the 
electronic minimisation algorithm. ALGO = Fast uses the Davidson algorithm in the initial phase, then switches to the RMM-
DIIS. NELMIN decides the minimum number of electronic self-consistent steps. EDIFF decides the break condition of the 
electronic steps with respect to difference in energy between two steps. PREC decides the number of grid points in the fast 
Fourier transform-grid and how accurate the projectors are represented in in real space. LREAL decides if the projection 
operators are evaluated in reciprocal or real space. ISMEAR determines the function for smearing for each orbital. SIGMA 
determines the width of the smearing in eV. ISPIN = 2 decides that spin polarized calculations are done. For GGA = not 
specified, the PBE69 GGA will be used and for GGA = PS, PBE-sol84 will be used. 

Parameter: Diamond: TiFeSi: GaNaTe2: GaCuSe2: 

ALGO Fast Fast Fast Fast 

NELMIN 4 4 4 4 

EDIFF 10-5 10-5 10-6 10-6 

PREC Normal Normal Normal Normal 

LREAL .FALSE. .FALSE. .FALSE. .FALSE. 

ISMEAR -5 -5 -5 -5 

SIGMA 0.2 0.2 0.2 0.2 

ISPIN 2 2 2 2 

GGA Not specified Not specified PS PS 

 

Table 10: INCAR values for electronic relaxation for diamond, TiFe2Si, GaNaTe2 and GaCuSe2 for the relaxation calculations. 
NELM decides the maximum number of self-consistent electronic steps. ENCUT is the energy cutoff value. 

Parameter: Diamond: TiFe2Si: GaNaTe2: Tetragonal 
GaCuSe2: 

Cubic 
GaCuSe2: 

ALGO Fast Fast Fast Fast Fast 

NELMIN 4 4 4 4 4 

NELM Not specified Not specified Not specified 300 300 

EDIFF 10-5 10-6 10-6 10-6 10-6 

ENCUT 450 500 400 450 500 

PREC Accurate Accurate Accurate Accurate Accurate 

LREAL Auto .FALSE. .FALSE. .FALSE. .False. 

ISMEAR 0 0 0 0 0 

SIGMA 0.2 0.2 0.2 0.2 0.2 

ISPIN 2 2 2 2 2 

GGA Not specified PS PS PS PS 

 

Table 11: INCAR values for ionic relaxation for diamond, TiFe2Si, GaNaTe2 and GaCuSe2 for the relaxation calculations. 
EDIFFG decides the condition for breaking the ionic relaxation loop with respect to forces between to ionic steps when it is 
negative. NSW is the maximum number of ionic steps. MAXMIX specifies the maximal rank of the approximation of the 
charge dielectric function build up by the Broyden mixer. IBRION decides how the ions are updated and moved. IBRION = 1 
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makes VASP use the RMM-DIIS method to find the 0 K structure. ISIF decides if the stress tensor is calculated and if the 
positions, call shape and cell volume are free to vary. ISIF = 3 decides that the stress tensor is calculated and that positions, 
cell shape and cell volume are free to vary. ADDGRID decides if an additional support grid is used when evaluating the 
augmentation charges. 

Parameter: Diamond: TiFe2Si: GaNaTe2: Tetragonal 
GaCuSe2: 

Cubic 
GaCuSe2: 

EDIFFG -0.01 -0.001 -0.001 -0.001 -0.001 

NSW 80 80 80 80 80 

MAXMIX 80 80 80 80 80 

IBRION 1 1 1 1 1 

ISIF 3 3 3 3 3 

ADDGRID .TRUE. .TRUE. .TRUE. .TRUE. .TRUE. 

 

Table 12: INCAR values for electronic relaxation for calculation of elastic parameters of Diamond, TiFe2Si, GaNaTe2 and 
GaCuSe2 for the DFPT calculations. 

Parameter: Diamond: TiFe2Si: α-GaNaTe2: β- GaNaTe2: GaCuSe2: 

ALGO Fast Fast Fast Fast Fast 

NELMIN 4 4 4 4 4 

NELM 200 200 200 200 200 

EDIFF 10-7 10-7 10-7 10-7 10-7 

ENCUT 450 500 500 400 450 

PREC Accurate Accurate Accurate Accurate Accurate 

LREAL .FALSE. .FALSE. .FALSE. .FALSE. .FALSE. 

ISMEAR -5 -5 -5 -5 -5 

SIGMA 0.2 0.2 0.2 0.2 0.2 

ISPIN 2 2 2 2 2 

GGA Not specified PS PS PS PS 

 

Table 13: INCAR values for calculation of elastic parameters for Diamond, TiFe2Si, GaNaTe2 and GaCuSe2 for the DFPT 
calculations. IBRION = 6 determines that the Hessian matrix and the vibrational frequencies should be calculated. NFREE 
decides how many displacements are used for each direction and ion. LEPSILON = .TRUE. determines the electronic 
contribution to the piezoelectric tensor, the static dielectric matrix and the Born effective charges using DFPT. 

Parameter: Diamond: TiFe2Si: α-GaNaTe2: β- GaNaTe2: GaCuSe2: 

IBRION 6 6 6 6 6 

NFREE 2 2 2 2 2 

ISIF 3 3 3 3 3 

LEPSILON .TRUE. .TRUE. .TRUE. .TRUE. .TRUE. 

 

Table 14: INCAR values for electronic relaxation for Diamond, TiFe2Si, GaNaTe2 and GaCuSe2 for the canonical configuration 
calculations. 

Parameter: Diamond: TiFe2Si: α-GaNaTe2: β- GaNaTe2: GaCuSe2: 

ALGO Fast Fast Fast Fast Fast 

NELMIN 4 4 4 4 4 

EDIFF 10-5 10-6 10-6 10-6 10-6 

ENCUT 400 500 400 400 450 

PREC Normal Normal Normal Normal Normal 

LREAL .FALSE. .FALSE. .FALSE. .FALSE. .FALSE. 
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ISMEAR -5 -5 -5 -5 -5 

SIGMA 0.2 0.2 0.2 0.2 0.2 

ISPIN 2 2 2 2 2 

GGA Not specified PS PS PS PS 

 

Table 15: INCAR values for electronic relaxation for GaCuSe2 for the supercell relaxations. 

Parameter: Value: 

ALGO Fast 

NELMIN 4 

NELM 300 

EDIFF 10-6 

ENCUT 450 

PREC Accurate 

LREAL .False. 

ISMEAR 0 

SIGMA 0.2 

ISPIN 2 

GGA PS 

 

Table 16: INCAR values for ionic relaxation for the supercell relaxations. ISIF = 2 is the difference from the earlier ionic 
relaxation which do not allow the lattice parameters to change. 

Parameter: Value: 

EDIFFG -0.001 

NSW 80 

MAXMIX 80 

IBRION 1 

ISIF 2 

ADDGRID .TRUE. 
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Appendix B 
The tables in this appendix show the difference in vibrational free energy as a function of different 

parameters. They are used for convergence of the vibrational free energy. 

- Table 17, Table 18 and Table 19 are with respect to number of configurations. 

- Table 20 is with respect to the cutoff radius of included atoms. 

 

- Table 21 is with respect to Debye temperature. 

Table 17: Difference in free energy for TiFe2Si at 300 K for one more configuration used as a function of configurations used. 

Number of 
configurations 
used 

1 2 3 4 

Difference in free 
energy using one 
more 
configuration 
(meV/formula) 

1.4032 1.4313 0.0977 0.0574 

 

Table 18: Difference in free energy for TiFe2Si at 1500 K for one more configuration used as a function of configurations 
used. 

Number of 
configurations 
used 

1 2 3 4 

Difference in free 
energy using one 
more 
configuration 
(meV/formula) 

6.0866 6.0041 0.3586 0.1736 

 

Table 19: Difference in free energy for TiFe2Si at 3000 K for one more configuration used as a function of configurations 
used. 

Number of 
configurations 
used 

1 2 3 4 

Difference in free 
energy using one 
more 
configuration 
(meV/formula) 

12.1123 11.9328 0.7086 0.3398 
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Table 20: Difference in free energy for TiFe2Si at 300 K for one more layer of neighbour atoms included as a function of 
radius of including atoms at 300 K. Each cutoff value plotted corresponds to including one more layer of neighbour atoms. 

Cutoff value 
for second 
order force 
constants (Å) 

2.439 2.816 3.982 4.670 4.877 5.632 6.137 

Difference in 
free energy 
including the 
next layer of 
neighbour 
atoms 
(meV/formula) 

6.696 0.6173 0.7607 0.2243 0.0464 0.1075 0.1698 

 

Table 21: Change in free energy for TiFe2Si at 300 K going from the calculated Debye temperature at 494 K to the compared 
Debye temperature. 

Debye 
temperature 
compared (K) 

100 300 700 900 

Difference in free 
energy 
(meV/formula) 

1.5464 0.4149 0.6710 1.7204 
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Appendix C 
This appendix consists of tables that shows the CPU time used by the different calculations for the 

different materials. 

Table 22: CPU time used by different calculations for diamond. 

Calculation: Time (hours:minutes:seconds): 

First relaxation 00:00:18 

Second relaxation 00:00:11 

Elastic parameters 00:06:29 

An expensive total energy calculation of 
supercell configuration based on any volume 

17:19:04 

A cheap total energy calculation of supercell 
configuration based on any volume 

08:34:19 

Most expensive total energy calculation of the 
small cells with any volume 

00.00.05 

Least expensive total energy calculation of the 
small cells with any volume 

00.00.04 

 

Table 23: CPU time used by different calculations for TiFe2Si. 

Calculation: Time (days:hours:minutes:seconds): 

First relaxation 00:00:17:55 

Second relaxation 00:00:04:03 

Elastic parameters 00:00:35:24 

An expensive total energy calculation of 
supercell configuration based on any volume 

222:21:25:50 

A cheap total energy calculation of supercell 
configuration based on any volume 

43:02:41:39 

Most expensive total energy calculation of the 
small cells with any volume 

00:00:02:16 

Least expensive total energy calculation of the 
small cells with any volume 

00:00:00:50 

 

Table 24: CPU time used by different calculations for GaNaTe2. 

Calculation: Time (days:hours:minutes:seconds): 

First relaxation 00:02:10:09 

Second relaxation 00:01:04:24 

Elastic parameters 00:29:42:24 

An expensive total energy calculation of 
supercell configuration based on any volume 

84:03:47:09 

A cheap total energy calculation of supercell 
configuration based on any volume 

15:14:35:59 

Most expensive total energy calculation of the 
small cells with any volume 

00:00:13:53 

Least expensive total energy calculation of the 
small cells with any volume 

00:00:09:32 

 



115 
 

Table 25: CPU time used by different calculations for GaCuSe2. 

Calculation: Time (days:hours:minutes:seconds): 

First relaxation 00:00:57:14 

Second relaxation 00:00:19:43 

Elastic parameters 00:07:31:33 

An expensive relaxation of a supercell 138:10:31:47 

A cheap relaxation of a supercell 31:00:19:48 

An expensive total energy calculation of 
supercell configuration based on any volume 

79:06:58:12 

A cheap total energy calculation of supercell 
configuration based on any volume 

21:18:18:50 

Most expensive total energy calculation of the 
small cells with any volume 

00:00:03:49 

Least expensive total energy calculation of the 
small cells with any volume 

00:00:02:35 

 
 


