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Abstract

High bladder pressure in patients suffering from neurogenic bladder dys-
function can have serious consequences on patients’ mental and physical
health. Constant monitoring of the bladder pressures allow physicians
to mitigate the risk of high pressure. Two commonly used techniques in
the clinical practices to monitor this pressure are catheter-based and wire-
less techniques. Catheter-based pressure monitoring is done by inserting
a sensor into the bladder from urethra. Even though this approach has
a higher accuracy compared to the wireless sensors, it poses a high risk
of infection. Pressure monitoring using a wireless sensor, on the other
hand, improves patients’ comfort and reduces the risk of infection. Utiliz-
ing wireless communication techniques in implantable health monitoring
devices has gained considerable attention in recent years.

This thesis covers the implementation of an implantable embedded
sensor system using a wireless communication technique based on Blue-
tooth low energy. The implementation is based on the Nordic Semicon-
ductor’s nRF52840 SoC. Tests and development are conducted on Nordic’s
nRF52840 development kit. We additionally propose a two-layer printed
circuit board. The sensory system is aimed to communicate with a smart-
phone application in order to monitor the pressure.

The proposed printed circuit board has a dimension of 27.43mm ×
27.58mm. Current consumption of the implementation is 0.915mA in the
IDLE state and 1.114mA in the operating mode.
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Chapter 1

Background

1.1 Motivation

Every year, around the world, between 250 000 and 500 000 people suf-
fer serious damage to their spinal cords [1]. The most common urologic
complications following spinal cord injury (SCI) are urinary tract infection
(UTI), upper and lower urinary tract deterioration, and bladder or renal
stones. Nerve problems caused by diseases like multiple sclerosis (MS),
Parkinson’s disease, or diabetes can also lead to bladder dysfunction [2].
In most cases, having high bladder pressure could easily affect the kidneys
and lead to damage that may be life-threatening.

In addition to physical complications caused by neurogenic bladder
dysfunction, there can also be negative psycho-social effects present in
each individual. These can include a decrease in the individual’s qual-
ity of life, and feelings of embarrassment and depression that can further
lead to social isolation or devastating in the case of someone with a pro-
gressive neurological condition [3].

Frequent monitoring of bladder pressure can substantially mitigate the
risk caused by neurogenic bladder dysfunction. One of the technologies
used for bladder pressure monitoring is catheter-based monitoring tech-
niques. Even though these techniques are still in use in clinical practice,
they can induce complications due to the usage of wires or catheters. Bac-
terial colonization is one of the consequences of these techniques. Bacteria
can invade the bladder by migrating along the inside and the outside of
the catheter [4]. With short-term catheterization, 95% of catheterized pa-
tients suffer bacterial invasion after 1 month [5]. Urinary tract infection
necessitates the use of antibiotics, which are all too frequently untested
against the specific bacteria and consequently often proven to be ineffec-
tive until the right one is found by a process of trial and error. This adds to
the cost of clinical management, as well as being a burden for patients and
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carers. The use of antibiotics to control catheter induced infections con-
tributes significantly to the development of resistant strains, about which
the World Health Organization (WHO) has expressed serious concerns [6].

On the other hand, implantable devices based on wireless communica-
tion technologies are a promising enhancement to monitor bladder pres-
sure. It increases patient comfort while preventing complications caused
by wires or catheters [7].

To leverage wireless communication technologies, smartphones are
good candidates. These days smartphones are an unavoidable part of our
daily life. They provide different types of communication facilities such as
WiFi, Bluetooth, and Near Field Communication (NFC). Using these types
of communication technologies in health monitoring systems introduced
the term mHealth (mobile health). These days we can see an increasing
number of health related applications on smart phones. With the aid of
these applications patients themselves can perform the monitoring part.

The work presented in this thesis is to implement a system to monitor
bladder pressure from the sensor using Bluetooth Low Energy (BLE)
technology as a means of communication. Thus, patients can easily read
sensor data using their smartphones.

1.2 Previous Work

Over the past decade, there has been a growing interest among researchers
in developing various architectures for implantable pressure sensors. Ali
Zaher et al. [8] designed an implantable system that consists of dual ASIC
and one FPGA with the goal of integrating everything on one single ASIC.
Their implementation is relying on the NFC protocol for data and power
transmission. The physical layer of the communication and the power har-
vester have been implemented on one ASIC, and the sensor front-end and
ADC on another, while the digital circuits realizing the higher level NFC
protocol have been implemented on an FPGA. The system is not capable
of powering itself in absence of a power harvester, thus, the sensor will
only run in the presence of the reader which delivers the power needed. A
rectified output, from the signal captured across the antenna, is then for-
warded to three different regulators to generate the required voltages for
the system.

Tantin et al. [7] introduced an embedded system implantable blad-
der pressure sensor based on Medical Implant Communication System
(MICS). MICS is an FDA-approved RF technology which is an impor-
tant advantage of this implementation. This implant is utilizing a MICS
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transceiver, microcontroller, two amplifiers, and two sensor probes. Their
implementation relies on a battery as a power supply. Their study showed
that using a small battery of 600mAh an autonomy of 39 days could be
achieved.

Wang et al. [9] designed a system for long-term bladder urine pres-
sure measurement. Their system consists of three major components: a
pressure sensor, a control ASIC, and a Radio Frequency (RF) module. The
battery is the main power source for this implementation. To save battery
power for a long-term observation, a control sequence was employed to
turn the system on and off in specific time intervals.

Sensing systems powered by batteries cannot work for a long time be-
cause of the tradeoff between the size limitation for implantation and the
battery size. Majerus et al. [10] improved the power supply mode. In their
research, a micro-battery which can be recharged with an RF signal is used
to power the implant part.

In a recent study, Zhong et al. [11] developed a batteryless bladder
pressure monitor system that monitors bladder storage in real-time and
transmits the feedback signal to the external receiver through BLE. Their
design pressure measurement circuit consists of a liquid pressure sensor,
an instrument amplifier, and a microcontroller. The pressure signal is
amplified by an instrumentation amplifier to meet the requirement of
bladder pressure measurement. This analog value is then converted
to a digital value by the analog to digital converter integrated inside
the microcontroller. They use a four-coil wireless energy transmission
method, which supports a power transmission range of up to 7 cm. The
power transmission is based on WiTricity method [12]. This method can
achieve further transmission distance and is considered safer due to the
weak interaction of magnetic fields on biological organisms.

1.3 Embedded system based design

As was mentioned above, the architectural design of an implantable blad-
der sensor can be categorized into two groups: ASIC and embedded sys-
tem. ASIC design may give a better performance than an embedded sys-
tem based design. It offers better power efficiency for high-performance
applications. The flexibility of ASICs allows for the use of multiple volt-
ages and thresholds to match the performance of critical regions to their
timing constraints and hence minimize the power consumption. However,
ASICs have a long design cycle that can vary from month to year and it
requires higher financial resources[13].
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On the other hand, with recent advances in embedded systems,
factors like low power and high speed have improved significantly.
The implementation of an embedded system is less time and money
consuming process [14]. Due to these reasons, in this thesis, we decided to
pursue an embedded system based implementation.

1.4 Bluetooth Low Energy

The communication protocol which was used in this thesis is Bluetooth
Low Energy (BLE). This section gives a brief history of BLE technology
and elaborates on why we chose this communication protocol.

BLE is a low power wireless technology used to establish a connection
between a pair of devices. BLE operates in the 2.4 GHz ISM (Industrial,
Scientific, and Medical) band, and is targeted towards applications that
need to consume less power to be powered by a battery for a long period
[15].

BLE was introduced in the year 2010 as part of the Bluetooth speci-
fication 4.0 release. The original Bluetooth defined in the previous ver-
sions is referred to as the Bluetooth Classic. BLE is not an upgrade to the
original Bluetooth, but rather it is a new technology that utilizes the Blue-
tooth brand but focuses on the Internet of Things (IoT) applications where
small amounts of data are transferred at lower speeds. It is important to
note that there is a big difference between Bluetooth Classic and BLE in
terms of technical specifications, implementations, and the types of appli-
cations they are each suitable for. For instance, Bluetooth Classic can be
used for streaming applications such as audio streaming and file trans-
fers. On the other hand, BLE is used for sensor data, control of devices,
and low-bandwidth applications.

Bluetooth Classic, however, is not compatible with BLE. Therefore, the
BLE device cannot communicate directly with a Bluetooth Classic device.
Nevertheless, some devices implement both BLE and Bluetooth Classic
and allow talking to these devices independently.

In BLE there are two kinds of devices: a Central device, and a Periph-
eral device. A central device is usually a more capable device in terms of
CPU power, memory, and battery capacity. Whereas, a peripheral device
is more resource-constrained, especially when it comes to battery life. BLE
is an asymmetric technology which means that most of the heavy lifting
and the processing responsibility is put on the central device versus on the
peripheral. This allows the peripheral device to sleep for a longer period,
turn off the radio, and consume less power.
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To mention some of the major benefits of BLE over the available com-
munication technologies in the market first thing that comes to mind is its
low power characteristic. As it was mentioned, BLE has low power con-
sumption. Even when we compare BLE to other low power technologies,
BLE is one of the lowest power technology available [16]. It is also free
of cost to access the original specification documents. BLE module and
chipset have low cost and it makes it suitable for the budget-constrained
applications. The last and probably the most important advantage of BLE
over other technologies is the existence of this protocol in most smart-
phones of the market.

The BLE range can be up to 50 meters. This however significantly de-
creases to just several meters in the presence of obstacles or walls. Antenna
design and device orientation are also some other factors that can limit the
range[17].

BLE 5.0 added two new Physical Layer (PHY) variants to the PHY
specification used in Bluetooth 4 : Coded PHY (long-range) and 2MBPS
(2Mbps bit rate). The former is used for long-range communication and
the latter is used for faster communication. For example, in applications
where long-range communication is required it is possible to increase the
BLE range up to 500 meters with BLE 5 long-range mode [18].

For a relatively new standard, BLE has seen an uncommonly rapid
adoption rate, and the number of devices that use BLE is much more than
other wireless technologies. Compared to other wireless standards, the
rapid growth of BLE is relatively easy to explain. Because its fate is so inti-
mately tied to the phenomenal growth in smartphones, tablets, and mobile
computing.

Even though BLE is not FDA approved for use in implantable devices,
especially due to BLE security vulnerability [19] , there are already several
health monitoring applications that utilize BLE communication. With the
availability of BLE on smartphones and rapid growth in health monitoring
applications, it is likely to see implantable devices using BLE protocol
soon.

1.5 Tools

This section will give a brief description of the tools and frameworks that
have been used throughout this implementation.
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1.5.1 nRF52840 Development Kit

The Nordic Semiconductor nRF52840 DK is a versatile single-board
development kit for BLE, Bluetooth mesh, Thread, Zigbee, 802.15.4, ANT,
and 2.4 GHz proprietary applications on the nRF52840 SoC. It facilitates
development by exploiting all features of the nRF52840 SoC. All GPIOs
are available via edge connectors and headers, and 4 buttons and 4 LEDs
simplify input and output to and from the SoC. The development board
comes with an on-board Segger J-Link debugger allowing programming
and debugging of onboard SoC. Programming files are written to SoC
using a USB interface and the nRFgo Studio windows application [20].
The development kit also has dedicated current measurement pins which
enables us to measure the SoC’s current consumption. We will use these
pins to measure the current consumption of our implementation later on.

1.5.2 Segger Embedded Studio

Segger embedded Studio is a complete all-in-one solution for managing,
building, testing, and deploying embedded applications. It is easy to use
especially with common ARM microcontrollers and also has an included
C/C++ compiler. Segger embedded Studio uses a style similar to Mi-
crosoft’s Visual Studio [21].

It has been recommended for the development of Nordic nRF52 series
and free to use for all Nordic Semiconductor customers. Thus we decided
to use this as a development tool for our project.

1.5.3 nRFgo Studio

This is a test and programming tool available for Nordic Semiconductor
products. This tool has been used to configure Firmware (SoftDevice)
and applications on the development board. It also provides a means to
evaluate the radio performance and functionality of the device.

1.5.4 nRF Toolbox smartphone application

The nRF Toolbox is a container app that stores Nordic Semiconductor apps
for BLE in one location. The nRF Toolbox works with a wide range of
BLE accessories. It contains applications for Health Thermometer Monitor,
Glucose Monitor, Proximity Monitor, Nordic UART, etc. It is compatible
with Nordic Semiconductor nRF5 Series devices that have the SoftDevice
and bootloader enabled.

In this implementation reading and writing to the implanted device
is performed using Nordic UART application. So the implanted device
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Patient 

Contacting 

health specialist

Figure 1.1: Usage illustration

and smartphone application will have a peripheral and central role
respectively.

1.6 Usage Illustration

Figure 1.1 shows how a complete system would work. The goal is
to design a small implantable device, which can communicate with
smartphone applications through BLE. In this thesis, we are focusing on
the design and implementation of the implanted device.
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Chapter 2

Hadrware System

In this section, we will discuss the hardware requirement for the proposed
system. We will give a brief description of our hardware choice and a
demonstration of the system’s block diagram.

2.1 System On a Chip based Solution

As it was discussed in the previous chapter (section 1.3), in this thesis, we
are interested in embedded system based implementation. Preliminarily,
it was microcontrollers that are mainly used in the embedded system ap-
plications, but nowadays SoCs are rising to prominence in the embedded
systems market. Some of the reasons behind this are that SoCs offer better
reliability, smaller footprint, and lower cost [22]. They are also much more
efficient as systems since their performance is maximized per watt [23].

An SoC is essentially an integrated circuit or an IC that takes a single
platform and integrates an entire electronic or computer system onto it.
The components that an SoC generally looks to incorporate within itself
include a central processing unit, input and output ports, internal mem-
ory, as well as analog input and output blocks among other things [23].

Our design is based on the nRF52840 SoC which is a member of Nordic
Semiconductor nRF52 Series SoC family. The nRF52 Series of SoC devices
embed a powerful yet low-power ARM R© CortexTM-M4 processor with 2.4
GHz RF transceivers. This family series enables us to make ultra-low
power wireless solutions.

nRF52840 contains 1 MB of flash and 256 Kb of RAM that can be used
for code and data storage. Having non-volatile memory is a big advantage
in this chip. It will make it impervious to memory loss during a power-
down event. It also contains an integrated 12-bit ADC which will save us
from adding additional components which could have a negative effect
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on the size of the design. It also contains a full-speed 12Mbs USB device
controller for data transfer and a power supply for battery recharging.

2.2 Amplifier

The voltage swing of the pressure sensor is in the 100mv range. To increase
the accuracy of ADC, sensors output should match its input range. So
the data must be amplified before entering the ADC. To eliminate input
impedance matching, using an instrumentation amplifier can be a good
choice. These kinds of amplifiers are also widely used in measurement
and test equipment. In this design, Texas Instruments INA333 has been
chosen. It is a low noise, low distortion instrumentation amplifier. The
gain of this amplifier can be tuned with an external resistor and can reach
up to 1000.

2.3 Components Summery

The main components needed for this design are nRF52840 SoC and
an amplifier. But we eventually need to add some other components
such as power source and voltage regulators. Table 2.1 shows the
proposed component, their power consumption, and prices. Amplifier
power consumption is extracted from its datasheet. nRF52840 power
estimation has been calculated using the Nordic Semiconductor online
power profiler. This power profiler gives an estimation based on some
chip settings like connection interval, supply voltage, and transmitted
payload per event. Figure 2.1 shows an example of proposed system
implementation.

Component Manufacturer Name Power Consumption Price (unit of 100)
SoC Nordic Semiconductor nRF52840 6.4 µA 41.63 NOK

Amplifier Texas Instrument INA333 50 µA Quiescent 26.92 NOK

Table 2.1: Utilized components to be used in the project

nRF52840 Amplifier Sensor

Figure 2.1: Block Diagram of proposed system
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Chapter 3

Software implementation

3.1 System Overview

Figure 3.1 is a top-level overview of the proposed system. Each block
outside of nRF52840 is a separate discrete component. Inside the nRF52840
block, it is demonstrated how different peripheral are connected to each
other and to the main processing unit. In this diagram, only peripherals
that were in use in this implementation are illustrated. A complete block
diagram of nRF52840 is presented in Appendix A.

Sensor TimerSAADCAmplifier

NUS BLEAntenna

PPI

Implant

Radio

nRF52840

CPUAHB Multi-Layer

AHB to APB Bridge

AHB to APB Bridge

AHB Master

AHB Slave

AHB Slave

APB

APB

APB

Figure 3.1: System Diagram
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Sensor’s data is amplified to reach the input range of Successive Ap-
proximation Analog to Digital Converter (SAADC). Different peripherals
inside the nRF52840 can communicate with each other through Parallel
Peripheral Interface (PPI). In this way events from a peripheral can trigger
a task in another peripheral. For instance, in this design, the Timer module
will trigger the sampling task in the SAADC module. Peripherals also can
have access to memory without CPU intervention, since nRF52840 uses
Direct Memory Access (DMA) feature. This feature gives peripherals di-
rect access to RAM whenever they are needed. SAADC module also uses
the DMA feature to store conversion result inside the buffers without CPU
intervention. The conversion result will then feed to the NUS unit which
will send these data through BLE channels to the smartphone application.

There is a unit inside the nRF52840 named Advanced High-
performance Bus (AHB) Multi-Layer. This unit enables parallel access
paths between multiple masters and slaves in the system. Access is re-
solved using priorities. The CPU and all of the DMAs are AHB bus mas-
ters on the AHB multilayer, while the RAM and various other modules are
AHB slaves.

The software implementation is done in the Segger Embedded Studio
development platform [24]. After building the application, the application
file together with Softdevice is flashed to SoC through a USB interface and
onboard Segger J-Link debugger.

In the following sections, we will give a detailed description of the role
of each unit in Figure 3.1 and how these units are working together to
shape the final product.

3.2 Handling Radio Communication

To handle the radio (here Bluetooth) communication, several components
need to work together to create a successful data channel. These
components are SoftDevice, BLE event handler, and Nordic UART
Application. In the following sections, we will give a detailed description
of each component’s task.

3.2.1 SoftDevice

SoftDevice is an Application Program Interface (API) that handles the BLE
stack and radio events [25]. In this thesis, Nordic’s nRF SoftDevice was uti-
lized to handle the wireless communication part of the design. nRF Soft-
Deive provides a wrapper to BLE stack protocols which facilitates trans-
ferring and receiving data through BLE.

13



To use SoftDevice’s functionality in our system, the first step is to
initialize the SoftDevice. A separate function has been implemented to
achieve this goal. Inside this function, a request is sent to enable the de-
vice. After enabling the SoftDevice, the BLE stack is configured. This
helps the application to have access to the BLE stack functionality through
SoftDevice. Now the SoftDevice and BLE stack is enabled but an im-
portant step still remains. For our modules to be notified about SoC
events we need to register an event handler inside the SoftDevice. Thus,
the SoftDevice can perform proper action based on generated events.
NRF SDH BLE OBSERVER macro is used to register an observer for BLE
stack events.

1 NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO,

ble_evt_handler, NULL);

ble evt handler is an observer in this implementation that monitors
the BLE stack events. In the next subsection, we will give a detailed
description of this event handler.

3.2.2 BLE Events Handler

It was mentioned in the previous section that a BLE event handler is reg-
istered inside the SoftDevice to handle the events coming from the BLE
stack. This event handler catches different events that happen during the
communication and sends a proper response concerning that event. Fig-
ure 3.2 shows how this event handler responds to each event. This event
handler does not provide a specific response to all received events from
the BLE stack. Basic events to handle a BLE connection have been consid-
ered.
There are two events in this event handler that we would like to elaborate
more in details. The first event is PHY update request. It was mentioned
earlier, the newer version of BLE supports two new PHY variants. For
instance, the default PHY bit rate is 1Mbps, but if the central supports
2Mbps bit rate, it will send a request to update the PHY variant. The event
handler will catch this request and perform a proper action.

Another event is related to security key exchange. In this design,
the Low Energy Secure Connections (LESC) pairing model with the Just
Works pairing method was used during the implementation. This pair-
ing method is based on the Diffie-Hellman key exchange method. In this
method, the parties provide each other with their public keys and there
is a private key for each party which is not shared. When the package
is sent each party uses its own private key and the other party’s public
key to calculate the message. Therefore, this model is secure against pas-
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Change the status of connection 

handle
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Update Procedure

Reply with GAP security 

parameters

Disconnect

Disconnect

Exit

Figure 3.2: Overview of BLE event handler module

sive eavesdropping [26]. Nevertheless, this method does not provide an
authentication method, thus it is likely to be vulnerable to Man In The
Middle attacks(MITM).

In order to guard against the MITM attack, one can use the passkey
pairing method. This method, however, requires a monitor and an
onboard keyboard which is not possible to include in this implementation
due to it is being an implantable device.

3.2.3 Nordic UART Service

We need our software to support both the peripheral (Development board)
and the central (Android/PC/iOS) sides. One of the Nordic services
that provides this capability is the Nordic UART Service (NUS). NUS
Application emulates a serial port over BLE. To support the basic UART
communication requirements, it sets up two RX and TX data channels with
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write and notify properties respectively. Thus, data received from a peer
through BLE (sensor’s data for instance) is passed to the NUS application
and subsequently to the module that concern with these data. The same
will be applied when sending data to peer, data first will be passed to the
NUS application and then from NUS to the peer.

3.3 ADC Implementation

We start the ADC configuration by calling nrf drv saadc calibrate offset()
function. This function is available in Nordic Software Development
Kit (SDK) and will trigger the ADC offset calibration. It has two re-
turn values: NRF SUCCESS, when calibration is started successfully, and
NRF ERROR BUSY, when the ADC driver is busy or calibration is already
in progress. We can find out if the calibration is done successfully by catch-
ing the return value of this function.

In the following subsection, we will discuss about detailed configura-
tion of ADC driver, sampling channels, and how ADC peripheral is com-
municating with other peripherals in the system.

3.3.1 Initializing Sampling Event

In order to trigger the compare event, we have set up a timer. In this
implementation, sampling is happening every 250 milliseconds. The
SAADC peripheral is configured along with buffers for storing samples
directly in RAM. As we can see in Figure 3.1, Timer and SAADC modules
are communicating through PPI channels. After allocating the first
available PPI channel, a sample task and a compare event addresses have
been assigned to the PPI channel. Whenever a compare event happens
in the Timer module, the sampling task is triggered in SAADC without
any intervention from the CPU. When the SAADC sample task has been
triggered enough times to fill the buffer, an END event is generated by the
peripheral. This END event then triggers the interrupt request handler
inside the SAADC driver. Interrupt request handler calls the SAADC
callback function which processes the samples and setup the buffers for
reuse.

3.3.2 SAADC Configuration

Table 3.1 shows the ADC driver configuration. Oversampling is disabled
as well as low power mode. The reason behind disabling the low power
mode is that when the low-power mode is enabled, the CPU is required to
trigger the sampling, and it will only work with a buffer size of one sam-
ple. In the case of a high sampling rate, there is little or no benefit from the
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Option name Configuration
Resolution 12-bit

Oversampling Disabled
Low power mode Disabled
Interrupt priority 6

Table 3.1: SAADC driver configuration

low-power mode. In this implementation, we have more than one sample
in each buffer. Therefore, we decided to disable this mode.

After configuring the ADC driver, each sampling channel needs to
be configured as well. In this implementation, we have used only one
sampling channel. Table 3.2 shows the ADC channel configuration. Burst
mode has been disabled to decrease power consumption. The ADC is
using the interrupt mode. A timer starts the ADC conversions and an
interrupt is generated when the conversion is over.

Option name Configuration
Gain 1

4
Reference voltage Internal 0.6 volt

Mode Single ended
Burst Disable

Table 3.2: SAADC channel configuration

Figure 3.3 shows the overall flow diagram of the ADC implementation.
The conversion results are added to a buffer, then the buffer’s data are
passed to the NUS application. Then, the data will be sent through
BLE channels to the mobile application or any other available receiver.
BLE allows us to transfer a maximum of 20 Bytes in each transmission.
Therefore, we have to make sure to avoid sending data larger than 20 Bytes
[27]. At the end of each transmission, a call to the error handler is made to
confirm a successful transmission.

3.4 Timer

This unit is responsible for managing time for the entire system as well
as handling the advertising intervals. Every time a timer initializes inside
this block it will stop any real-time controller, to prevent timers from ex-
piring in case of re-initializing. Setting an interrupt priority and enabling
interrupts are also happening in this unit.
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Figure 3.3: Simplified flow diagram of SAADC implementation

As we can see in Figure 3.1, Timer is communicating with other pe-
ripherals in the system through PPI channels. PPI system allows a timer
event to trigger a task of any other system peripheral of the device. The
PPI system also enables the timer task/event features to generate periodic
output GPIO.

The timer runs on the high-frequency clock source (HFCLK) and
includes a four-bit Prescaler that can divide the timer input clock from
the HFCLK controller. The timer frequency is derived from PCLK16M
as shown in the following equation, using the values specified in the
Prescaler register:

fTIMER =
16MHz
2Prescaler (3.1)

Clock source selection between PCLK16M and PCLK1M is automati-
cally selected according to the Timer base frequency which is set by the
Prescaler. In this implementation, the timer is running on base frequency
( Prescaler = 0).
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3.4.1 Timer for Periodic Advertisement

To decrease power consumption, we implemented a periodic advertise-
ment. So the device will send data in pre-specified time intervals. Select-
ing a correct timer mode is the first step.

There are two timer modes available:

• Single Shot mode: the timer would expire only once.

• Repeated mode: the timer would restart each time it expires.

To achieve a periodic advertisement, we have used the repeated timer
mode. Using repeated mode and timeout handler function, the adver-
tisement will restart each time it expires.

Figure 3.4, shows a flow diagram of the advertising timer module.
There are two user defined variables in this diagram:

• ADV TIMER INTERVAL: Specifies the timeout ticks of the adver-
tising timer.

• APP ADV DURATION: Specifies the advertising duration.

We can control the advertising and sleep duration of the system by
setting these two variables to desired values.
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Figure 3.4: Simplified flow diagram of advertising timer module

3.5 Power Management

The last part of the implementation is handling the system’s power during
the IDLE state.

Based on nRF52840 specifications, there are two main power saving
modes available in the IDLE state: System OFF and System ON modes.
System OFF mode is the deepest power saving mode that the system can
enter. In this mode, all core functionalities are powered down. All clock
sources and peripherals on the chip are therefore non-functional or non-
responsive. We can only wake up the system from System OFF through
an external power, and not on a timer interrupt for instance, because as we
mentioned earlier we cannot run timers in System OFF. In this implemen-
tation, we have an advertising timer that can run constantly. Therefore,
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our system cannot enter the System OFF mode at all.

In our design, we keep our system in System ON mode. System ON
is the default state after powering on the system. In this mode, all func-
tional blocks such as the CPU or peripherals can be in IDLE or RUN mode,
depending on the configuration set by the software and the state of the ap-
plication executing. System ON has a sub power mode named Low Power
mode which is the power mode we are using in this implementation. In
this mode, the system can switch the appropriate internal power sources
on and off, depending on how much power is needed at a given time. The
power requirement of a peripheral is directly related to its activity level,
and the activity level of a peripheral is usually raised and lowered when
specific tasks are triggered or events are generated.

To leverage this functionality in our system, when both the CPU and all
the peripherals are in IDLE mode, the system will enter CPU sleep mode
by using sd app evt wait function. This will place the chip in Low Power
mode. The chip will wake up from this mode on application interrupts.
sd app evt wait is called in an infinite loop in the main function. It will
return when an application interrupt has occurred, thereby allowing the
main thread to process it if needed. In this mode, we can restart the system
using the timer interrupts.
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Chapter 4

Printed Circuit Board Design

In this chapter, we will discuss different parts of the Printed Circuit Board
(PCB) design. The main components of this design are nRF52840 SoC,
an amplifier, power sources, and a voltage converter unit that provides
different power supplies in different parts of the design.

4.1 Custom PCB

The importance of making a costume PCB is in making the system im-
plantable. So far, testing has been performed on nRF25840 Development
Kit (DK). As we can see in Figure 4.1 the nRF52840 DK is too large to
be implanted and it makes sense because it is designed for development
purposes and as we can see there are too many components (buttons,
switches, LED, ports, additional MCU) which are not in use for our fi-
nal system. Moreover, during the testing process, input signals are simu-
lated sensory data with a much higher range than the actual sensor output.
Therefore, an amplifier must be added to the system to get an output in
the ADC range. Fortunately, the nRF52840 SoC itself is very small (com-
ponent inside the red rectangle) and even though it requires other ICs to
function, the overall package is still small enough for our purpose. Im-
plantable PCBs have specific packaging requirements. Flexible substrate
and cover masks are often selected in medical industries. This is because
medical devices often do not conform to typical standards of PCB shape
and size, and medical device professionals want to make sure their PCBs
can fit into as small of an area as possible while remaining resistant to
damage [28].

Another important factor to consider when creating a custom PCB is
the environmental factor. Environmental factors can have a direct impact
on PCBs performance. In this design, temperature and humidity are two
environmental factors to consider. Choosing an adhesive with a low water
absorption level can prevent any damage related to humidity in a longer
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Figure 4.1: Overview of BLE event handler module

period. For long-term implants, it is important to use bio-compatible ma-
terials to reduce the chance of infection [29]. We can increase the long term
reliability of the implantable device by utilizing encapsulation techniques.
Encapsulation materials vary from a range of inorganic materials like alu-
minium oxide and silicon dioxide, organic polymers of polyimide, parylen
and biocompatible materials [30].

At this point, after discussing the important factors to consider
when making a custom implantable PCB, we will discuss about main
components to include in our proposed PCB.

4.2 Power Source

Micro USB connector initially used for programming the SoC but it also
can provide a 5-volt source voltage. However, since this design is meant
to be an implantable device, a battery can be added to the design as a
power source.

4.3 Amplifier

To increase the accuracy of analog to digital conversions, the ADC should
receive input within its range. The voltage swing of the pressure sensor
is in the 100mv range, therefore, an amplifier should be included in the
design. The INA333 amplifier is chosen for this purpose. It is a small
size, low power, low noise, and low distortion instrumentation amplifier.
Instrumentation amplifiers are widely used in measurement and test
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equipment. The gain of this amplifier can be tuned with an external
resistor and can reach up to 1000 [31].

INA333RG

V+

V-

VIN
+

VIN
-

VOUT

GND1

Figure 4.2: Simplified form of INA333 amplifier

Figure 4.2 shows a simplified form of INA333 amplifier. In this
amplifier gain is set using an external resistor. Equation 4.1 shows gain
equation for the INA333.

G = 1 +
100KΩ

RG
(4.1)

The maximum accepted input voltage of ADC depends on multiple
factors (Subsection 4.5.1). After calculating the maximum input range
of ADC using equation 4.2 , it is straightforward to calculate RG from
equation 4.1.

4.4 Antenna

When it comes to choosing an antenna for our design, there are two com-
mon implementations: Ceramic chip antennas and PCB trace antennas.
Even though PCB trace antennas are relatively low price as the trace is
applied as part of the PCB assembly process, they are difficult to design,
implement, and tune. Their performance is highly affected by the PCB de-
sign, even minor changes on the PCB can cause frequency detuning which
will have a negative effect on antenna performance. Usually, these fail-
ures are detected after the full assembly of PCB. Since the trace antenna is
designed during the PCB manufacturing process the chance of optimizing
its performance after it has been applied is very little [32]. Therefore, there
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are often several design iterations that result in an increased time to mar-
ket and an associated loss of revenue. Moreover, the PCB trace antenna is
relatively large. This is because the area around the trace antenna needs
to be kept clear of other objects to maintain performance, so the total area
required is always much greater than just the size of the trace. Thus, they
are not an optimal choice for the implementations which having a small
fabrication is an important factor.

On the other hand, ceramic chip antennas are much smaller than the
PCB trace antennas, and different configurations of these antennas are
available in the market. A ceramic antenna is a separate component that is
attached after the design phase has been completed. Therefore, it will give
a more versatile tuning during the development. With the surface mount
feature of ceramic chip antennas, they can easily be removed and replaced
in case of hardware modifications.

The Fractus R© Compact Reach XtendTM chip antenna is used in this
implementation. It is designed specifically for Bluetooth and other
wireless devices that operate at the ISM 2.4GHz band. It has a small
footprint that allows integration of the antenna into limited space easily
and efficiently with minimum clearance area [AN048].

4.5 nRF52840 SoC

nRF52840 is the main processing unit in this design. It also includes the 12
bit ADC and 1 MB of flash and 256 Kb of RAM for data and code storage.
Therefore, this will eliminate the use of external flash memory and ADC
in the design which can have a positive impact on the overall design size
as an important factor in implantable solutions.

4.5.1 Analog to Digital Converter

The ADC inside the SoC is a differential Successive Approximation Regis-
ter (SAR). The ADC supports up to eight external analog input channels,
depending on the package variant. The analog inputs can be configured
as eight single-ended inputs, four differential inputs, or a combination of
these [33]. ADC can operate in a one-shot mode with sampling under
software control or a continuous conversion mode with a programmable
sampling rate. In this implementation, one sampling channel in single-
ended mode is used.

Each SAADC channel can have individual reference and gain settings.
Available configuration options are:
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• VDD
4 or internal 0.6 V reference

• Gain ranging from 1
6 to 4

The gain setting can be used to control the effective input range of the
SAADC:

Input range =
(±0.6 or ± VDD

4 )

Gain
(4.2)

In this implementation, an internal 0.6-volt reference voltage was cho-
sen so that the input range of the ADC is independent of VDD voltage. We
selected 1

4 as SAADC gain. Thus, based on equation 4.2 the input range
for the ADC is between 0 to 2.4 volt.

Equation 4.3 is used to calculate the output result of the ADC. The
conversion result depends on configurations on each channel. In this
equation, VP and VN are the voltage at positive and negative input
respectively. Since we are using the single-ended mode negative input
is grounded.

Result = (VP − VN) ∗
Gain

Re f erenceVoltage
∗ 2Resolution (4.3)

4.5.2 Clock Sources

The system clocks are sourced from a range of internal or external high
or low-frequency oscillators. A clock control system distributes them to
various modules depending on their requirements. Clock distribution is
automated and grouped independently by the module to limit current
consumption in unused branches of the clock tree. Figure 4.3 shows an
overview of the clock control module inside the nRF52840.

To source the clocks used in this implementation, two 32.768kHz and
32MHz crystal oscillators are added to the design. As it is shown in Figure
4.3, these clock sources are used by the HFCLK and LFCLK controllers to
provide clocks to the system. These clocks are used by different peripheral
in this implementation such as Timer, UART, and ADC.
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Figure 4.3: Clock Control System [33]

4.6 Schematics
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Figure 4.5: Amplifier

(a) (b)

Figure 4.6: Schematics of power source (4.6a) and power regulator (4.6b)
circuits
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Figure 4.7: PCB Layout, dimensions in milimeter
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Part III

Results and Discussions
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Chapter 5

Measurements

We have performed two types of measurements using the development
board. These measurements include the power consumption and ADC
sensitivity. This section presents these results. We also compare these
measurements with the available implementations.

5.1 Power Consumption

As it is mentioned earlier, one of the important reasons to choose BLE as a
communication protocol is its low power characteristics.

nRF52840 is the main processing unit in this implementation, it is man-
aging the Timer, ADC, advertising, and the transmission through BLE.
Therefore, it is the main power consuming unit in this implementation.
To perform the current measurement, we need to split the power domains
for the nRF52840 SoC and the rest of the board. This was done by shorting
a solder bridge on the development board. Then current consumption is
measured by connecting a multimeter to the dedicated current measure-
ment pins on the development kit. Table 5.1 shows the current consump-
tion and the life span of a small 600mAh battery in two operating modes.
Estimated life span is calculated using the following equation:

Battery Life =
Battery Capacity in mAh

Load Current in mA
(5.1)

Operation Mode Not advertising Advertising
Current Consumption 0.915 mA 1.114 mA

Life span for 600 mAh battery 26 Days 23 Days

Table 5.1: Current consumption of nRF52840

Table 1.1 shows that the current consumption is higher during the ad-
vertisement. This is expected since the system continuously sends data.
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However, the difference in the current consumption in these two opera-
tion modes is relatively small. As we mentioned earlier the system never
enters the System OFF mode. When in the IDLE state the device stays in
System ON mode low power state to be able to control the advertising
with interrupts from the timer module. The main contributors to the cur-
rent consumption in this implementation are modules that are running on
HFCLK such as Timer, UART, and SAADC. During IDLE state the adver-
tising timer is still running, therefore, this will keep the current consump-
tion high.

A comparison between our implementation and some other devices
detailed in the references ([9],[10],[7]) is presented in Table 5.2. Table 5.2
illustrates that the current consumption of our method is lower than that
of [9] and [10] but higher than [7]. The reason for this extra consumption
can be contributed to usage of HFCLK which requires additional power.
However, it should be noted that communication with the implantable
device in [7] requires an additional based station outside the human
body to be able to receive the transmitted data. In our design using
BLE standard is a big advantage. It is a standard which is available in
smartphones, tablets, laptops, and other electronic devices. In this design,
we are able to read the values directly from the sensor using a smartphone.
Moreover, BLE will provide a device with a higher range than other
standards. This makes it possible for health specialists to monitor for
instance the bladder pressure from other rooms.

Parameter [10] [9] [7] This work
Frequency (MHz) 2.7 434 402-403 2400-2483
Standard N/A N/A MICS BLE
Range (meter) 0.3 0.1 2.5 >10
Current Consumption( mA) 3.01 1.78 0.641 1.11
Life span (day) 8.3 14 39 23

Table 5.2: Performances Summery

5.2 ADC Results

To validate the ADC results, we performed a basic measurement. A mul-
timeter was used to measure the input voltage of analog pins of the devel-
opment kit. The input voltage was changed from zero to 2.4 volt with a
step of 100mV.

The digital output was read out from the smartphone application. Con-
version results are stored inside the buffers. We have sent these buffer data
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as string values to the smartphone application so these values can be read
without performing any conversion.

Table 5.3 shows these measurement results. Theoretical values are cal-
culated using equation 4.3. The third column shows the ADC conversion
results read out from the smartphone. The output of each measurement
changes for every sample. Therefore, for each analog input, 10 observa-
tions have been made and the average value is documented.

The comparison between the theoretical results and the observed ADC
outputs show average of 1 bit deviation. Equation 5.2 shows that for this
input range a 12-bit ADC is supposed to have 0.585 mV accuracy. Thus,
our results are in accordance with the expected accuracy of 12 bit ADC.

2400 mV
212 = 0.585mV (5.2)
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Figure 5.1: Plot of data on Table 5.3
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Voltage (mV) Theoretical Average
GND 0 0.7
100.5 171.5 170.9
197.8 337.5 336.8
299 510.3 509.8
398 679.25 679.9
503 858.45 857.3
601 1025.7 1024.8
703 1198.08 1197.6
803 1370.45 1371.7
903 1541.12 1539.5
1002 1710.08 1711.58
1107 1889.28 1887.83
1199 2046.29 2045
1303 2223.78 2222.5
1403 2394.45 2394.55
1503 2565.12 2564.8
1604 2737.49 2737
1702 2904.74 2904.1
1800 3072 3071.3
1905 3251.2 3250.45
2006 3423.57 3423.3
2107 3595.94 3595.8
2203 3759.78 3758.3
2306 3935.57 3935.14
2398 4092.58 4091.6

Table 5.3: Theoretical and averaged measurement results of ADC
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Chapter 6

Conclusion

In this thesis, we presented an embedded system based solution for im-
plantable bladder pressure sensors using BLE communication protocols.
With the help of this device, we can reconstruct or restore the bladder func-
tion in patients with neurogenic bladder dysfunction.

Tests and development are done using nRF52840 Development Kit. We
have been able to configure the SoC to perform an analog to digital conver-
sion on signals coming from analog pins and send the results to a smart-
phone application through Bluetooth channels.

A current consumption of 0.915mA was achieved in the IDLE mode
and 1.114mA in the operating mode. We also demonstrated that with us-
ing a small 600 mAh battery a life span of 23 days on advertising mode is
feasible. This makes deployment of the implantable sensor devices more
practical inside and outside of the hospital. With this system, patients can
monitor their bladder pressure everywhere and at any time. It makes it
also possible for them to take proper action and avoid risks introduced by
excessive bladder pressure.

We also made a primary implantable PCB proposal. The estimated size
of the PCB design was 27.43mm × 27.58mm. In this implementation, we
used 0201 and 0402 package size which helped us to achieve a relatively
small size. However, we skipped building the actual PCB and verifying
its functionality.

6.1 Limitations and Future Work

6.1.1 Software Implementation

One of the major concerns in health monitoring applications is secu-
rity issues. In this implementation, the Just Works pairing method was
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used. This pairing method is quite vulnerable to active eavesdropping
and MITM attacks. To achieve more secure communication Out Of Band
(OOB) pairing method can be used. In this method, authentication is done
outside the BLE communication channel for example using NFC. As NFC
requires the devices to be in close proximity, it avoids the MITM issues and
prevents unwanted devices from connecting without the user’s knowl-
edge or permission. Security keys for pairing information can be sent
through NFC and BLE pairing can happen only after successful authen-
tication [34]. One possible implementation would be to use a combination
of NFC and BLE protocols. A passive NFC tag can be used as a means of
authorized pairing and after pairing is performed BLE would take control
of data transmission. In this way, the design would utilize both NFC secu-
rity and BLE availability and convenience.

This implementation consumes a relatively high current. One of the
major contributors to high current consumption is an external 32 MHz
crystal oscillator which was used as a clock source for SAADC, timer, and
UART peripheral. However, using this crystal oscillator is necessary for
reaching high accuracy.

In this implementation, the system is always in ON mode even when
it is not sending data. One way to reduce power is to add an external
MCU and program it to send a wake-up signal to SoC on a specified
time interval. Therefore, it is possible to reduce the time in which
the high-frequency clock is running. This subsequently reduces current
consumption.

6.1.2 PCB

PCB design still demands additional efforts before it can be printed and
tested. Currently, the design is powered using a micro USB which is
also used to reprogram the SoC. Given the fact that the design is meant
to be an implantable solution using a USB interface as a power source
is an unrealistic approach. Onboard batteries are a common choice for
implantable devices. However, there are some limitations in the use of on-
board batteries such as static energy-density, shorter lifespan, and larger
size [35]. In this implementation, if we rely only on the battery, we have to
change the battery quite frequently.

Another possibility is to supply implantable devices through wireless
power transfer approaches. Suzuki et al. [36] presented a new way of sup-
plying electric power to implanted biomedical devices. Their system was
non-invasive and used two kinds of energy, magnetic and ultrasonic. It
could provide high power levels harmlessly. The energies were obtained
by two types of vibrators, i.e., piezo and magnetostriction devices. The
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internal and external magnetostriction devices were set up and biased by
a permanent magnet to operate optimally. Majerus et al. [10] presented
RF-based rechargeable battery design allows for the sensor to operate and
transmit signals using a battery during the day eliminating the need for an
externally worn transmitter, and then recharge the battery at night using
an external coil within the patient’s bed. When considering this method
it is important to note the reliance on battery operation during normal
measurements during the day. Therefore, specific methods should be con-
sidered to increase the lifespan of the lithium battery, such as the recharg-
ing of the battery to under the maximum power, such that the number of
recharge cycles was extended. A hybrid system such as this would be able
to eliminate the need for a continuous power signal and mandatory wear-
able external transmitter and provide a more efficient strategy for long-
term continuous pressure monitoring.

Another limitation of the proposed method is that the free version of
Eagle is used for PCB design. This version only allows designing a two-
layer PCB. An alternative would be to follow a four-layer PCB approach
which gives us two signal layers and dedicated ground and VCC layer.
Four-layer board will allow us to route signal, power, and ground, directly
over each other in a larger variety of ways. Keeping ground directly under
the power plane will reduce cross talk for close proximity lines and reduce
noise by improved overall routing choices [37].

However, it is important to note that on PCBs with more than two lay-
ers, a keep-out area should have been put on the inner layers directly be-
low the antenna matching circuitry (components between device pin ANT,
and the antenna) to reduce the stray capacitance that influences RF perfor-
mance [33].

The proposed PCB has a relatively small (27.43mm × 27.58mm) size.
However, it is possible to reach a more compact design by utilizing a four-
layer PCB and using both sides of the PCB for mounting components.

6.1.3 Smartphone Application

In this project, we have used the nRFTools smartphone application which
is available for Nordic products. This application is not an ideal solution
for this implementation since it shows the sensor values as a binary
output. Implementing a customized smartphone application that shows
the pressure data as a percentage for instance is a better solution. Such
an application would send a notification to the patient or health specialist
before the pressure reaches a critical point.
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6.2 Possible Applications

The proposed PCB with some modifications especially in power require-
ments can be an implantable solution in the future.

The software implementation can be used in any device that requires
sample analog inputs, digitalize it, and send it through BLE channels. In
this implementation, only one analog channel has been used. With small
modifications in software implementation, it is possible to sample from
several analog channels. This makes it possible to interact with different
sensors at the same time.

The possible application for this design could be for example blood
glucose sensors for diabetic patients, and bladder pressure sensors.
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Appendix A

nRF52840 Block Diagram
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Appendix B

Source Code

1
2
3 #include <stdint.h>

4 #include <string.h>

5 #include "nordic_common.h"

6 #include "nrf.h"

7 #include "ble_hci.h"

8 #include "ble_advdata.h"

9 #include "ble_advertising.h"

10 #include "ble_conn_params.h"

11 #include "nrf_sdh.h"

12 #include "nrf_sdh_soc.h"

13 #include "nrf_sdh_ble.h"

14 #include "nrf_ble_gatt.h"

15 #include "nrf_ble_qwr.h"

16 #include "peer_manager.h"

17 #include "peer_manager_handler.h"

18 #include "app_timer.h"

19 #include "ble_nus.h"

20 #include "app_uart.h"

21 #include "app_util_platform.h"

22 #include "bsp_btn_ble.h"

23 #include "nrf_pwr_mgmt.h"

24 #include "nrf_drv_saadc.h"

25 #include "nrf_drv_ppi.h"

26 #include "nrf_drv_timer.h"

27 #include "fds.h"

28 #include "nrf_fstorage.h"

29
30 #if defined (UART_PRESENT)

31 #include "nrf_uart.h"

32 #endif

33 #if defined (UARTE_PRESENT)

34 #include "nrf_uarte.h"
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35 #endif

36
37 #include "nrf_log.h"

38 #include "nrf_log_ctrl.h"

39 #include "nrf_log_default_backends.h"

40
41 #define APP_BLE_CONN_CFG_TAG 1

/**< A tag identifying

the SoftDevice BLE configuration. */

42
43 #define DEVICE_NAME "Nordic_UART"

/**< Name of device. Will be included

in the advertising data. */

44 #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN

/**< UUID type for the Nordic UART Service (vendor

specific). */

45
46 #define APP_BLE_OBSERVER_PRIO 3

/**< Application’s BLE

observer priority. You shouldn’t need to modify this value. */

47
48
49 #define APP_ADV_INTERVAL 100

/**< The advertising

interval (in units of 0.625 ms. This value corresponds to 40

ms). */

50
51 #define APP_ADV_DURATION 6000

/**< The advertising duration

(180 seconds) in units of 10 milliseconds. */

52
53 #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20,

UNIT_1_25_MS) /**< Minimum acceptable connection

interval (20 ms), Connection interval uses 1.25 ms units. */

54 #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75,

UNIT_1_25_MS) /**< Maximum acceptable connection

interval (75 ms), Connection interval uses 1.25 ms units. */

55 #define SLAVE_LATENCY 0

/**< Slave latency. */

56 #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000,

UNIT_10_MS) /**< Connection supervisory timeout (4

seconds), Supervision Timeout uses 10 ms units. */

57 #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000)

/**< Time from initiating event (connect or

start of notification) to first time

sd_ble_gap_conn_param_update is called (5 seconds). */
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58 #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000)

/**< Time between each call to

sd_ble_gap_conn_param_update after the first call (30 seconds).

*/

59 #define MAX_CONN_PARAMS_UPDATE_COUNT 3

/**< Number of attempts

before giving up the connection parameter negotiation. */

60 #define APP_TIMER_OP_QUEUE_SIZE 4

/**< Size of timer

operation queues. */

61
62 #define LESC_DEBUG_MODE 0

/**< Set to 1 to use LESC

debug keys, allows you to use a sniffer to inspect traffic. */

63
64 #define SEC_PARAM_BOND 1

/**< Perform bonding. */

65 #define SEC_PARAM_MITM 0

/**< Man In The Middle

protection not required. */

66 #define SEC_PARAM_LESC 1

/**< LE Secure Connections

enabled. */

67 #define SEC_PARAM_KEYPRESS 0

/**< Keypress notifications

not enabled. */

68 #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE

/**< No I/O capabilities. */

69 #define SEC_PARAM_OOB 0

/**< Out Of Band data not

available. */

70 #define SEC_PARAM_MIN_KEY_SIZE 7

/**< Minimum encryption key

size. */

71 #define SEC_PARAM_MAX_KEY_SIZE 16

/**< Maximum encryption key

size. */

72
73 #define DEAD_BEEF 0xDEADBEEF

/**< Value used as error code on

stack dump, can be used to identify stack location on stack

unwind. */

74
75 #define UART_TX_BUF_SIZE 256

/**< UART TX buffer size. */

76 #define UART_RX_BUF_SIZE 256

/**< UART RX buffer size. */
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77
78 #define SAADC_SAMPLES_IN_BUFFER 10

79 #define SAADC_SAMPLE_RATE 500 /**<

SAADC sample rate in ms. */

80
81 #define SAADC_BURST_MODE 0

/**Set to 1 to enable BURST

mode, otherwise set to 0.*/

82
83
84 #define ADV_TIMER_INTERVAL APP_TIMER_TICKS(40000)

85
86 static uint8_t m_adv_handle =

BLE_GAP_ADV_SET_HANDLE_NOT_SET;

87
88 APP_TIMER_DEF(m_advertising_timer_id);

89
90
91
92
93 BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);

/**< BLE NUS service instance. */

94 NRF_BLE_GATT_DEF(m_gatt);

/**< GATT

module instance. */

95 NRF_BLE_QWR_DEF(m_qwr);

/**<

Context for the Queued Write module.*/

96 BLE_ADVERTISING_DEF(m_advertising);

/**< Advertising module

instance. */

97
98 static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID;

/**< Handle of the current connection. */

99 static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT

- 3; /**< Maximum length of data (in bytes) that can be

transmitted to the peer by the Nordic UART service module. */

100 static ble_uuid_t m_adv_uuids[] =

/**< Universally unique

service identifier. */

101 {

102 {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}

103 };

104 static volatile uint8_t write_flag=0;

105 volatile uint8_t state = 1;

106
107 #ifdef NRF52810_XXAA

45



108 static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(2);

109 #else

110 static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(3);

111 #endif

112 static nrf_saadc_value_t

m_buffer_pool[2][SAADC_SAMPLES_IN_BUFFER];

113 static nrf_ppi_channel_t m_ppi_channel;

114 static uint32_t m_adc_evt_counter;

115 static uint8_t adc_event_counter = 0;

116 static nrf_saadc_value_t

adc_buffer[SAADC_SAMPLES_IN_BUFFER]; /**< ADC buffer.

*/

117
118
119 /**@brief Function for assert macro callback.

120 *

121 * @details This function will be called in case of an assert in

the SoftDevice.

122 *

123 * @warning This handler is an example only and does not fit a

final product. You need to analyse

124 * how your product is supposed to react in case of Assert.

125 * @warning On assert from the SoftDevice, the system can only

recover on reset.

126 *

127 * @param[in] line_num Line number of the failing ASSERT call.

128 * @param[in] p_file_name File name of the failing ASSERT call.

129 */

130 void assert_nrf_callback(uint16_t line_num, const uint8_t *

p_file_name)

131 {

132 app_error_handler(DEAD_BEEF, line_num, p_file_name);

133 }

134
135 /**@brief Clear bond information from persistent storage.

136 */

137 static void delete_bonds(void)

138 {

139 ret_code_t err_code;

140
141 NRF_LOG_INFO("Erase bonds!");

142
143 err_code = pm_peers_delete();

144 APP_ERROR_CHECK(err_code);

145 }

146
147 static void advertising_timeout_handler(void *p_context)
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148 {

149 UNUSED_PARAMETER(p_context);

150
151
152 uint32_t err_code = ble_advertising_start(&m_advertising,

BLE_ADV_MODE_FAST);

153 APP_ERROR_CHECK(err_code);

154
155 }

156
157
158 /**@brief Function for handling Peer Manager events.

159 *

160 * @param[in] p_evt Peer Manager event.

161 */

162 static void pm_evt_handler(pm_evt_t const * p_evt)

163 {

164 pm_handler_on_pm_evt(p_evt);

165 pm_handler_flash_clean(p_evt);

166
167 switch (p_evt->evt_id)

168 {

169 case PM_EVT_PEERS_DELETE_SUCCEEDED:

170 advertising_start(false);

171 break;

172
173 default:

174 break;

175 }

176 }

177
178 /**@brief Function for initializing the timer module.

179 */

180 static void timers_init(void)

181 {

182 ret_code_t err_code;

183
184 // Initialize timer module.

185 err_code = app_timer_init();

186 APP_ERROR_CHECK(err_code);

187
188 // Create advertising start timer

189 err_code = app_timer_create(&m_advertising_timer_id,

190 APP_TIMER_MODE_REPEATED,

191 advertising_timeout_handler);

192 APP_ERROR_CHECK(err_code);

193 }
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194
195 /**@brief Function for starting application timers.

196 */

197 //added for periodic advertising

198 static void application_timers_start(void)

199 {

200 ret_code_t err_code;

201
202 // Start application timers.

203 err_code = app_timer_start(m_advertising_timer_id,

ADV_TIMER_INTERVAL, NULL);

204 APP_ERROR_CHECK(err_code);

205
206
207 }

208
209 /**@brief Function for the GAP initialization.

210 *

211 * @details This function will set up all the necessary GAP

(Generic Access Profile) parameters of

212 * the device. It also sets the peramissions and appearance.

213 */

214 static void gap_params_init(void)

215 {

216 uint32_t err_code;

217 ble_gap_conn_params_t gap_conn_params;

218 ble_gap_conn_sec_mode_t sec_mode;

219
220 BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

221
222 err_code = sd_ble_gap_device_name_set(&sec_mode,

223 (const uint8_t *) DEVICE_NAME,

224 strlen(DEVICE_NAME));

225 APP_ERROR_CHECK(err_code);

226
227 memset(&gap_conn_params, 0, sizeof(gap_conn_params));

228
229 gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;

230 gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;

231 gap_conn_params.slave_latency = SLAVE_LATENCY;

232 gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;

233
234 err_code = sd_ble_gap_ppcp_set(&gap_conn_params);

235 APP_ERROR_CHECK(err_code);

236 }

237
238
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239 /**@brief Function for handling Queued Write Module errors.

240 *

241 * @details A pointer to this function will be passed to each

service which may need to inform the

242 * application about an error.

243 *

244 * @param[in] nrf_error Error code containing information about

what went wrong.

245 */

246 static void nrf_qwr_error_handler(uint32_t nrf_error)

247 {

248 APP_ERROR_HANDLER(nrf_error);

249 }

250
251
252 /**@brief Function for handling the data from the Nordic UART

Service.

253 *

254 * @details This function will process the data received from the

Nordic UART BLE Service and send

255 * it to the UART module.

256 *

257 * @param[in] p_evt Nordic UART Service event.

258 */

259 /**@snippet [Handling the data received over BLE] */

260 static void nus_data_handler(ble_nus_evt_t * p_evt)

261 {

262
263 if (p_evt->type == BLE_NUS_EVT_RX_DATA)

264 {

265 uint32_t err_code;

266
267 NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on

UART.");

268 NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data,

p_evt->params.rx_data.length);

269
270 for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)

271 {

272 do

273 {

274 err_code =

app_uart_put(p_evt->params.rx_data.p_data[i]);

275 if ((err_code != NRF_SUCCESS) && (err_code !=

NRF_ERROR_BUSY))

276 {
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277 NRF_LOG_ERROR("Failed receiving NUS message.

Error 0x%x. ", err_code);

278 APP_ERROR_CHECK(err_code);

279 }

280 } while (err_code == NRF_ERROR_BUSY);

281 }

282 if

(p_evt->params.rx_data.p_data[p_evt->params.rx_data.length

- 1] == ’\r’)

283 {

284 while (app_uart_put(’\n’) == NRF_ERROR_BUSY);

285 }

286 }

287
288 }

289 /**@snippet [Handling the data received over BLE] */

290
291
292 /**@brief Function for initializing services that will be used by

the application.

293 */

294 static void services_init(void)

295 {

296 uint32_t err_code;

297 ble_nus_init_t nus_init;

298 nrf_ble_qwr_init_t qwr_init = {0};

299
300 // Initialize Queued Write Module.

301 qwr_init.error_handler = nrf_qwr_error_handler;

302
303 err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);

304 APP_ERROR_CHECK(err_code);

305
306 // Initialize NUS.

307 memset(&nus_init, 0, sizeof(nus_init));

308
309 nus_init.data_handler = nus_data_handler;

310
311 err_code = ble_nus_init(&m_nus, &nus_init);

312 APP_ERROR_CHECK(err_code);

313 }

314
315
316 /**@brief Function for handling an event from the Connection

Parameters Module.

317 *
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318 * @details This function will be called for all events in the

Connection Parameters Module

319 * which are passed to the application.

320 *

321 * @note All this function does is to disconnect. This could have

been done by simply setting

322 * the disconnect_on_fail config parameter, but instead we

use the event handler

323 * mechanism to demonstrate its use.

324 *

325 * @param[in] p_evt Event received from the Connection Parameters

Module.

326 */

327 static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)

328 {

329 uint32_t err_code;

330
331 if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)

332 {

333 err_code = sd_ble_gap_disconnect(m_conn_handle,

BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);

334 APP_ERROR_CHECK(err_code);

335 }

336 }

337
338
339 /**@brief Function for handling errors from the Connection

Parameters module.

340 *

341 * @param[in] nrf_error Error code containing information about

what went wrong.

342 */

343 static void conn_params_error_handler(uint32_t nrf_error)

344 {

345 APP_ERROR_HANDLER(nrf_error);

346 }

347
348
349 /**@brief Function for initializing the Connection Parameters

module.

350 */

351 static void conn_params_init(void)

352 {

353 uint32_t err_code;

354 ble_conn_params_init_t cp_init;

355
356 memset(&cp_init, 0, sizeof(cp_init));
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357
358 cp_init.p_conn_params = NULL;

359 cp_init.first_conn_params_update_delay =

FIRST_CONN_PARAMS_UPDATE_DELAY;

360 cp_init.next_conn_params_update_delay =

NEXT_CONN_PARAMS_UPDATE_DELAY;

361 cp_init.max_conn_params_update_count =

MAX_CONN_PARAMS_UPDATE_COUNT;

362 cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;

363 cp_init.disconnect_on_fail = false;

364 cp_init.evt_handler = on_conn_params_evt;

365 cp_init.error_handler = conn_params_error_handler;

366
367 err_code = ble_conn_params_init(&cp_init);

368 APP_ERROR_CHECK(err_code);

369 }

370
371
372 /**@brief Function for putting the chip into sleep mode.

373 *

374 * @note This function will not return.

375 */

376 static void sleep_mode_enter(void)

377 {

378 uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);

379 APP_ERROR_CHECK(err_code);

380
381 // Prepare wakeup buttons.

382 err_code = bsp_btn_ble_sleep_mode_prepare();

383 APP_ERROR_CHECK(err_code);

384
385 // Go to system-off mode (this function will not return; wakeup

will cause a reset).

386 //err_code = sd_power_system_off();

387 // APP_ERROR_CHECK(err_code);

388 err_code = sd_app_evt_wait();

389 APP_ERROR_CHECK(err_code);

390 }

391
392
393 /**@brief Function for handling advertising events.

394 *

395 * @details This function will be called for advertising events

which are passed to the application.

396 *

397 * @param[in] ble_adv_evt Advertising event.

398 */
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399 static void on_adv_evt(ble_adv_evt_t ble_adv_evt)

400 {

401 uint32_t err_code;

402
403 switch (ble_adv_evt)

404 {

405 case BLE_ADV_EVT_FAST:

406 err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);

407 APP_ERROR_CHECK(err_code);

408 break;

409 case BLE_ADV_EVT_IDLE:

410 sleep_mode_enter();

411 break;

412 default:

413 break;

414 }

415 }

416
417 /**@brief Function for handling BLE events.

418 *

419 * @param[in] p_ble_evt Bluetooth stack event.

420 * @param[in] p_context Unused.

421 */

422 static void ble_evt_handler(ble_evt_t const * p_ble_evt, void *

p_context)

423 {

424 ret_code_t err_code;

425
426 switch (p_ble_evt->header.evt_id)

427 {

428 case BLE_GAP_EVT_CONNECTED:

429 NRF_LOG_INFO("Connected.");

430 err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);

431 APP_ERROR_CHECK(err_code);

432 m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;

433 err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr,

m_conn_handle);

434 APP_ERROR_CHECK(err_code);

435 break;

436
437 case BLE_GAP_EVT_DISCONNECTED:

438 NRF_LOG_INFO("Disconnected, reason %d.",

439 p_ble_evt->evt.gap_evt.params.disconnected.reason);

440 m_conn_handle = BLE_CONN_HANDLE_INVALID;

441 break;

442
443 case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
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444 {

445 NRF_LOG_DEBUG("PHY update request.");

446 ble_gap_phys_t const phys =

447 {

448 .rx_phys = BLE_GAP_PHY_AUTO,

449 .tx_phys = BLE_GAP_PHY_AUTO,

450 };

451 err_code =

sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle,

&phys);

452 APP_ERROR_CHECK(err_code);

453 } break;

454
455 case BLE_GATTC_EVT_TIMEOUT:

456 // Disconnect on GATT Client timeout event.

457 NRF_LOG_DEBUG("GATT Client Timeout.");

458 err_code =

sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,

459 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);

460 APP_ERROR_CHECK(err_code);

461 break;

462
463 case BLE_GATTS_EVT_TIMEOUT:

464 // Disconnect on GATT Server timeout event.

465 NRF_LOG_DEBUG("GATT Server Timeout.");

466 err_code =

sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,

467 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);

468 APP_ERROR_CHECK(err_code);

469 break;

470
471 case BLE_GAP_EVT_SEC_PARAMS_REQUEST:

472 NRF_LOG_DEBUG("BLE_GAP_EVT_SEC_PARAMS_REQUEST");

473 break;

474
475 case BLE_GAP_EVT_AUTH_KEY_REQUEST:

476 NRF_LOG_INFO("BLE_GAP_EVT_AUTH_KEY_REQUEST");

477 break;

478
479 case BLE_GAP_EVT_LESC_DHKEY_REQUEST:

480 NRF_LOG_INFO("BLE_GAP_EVT_LESC_DHKEY_REQUEST");

481 break;

482
483 case BLE_GAP_EVT_AUTH_STATUS:

484 NRF_LOG_INFO("BLE_GAP_EVT_AUTH_STATUS: status=0x%x

bond=0x%x lv4: %d kdist_own:0x%x kdist_peer:0x%x",

485 p_ble_evt->evt.gap_evt.params.auth_status.auth_status,
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486 p_ble_evt->evt.gap_evt.params.auth_status.bonded,

487 p_ble_evt->evt.gap_evt.params.auth_status.sm1_levels.lv4,

488 *((uint8_t

*)&p_ble_evt->evt.gap_evt.params.auth_status.kdist_own),

489 *((uint8_t

*)&p_ble_evt->evt.gap_evt.params.auth_status.kdist_peer));

490 break;

491
492 default:

493 // No implementation needed.

494 break;

495 }

496 }

497
498
499 /**@brief Function for the SoftDevice initialization.

500 *

501 * @details This function initializes the SoftDevice and the BLE

event interrupt.

502 */

503 static void ble_stack_init(void)

504 {

505 ret_code_t err_code;

506
507 err_code = nrf_sdh_enable_request();

508 APP_ERROR_CHECK(err_code);

509
510 // Configure the BLE stack using the default settings.

511 // Fetch the start address of the application RAM.

512 uint32_t ram_start = 0;

513 err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG,

&ram_start);

514 APP_ERROR_CHECK(err_code);

515
516 // Enable BLE stack.

517 err_code = nrf_sdh_ble_enable(&ram_start);

518 APP_ERROR_CHECK(err_code);

519
520 // Register a handler for BLE events.

521 NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO,

ble_evt_handler, NULL);

522 // Register with the SoftDevice handler module for BLE events.

523
524
525 }

526
527
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528 /**@brief Function for handling events from the GATT library. */

529 void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t

const * p_evt)

530 {

531 if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id ==

NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))

532 {

533 m_ble_nus_max_data_len = p_evt->params.att_mtu_effective -

OPCODE_LENGTH - HANDLE_LENGTH;

534 NRF_LOG_INFO("Data len is set to 0x%X(%d)",

m_ble_nus_max_data_len, m_ble_nus_max_data_len);

535 }

536 NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x

peripheral 0x%x",

537 p_gatt->att_mtu_desired_central,

538 p_gatt->att_mtu_desired_periph);

539 }

540
541
542 /**@brief Function for initializing the GATT library. */

543 void gatt_init(void)

544 {

545 ret_code_t err_code;

546
547 err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);

548 APP_ERROR_CHECK(err_code);

549
550 err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt,

NRF_SDH_BLE_GATT_MAX_MTU_SIZE);

551 APP_ERROR_CHECK(err_code);

552 }

553
554
555 /**@brief Function for handling events from the BSP module.

556 *

557 * @param[in] event Event generated by button press.

558 */

559 void bsp_event_handler(bsp_event_t event)

560 {

561 uint32_t err_code;

562 switch (event)

563 {

564 case BSP_EVENT_SLEEP:

565 sleep_mode_enter();

566 break;

567
568 case BSP_EVENT_DISCONNECT:
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569 err_code = sd_ble_gap_disconnect(m_conn_handle,

BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);

570 if (err_code != NRF_ERROR_INVALID_STATE)

571 {

572 APP_ERROR_CHECK(err_code);

573 }

574 break;

575
576 case BSP_EVENT_WHITELIST_OFF:

577 if (m_conn_handle == BLE_CONN_HANDLE_INVALID)

578 {

579 err_code =

ble_advertising_restart_without_whitelist(&m_advertising);

580 if (err_code != NRF_ERROR_INVALID_STATE)

581 {

582 APP_ERROR_CHECK(err_code);

583 }

584 }

585 break;

586
587 default:

588 break;

589 }

590 }

591
592
593 /**@brief Function for handling app_uart events.

594 *

595 * @details This function will receive a single character from the

app_uart module and append it to

596 * a string. The string will be be sent over BLE when the

last character received was a

597 * ’new line’ ’\n’ (hex 0x0A) or if the string has reached

the maximum data length.

598 */

599 /**@snippet [Handling the data received over UART] */

600 void uart_event_handle(app_uart_evt_t * p_event)

601 {

602 static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];

603 static uint8_t index = 0;

604 uint32_t err_code;

605
606 switch (p_event->evt_type)

607 {

608 case APP_UART_DATA_READY:

609 UNUSED_VARIABLE(app_uart_get(&data_array[index]));

610 index++;
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611
612 if ((data_array[index - 1] == ’\n’) ||

613 (data_array[index - 1] == ’\r’) ||

614 (index >= m_ble_nus_max_data_len))

615 {

616 if (index > 1)

617 {

618 NRF_LOG_DEBUG("Ready to send data over BLE NUS");

619 NRF_LOG_HEXDUMP_DEBUG(data_array, index);

620
621 do

622 {

623 uint16_t length = (uint16_t)index;

624 err_code = ble_nus_data_send(&m_nus,

data_array, &length, m_conn_handle);

625 if ((err_code != NRF_ERROR_INVALID_STATE) &&

626 (err_code != NRF_ERROR_RESOURCES) &&

627 (err_code != NRF_ERROR_NOT_FOUND))

628 {

629 APP_ERROR_CHECK(err_code);

630 }

631 } while (err_code == NRF_ERROR_RESOURCES);

632 }

633
634 index = 0;

635 }

636 break;

637
638 case APP_UART_COMMUNICATION_ERROR:

639 APP_ERROR_HANDLER(p_event->data.error_communication);

640 break;

641
642 case APP_UART_FIFO_ERROR:

643 APP_ERROR_HANDLER(p_event->data.error_code);

644 break;

645
646 default:

647 break;

648 }

649 }

650 /**@snippet [Handling the data received over UART] */

651
652
653 /**@brief Function for initializing the UART module.

654 */

655 /**@snippet [UART Initialization] */

656 static void uart_init(void)
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657 {

658 uint32_t err_code;

659 app_uart_comm_params_t const comm_params =

660 {

661 .rx_pin_no = RX_PIN_NUMBER,

662 .tx_pin_no = TX_PIN_NUMBER,

663 .rts_pin_no = RTS_PIN_NUMBER,

664 .cts_pin_no = CTS_PIN_NUMBER,

665 .flow_control = APP_UART_FLOW_CONTROL_DISABLED,

666 .use_parity = false,

667 #if defined (UART_PRESENT)

668 .baud_rate = NRF_UART_BAUDRATE_115200

669 #else

670 .baud_rate = NRF_UARTE_BAUDRATE_115200

671 #endif

672 };

673
674 APP_UART_FIFO_INIT(&comm_params,

675 UART_RX_BUF_SIZE,

676 UART_TX_BUF_SIZE,

677 uart_event_handle,

678 APP_IRQ_PRIORITY_LOWEST,

679 err_code);

680 APP_ERROR_CHECK(err_code);

681 }

682 /**@snippet [UART Initialization] */

683
684
685 static void peer_manager_init(void)

686 {

687 ble_gap_sec_params_t sec_param;

688 ret_code_t err_code;

689
690 err_code = pm_init();

691 APP_ERROR_CHECK(err_code);

692
693 memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));

694
695 // Security parameters to be used for all security procedures.

696 sec_param.bond = SEC_PARAM_BOND;

697 sec_param.mitm = SEC_PARAM_MITM;

698 sec_param.lesc = SEC_PARAM_LESC;

699 sec_param.keypress = SEC_PARAM_KEYPRESS;

700 sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES;

701 sec_param.oob = SEC_PARAM_OOB;

702 sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE;

703 sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE;
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704 sec_param.kdist_own.enc = 1;

705 sec_param.kdist_own.id = 1;

706 sec_param.kdist_peer.enc = 1;

707 sec_param.kdist_peer.id = 1;

708
709 err_code = pm_sec_params_set(&sec_param);

710 APP_ERROR_CHECK(err_code);

711
712 err_code = pm_register(pm_evt_handler);

713 APP_ERROR_CHECK(err_code);

714 }

715
716 /**@brief Function for initializing the Advertising functionality.

717 */

718 static void advertising_init(void)

719 {

720 uint32_t err_code;

721 ble_advertising_init_t init;

722
723 memset(&init, 0, sizeof(init));

724
725 init.advdata.name_type = BLE_ADVDATA_FULL_NAME;

726 init.advdata.include_appearance = false;

727 init.advdata.flags =

BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

728
729 init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) /

sizeof(m_adv_uuids[0]);

730 init.srdata.uuids_complete.p_uuids = m_adv_uuids;

731
732 init.config.ble_adv_fast_enabled = true;

733 init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;

734 init.config.ble_adv_fast_timeout = APP_ADV_DURATION;

735 init.evt_handler = on_adv_evt;

736
737 err_code = ble_advertising_init(&m_advertising, &init);

738 APP_ERROR_CHECK(err_code);

739
740 ble_advertising_conn_cfg_tag_set(&m_advertising,

APP_BLE_CONN_CFG_TAG);

741 }

742
743
744 /**@brief Function for initializing buttons and leds.

745 *

746 * @param[out] p_erase_bonds Will be true if the clear bonding

button was pressed to wake the application up.
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747 */

748 static void buttons_leds_init(bool * p_erase_bonds)

749 {

750 bsp_event_t startup_event;

751
752 uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS,

bsp_event_handler);

753 APP_ERROR_CHECK(err_code);

754
755 err_code = bsp_btn_ble_init(NULL, &startup_event);

756 APP_ERROR_CHECK(err_code);

757
758 *p_erase_bonds = (startup_event ==

BSP_EVENT_CLEAR_BONDING_DATA);

759 }

760
761
762 /**@brief Function for initializing the nrf log module.

763 */

764 static void log_init(void)

765 {

766 ret_code_t err_code = NRF_LOG_INIT(NULL);

767 APP_ERROR_CHECK(err_code);

768
769 NRF_LOG_DEFAULT_BACKENDS_INIT();

770 }

771
772
773 /**@brief Function for initializing power management.

774 */

775 static void power_management_init(void)

776 {

777 ret_code_t err_code;

778 err_code = nrf_pwr_mgmt_init();

779 APP_ERROR_CHECK(err_code);

780 }

781
782
783 /**@brief Function for handling the idle state (main loop).

784 *

785 * @details If there is no pending log operation, then sleep until

next the next event occurs.

786 */

787 static void idle_state_handle(void)

788 {

789
790 UNUSED_RETURN_VALUE(NRF_LOG_PROCESS());
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791 nrf_pwr_mgmt_run();

792 }

793
794
795
796 void advertising_start(bool erase_bonds)

797 {

798 if (erase_bonds == true)

799 {

800 delete_bonds();

801 // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED

event.

802 }

803 else

804 {

805 ret_code_t err_code;

806
807 err_code = ble_advertising_start(&m_advertising,

BLE_ADV_MODE_FAST);

808 APP_ERROR_CHECK(err_code);

809 }

810 }

811
812
813 void timer_handler(nrf_timer_event_t event_type, void* p_context)

814 {

815
816 }

817
818
819
820
821 void saadc_sampling_event_init(void)

822 {

823 ret_code_t err_code;

824 err_code = nrf_drv_ppi_init();

825 APP_ERROR_CHECK(err_code);

826
827 nrf_drv_timer_config_t timer_config =

NRF_DRV_TIMER_DEFAULT_CONFIG;

828 timer_config.frequency = NRF_TIMER_FREQ_31250Hz;

829 err_code = nrf_drv_timer_init(&m_timer, &timer_config,

timer_handler);

830 APP_ERROR_CHECK(err_code);

831
832 /* setup m_timer for compare event */
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833 uint32_t ticks =

nrf_drv_timer_ms_to_ticks(&m_timer,SAADC_SAMPLE_RATE);

834 nrf_drv_timer_extended_compare(&m_timer, NRF_TIMER_CC_CHANNEL0,

ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, false);

835 nrf_drv_timer_enable(&m_timer);

836
837 uint32_t timer_compare_event_addr =

nrf_drv_timer_compare_event_address_get(&m_timer,

NRF_TIMER_CC_CHANNEL0);

838 uint32_t saadc_sample_event_addr =

nrf_drv_saadc_sample_task_get();

839
840 /* setup ppi channel so that timer compare event is triggering

sample task in SAADC */

841 err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);

842 APP_ERROR_CHECK(err_code);

843
844 err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,

timer_compare_event_addr, saadc_sample_event_addr);

845 APP_ERROR_CHECK(err_code);

846 }

847
848
849 void saadc_sampling_event_enable(void)

850 {

851 ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);

852 APP_ERROR_CHECK(err_code);

853 }

854
855
856 void saadc_callback(nrf_drv_saadc_evt_t const * p_event)

857 {

858 if (p_event->type == NRF_DRV_SAADC_EVT_DONE)

859 {

860 ret_code_t err_code;

861 uint16_t adc_value;

862 uint8_t value[SAADC_SAMPLES_IN_BUFFER*2];

863 uint16_t bytes_to_send;

864
865
866
867 // set buffers

868 err_code =

nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer,

SAADC_SAMPLES_IN_BUFFER);

869 APP_ERROR_CHECK(err_code);

870
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871 // print samples on hardware UART and parse data for BLE

transmission

872 printf("ADC event number: %d\r\n",(int)m_adc_evt_counter);

873 for (int i = 0; i < SAADC_SAMPLES_IN_BUFFER; i++)

874 {

875 printf("%d\r\n", p_event->data.done.p_buffer[i]);

876
877 adc_value = p_event->data.done.p_buffer[i];

878 value[i*2] = adc_value;

879 value[(i*2)+1] = adc_value >> 8;

880 }

881
882 // Send data over BLE via NUS service. Makes sure not to

send more than 20 bytes.

883 if((SAADC_SAMPLES_IN_BUFFER*2) <= 4)

884 {

885 bytes_to_send = (SAADC_SAMPLES_IN_BUFFER*2);

886 }

887 else

888 {

889 bytes_to_send = 4;

890 }

891 err_code = ble_nus_data_send(&m_nus, value, &bytes_to_send,

m_conn_handle);

892 if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code !=

NRF_ERROR_NOT_FOUND))

893 {

894 APP_ERROR_CHECK(err_code);

895 }

896
897 m_adc_evt_counter++;

898 }

899 }

900
901
902 void saadc_init(void)

903 {

904 ret_code_t err_code;

905
906 nrf_drv_saadc_config_t saadc_config =

NRF_DRV_SAADC_DEFAULT_CONFIG;

907 saadc_config.resolution = NRF_SAADC_RESOLUTION_12BIT;

908 saadc_config.oversample = NRF_SAADC_OVERSAMPLE_32X;

909
910 nrf_saadc_channel_config_t channel_0_config =

911 NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN4);

912 channel_0_config.gain = NRF_SAADC_GAIN1_4;
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913 channel_0_config.burst = NRF_SAADC_BURST_DISABLED;

914 channel_0_config.reference = NRF_SAADC_REFERENCE_INTERNAL;

915 /*

916 nrf_saadc_channel_config_t channel_1_config =

917 NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN5);

918 channel_1_config.gain = NRF_SAADC_GAIN1_4;

919 channel_1_config.reference = NRF_SAADC_REFERENCE_VDD4;

920
921 nrf_saadc_channel_config_t channel_2_config =

922 NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN6);

923 channel_2_config.gain = NRF_SAADC_GAIN1_4;

924 channel_2_config.reference = NRF_SAADC_REFERENCE_VDD4;

925
926 nrf_saadc_channel_config_t channel_3_config =

927 NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN7);

928 channel_3_config.gain = NRF_SAADC_GAIN1_4;

929 channel_3_config.reference = NRF_SAADC_REFERENCE_VDD4;

930 */

931 err_code = nrf_drv_saadc_init(&saadc_config, saadc_callback);

932 APP_ERROR_CHECK(err_code);

933
934 err_code = nrf_drv_saadc_channel_init(0, &channel_0_config);

935 APP_ERROR_CHECK(err_code);

936 /*

937 err_code = nrf_drv_saadc_channel_init(1, &channel_1_config);

938 APP_ERROR_CHECK(err_code);

939 err_code = nrf_drv_saadc_channel_init(2, &channel_2_config);

940 APP_ERROR_CHECK(err_code);

941 err_code = nrf_drv_saadc_channel_init(3, &channel_3_config);

942 APP_ERROR_CHECK(err_code);

943 */

944 err_code =

nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAADC_SAMPLES_IN_BUFFER);

945 APP_ERROR_CHECK(err_code);

946 err_code =

nrf_drv_saadc_buffer_convert(m_buffer_pool[1],SAADC_SAMPLES_IN_BUFFER);

947 APP_ERROR_CHECK(err_code);

948 }

949
950 /**@brief Application main function.

951 */

952
953
954
955 /**@brief Application main function.

956 */

957 int main(void)
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958 {

959 bool erase_bonds;

960
961 // Initialize.

962 uart_init();

963 log_init();

964 timers_init();

965 application_timers_start();

966 buttons_leds_init(&erase_bonds);

967 power_management_init();

968 ble_stack_init();

969 gap_params_init();

970 gatt_init();

971 services_init();

972 advertising_init();

973 conn_params_init();

974 nrf_drv_saadc_calibrate_offset();

975 saadc_sampling_event_init();

976 saadc_sampling_event_enable();

977 saadc_init();

978 peer_manager_init();

979
980
981
982 // Start execution.

983 printf("\r\nUART started.\r\n");

984 NRF_LOG_INFO("Debug logging for UART over RTT started.");

985 //advertising_start();

986
987 // Enter main loop.

988 for (;;)

989 {

990 idle_state_handle();

991 }

992 }

993
994
995 /**

996 * @}

997 */

66



Bibliography

[1] World Health Organization. “Spinal cord injury”. In: (2013).

[2] Waleed Al Taweel and Raouf Seyam. “Neurogenic bladder in spinal
cord injury patients”. In: Research and reports in urology 7 (2015), p. 85.

[3] David Ginsberg. “Optimizing therapy and management of neuro-
genic bladder”. In: Am J Manag Care 19.Suppl 10 (2013), pp. 197–204.

[4] Roger CL Feneley, Ian B Hopley, and Peter NT Wells. “Uri-
nary catheters: history, current status, adverse events and research
agenda”. In: Journal of medical engineering & technology 39.8 (2015),
pp. 459–470.

[5] Dennis G Maki and Paul A Tambyah. “Engineering out the risk for
infection with urinary catheters.” In: Emerging infectious diseases 7.2
(2001), p. 342.

[6] World Health Organization et al. Antimicrobial resistance: global report
on surveillance. World Health Organization, 2014.

[7] A Tantin et al. “Implantable MICS-based wireless solution for
bladder pressure monitoring”. In: 2017 IEEE Biomedical Circuits and
Systems Conference (BioCAS). IEEE. 2017, pp. 1–4.

[8] Ali Zaher et al. “Integrated electronic system for implantable
sensory NFC tag”. In: 2015 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2015,
pp. 7119–7122.

[9] Chua-Chin Wang et al. “A mini-invasive long-term bladder urine
pressure measurement ASIC and system”. In: IEEE Transactions on
Biomedical Circuits and Systems 2.1 (2008), pp. 44–49.

[10] Steve JA Majerus et al. “Wireless, ultra-low-power implantable
sensor for chronic bladder pressure monitoring”. In: ACM Journal on
Emerging Technologies in Computing Systems (JETC) 8.2 (2012), pp. 1–
13.

67



[11] Y. Zhong et al. “Development of an Implantable Wireless and
Batteryless Bladder Pressure Monitor System for Lower Urinary
Tract Dysfunction”. In: IEEE Journal of Translational Engineering in
Health and Medicine 8 (2020), pp. 1–7. DOI: 10.1109/JTEHM.2019.
2943170.

[12] Fei Zhang et al. “Wireless energy transfer platform for medical
sensors and implantable devices”. In: 2009 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE. 2009, pp. 1045–1048.

[13] ASIC or FPGA? Each solution has Advantages and Disadvantages.
https://www.swindonsilicon.com/asic-fpga-advantages-and-

disadvantages.

[14] Asic development. https://zipcpu.com/blog/2017/10/13/fpga-v-
asic.html. 2017.

[15] The Basics of Bluetooth Low Energy (BLE). https://www.novelbits.
io/tag/introduction/.

[16] Artem Dementyev et al. “Power consumption analysis of Bluetooth
Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep
scenario”. In: 2013 IEEE International Wireless Symposium (IWS).
IEEE. 2013, pp. 1–4.

[17] Mohammad Afaneh. Intro to Bluetooth Low Energy: The Easiest Way to
Learn BLE. Novel Bits, 2018.

[18] Martin Woolley and S Schmidt. “Bluetooth 5 Go Faster. Go Further”.
In: Bluetooth SIG 1.1 (2019), pp. 1–25.

[19] Food, Drug Administration, et al. FDA Informs Patients, Providers and
Manufacturers About Potential Cybersecurity Vulnerabilities in Certain
Medical Devices with Bluetooth Low Energy. 2020.

[20] nRF52840-DK. https : / / www . nordicsemi . com / Software - and -
Tools/Development-Kits/nRF52840-DK.

[21] SEGGER Embedded Studio. https : / / www . nordicsemi . com /

Software - and - tools / Development - Tools / Segger - Embedded -

Studio.

[22] Is a single-chip SOC processor right for your embedded project). https:
//www.embedded.com/is-a-single-chip-soc-processor-right-

for-your-embedded-project/.

[23] What is a System on Chip. https://anysilicon.com/what-is-a-
system-on-chip-soc/.

[24] https : / / www . segger . com / products / development - tools /

embedded-studio/.

68

https://doi.org/10.1109/JTEHM.2019.2943170
https://doi.org/10.1109/JTEHM.2019.2943170
https://www.swindonsilicon.com/asic-fpga-advantages-and-disadvantages 
https://www.swindonsilicon.com/asic-fpga-advantages-and-disadvantages 
https://zipcpu.com/blog/2017/10/13/fpga-v-asic.html 
https://zipcpu.com/blog/2017/10/13/fpga-v-asic.html 
https://www.novelbits.io/tag/introduction/ 
https://www.novelbits.io/tag/introduction/ 
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK 
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK 
https://www.nordicsemi.com/Software-and-tools/Development-Tools/Segger-Embedded-Studio 
https://www.nordicsemi.com/Software-and-tools/Development-Tools/Segger-Embedded-Studio 
https://www.nordicsemi.com/Software-and-tools/Development-Tools/Segger-Embedded-Studio 
https://www.embedded.com/is-a-single-chip-soc-processor-right-for-your-embedded-project/ 
https://www.embedded.com/is-a-single-chip-soc-processor-right-for-your-embedded-project/ 
https://www.embedded.com/is-a-single-chip-soc-processor-right-for-your-embedded-project/ 
https://anysilicon.com/what-is-a-system-on-chip-soc/ 
https://anysilicon.com/what-is-a-system-on-chip-soc/ 
https://www.segger.com/products/development-tools/embedded-studio/ 
https://www.segger.com/products/development-tools/embedded-studio/ 


[25] Softdevices. https://infocenter.nordicsemi.com/topic/struct_
nrf52/struct/nrf52_softdevices.html.

[26] Diffie-Hellman. https : / / www . sciencedirect . com / topics /

computer-science/diffie-hellman.

[27] SIG Bluetooth. “Bluetooth core specification version 4.0”. In: Specifi-
cation of the Bluetooth System 1 (2010), p. 7.

[28] Applications and Types of PCBs for Medical Industry. https://www.
pcbcart.com/article/content/medical-pcbs.html.

[29] Inc Micro Systems Technologies. Electronics Packaging Methods and
Materials for Implantable Medical Devices. 2016.

[30] Seung-Hee Ahn, Joonsoo Jeong, and Sung June Kim. “Emerging en-
capsulation technologies for long-term reliability of microfabricated
implantable devices”. In: Micromachines 10.8 (2019), p. 508.

[31] INA333 Micro-Power (50A), Zerø-Drift, Rail-to-Rail Out Instrumenta-
tion Amplifier (Rev. C). https://www.ti.com/document- viewer/
INA333/datasheet#.

[32] Ceramic Chip Antennas vs. PCB Trace Antennas: A Comparison. https:
//www.mouser.co.id/pdfDocs/ceramicchipantennasvspcbtraceantennasacomparison.

pdf.

[33] nRF52840 product specification. https://infocenter.nordicsemi.
com/topic/struct_nrf52/struct/nrf52840.html. June 2020.

[34] Digi-Key’s European Editors. Leveraging Near Field Communication
(NFC) to Connect with BLE Smart Sensors. 2017.

[35] R. V. Taalla et al. “A Review on Miniaturized Ultrasonic Wireless
Power Transfer to Implantable Medical Devices”. In: IEEE Access 7
(2019), pp. 2092–2106. DOI: 10.1109/ACCESS.2018.2886780.

[36] S. Suzuki, T. Katane, and O. Saito. “Fundamental study of an electric
power transmission system for implanted medical devices using
magnetic and ultrasonic energy”. In: Journal of Artificial Organs
(2003).

[37] PCB Design Guidelines For Reduced EMI. https://www.ti.com/lit/
an/szza009. 1999.

69

https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf52_softdevices.html 
https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf52_softdevices.html 
https://www.sciencedirect.com/topics/computer-science/diffie-hellman 
https://www.sciencedirect.com/topics/computer-science/diffie-hellman 
https://www.pcbcart.com/article/content/medical-pcbs.html 
https://www.pcbcart.com/article/content/medical-pcbs.html 
https://www.ti.com/document-viewer/INA333/datasheet## 
https://www.ti.com/document-viewer/INA333/datasheet## 
https://www.mouser.co.id/pdfDocs/ceramicchipantennasvspcbtraceantennasacomparison.pdf 
https://www.mouser.co.id/pdfDocs/ceramicchipantennasvspcbtraceantennasacomparison.pdf 
https://www.mouser.co.id/pdfDocs/ceramicchipantennasvspcbtraceantennasacomparison.pdf 
https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf528 40.html 
https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf528 40.html 
https://doi.org/10.1109/ACCESS.2018.2886780
https://www.ti.com/lit/an/szza009 
https://www.ti.com/lit/an/szza009 

	I Introduction
	Background

	II The Project
	Hadrware System
	Software implementation
	Printed Circuit Board Design

	III Results and Discussions
	Measurements
	Conclusion
	Appendices
	nRF52840 Block Diagram
	Source Code


