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Abstract

The amount of publicly available brain-related data has significantly increased
over the past decade. Neuroscience data is spread across a variety of sources,
typically provisioned in ad-hoc manners and non-standard formats, and often
with no connections between the various sources. This makes it difficult for
researchers to understand, integrate, and reuse brain-related data. There is a
clear need to find effective mechanisms to manage data in this field, especially
since brain-related data is highly interconnected, evolving over time, and often
needed in combination. At the same time, the field of data management has
recently seen a shift from representing data in the relational model towards
alternative data models. Especially graph databases have seen an increase
in use due to their ability to manage highly-interconnected, continuously
evolving data.

This thesis presents an approach for organizing brain-related data in a
graph model, investigates how the graph representation affects the under-
standing of the data, how it facilitates the integration of data from various
sources, and how it enhances the usability of the data. The thesis exemplifies
the approach in the context of a unique data set of quantitative neuroanatom-
ical data about the murine basal ganglia — a group of nuclei in the brain
essential for processing information related to movement. Specifically, the
murine basal ganglia data set is modeled as a graph, integrated with relevant
data from third-party repositories (Brain Architecture Management System,
InterLex, and NeuroMorpho.Org), and analyzed this data using popular graph
algorithms to extract new insights. Access to the data is provisioned via a
web-based user interface and API. A thorough evaluation of the graph model
and the results of the graph data analysis and usability study of the user
interface indicate the potential of graph-based data management in the neuro-
science domain. The thesis contributes with a practical and generic approach
for representing, integrating, analyzing, and provisioning brain-related data,
and a set of software tools to support the proposed approach.
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Chapter 1

Introduction

1.1 Context

The brain is the organ humans rely on the most but understand the least;
however, not for the lack of trying. Since ancient times, humans have wondered
about the mind, hoping to comprehend its function fully. Neuroscience
research has generated large amounts of data about the brain. The amount
has increased significantly over the past decade due to the advances in
technology, causing heaps of brain-related data [1]. Data, however, is only a
small part of understanding the brain. To convert this data into knowledge
and understanding, researchers need to observe the data combined. Therefore,
there is a need to examine how neuroscience data can be modeled and stored
to facilitate combination and reuse.

The data that exists about the brain is in large quanta, complex, spread
across repositories in multiple formats. As an example of this complexity,
brain-related data can represent a part of the human brain’s 86 billion neurons,
and for each neuron, any of the approximately 7000 connections (synapses)
[2, 3]. The amount of data available raises some concerns. First, as the
data volume increases, it becomes increasingly difficult for researchers to
find relevant data. Second, as researchers often collect and create data
with a specific purpose, the naming and quality of the data vary, causing
standardization and modeling challenges [4]. These challenges hinder reuse,
combination, and sharing of data and cause the need to improve how the
data is stored and managed [5].

Simultaneously, as these challenges have arisen in the field of neuroscience,
there has been a shift in the data management field: From almost exclusively
representing data using relational models, NoSQL solutions have become
increasingly popular [6]. Especially graph databases, a type of NoSQL
database, have seen an increase in use due to their ability to manage large
amounts of complex data and analytical abilities [6]. In 2019, graph analytics
were identified by Gartner as the fifth "Data and Analytics Technology Trends"
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[7]. Gartner predicts that the use of graph data stores will increase over the
next few years due to the need to ask complex questions across complex data.

While technology has helped create vast amounts of existing brain-related
data, partly causing barriers for understanding, it appears that technology
also will contribute significantly to solving the challenges caused by the
data volume and complexity. Research has suggested ways of working with
new and existing data to make it usable for neuroscientists [8, 9]. There
has been some research into creating common frameworks for neural data.
For example, Hamilton et al. (2012) proposed an ontological approach for
describing neurons and their relationships [10]. Due to the numerous ways
research can identify neurons, it is unlikely that a standard naming format for
the data can exist. Consequently, research and data initiatives have created
guidelines on how to handle the data, with the central notion being the data
must be made available and machine-readable [8, 11].

In computational neuroscience, researchers have investigated the use of
graph databases for two primary objectives: knowledge graphs for organizing
publications and data sets and direct representation of connectomes (neu-
ral connections in the brain) [12, 13, 14]. Still, there is little research on
graph-based data representation as a mechanism for integration, analysis,
and reuse of neuroscience data. This thesis places itself within the field of
neuroinformatics and data management, exploring both neuroscience and
data management aspects within the given context.

1.2 Motivation

Given the challenges with reuse and combination caused by the large volume
and complexity of brain-related data currently existing, there is still a need to
research effective mechanisms to manage brain-related data. Existing research
in managing brain-related information works towards the standardization of
metadata, aiming to make it easier for researchers to find and reuse data [15,
16, 17]. This research stream has mainly focused on metadata management
for data sets and little on managing the actual data for a single data set.
The existing research is an essential part of answering data management
challenges, such as finding relevant data and standardization and modeling
challenges. Nonetheless, there is a value in exploring novel approaches to
managing neuroscience data and focus further research efforts on making
specific brain-related data sets available and accessible, complementing the
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current research. This thesis aims to investigate new ways of organizing brain-
related data to provide helpful insight and improve researchers’ understanding
of the data and its usability, focusing on single data sets.

In 2019, Bjerke et al. published a database of quantitative neuroanatomical
data about the murine basal ganglia [18]. The database consists of data from
more than 200 research papers and data repositories, manually collected and
gathered, and stored in a relational database [19]. The thesis will refer to
the murine basal ganglia database when considering the database created
by Bjerke et al. and the murine basal ganglia data set as the data in this
database. This data set’s significant relevance is that it gathers and integrates
the available research of quantitative neuroanatomical measures on the murine
basal ganglia produced over the past decades. Before, this research spread
across multiple experiments and research projects with no common point of
reference. Moreover, there is generally very little data about the basal ganglia
in the well-renowned neuroscience research initiatives. These aspects make
the data set provided by Bjerke et al. unique with great scientific relevance.

As the murine basal ganglia database is relational, there are limited
possibilities to represent the data’s relations, as such databases only allow
single, undirected relationships [6]. The main contributor to the database,
Ingvild E. Bjerke, a Ph.D. student at the faculty of Medicine at the University
of Oslo, told through conversations that there are relations between the data
that are not possible to represent. Further, as the research by Bjerke et al.
focused on gathering murine basal ganglia data in a unified model rather
than on opportunities in the specific data management solution, this data set
poses an excellent example for investigating novel approaches for managing
and accessing the data. Together with the scientific relevance, the data
management opportunities with the murine basal ganglia data set make it a
suitable base for this thesis.

Although there is a lot of ongoing research for understanding the different
areas of the brain [1, 15], managing the existing brain-related data [15, 16,
17], and using graph databases [12, 13], there is little research on managing
specific neuroscience data sets using graphs. Graph-based approaches to
data management in neuroscience have focused on managing sets of data and
modeling networks in the brain, but not on mechanisms for modeling and
storing the actual data in data sets to facilitate integration and reuse, which
is the aim of this thesis. As neuroscience data is available through data sets
in different formats and structures based on the data set’s purpose, there is a
need for flexible data structures that manage such data and further facilitates
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integration and understanding. A benefit of graph databases is their ability
to flexibly store dynamic and interconnected data.

1.3 Problem statement

Based on the given context, there is a need to examine how neuroscience
researchers can manage their data to make the data more accessible and
reusable for others. The presented motivation includes arguments for graph-
based data representation to store brain-related data in this context, as
it allows flexible data models for highly connected data. Thus, the thesis
presents the following hypothesis:

Hypothesis (H): Organizing neuroscience data in a graph model
provides a better understanding of the data, facilitates data integration
with other brain-related data sets, and improves the usability of the
data.

To investigate the hypothesis, we look at three aspects of the graph model:
data accessibility, understanding of the data, and the ability to integrate with
other data sets. We specify these in the following research questions that
guided the study of this thesis:

Research question 1 (RQ1): Can graph-based representation of
brain-related data facilitate the integration of data from a variety of
neuroscience data sets?

Research question 2 (RQ2): Can a graph model provide a better
understanding of the data in a brain-related data set?

Research question 3 (RQ3): To what extent can a graph-based ap-
proach to neuroscience data management improve the usability of the
data?
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Figure 1.1: An overview of the graph-based data modeling components of
this thesis.

1.4 Thesis scope

The scope of this thesis is to investigate graph-based data management
for neuroscience data. In order to do so, we start with a unique data set
in the neuroscience domain, the murine basal ganglia data set, which we
define as the baseline data. With this data set, the thesis presents an
approach for representing neuroscience data in a graph model, onboarding
the data, integration with external data sets, storing, serving, and analyzing
the integrated graph data.

Figure 1.1 presents the general idea of the thesis. This figure displays a
high-level view of the thesis’ key components, including graph-based data
modeling, integration with external data sources, provisioning the integrated
data, and data analysis. These components are employed to investigate
graph-based data representation in the neuroscience domain.

The thesis provides insights into the presented research questions using
quantitative and qualitative measures. These measurements include usability
studies, survey results and interviews with neuroscience researchers, and
interviews with Bjerke, one of the murine basal ganglia database creators.
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The thesis does not cover approaches to brain modeling or simulation;
rather, it focuses on how researchers better can work with the brain-related
data they produce. It also does not cover a comparison between relational
databases and other NoSQL solutions, as others widely cover this topic [20].
Instead, it focuses its research on why a graph model is beneficial for brain-
related data and how such a model can help make the data more available
and reusable.

1.5 Research design

Literature divides research methodologies into different paradigms. The
Association for Computing Machinery (ACM) defines three paradigms; (1)
Theory, (2) Abstraction, and (3) Design [21]. The ACM defines the abstraction
paradigm as directed towards scientists investigating a phenomenon with
the desire to obtain new knowledge. Further, the ACM defines the design
paradigm as directed towards engineers who want to construct a system to
solve a given problem. The abstraction and design paradigms, defined by
ACM, correspond to what Solheim and Stølen (2007) describe as classical
research and technology research, respectively [22]. Solheim and Stølen (2007)
define classical research as formulating a hypothesis and verifying it using
experiments and observations, aiming to answer "What is the real world
like?" while they define technology research as "research for the purpose of
producing new and better artifacts" [22].

Researchers should decide their research methodology based on the research
setting, and in many cases, it is better to combine multiple methodologies
to achieve the most accurate result [23, 24]. To facilitate the thesis research
setting, we use a combination of classical and technology research.

Although this thesis presents research questions that try to answer facts
about the (computing) world, we primarily did so by measuring artifacts,
namely the graph model and its extensions. Accordingly, we applied technol-
ogy research as the principal methodology, with classical research elements
(experiments) in this thesis. The following steps represent the methodology
used in this thesis to study the research questions:

1. Problem analysis: Specifying scope and defining requirements

2. Design and implementation
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3. System evaluation: Evaluation of requirements and experiment design

4. Repeat from 1 or 2 based on the system evaluation result

Research methodologies employ research methods, divided into qualitative,
quantitative, and mixed research methods [23]. Qualitative research measures
the quality in some sense and produces data expressed as text, images, or
forms, except numbers. Quantitative research produces data expressed as
numbers, and researchers can use such data to create statistics. Mixed-method
research combines these methods to draw from their strength, minimize their
weaknesses, and better understand the researched topic [25, 26]. This thesis
used mixed-method research with qualitative methods being dominant. The
following list introduces the methods applied through this thesis:

• Literature review: We performed a literature review in the early
phases of the thesis research to understand the neuroscience domain
and the existing challenges and opportunities with brain-related data.
Chapter 2 presents the outcome of the literature review.

• Survey: The thesis research employed surveys to understand how
neuroscientists work with brain-related data and the challenges they
experience. Chapter 3 describes the outcome of the survey.

• Usability study: The thesis research performs a usability study
to evaluate the quality of the developed data user interface. In this
study, we qualitatively assessed the users’ experience of the interface
and quantitatively measured if they could complete the given tasks.
The evaluation chapter presents the outcome of the usability study in
Section 5.3.2.

• Qualitative interviews: We utilized interviews to assess researchers’
overall experience with the web-based user interface and evaluate how
the graph model affects Bjerke’s understanding of the data set data.
The outcome of these interviews is presented in Chapter 5.

• Experiments: Experiments define studies where researchers intro-
duce an intervention to observe the effects. We performed an experiment
when connecting data from external sources with data in the graph-based
murine basal ganglia data set. Further, we performed data analysis
experiments to observe how it could extract new information from the
thesis data set.
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1.6 Thesis outline

Chapter 2: Background This chapter describes the background of the
thesis, introducing the thesis graph and neuroscience perspectives. First,
the chapter introduces graph-based data representation and analysis before
presenting characteristics of neuroscience data. Finally, it presents the state
of data management for brain-related data, including graph-based approaches.

Chapter 3: Problem analysis This chapter analyses the thesis problem
space, starting with a review of the murine basal ganglia data set before
describing the requirement specification process for the artifacts the thesis
research developed to evaluate the research questions. Specifically, it presents
the graph model’s design requirements, analyzes data integration with ex-
ternal data sources, specifies the data analysis requirements, and defines the
software applications for web-based data access. For each artifact, the chapter
presents the resulting implementation requirements.

Chapter 4: Solution design and implementation This chapter de-
scribes the solution design and implementation of the thesis artifacts. The
chapter starts by introducing the solution’s high-level architecture before pre-
senting the solution design, including the graph model, data onboarding, data
integration, data analysis, and web and application programming interface
(API) applications. Finally, the chapter describes the implementation of the
proposed design, including technological decisions and component integration.

Chapter 5: Evaluation This chapter presents the evaluation of the re-
quirements stated in the problem analysis chapter. First, the chapter presents
an evaluation of the graph model and database before describing the data
analysis experiments to derive new information about the data in the murine
basal ganglia data set and an evaluation of these results. Finally, the chapter
presents an evaluation of the user interface and the result of the usability study.

Chapter 6: Conclusion and further work The final chapter concludes
the thesis research. First, it summarizes the thesis research before presenting
the thesis contributions. Finally, the chapter proposes further work for data
management in the neuroscience domain.
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Chapter 2

Background
This chapter provides the thesis background, introducing perspectives of
graph-based data management and brain-related data. As the thesis evaluates
the use of graphs for neuroscience data, this chapter presents concepts of
graph-based data representation in Section 2.1 and neuroscience data concepts
in Section 2.2 before reviewing existing brain-related data management and
graph-based approaches in Section 2.3.2.

2.1 Graph-based data representation

Many real-world scenarios are naturally structured as graphs, such as social
networks and neuron connectivity. Graph-based data representation provides
a way to represent such real-world structures directly. Graph-based data
representation entails all representations of data that utilize a graph model.
This section introduces graph definitions, and graph database features relevant
for evaluating the graph database implementation in this thesis.

2.1.1 Graph definitions

Graph theory is a discipline within discrete mathematics regarding the study
of graphs. This mathematical discipline roots back to the 18th century,
when the mathematician Leonard Euler created a mathematical proof (The
seven bridges of Königsberg) using a graph representation [27, 28]. With
his proof, Euler displayed how a real-world scenario could map directly to
a graph representation. To understand how researchers can utilize graph
representations, we need to understand graph models.

There are various types of graphs. Discrete mathematics defines a graph,
or a simple graph, as a set of vertices (nodes) and edges (relationships). Nodes
connect through edges, and all edges in a graph go between two nodes in the
node-set [29, 30]. In some definitions, a simple graph is not allowed to have
self-loops. A self-loop is an edge that starts and ends in the same node. In a
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broader definition employed in this thesis, a graph is allowed to have self-loops.
A graph is either directed or undirected. In a directed graph, the edge exits
one node and enters another. In an undirected graph, the edge has no direction
[29]. A hypergraph is an extension of a simple graph, allowing the edge-set
to be of any cardinality, meaning that an edge can connect more than two
nodes. [30]. Another type of graph is multigraphs. A multigraph is a graph
that allows multiple relationships between a node pair. If the edges between
a node pair have the same direction, the edges are parallel. Hypergraphs and
multigraphs are either directed or undirected. Figure 2.1 shows examples of
a directed graph, an undirected graph, a directed hypergraph, and a directed
multigraph.

A graph also has a set of properties. One such property is the node degree.
The degree of a node defines how many edges connect to the node. In other
words, a node’s degree is the same as the number of neighbors of that node
[30]. Node degrees are often a consideration when evaluating influential nodes
in a graph [30]. Node degrees relate to the connectivity property. A graph is
connected when all nodes in the graph connect so that a path from any node
can lead to all other nodes [30]. Often, a graph that is not connected has
connected sub-graphs. Many analysis methods and graph algorithms utilize
the connectivity of a graph, such as community detection algorithms.

Statistical measures often have specific requirements for the graph or use
specific graph properties for evaluation. Moreover, some graph types allow
for specialized analysis, such as directed graphs. When representing data in a
graph model, it is, in many cases, necessary to observe which type of graph is
most suited to represent the data and which properties that graph has, as
the type and properties affect how one can utilize a graph.

2.1.2 Graph databases

To store and represent graph models, computer scientists can utilize graph
databases. Graph database management system (GDBMS), in this chapter
referred to as graph databases, are a type of NoSQL databases. This thesis
will not give a detailed background on NoSQL as many papers have done
that before, such as Hecht and Jablonski (2011) and Cattell (2011) [20, 31].
However, a short introduction helps recognize the motivations behind graph
databases. In the field of data management, there has been a shift in data
storage forced by the changes in technology and the amount and types of
data available [20]. As the internet evolved, so did the amount of data,
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Figure 2.1: Various types of graphs: (a) An undirected graph; (b) A directed
graph; (c) A multigraph (directed); (d) A hypergraph (directed).

and applications now need to handle large quanta and continually changing
data. The need for features lacking in the traditional relational database
management systems (RDBMS), due to these systems’ normalized data models
and full ACID support, gave rise to NoSQL databases [32]. These demands
included fast concurrent read and write operations, efficient (big) data storage,
and high availability and scalability [6]. NoSQL databases perform fast read
and write procedures, support large data sets, and deal well with dynamic
data, both changes in the schema and the data size [6, 20, 31, 32]. Providing
these features comes at a cost, and each NoSQL solution differs in what
they sacrifice to achieve them. By this, one must consider which properties
are necessary and which might not be when selecting a NoSQL database
system [32]. As mentioned, many real-world scenarios are represented more
appropriately as graphs than classes to capture their nature [28]. The key
features of such scenarios are that the data is highly interconnected and can
come in high volumes, which are features that graph databases handle well
[33].

There are multiple definitions of graph databases, but they all share the
key concept of nodes and relationships [6, 34, 33]. Robinson et al. (2015)
define a graph database as a database management system with Create, Read,
Update, and Delete (CRUD) methods that expose a graph data model [6].
When defining graph databases, there is a separation between native and
non-native implementations [35, 34]. In this thesis, we define a native graph
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database as a graph database that has a graph data model in the underlying
storage. It processes the data using index-free adjacency, meaning that the
connected database entries (nodes) point to each other’s physical location [6].

A relational data model can also be viewed as a graph, but with limitations.
Entity-relationship (ER) diagrams, commonly used to model and presents
relational databases, are graphs where the tables represent nodes, and the
foreign-keys define named relationships. Appendix A presents such a diagram
of the relational murine basal ganglia database. These diagrams depict a
limitation of relational data models; they only allow single, undirected rela-
tionships between the nodes [6]. With this limitation, relational databases are
ill-suited for representing domain models with numerous, diverse relationships
between entities.

The key advantages of graph databases boil down to performance, flexibil-
ity, and agility [34]. The performance advantage appears when querying deep
data as the performance stays roughly constant even when the amount of
data increase over time [34]. The graph databases’ ease of changing schemas
provides flexibility; graph databases do not have strict predefined schemas
that all nodes of a particular type need to follow. Instead, one can define
what needs to be there as the database and application evolve, representing
the domain model. The non-strict schemas also supply the agility advantage,
allowing the database to change with the domain requirements [34]. The key
benefits, performance, flexibility, and agility fit well with the thought out use
cases of graph databases; continually evolving, interconnected data.

2.1.3 Graph data models

A graph database exposes a graph data model. The previous section on
graph definitions shows that a graph model in its purest form consists of
nodes (vertices) and relationships (edges). Angles and Gutierrez (2008) define
a graph database model as a model where the data structure (schema) is
modeled as a graph and where the data manipulation uses graph-based
operations [36]. There are many different graph data models, but the two
most common are the property graph model and the RDF graph model.

A property graph model is a graph model with nodes and relationships
where both the nodes and the relationships can have properties. The model
categorizes the nodes with one or more labels, and the relationships are named
and directed [6]. Figure 2.2 illustrates a property graph model where the
nodes have one label, some of the nodes have properties, and one of the
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Figure 2.2: A property graph model of a subset of the murine basal ganglia
data set.

relationships have a property [6].
Triple stores, or RDF stores, originating from the Semantic Web Movement,

present a different graph model [6]. The Resource Description Framework
(RDF) is a standard model, developed under the World Wide Web Consortium
(W3C), enabling the encoding, exchange, and reuse of structured metadata
[37]. The goal was to make a framework for all the World Wide Web resources
to improve programmatic discovery and access to these sources [37, 38]. A
triple store is a database that, as the name implies, stores triples. A triple is
composed of a subject-predicate-object [38]. A set of RDF triples creates an
RDF graph. Figure 2.3 illustrates a simple RDF graph. In the figure graph,
the Wikipedia URL is the subject, the dc:title and dc:publisher are the
predicates, and Basal Ganglia and Wikipedia are the objects. In an RDF
graph, the nodes and edges do not contain properties; rather, the edges define
the properties. Triple stores are graph databases as they expose graph data
models [38]. However, they do not usually implement a graph data model in
the underlying storage [6].

When selecting a graph database model, it is necessary to consider the
data that the model represents, the structure of the data, including how it is
interconnected, how the data evolves, and the graph model’s features. Some
graph models are better suited for data manipulation, while other models
provide improved data analysis. Further, different graph models will allow
different analytical possibilities. One should evaluate the scope of the data
before choosing the appropriate graph model.

There are many available graph database implementations, and they uti-
lize different graph models. Examples of graph database implementations
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Figure 2.3: A simplistic RDF graph of the Wikipedia page of the basal
ganglia.

that expose a property graph model are Neo4j1, OrientDB2, and ArangoDB3.
Graph database implementations that expose an RDF graph includes Al-
legroGraph4 and Apache Jena5[34, 39]. Although sharing the same graph
model, these implementations have different features necessary to evaluate
when selecting an implementation. There are many graph database imple-
mentation comparisons available, such as Fernandes and Bernardino (2018)
that compares the implementations referenced above, except Apace Jena [34].

Another aspect of graph databases is the query language. As the graph
data model depends on the data it represents, the query language depends
on the chosen graph data model. Cypher is a declarative query language
developed by Neo4j to query property graph models, such as the Neo4j
database engine [40]. SPARQL is the graph query language used to query
RDF graphs [38]. The query languages are optimized to query their respective
graph data model.

There are different graph patterns for querying graphs. Renzo et al. (2017)
define basic graph patterns as graph queries that perform matches against the
graph database, and complex graph patterns as basic patterns augmented with
features, such as projection, union, optional, and difference [41]. Path queries
are also essential for graph querying, to understand and navigate the topology
of the data. Combined with basic queries, they are named navigational
graph patterns [41]. The main SPARQL query building blocks are triple
patterns, referencing the RDF triples [41]. By its long existence, SPARQL is

1https://neo4j.com
2https://www.orientdb.org
3https://www.arangodb.com
4https://allegrograph.com
5https://jena.apache.org
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more studied than Cypher and has full navigational query support [41]. In
Cypher, "patterns" are the main building blocks, and the language supports
navigational queries over a property graph [41]. In summary, both Cypher
and SPARQL support complex query patterns and navigational queries.

2.1.4 Graph analytics

Graph analytics includes all approaches to analyze graph-based data [35].
When working with large data sets, it is not customary to know all the
data. If one has all of this information, graph analysis will not provide much
interesting information. Nevertheless, this is usually not the case. For a
minimal data set, graph visualization might provide enough information to
give an overall understanding of the structure. For large amounts of data,
that is not sufficient. Thus, analysts apply mathematical measures and use
tools on the graph data set to boil down large amounts of data into simple
numbers that are easy to understand [42]. As this thesis utilized graph data
analysis to evaluate research question RQ2, we describe in this section a set
of graph analytics approaches.

State-of-the-art graph analysis approaches

Graph machine learning entails approaches that analyze graph data and
creates machine-learning models that work on graph data. In 2009, Scarselli
et al. proposed a graph neural network (GNN) model that utilized existing
neural network methods on data represented in a graph model [43]. Before
GNNs, computer scientists had to convert graph-represented data into other
representational forms, such as vectors, to use neural networks. Scarselli et
al. proposed the GNN as a neural network that inputs and returns data in a
graph representation.

Graph neural networks have gained some use over the past decade [44].
There are many scenarios for using GNNs to predict and classify graph data
models. Some are related to traditional machine-learning tasks, such as
models for text and image classification. Other scenarios are more specific
to data naturally structured as graphs, such as disease classification, protein
interface prediction, and knowledge graph completion and alignment [44].

The significant benefit of using GNNs, when having data represented
in graph format, is that they provide a way to obtain a machine-learning
model that can predict the result for data added after the model creation.
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Compared to traditional graph algorithms presented later in this section, the
machine-learning model will work for inserted nodes. In contrast, a graph
algorithm must be run on all the nodes at every insert to obtain the same
result. The disadvantage of using such machine learning methods is that
the model becomes a black box where the computer scientist cannot tell
how the model predicts or classifies. The primary benefit of using machine
learning approaches on graph data appears when the data set is so large that
traditional analytics are insufficient.

Another way to analyze graphs is related to the concept of knowledge
graphs. There are many definitions of knowledge graphs [45]. In this thesis,
a knowledge graph describes a graph data model where the node labels and
relationship types are predefined, limited, and has a concrete definition. Such
a framework for labels and types is often referred to as an ontology. The data
modeled in a knowledge graph must integrate into this formalization.

Knowledge graphs apply reasoners to extract new information or knowledge
from the data [45]. A reasoner is software programs that can infer logical
consequences from a set of given facts and rules. An example is Apache Jena,
a toolkit for loading and processing information in an RDF graph, which
contains inference-frameworks that can work directly on the data in an RDF
graph [39].

Although powerful tools, this thesis does not utilize machine learning
and reasoning approaches. Graph neural networks are well suited for graphs
with a similar or equal set of properties and large data sets. As with all
machine learning methods, the graph neural network removes some of the
graph information to run on large data sets. Knowledge graphs using reasoners
prove very powerful to derive new knowledge about data. However, to do
so, there is a need for formal standardization. The thesis research found no
ontology that the murine basal ganglia data set could integrate into where
it was possible to define all of the different neuroscience research methods.
Creating such an ontology was outside the scope of this thesis. As the goal
was to analyze the data to obtain new knowledge, and based on the size of
the murine basal ganglia data set, using graph algorithms sufficed.

Graph algorithms

Graph algorithms are procedures that provide mathematically based measures
on large and complex data. Based on graph theory, graph algorithms use
information about relationships and nodes to infer an understanding of
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Figure 2.4: Four categories of graph algorithms.

the data [35]. Graph algorithms are typically categorized by the type of
information they gather, and Figure 2.4 summarizes four such graph algorithm
categories. The remainder of this section describes these four categories,
including examples of algorithms.

A significant group of graph algorithms is pathfinding and search algo-
rithms. Such algorithms are concerned with graph search by traversing the
graph [35]. One such algorithm is breadth-first search (BFS). BFS traverses
the graph in a breadth-first manner to find the shortest path between two
nodes. The use of these algorithms is usually to find the shortest paths
between node pairs and to specific nodes.

Community detection algorithms discover communities in a graph. Many
graph representations, such as social networks, divide naturally into commu-
nities. These algorithms can help uncover the structure of the graph and
group tendencies [35]. These algorithms define communities where nodes of a
community have more relationships within the community than with nodes
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outside of that community [42]. Examples of such algorithms are the Label
propagation algorithm (LPA) and the Louvain algorithm. The LPA finds
clusters based on labels, and the Louvain algorithm detects the communities
by the concept of maximum modularity (to what extent equal nodes connect)
[42].

Centrality algorithms measure which nodes are the most influential and
have an extensive impact on the graph. There are multiple ways to measure the
centrality of nodes. There are simplistic approaches, like counting the in- or
out-degree of the nodes, and more advanced methods that take the dynamics of
the connected nodes into account [42]. Examples of other centrality algorithms
that take the entire graph’s connectedness into account are the PageRank
and the betweenness centrality algorithms. The PageRank algorithm, a
previously central part of Google’s web search engine, evaluates the nodes’
direct influence while taking the influence of all the nodes into account [46].
The betweenness centrality algorithm measures the nodes’ influence in the
graph’s information flow instead of measuring its direct influence [42]. These
algorithms have many applications, such as finding relevant pages in a web
search or influential scientists from publication databases [35].

The final group of graph algorithms described in this thesis is similarity
algorithms. These algorithms measure the similarity of nodes by comparing
node pairs [42]. There are many applications for finding similar nodes; for
example, when studying a research paper, one might want to see similar
papers. An intuitive similarity algorithm is the node similarity algorithm.
This algorithm compares node pairs based on their neighboring nodes.

Many graph database implementations support some form of graph analy-
sis. RDF graph implementations typically utilize reasoners to infer knowledge
about the data [39]. For the property graph model databases, there are other
solutions for data analysis. For example, the database implementation Neo4j
provides a graph data science (GDS) library6 that supports running graph
algorithms directly on the graph data. ArangoDB, built to support big data,
provides a machine learning infrastructure called ArrangoML7. In general,
graph databases provide analytical tools that support analyses of the data
they store.

6https://neo4j.com/docs/graph-data-science/1.3
7https://www.arangodb.com/machine-learning
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2.1.5 Considerations for graph representation

When evaluating graph-based data representation, there are many considera-
tions. The previous section has covered an introduction to graph database fea-
tures, including graph data models and graph query languages, and approaches
for graph data analysis. The following list summarizes the considerations of
graph-based data representation:

• The domain model: Consider what the data represents and the
structure of the data.

• The graph data model: Consider which data model the graph
database exposes.

• The graph query language: Consider the language used to query
the data for a given graph data model and database.

• The graph database: Consider the features of the graph database,
including its implementation and its underlying storage, and possibly
analytics capabilities.

From these considerations, we observe that the choice of a graph database
management system depends on the requirements of the data model, query
language, and potentially analytics capabilities. These requirements again
depend on the domain model. As this thesis evaluates data management in
the neuroscience domain, we need to understand the neuroscience aspects of
the data.

2.2 Neuroscience data

To understand the brain’s structure and function, researchers need data. In
neuroscience, data primarily represent features of the brain and information
related to brain-related research. To understand the domain of the murine
basal ganglia data set, we present the relevant characteristics of neuroscience
data in this section. Section 2.2.1 describes the anatomy of the brain and the
structure of its cells to define what neuroanatomical data represent. Further,
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the chapter presents how researchers work with brain-related data, including
naming in Section 2.2.2, basal ganglia data in Section 2.2.3, and data quality
in Section 2.2.4.

2.2.1 Anatomy of the brain

The brain is a large and complex organ that, together with the spinal cord,
constitutes the central nervous system (CNS) [47]. Neuroscience typically
divided the brain into different parts based on each region’s functional,
connectional, or structural properties. The exact division varies across the
literature, but Kandel et al. (2000) specify six main parts [47]. These can be
grouped into the three parts presented in Figure 2.5. One of these parts is
the cerebrum, consisting of the cerebral cortex and subcortical nuclei. The
cerebral cortex is the outer layer of the cerebrum and is responsible for most
human cognitive abilities. The subcortical areas lie, as the name suggests,
beneath the cortex. It consists of three compounds where one of them is the
basal ganglia [47].

Many disease studies use rats or mice for their research as rodents have a
shorter lifespan, and researchers can observe them in controlled environments.
Although smaller in size, both the mouse and rat brain have a cerebral cortex
and subcortical nuclei.

The brain includes numerous different cell types, broadly categorized as
glial cells and neurons [48]. Neurons are the cells that process and transport
information throughout the CNS. They communicate through connections

Figure 2.5: Anatomy of three main brain areas.

Credit: Cancer Research UK, CC BY-SA 4.0, via Wikimedia Commons (edited)
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Figure 2.6: Central elements of a neuron.

Credit: User:Dhp1080, CC BY-SA 4.0, via Wikimedia Commons (edited)

called synapses. Figure 2.6 presents the central elements of a neuron. A
neuron receives inputs, and when these reach a certain threshold, the neuron
fires a signal through the axon that, via synapses, sends the signal to connected
cells. The brain glial cells are non-neural, meaning they do not transfer signals
directly. Instead, the glia cells provide support and regulate the functioning
of the neurons [48]. Much of brain-related research investigates the cells in
the brain.

2.2.2 Naming of brain regions and cell types

As presented in the previous section, neuroscience divides the brain into differ-
ent regions. However, there are differences in the division, region naming, and
which parts of the brain a defined region contain [49]. When a neuroscientist
makes an observation, it is vital to communicate the observation’s location
in the brain [50]. In science, a nomenclature defines a system for naming
within a specific area [51]. In neuroscience, a brain region nomenclature is a
framework for naming and defining the areas of the brain. When studying
the brain, such nomenclatures help researchers precisely define which region
or part of the brain the data reference [52].

Neuroscience researchers utilize brain atlases for matching the location
of their findings. This thesis refers to the term brain atlas as the more
narrow description of atlases used for reference, also called reference atlases.
A reference brain atlas is a map of the brain for a specific species, containing
images of the brain and borders between regions in the context of those images
[53]. In relevance to anatomical naming, reference atlases employ a specified
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nomenclature [53]. The nomenclatures of the most renowned brain atlases at
a given time are what researchers usually choose as nomenclature in a study
or research experiment [54]. For example, when measuring cell-counts in a
region, researchers can report which atlas nomenclature they have used to
specify the given region. That atlas nomenclature is then the nomenclature
used in that experiment or research. This reporting is essential for other
researchers to obtain the correct location of the research observations.

Another area of anatomical naming considers cell types. Neuroscience
research is often not concerned with counting or observing all neurons, but
rather specific neurons, such as neurons which express particular neurotrans-
mitters [55]. Researchers can name the neurons based on what they express,
where they exist in the brain, or their structure, based on the research focus
[10, 56, 55]. The many ways researchers can describe a cell type cause a
lack of consensus on the criteria for defining neuron types [10]. For clarity,
researchers should explicitly report what defines a specific cell type in their
research [55].

2.2.3 Basal ganglia data

The basal ganglia are not a concrete part of the brain but a collective term
for a group of nuclei. In humans and other mammals, the basal ganglia are
significantly involved with movement and, to some degree, emotions, and
memories [57, 58]. Figure 2.7 presents the nuclei of the basal ganglia together
with related structures.

Much of the basal ganglia’s clinical significance is related to movement
disorders like Huntington’s disease and Parkinson’s disease [59, 60]. Basal
ganglia studies are often related to specific diseases, producing a predominance
of data about brain regions and cell types relevant to the disease.

Scientific researchers generally process data at different levels, which is
also the case for basal ganglia data. This thesis categorizes the research data
into three levels: (1) raw data, (2) derived data, and (3) metadata. Raw data
entails direct research measurements, while derived data denotes the processed
results drawn from the raw data. Metadata defines the characteristics of this
data, being the "data about data." The raw data is the non-processed result of
an experiment measure. Raw data can be neuroimages, electrode recordings,
or other direct measurements. Researchers either base their results on the
raw data, or this data is the result itself. Researchers are often interested in
more than raw data and thus analyze the raw data to provide insights. This
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Figure 2.7: The nuclei of the basal ganglia and related structures.

Credit: File:BrainCaudatePutamen.svg: User:LeevanjacksonDerivative work: User:SUM1,
CC BY-SA 4.0, via Wikimedia Commons

process yields the derived data. Examples of derived data are quantitations
(objects of interest counts), distributions, or morphologies (an object’s physical
structure). In neuroscience, the metadata covers all the information related to
the experiment and can include data about the methodology, specimens, and
specific chemical solutions of the research. Published basal ganglia research
typically presents the results (derived data), some degree of metadata, and in
a few cases, the raw data [19].

Before the murine basal ganglia database, the existing basal ganglia related
data was mostly available in research papers. These research papers were the
basis for the data that Bjerke et al. (2019) have gathered into a collective
database [19]. Of the data levels presented in Section 2.2.3, basal ganglia
related data can be at all levels. However, the quality of the data varies.
There can be a lack of metadata and also appropriate result data. The basal
ganglia related research papers often present the results in either text, tables,
or graphs. In the murine basal ganglia data set, Bjerke et al. excluded the
papers that represented the results in graphs and the papers where certain
predefined metadata were missing [19].

2.2.4 Data quality

The quality of research data is essential for researchers’ ability to utilize the
data. This thesis defines data quality as the data’s ability to be used in the
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intended context. Specifically, for neuroscience research, this entails being
understood and possible to reuse by other researchers.

Data quality is essential in all the data levels presented in Section 2.2.3,
but with different impacts. With raw data, the data quality impacts the
extent to which other researchers can process the data. For high quality,
the raw data should, whenever achievable, be machine-accessible and in a
standardized format; unfortunately, this is often not the case [8]. To have
high quality derived data, it must be clear how the researcher obtained the
result. Researchers can achieve this by presenting the raw data and the
specific features of the experiment or study. Thus, the quality of the derived
data highly depends on the quality of the raw data and metadata. The
metadata should include all the information relevant to understand, combine,
and reproduce the result. Hence, all three data levels, raw, derived, and
metadata, are interdependent and should be provided together to obtain high
data quality.

The data quality in neuroscience is affected by the naming aspects. As
stated in Section 2.2.2, there are different ways to divide the brain into
regions, and researchers can employ brain region nomenclatures to clarify
which region division they employ in their research. However, much research
presents unstandardized terms when referring to brain regions [61]. As brain
atlases continually update due to the progress in neuroscience, the older
nomenclatures become outdated. There is no complete mapping data between
different brain region nomenclatures, and there is still no standard format for
cell naming, although research efforts investigate this [10, 50]. In summary,
the challenges with data quality in neuroscience entail the lack of standard
formats, the possibility to map between various nomenclatures, incomplete
information, and a lack of proper metadata [61].

2.3 Brain-related data management

Although there are challenges related to the understanding and reuse of
existing neuroscience data, several initiatives work to share data, collaborate,
and advance brain research. Many of the initiatives are complementary
and attempt to build on each other’s data. Moreover, there are areas in
neuroscience that utilize graph-based data representation. Section 2.3.1
presents initiatives types that provide neuroscience data before Section 2.3.2
evaluates graph-based approaches in neuroscience.
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2.3.1 Types of initiatives for neuroscience data

The first initiative type considered in this thesis is the repositories of data
sets. This type entails initiatives that collect and provide available research
from multiple sources, including publications and data sets. There are many
such initiatives where some are general-purpose, and others are specialized
for a specific research area or set of data [15, 62, 16, 13]. Some of these
initiatives also work with managing metadata to make it easier to navigate
their data. What is common amongst these initiatives is their goal to make
neuroscience research more available and accessible to deal with the data
quality challenges.

Another essential brain-related initiative type is brain atlases. As pre-
sented in Section 2.2.2, we narrow the atlas scope down to reference brain
atlases, which are maps of the brain, including defined brain region borders.
Researchers use these atlases as reference tools to answer questions about
location in the brain [53]. In comparison to the repositories of data sets,
atlases come from one data source. Like the data repository initiatives, brain
atlases function as a tool for researchers to analyze their research. Although
brain atlases do not integrate research data directly, they are essential for
neuroscience data integration as they provide location references for research
and standardization of these locations [50].

The final initiative type we consider is neuroscience databases. A neuro-
science database is broadly a database consisting of brain-related data. These
initiatives combine data from one or many sources, such as research papers
or other databases, and provide this data integrated into a common database.
The data can be at any or all of the data levels presented in the previous
section. The murine basal ganglia database is an example of such an initiative
[18].

2.3.2 Graph-based approaches

As this thesis investigates graph-based data representation in the neuro-
science domain, it is relevant to evaluate the currently existing graph-based
approaches. Graph-based data representation in neuroscience has primarily
focused on knowledge graphs for organizing research and networks for the
brain’s neural connections.

The brain-related initiatives EBRAINS and KnowledgeSpace utilize knowl-
edge graphs to enrich the data and improve their search engines that retrieve
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research papers and data sets [12, 13]. The EBRAINS Knowledge Graph,
previously known as Human Brain Project (HBP) Knowledge Graph, is a
metadata management system. The system utilizes the knowledge graph by
adding metadata to neuroscience data sets so that researchers can categorize,
filter, and search by keywords regarding features like data types, species,
publication year, and experiment methods [12]. The returned result provides
a description of the source together with metadata information in a standard-
ized format. KnowledgeSpace is another initiative that employs a knowledge
graph for research data. Differing from EBRAINS, KnowledgeSpace com-
bines brain research concepts from multiple sources with data, models, and
literature. KnowledgeSpace collects concepts from, among others, InterLex
and Wikipedia [13]. They combine these concepts with data from other
neuroscience initiatives. KnowledgeSpace presents an architecture diagram8

displaying that they use Neo4j, amongst others, for graph data management.
EBRAINS does not present the knowledge graph’s technology or architecture
but reveals that they use a graph database. In summary, both initiatives
provide powerful graph models that simplify data discovery. However, they do
not change or connect the data in the papers, data sets, and models contained
in the knowledge base.

Another direction of computational neuroscience that utilizes graph prin-
ciples is the study of neural connections in the brain, called connectomics.
Connectomics is an extensive research field, including numerous research
papers and large initiatives, such as the five-year Human Connectome Project
[63]. In this research field, the goal is to create a map of how neurons connect
in the brain, and researchers can investigate subsets, or the entire brain,
and investigate functional or structural connections. Figure 2.8 displays a
human connectome collected from a research project from 2014, investigating
the difference between the brain’s structural and functional networks [64].
Connectomics presents an example of data that naturally structure as a graph,
and that can benefit from graph-based data representation.

Connectomics use a wide range of methods to obtain data, from tract-
tracing techniques in animal models to functional magnetic resonance imaging
(fMRI) in humans. For mice and rats, the methods can achieve spatial ac-
curacy down to single neurons, but the techniques used on humans produce
less specific data. Due to numerous techniques that produce data at different
accuracy levels with varying spatial and temporal resolution, there are some

8https://knowledge-space.org/ks-architecture

26

https://knowledge-space.org/ks-architecture


Figure 2.8: A human brain connectome.

Credit: Andreashorn, CC BY-SA 4.0, via Wikimedia Commons

disputes around the data quality and results in connectomics [65]. A connec-
tome has no direct reference to the employed techniques, as the creator of
the model has fully integrated the raw data into a complete model.

We can imagine the two main approaches to graph-based data represen-
tation in neuroscience as two sides of a scale. On the one side, we have
the knowledge graph approaches that utilize graph models for managing
research metadata to integrate multiple data sets. On the other side, we
have connectomics that integrates research data into a complete model and
remove all metadata references. On this scale, this thesis places its research
somewhere in the middle, somewhat closer to the first point, as the focus is
on the data of a specific research set, not purely metadata, but not purely
the research findings either.

Many neuroscience data initiatives share the same purpose as this thesis;
to make it easier to access, integrate, analyze, and share data. Some also
utilize graph models, such as EBRAINS and KnowledgeSpace, that integrate
data from multiple sources into a unified repository. However, none of the
models integrate the research data from data sets while maintaining the
metadata, which is the aim of this thesis. By this, the related work in these
initiatives is complementary to the research of this thesis. Hopefully, the
thesis research can define a proof-of-concept on how other initiatives could
achieve the same goal.
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Chapter 3

Problem analysis
Based on the background from Chapter 2, this chapter analyses the thesis
problem space guided by the three research questions presented in Section 1.3,
resulting in the thesis artifact requirements. After presenting an overview of
the problem analysis in Section 3.1, this chapter chronologically describes the
process of defining the requirements for the software solutions developed to
evaluate the research questions.

3.1 Overview of problem analysis

This thesis aims to evaluate graph-based data management in the neuroscience
domain, exemplifying the process with the murine basal ganglia data set,
consisting of quantitative neuroanatomical data of the basal ganglia in rats and
mice. We have gained relevant information to specify a graph model, define
an evaluation guided by the thesis research questions, and understand the
domain challenges. We know there are multiple sources for neuroscience data,
multiple formats to store research data, and data standardization and quality
challenges. As a basis for the problem analysis, we desired to understand
these challenges from the researchers’ perspective.

We created a survey to understand how researchers work with publicly
available neuroscience data, including which challenges they experience. Ap-
pendix C presents this survey, together with the survey results. In the survey,
we asked for the researchers’ background to separate the desires of different
research areas. The survey lists a range of data repositories, asking on a
Likert scale how often the researchers use them. Furthermore, the survey
asked which tasks the researchers usually perform with the data before listing
a range of potential challenges and asking, on a Likert scale, to what extent
they find them challenging. The following list presents the challenges of using
public neuroscience data we posed in the survey:
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1. Finding relevant data

2. Reusing data

3. Connecting data across multiple sources

4. Understanding the data structure and format

5. Understanding the method used to produce the data

6. Making use of all the available data

7. Finding enough data

8. Finding data of high enough quality

Fourteen neuroscience researchers with various backgrounds answered
the survey. To obtain suitable respondents, we forwarded the survey to
neuroscience institutions at three Norwegian universities. The responding
neuroscientists had a background mainly in biology, medicine, and physics (see
Appendix C). Although the number of respondents does not provide statistical
results, it provides pointers to what these researchers find challenging. Further,
as we evaluate these results combined with their use of data and data sources,
and as the respondents come from independent institutes, the survey provided
valid results.

From the survey responses, we observed that most of the respondents use
the data to compare results or findings and address new hypotheses. Further,
most respondents found finding data of high enough quality and making use
of all the available data very challenging. When analyzing the thesis problem
space and defining the solution requirements in this chapter, we considered
the survey findings.
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Summary of survey findings

• The respondent researchers predominantly use publicly available data
to address new hypotheses and to compare results and findings.

• Finding data of high enough quality, connecting data from multiple
sources, and understanding the data structure and format were found
the most challenging.

• The remaining data challenges proposed in the survey were found
very challenging by at least one respondent.

The thesis hypothesis posits that presenting the data in a graph model
will give researchers a better understanding of the data, improve the usability
of the data, and provide an intuitive way of integrating the model with
existing data, answering the challenges researchers experience. The first
step to evaluate the hypothesis was to understand the thesis data set and
define the graph model and the database system’s requirements. Section 3.2
displays our analysis of the data set, and Section 3.3 presents our analysis
and defined requirements for the graph model and suggestions for a graph
database implementation. Further, the chapter presents the analysis of each
component we developed to evaluate the graph model, based on the three
research questions:

RQ1 Section 3.4 presents our analysis of related neuroscience initiatives, and
of which sources and what data we could integrate with the thesis data
set.

RQ2 Section 3.5 presents the approach and requirements for graph data
analysis, which we employed to observe if it is possible to obtain new
information about the data.

RQ3 We desired to evaluate how web-based data access affects the thesis data
set’s usability. Section 3.6 presents our analysis of the data set’s usage
and users and the software artifacts’ functional requirements, together
with requirements for measuring the solution’s usability.
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Summary of how the thesis research analyzed the thesis problem space

• Analyze the data in the murine basal ganglia data set.

• Define requirements for the graph model.

• Define suggestions for a graph database management system.

• Define external data that can integrate with the thesis data set by
analyzing initiatives that publicly provide neuroscience data.

• Define requirements for data exploration using graph analysis.

• Define requirements for web-based data access and a usability study.

3.2 The murine basal ganglia data set

The murine basal ganglia data set is the data in a database created by Bjerke et
al. in 2019, consisting of quantitative neuroanatomical data about the healthy
rat and mouse basal ganglia, collected from more than 200 research papers
and data repositories [19]. The data set contains three distinct information
types: quantitations (counts), distributions, and cell morphologies. The
counts and distributions regard either entire cells or specific parts of the cell,
while the morphologies describe the cell’s physical structure. The data set is
publicly available through EBRAINS as an Access database (.accdb) and as
comma-separated values (CSV)-files [18]. The data set’s primary usage is for
researchers to find and compare neuroanatomical information about the basal
ganglia brain regions. In addition to a data set, Bjerke et al. (2020) published
a paper describing the data set development process and their findings [19].

Referencing the basal ganglia data presented in Section 2.2.3, the data
set contains metadata and derived data. The murine basal ganglia data set
contains metadata about the experiments, analyses, and specimens, connected
to experimental results and derived data, representing cell counts and cell
structures in specific regions. Moreover, it contains general cell types and
brain regions used to reference the derived research results. All the data in
the murine basal ganglia data set are in a tabular format. The brain regions in
the data set come from two nomenclatures, provided by the Waxholm Space
(WHS) rat brain atlas for the rat species and the Allen Mouse Brain Atlas
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Figure 3.1: The structure of the original murine basal ganglia database,
presented as a graph.

(AMBA) for the mouse species. These brain atlases are further described in
Section 3.4. The data set does not contain raw data or externally referenced
files with data.

Figure 3.1 illustrates the murine basal ganglia database directly represented
as a conceptual graph, where the nodes represent the database tables, and
the edges represent the foreign keys. In this figure, the graph is simplified
by omitting the table columns. The figure denotes the table names using
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pascal-case, directly transformed from the original table names written in
snake-case. This thesis will refer to the tables in the pascal case format and,
from here on, refer to the original tables as nodes.

The murine basal ganglia data set consists of specific experiment results
connected to predefined brain regions and cell types and detailed information
about the experiment [19]. The data set has a hierarchical structure: A
source reports one or many experiments. An experiment has one or many
derived data records describing a specific analysis performed in the experiment.
Moreover, the derived data records, from now called analyses, relate to one or
more data types. These relations between analyses and data types describe
specific measures of the analysis. The data types are either quantitations,
distributions, or cell morphologies. For a complete entity-relationship (ER)
diagram of the original database and for more details about the data set data,
see Appendix A.

From Figure 3.1, we can observe the data structure, including the connec-
tivity. The nodes are marked with one of four colors. These colors represent
four node-categories that we derived from investigating the data and from
discussions with Bjerke. The following list presents these categories with
associated colors:

• Experiment data (purple): The nodes representing experiments and
the related experiment data.

• Sources of information (green): The nodes representing external
sources of information. This category includes the sources (journals)
that published the experiments and the nomenclatures used to define
the brain regions.

• Specimen data (yellow): The nodes representing the experiment’s
specimens and the properties of these.

• Neuroanatomical data (orange): The nodes representing neu-
roanatomical data about brain regions and cells with classifications
and areas.

This data set is suitable for a graph model due to its connectedness
that cannot be fully represented in a relational model, for example, direct
relations between nodes to promote easier data access, navigation, and analysis.
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Further, a graph model is flexible and can easily adjust to new data. This
flexibility benefits the murine basal ganglia data set as its developers want the
data set to be continually expanded with new data. Thus, we decided to use
this data set as the basis for investigating graph-based data representation.

3.3 Requirements for the basal ganglia data set
graph model

Remembering the general idea of the thesis, the graph model is the foundation
for all the other artifacts, and this is where we began the requirement specifi-
cation. This section describes the graph model requirements and suggestions
for data storage, based on the analysis of the murine basal ganglia data set.

When specifying a graph model, the structure is fundamental, as it affects
the searchability and usability of the data and the results of different graph
analysis. As stated in Section 2.1.2, a graph data model stored in a graph
database is dynamic, compared to a relational model, as the graph data
model can be isomorphic to the domain model, implying that the model is
satisfactory as long as it covers the users’ needs [6]. This fact yields that
the first step for designing the graph model was to define the potential user
objectives and scenarios for accessing the data.

In the paper presenting the murine basal ganglia database, Bjerke et al.
(2020) proposed a user workflow for the database that includes three user
research scenarios [19]. Appendix A presents these. From these user scenarios,
we list three specific use cases of the data:

• Researchers who want to find, explore, and use the data to model the
basal ganglia.

• Researchers who want to find, explore, and use the data to compare it
with their experiment results.

• Researchers who want to extend the data set with data from their
experiments.

Based on these use cases and interviews with Bjerke, we defined the
following user objectives for accessing the data in the murine basal ganglia
data set:
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• When studying a specific brain region or investigating a specific cell
type.

• In search of similar experiments for comparing results.

• To extend the data set with new data.

The previous section categorized the nodes in the basal ganglia data
set into one of four categories. For faster retrieval and a better overview
of the data, the graph model can group the nodes of the same category
to facilitate combined retrieval. Based on interviews with Bjerke and the
presented categories, it seems reasonable to assume that when a user accesses
a node from a category, the user will also access more nodes from the same
category. For example, if a user is looking at an experiment, the information
that details the experiment would naturally be associated and relevant. Thus,
the final user objective formulates that researchers desire to find data within
the same category together.

Based on the graph model use cases, we defined the graph model’s re-
quirements, presented in the following list. These requirements state that the
graph model should represent the domain model, including connecting the
same category nodes and provide multiple entry points to access the data.
For the final requirement, we specified the analyses as a primary entry point
rather than experiments, as the experiments in the data set are represented
through analyses.

1. The graph model must follow the domain model such that a re-
searcher can easily find and compare experiment data.

2. The model should connect nodes within the same category together.

3. Data should be easily reachable from three primary access nodes:
cell types, brain regions, and analyses.

The second aspect of the graph model regards the graph database man-
agement system (GDBMS) that stores and represents the data. The database
system itself is not the most crucial factor; instead, it is the selected system’s
features. Although this thesis evaluates the generic use of a graph model,
rather than a specific management system, the selected system plays a role
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in the graph model’s development and use. As an outcome, we defined the
following set of suggestions for the GDBMS:

• The GDBMS should implement native graph storage (see Sec-
tion 2.1.2).

• The GDBMS should include programmatic procedures for accessing
and inserting data.

• The GDBMS should incorporate graph analytics capabilities.

• The GDBMS should support dynamic updates and data retrieval.

• The GDBMS should be well maintained and have proper documen-
tation.

3.4 Analysis of integration with related data

Will a graph representation of brain-related data facilitate the integration of
data from a variety of neuroscience data sets? The first research question, RQ1,
asks how the graph model facilitates the integration of data from external
neuroscience data sets. This section presents an evaluation of related initiatives
that publicly provide neuroscience data to identify data that overlaps with
the murine basal ganglia data set for integration with the graph model. This
section does not include a complete overview of all available neuroscience
data initiatives and does not perform an in-depth examination of each source.
Instead, it provides an examination of what data we can obtain and integrate
from such initiatives.

3.4.1 Review of initiatives for neuroscience data

The first step in this process was to define potential sources of data. First,
we evaluated the repositories of data sets, as these contain large amounts of
brain-related data. Next, as the data set has defined nomenclatures for the rat
and mouse brain, we investigated the atlases providing these. Furthermore,
the data set references two neuroscience databases as sources of information
that are relevant to consider. Table 3.1 presents the initiatives this thesis
examined, together with the relevance of each initiative.
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Initiative Description Relevance

EBRAINS1

Repository
Multiple
species

The Human Brain Project (HBP), initiated in
2013 and funded by the European Union (EU),
aims to build infrastructures that aids and
improves neuroscience, computing, and
brain-related medicine research [15]. The HBP
has delivered EBRAINS, a brain research
infrastructure. EBRAINS includes tools that
aim to address challenges in the field by assisting
in collecting, analyzing, and sharing data and
brain function modeling and simulation [12]. To
promote data accessibility, EBRAINS provides a
knowledge graph for searching all available data.

Relevant as
it is a
well-known
platform for
finding
neuroscience
data.

Neuro-
science
Information
Framework2

Repository
Multiple
species

Available since 2006, the Neuroscience
Information Framework (NIF) offers services to
search among an extensive collection of
neuroscience information [16]. The NIF has
gathered multiple data sets and allows the
researcher to search across all available data,
where the data is clearly categorized. The data
includes information from other initiatives, like
the Allen Institute and Brain Architecture
Management System (BAMS). For example, NIF
hosts a version of the BAMS database. NIF
provides the database from BAMS containing
tables with brain regions and cell type metadata,
with data about the name of brain regions and
cells, including the nomenclature.

Relevant as
it is a
well-known
platform for
finding
neuroscience
data.

Zenodo3

Repository
Multiple
species

Zenodo is an online repository of research
(publications and data), launched in May 2013
by CERN [62]. Although this initiative is not
specific to neuroscience research, we presented it
as a source for neuroscience data because it
might provide relevant data in any research field.
However, as Zenodo is not specific to a domain,
it does not contain domain-specific metadata for
navigating the data.

Relevant as
it is a
well-known
platform for
finding
research data
in any field.

1https://ebrains.eu
2https://neuinfo.org
3https://zenodo.org
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Knowledge-
Space4

Repository
Multiple
species

KnowledgeSpace is an encyclopedia for
neuroscience and combines general descriptions
of neuroscience concepts found from Wikipedia
and other neuroscience specific sources [13]. The
initiative combines content from these sources
with neuroscience research found in other
repositories. KnowledgeSpace contains a broad
range of neuroscience data, including the
definition of neuroscience concepts and cell types,
and incorporates the NIF ontology for metadata.

Relevant as
it is a source
for neuro-
anatomical
definitions.

Waxholm
Space
(WHS) rat
brain atlas5

Atlas
Rat

WHS is a brain atlas of the Sprague Dawley rat
brain [66]. The entire set of images that
comprise the WHS atlas is available through
EBRAINS. Additionally, the EBRAINS platform
offers an interactive Atlas Viewer to explore the
3D WHS atlas. The latest version of the WHS
data set consists of anatomical delineations of
118 brain regions observed in neuroimages [67].

The murine
basal ganglia
data set uses
the nomen-
clature
provided by
WHS for the
rat brain.

Allen
Institute for
Brain
Science6

Atlas and
repository
Human, Mouse

This initiative provides multiple brain atlases for
both the human and mouse brain, including a
mouse brain atlas (AMBA) and a mouse brain
connectivity atlas [68, 69, 70]. The mouse brain
atlas provides data about mouse brain structure.
Further, they provide many developer tools in
the Allen SDK.

For mice, the
thesis data
set uses the
nomencla-
ture
provided by
AMBA.

The Blue
Brain Cell
Atlas
(BBCA)7

Data set
Multiple
species

BBCA is a part of the Blue Brain Project and
provides an interactive cell atlas that includes
information about cell densities and positions in
the brain regions of the mouse brain [71, 72].
Although it is called an atlas, it is not a reference
brain atlas used for brain location. We refer to
BBCA as a data set as it offers cell counts for the
mouse brain. The BBCA provides information
about cellular compositions in the mouse brain.

Relevant as
it contains
cell data and
uses the
nomencla-
ture from
AMBA.

4https://knowledge-space.org
5https://www.nitrc.org/projects/whs-sd-atlas
6https://alleninstitute.org/what-we-do/brain-science
7https://portal.bluebrain.epfl.ch/resources/models/cell-atlas
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Brain
Architecture
Manage-
ment
System
(BAMS)8

Data set
Rat

BAMS aimed to be an online knowledge
management system to store and infer
relationships between data about the structural
organization of nervous system circuitry [73].
The website, although no longer maintained,
contains information about rat brain regions and
structural brain region connectivity.

A data set
with brain
region data,
suggested by
neuroscien-
tists at the
University of
Oslo.

NeuroMor-
pho.Org9

Data set
Multiple
species

NeuroMorpho.Org aims to provide access and
overview of available morphological
reconstructions and has a database containing
multiple data sets with digitally reconstructed
neuronal morphologies with unique identifiers
[74]. More than 500 laboratories have
contributed data, and the database is continually
updated with new reconstructions.

Some cell
morphologies
in the
murine basal
ganglia data
set have such
identifiers.

InterLex
through
SciCrunch10

Repository/
Data set
Multiple
species

SciCrunch comprises tools, resources, and
databases to make data FAIR (Findable,
Accessible, Interoperable, and Reusable) [75].
The data sets found through SciCrunch are much
of the same as the ones found in the NIF, as
SciCrunch also provides the NIF data.
SciCrunch contains InterLex, a dynamic lexicon
of biomedical terms aiming to improve the
researcher’s communication about data. It works
as an ontology on top of existing terminologies
and ontologies, and is incorporated by both
SciCrunch and the NIF [76].

The cell
types in the
murine basal
ganglia data
set have
ontological
identifiers
that are
accessible
through
InterLex.

Table 3.1: Review of initiatives the publicly provide neuroscience data,
including their relevance to this thesis

8https://bams1.org
9http://neuromorpho.org

10https://scicrunch.org/scicrunch/interlex/dashboard
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3.4.2 Analysis of initiatives

The next step of the process was to analyze the initiatives presented in
Table 3.1 for integration with the thesis data set. We investigated each of
these initiatives to find potential overlap with the murine basal ganglia data
set. The overall methodology to investigate the initiatives was to visit the
data source and look for available data sets and programmatic data access.
For the initiatives that provided data programmatically, we searched with the
term "basal ganglia" and some specified basal ganglia related regions. Where
we managed to obtain relevant data, we consulted Bjerke to evaluate if the
data was related to the basal ganglia. Further, we evaluated if the data was
overlapping with the murine basal ganglia data set. If all of this was verified,
the data was applicable to be integrated into the murine basal ganglia graph
model. In summary, we analyzed each initiative against the following criteria:

1. Serve data programmatically

2. Have data related to the basal ganglia

3. Provide data that is extendable with the data in the thesis data set

Figure 3.2 summarizes our investigation, presenting which data sources we
can collect data from to extend the graph. It is important to note that this
is not an in-depth analysis. Some of the initiatives that we found unsuited
for integration might fulfill all the criteria, but not in a way we managed to
observe at the time of the thesis research.

Analysis of the initiatives that satisfied the criteria

Brain Architecture Management System (BAMS): The BAMS web-
site, although no longer maintained, contains information about brain regions
and structural connectivity information in the rat brain. A researcher first
selects the direction of the connection on this website, either input (afferent)
or output (efferent). Next, the researcher searches for a brain region, and
the website returns all the connected regions. The returned connectivity
results contain a reference to the article where BAMS’ creators collected the
connectivity information.

As presented in Section 2.2.2, data sources can define a nomenclature for a
species to specify brain region location. In BAMS, the chosen nomenclatures
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Figure 3.2: Overview and result of initiatives investigated for data overlap
with the murine basal ganglia data set.

differ from the rat nomenclature in the murine basal ganglia data set. When
we found data overlapping with the murine basal ganglia data set, we also
needed to map between the nomenclatures.

Analyzed against the presented criteria, BAMS complies with two of
the three. It contains basal ganglia related information extendable with
the murine basal ganglia data set; however, it does not provide the data
programmatically. For the scope of this thesis, we wanted to obtain the
overlapping data, and as the BAMS website presented the data in tables, we
could access the website programmatically and extract the data from these
tables. With the adjusted method, BAMS answered all the presented criteria.

InterLex through SciCrunch: SciCrunch provides an application pro-
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gramming interface (API)11 where one can get descriptions based on InterLex’s
ontological identifiers. In the murine basal ganglia data set, many of the cell
types have ontological identifiers recorded. We could use these identifiers to
connect the information to the cell types in the database. This data source
then complied with all the presented criteria. They provided an API and had
data related to the basal ganglia overlapping with the thesis data set.

NeuroMorpho.Org: NeuroMorpho.Org provides an API12 where re-
searchers can find a neuron by id or name. With the inspiration of looking for
identifiers in the murine basal ganglia data set, we observed that the nodes
with cell morphologies (the structure of the cell) also had identifiers for the
neurons mapping to NeuroMorpho.Org. By this, NeuroMorpho.Org complied
with the presented criteria.

Evaluation of the initiatives that did not satisfy the criteria

EBRAINS: The EBRAINS platform provides a knowledge graph search
where researchers can find data based on multiple metadata properties and
download data. When this thesis looked into EBRAINS in early 2020, search-
ing with the term "basal ganglia" only returned the murine basal ganglia
database by Bjerke et al. (2019). At the time of the research, EBRAINS
did not answer the final criterion; however, other researchers could look into
newly added research data sets in further investigations.

The Neuroscience Information Framework (NIF): Searching the
NIF for connectivity information about the basal ganglia did not return any
relevant results. Although the NIF hosts a version of the BAMS database, it
was not the databases with connectivity information. The initiative did not
comply with the third criterion, as there was no data we could combine with
the murine basal ganglia data set available in early 2020.

Zenodo: Zenodo provides an API where researchers can perform advanced
searches for records. In search of relevant records, we performed API calls
with the search term "basal ganglia" and record type "dataset." This search
returned many records. However, looking more closely at the results, most of
the hits only contained the word "basal" and were not related to neuroscience.
Changing the search term to be only "ganglia" returned only one hit per April
2020. This data set contained RNA sequences and was not overlapping with

11https://scicrunch.org/browse/api-docs/index.html?url=https://scicrunch.
org/swagger-docs/swagger.json

12http://neuromorpho.org/apiReference.html
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the cell types in the murine basal ganglia data set. We excluded Zenodo for
further investigation as it did not have any data related to the basal ganglia
at the time of this research.

KnowledgeSpace: Searching the term "ganglia" returned 56 records
per August 2020. Unfortunately, KnowledgeSpace did not provide any API
to access the data programmatically. However, they did provide their source
code on GitHub13, and the entity client code displayed an endpoint for
searching by "slugs." Testing this endpoint showed that it returned results for
standard terms, such as "neuron" and "dopamine." However, as naming is
not consistent in neuroscience, it was unsuitable to use the endpoint to collect
definitions about regions and cell types without unique identifiers. Therefore,
KnowledgeSpace did not satisfy the first criterion presented in the context of
this thesis.

Waxholm Space (WHS) rat brain atlas: From the WHS website,
it was possible to download the complete atlas as neuroimage files. There
was, however, no other data available. Neuroimages of rat brain sections do
not overlap with the data in the thesis data set. By this, Waxholm space
atlas did not meet the defined criteria of providing data extendable with the
murine basal ganglia data set.

Allen Institute for Brain Science: Using a Jupyter Notebook pro-
vided by Allen Insitute, we retrieved cell type data that included the brain
regions where researchers have observed the cell type. We filtered out the
unique brain regions, and Bjerke examined this list to see if any of these
regions were related to the basal ganglia. Unfortunately, they did not. Allen
Institute did not meet the defined criteria of providing data related to the
basal ganglia and overlapping with the murine basal ganglia data set.

The Blue Brain Cell Atlas (BBCA): The Blue Brain Cell Atlas
was constructed using data from the Allen Mouse Brain Atlas, both for
region information and to derive cell counts. Nonetheless, the initiative did
not provide any data programmatically as far as we could find, thereby not
complying with the first criterion.

13https://github.com/OpenKnowledgeSpace/KnowledgeSpace
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3.5 Requirements for data analysis

The second research question, RQ2, asks about data understanding in a
brain-related data set. Understanding is subjective, so we define the baseline
knowledge about the database on the findings found by Bjerke et al. (2020)
[19]. To examine the research question, we investigated what new information
we can extract from the data by utilizing graph-based data analysis. The
assumption is that if the graph model can provide findings that are not evident
in the relational database, the model improves the understanding of the data.

The first step in specifying the data analysis requirements was to define
the thesis’ data analysis approach. Data analysis defines all methods that
break down data into significant components. Many data analysis approaches
involve statistics, but this is a traditional approach rather than a data analysis
requirement [77]. Data analysis approaches can be separated into confirmatory
and exploratory data analysis. Confirmatory data analysis is concerned with
proving or answering a specific hypothesis or question [77]. The researcher or
analyst has a question about the data, such as answering if the data proves a
correlation between two explicit factors. Then data analysis is used to answer
that specific question. Exploratory data analysis is concerned with exploring
the data, looking for general information and clues [77]. Instead of asking if
the data proves something, the approach seeks to investigate what the data
can tell us. This approach utilizes any method that can provide information
about the data, such as data visualization. As this thesis is interested in all
information possible to obtain using graph-based methods, both exploratory
and confirmatory data analysis can prove useful.

As the data volume in the murine basal ganglia data set is relatively
small, we chose to apply graph algorithms as the primary data analysis
tool. Section 2.1.4 presented four graph algorithm groups that all might
provide useful information about the data. Because path-finding and search
algorithms are more suitable for specific scenarios than data exploration,
we decided that the exploratory data analysis approach should employ the
remaining three algorithm categories: clustering, centrality, and similarity
algorithms.

Further, the thesis research utilized specific use cases for data analysis
based on the confirmatory approach. In search of specific answers, we needed
to define relevant questions about the data, noting what information would be
valuable to retrieve. From the research survey, we observed that researchers
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use publicly available data to validate findings, compare results, and address
new hypotheses. Based on this, we defined the first use case to find similar
analyses. It seemed reasonable that researchers would be interested in finding
other research similar to what they are investigating in their search. A second
use case came from an interview with Bjerke. When she created the murine
basal ganglia data set, one of the original research objectives was to investigate
a correlation between method and quantitative results. Her question was:
"Is it possible to say anything about the methods the researchers used in the
experiments when counting a cell type in a specific region that correlates to
the result?". This question defined the second use case. The approach for
the confirmatory data analysis part of this thesis was to answer these two
use cases, aiming to evaluate how a graph-based data representation aids in
answering them.

Summary of thesis data analysis approaches

Exploratory data analysis approach: Aiming to acquire any infor-
mation about the data.

1. Investigate clusters in the data

2. Find central (influential) nodes in the data

3. Compare similarity between nodes

Confirmatory data analysis approach: Aiming to obtain specific
information defined in use cases.

Use case 1: Obtain similar analyses, based on brain region, cell
type, and object of interest.

Use case 2: Observe what we can say about the correlation between
research methods and results in quantitative experi-
ments.

To evaluate the extent to which the data analysis findings provide new
information about the data, we needed to evaluate the findings. We decided
that Bjerke, who knows the data well, was suitable for such an evaluation.
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Further, we defined three categories for the evaluation, where each finding
should be categorized as either:

• Already known: The findings that were already clear from the original
database.

• Expected, but now known: The findings that were not evident in the
data, but information that researchers might assume from other domain
knowledge.

• Unexpected : The findings that were not known and not expected.

3.6 Web-based data access requirements

The third research question, RQ3, asks whether we can improve the data
set’s usability by developing web-based access to the data. To evaluate
this research question, we chose to specify applications for web-based data
access through both a user interface and programmatic access. To evaluate
the research question, we also decided to analyze the usability of the user
interface. Section 3.6.1 describes our approach for understanding public
neuroscience data usage based on the survey results, and Section 3.6.2 and
Section 3.6.3 present the resulting functional requirements and usability study
requirements.

We recognize that applications that provide web-based data access do not
directly represent the graph model and could retrieve data from a relational
database and a graph database with the same end-result. However, we
attempted to visualize the graph navigation through the website and API such
that the data follow the graph model’s structure, including the connectedness.
Additionally, this thesis demonstrates the steps of building a web and an API
application to provide web-based access to the graph database, aiming to
illustrate how other researchers can do the same.

3.6.1 Understanding the usage

To define the user interface requirements, we needed to understand the usage
of the data. In this effort, we used the responses from the thesis survey, fully
described in Appendix C. Section 3.1 presented the areas that researchers find
challenging based on this survey. In the survey, we also asked what publicly
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Figure 3.3: Results from the survey for understanding the usage of publicly
available neuroscience data.

available data they work with and how frequently. Figure 3.3 presents the
survey outcome of the question asking what tasks researchers typically perform
with publicly available neuroscience data. From this survey finding, we observe
that many researchers use the data for further research, and in addition to
reusing the data, they might want to integrate the data into their work.

Before defining the graph data user interface and evaluation requirements,
it is necessary to define usability. A widely used standard for usability testing
is the ISO 9241-11 standard [78, 79]. This standard defines usability as

"The extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfac-
tion in a specified context of use."

This definition specifies three essential elements for usage: the specified
users, the specified goals, and the specified context of use. In this thesis,
the context defines all three aspects, while the context of use defines the
environment in which the user uses the product. Following the ISO definition,
one can only validate the usability within a given context. The developers of a
product have to define this context as a part of the requirement specification
before evaluating the product. By this, an important first step of the problem
analysis was to define the context.

A useful approach to establish the context is personas. Personas are
fictional characters that are useful to understand the user and capture the
users’ goals [79]. In order to create a persona, one needs information about real
users. In the case of the murine basal ganglia application, all researchers within
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Figure 3.4: User persona.

neuroscience are potential users. However, as the number of participants in
the usability study was limited, we narrowed it down to one sub-group of
users: data curators. We collected information about these users, including
their goals and work environment, from the survey and interviews with Bjerke.
Figure 3.4 presents a fictional neuroscientist that describes the murine basal
ganglia data set’s primary user.

3.6.2 Functional requirements for the user interface

Based on the context defined through the persona, we specified a set of
requirements for the user interface. These requirements also apply to the
applications as both the web and API applications have to incorporate these
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features. To create a focus on the user and their goals, we defined a set of
functional requirements for the applications presented as user stories:

US1: As a researcher, I want to find analyses performed on a specific
brain region.

US2: As a researcher, I want to find analyses performed on a specific
cell type.

US3: As a researcher, I want to find analyses based on species, strain,
and other available analysis properties.

US4: As a researcher, I want to be able to find the original publications
that exhibit the data.

US5: As a researcher, I want to study detailed information about the
methodology used in an analysis.

US6: As a researcher, I want to be able to find the original publications
that exhibit the data.

3.6.3 Usability study requirements

The usability test strategy depends on where in the process developers per-
form the usability test. Barnum (2010) divides usability tests into two
sub-categories: Formative and summative testing. Developers perform for-
mative testing when they are still working on the product to find and fix
problems. Developers perform summative testing when the product is com-
plete, aiming to validate that they meet the requirements [79]. We defined
that the usability study should apply formative testing as it was relevant to
obtain user feedback during development.

As stated in the ISO definition, a usability test should observe how users
interact with the service within the given context. The persona, shown in
Figure 3.4, specified the user and the user’s goals. The final part of the
context is the user’s work environment. As many researchers work from home
this year, a remote usability test could represent the researchers’ natural
work environment. We defined that the test must validate the user interface’s
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usability within the context of a neuroscientist, performing tasks related
to finding and understanding brain-related research data, using a remote-
communication tool familiar to the user.

The ISO definition defines three metrics of usability, namely effectiveness,
efficiency, and satisfaction. According to Barnum (2010), effectiveness and
efficiency is the part that adds value to the user by assisting the user’s needs
in a better way compared to the current way [79]. Satisfaction regards the
user-perceived satisfaction stating if the user will desire to use the product.
Thus, the final requirement was that the thesis usability study measured these
metrics.

Summary of usability study requirements

1. This usability study should apply formative testing as it is relevant
to obtain user feedback during development.

2. The study must validate the user interface’s usability as perceived
by neuroscientists.

3. The study must provide tasks related to finding and understanding
brain-related research data.

4. This usability study should perform usability tests using a remote-
communication tool that is familiar to the user.

5. The study must measure the users’ effectiveness, efficiency, and
satisfaction when using the product.
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Chapter 4

Solution design and implementation
Based on the requirements presented in the previous chapter, this chapter
describes the design and implementation of the thesis artifacts. The first
section describes an overview of the high-level solution architecture, referencing
the section that describe each element of the solution. Section 4.2 presents the
solution design which entails the final design of an artifact and the decisions
leading to it, while Section 4.3 describes the implementation details, putting
the decisions from the solution design section into effect.

4.1 High-level solution architecture

Figure 4.1 presents the refined scope of the thesis, revised from Figure 1.1
presented in the introduction chapter. This figure depicts a collective overview
of the artifacts designed and implemented in the thesis research. We designed
and implemented a graph model for the murine basal ganglia data set, chose
a GDBMS, and migrated the data from the relational database into the graph
database. Further, we designed and implemented the integration of data from
related neuroscience data sources and the technical solution for graph-based
data analysis. To provide web-based access to the graph data, we designed
and implemented a web application and an API application. The following
list presents the main components in Figure 4.1, referencing the sections that
describe each component:

1. The common graph model: In the middle of the figure, we have
the common graph model. Sections 4.2.1 and 4.2.2 present the solution
design of the model and the data onboarding, based on the requirements
listed in Section 3.3, while Section 4.3.1 presents the data migration
implementation.

2. Integration of external data: In Section 3.4, we analyzed and
found data from three initiatives that integrates the graph model. Sec-
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Figure 4.1: High-level architecture of the proposed solution.

tions 4.2.3 and 4.3.2 respectively present the design and implementation
of the data integration.

3. Graph analytics: On the left side, the figure displays the graph
analysis part of the thesis. Section 4.2.4 presents the design of and tools
used to analyze the data, based on the approaches listed in Section 3.5,
while Section 4.3.3 presents the algorithm set-up.

4. Web-based data access: To improve the data usability and accessi-
bility, we developed web-based access to the graph model data based
on the requirements presented in Section 3.6.2. Section 4.2.5 presents
the technological and user interface design of these applications, and
Section 4.3.4 details the implementation.
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Figure 4.2: The high-level design of the graph model of the murine basal
ganglia data set.

4.2 Solution design

4.2.1 Graph-based data modeling

Based on the requirements stated in Section 3.3, we designed a graph model for
the thesis data set. The requirements specify that the model should represent
the domain model, group together the nodes within the same category, and
connect the data to the cell type, brain region, and analysis nodes. Figure 4.2
presents the high-level design of the graph model based on the murine basal
ganglia data set.

We based the graph model on the original relational database, conceptually
presented in the problem analysis chapter, Section 3.2, and performed changes
on this model to satisfy the model requirements. To get an overview of the
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domain model and the data usage, we involved researchers from the faculty
of medicine at the University of Oslo. The decisions we made for the new
structure are outcomes from such discussion. The choice not to keep the
original structure came from the benefits the data model could obtain in a
new structure, presented in Section 3.3.

Table 4.1 presents the significant design decisions when modeling the
original relational structure to the graph model, together with the change’s
decision basis. For the remaining tables, we followed a general approach1 for
converting a relational database model into a graph model:

• A table becomes a node label.

• Each row in the table becomes a node of that label.

• Each column of the row becomes a property of the node.

• Foreign keys become relationships.

• Join-tables become relationships with properties.

Of the graph type and properties presented in Section 2.1.1, the resulting
graph model is a directed multigraph because the relationships have direction
and some node pairs have multiple relationships. It also contains a self-loop
on the brain region node type. Further, the graph is connected, as there is
a path between all the nodes in the graph. We decided to model the graph
after what was appropriate for the domain model and requirements and chose
to adjust analysis methods instead to fit with this.

Model change Decision basis Details

The "Derived data records"
table maps to the "Analysis"
label.

To make the node
label more
descriptive.

Bjerke, who decided the
original name, stated that
the term "analysis" more
precisely describes the data.

Direct relationship between
the experiments and
analyses.

To clarify the
relationship between
an experiment and
an analysis.

One derives the new
relationship through the
specimen node.

1https://neo4j.com/developer/relational-to-graph-modeling
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New relationship between
the brain region nodes and
cell types, presenting the cell
types observed in the region.

To provide direct
information about
cell types in brain
regions.

Derived through analyses:
The primary brain region of
an analysis (through a region
record and data type),
connects to the analysis’ cell
type.

New relationships between
the specimen nodes and
specimen-related nodes (age,
strain, sub-strain, sex, and
transgenic line).

To connect the same
category nodes,
specifically the
specimen related
nodes.

Derived through the
experiment table.

New relationship between
the region zone nodes and
brain region nodes.

To connect the same
category nodes and
obtain information
about zones in brain
regions.

Derived through the data
type tables.

New relationship between
method information and the
analysis node.

To easily obtain the
method information
from an analysis.

Derived through the
experiment and specimen
table.

Replaced the sectioning
detail table with a
relationship with properties
between the analysis and
sectioning details nodes.

To simplify the
graph model.

Tables joining two other
tables can be replaced with a
relationship in a graph
model.

Replaced the reporter
incubation table, with a
relationship between analysis
and reporter nodes.

To simplify the
graph model.

Tables joining two other
tables can be replaced with a
relationship.

Three new node labels:
IntroductionType,
IntroductionTime, and
TreatmentPurpose that
originally were properties on
the specimen table.

To connect analyses
directly with
method information.

Having these methods in
new nodes makes it easy to
retrieve data based on the
types and possible for graph
analytics to evaluate the
specific nodes.

Table 4.1: The main design decisions when converting the relational database
to the graph data model.
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Figure 4.3: Solution design of data migration from the relational database to
the Neo4j graph database.

4.2.2 Data onboarding

After designing the graph model, the next step was to specify the data-
onboarding from the relational database to a graph database. As this is a
research project, we desired the work performed in this thesis to be replicable,
which affected the data migration design. Further, we wished to migrate the
data on multiple occasions during the design of the graph model. Figure 4.3
presents the design of the data migration that answers these concerns. The
following paragraphs present the decisions behind the tool selections and
methods used in the presented design.

The first step for moving the data into the new structure was to choose a
GDBMS. Section 3.3 presented a set of requirements for the selected system.
The principal requirement of a GDBMS is that it fulfills the data and usage
requirements. We chose Neo4j as it implements native graph storage, provides
integration with many programming languages, has fast create-retrieve-update-
delete procedures, is popular and well documented, and can apply graph
algorithms on the data.

After choosing a graph database system, we needed to decide how to load

58



the data into the chosen graph database. Extract, Load, Transform (ELT)
tools help extract data from a source, transform it to fit the destination
database’s schema, and load it into the destination database [80]. Neo4j
provides such as tool, Neo4j ELT2, that automatically maps a relational
database to a graph database. However, our graph model did not directly
map from the relational model, and as previously stated, we desired that the
work performed in this thesis should be possible to replicate. As a result, we
decided to implement a data migration solution rather than directly mapping
the data to perform the migration on multiple occasions and promote reuse
by others.

To make the data migration reproducible and documented, we chose
to create a Jupyter Notebook project containing the relational database
as CSV-files that provides a Notebook to migrate the data into the graph
model format in a Neo4j database instance. The Jupyter Notebook3 is a
popular, free, open-source, interactive web tool. With this tool, researchers
can combine software code with additional information and descriptive text
in one document [81]. We decided to develop the data migration process
using a Jupyter Notebook as it provides a good overview of the code and
promotes code narration. We chose Python as the programming language in
this solution because it has broad support for scientific computing. There
is also a library for running Neo4j in Python, called neo4j4. This library
supports connecting to a Neo4j database so that developers can run Cypher
queries towards the data. Finally, we decided to make the data onboarding
solution publicly available on GitHub5, documented so that any researcher
interested could download the code and migrate the data into a Neo4j graph
database instance.

4.2.3 Data integration

The next component of the high-level solution design entails extending the
standard graph model with external sources. From the initiative analysis
presented in Section 3.4, we found three initiatives with overlapping data:
BAMS, NeuroMorpho.Org, and InterLex. Figure 4.4 presents how data
from these sources connect to the murine basal ganglia data. The following

2https://neo4j.com/developer/neo4j-etl
3https://jupyter.org
4https://github.com/neo4j/neo4j-python-driver
5https://github.com
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Figure 4.4: Integration of data from external sources.

paragraphs detail what the figure presents.
From BAMS, we found brain region connectivity information possible to

integrate with the murine basal ganglia data. We concluded that the retrieved
BAMS connectivity information should be stored in new nodes to clarify the
data’s origin. We decided to store the BAMS brain regions in nodes with a
designated node label and to present the connectivity information through
relationships between the BAMS region and basal ganglia data set’s regions.
To connect these regions, we also needed to perform a manual mapping
between them. Bjerke mapped the brain regions defined in BAMS with the
brain regions defined in the murine basal ganglia data set, and we stored the
mapping in the data migration solution. Further, we chose to extract new
relationships between the basal ganglia brain regions while maintaining a
direct reference to the original data source.

For the integration of cell descriptions from InterLex with the murine basal
ganglia data set, we also chose to store the descriptions in new nodes with
a designated label. The cell types, cell groups, and cell classes in the thesis
data set contain unique identifiers from different neuroanatomical ontologies.
InterLex has cell descriptions connected to multiple ontological identifiers.
Based on this, we decided to connect cell types, cell groups, and cell classes to
cell descriptions based on the cell type’s ontological identification attribute.

The final part of the data integration extended the data set with digital
cell reconstructions from NeuroMorpho.Org. NeuroMorpho.Org provides
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identifiers to the digital reconstructions, and some of the cell morphology
nodes in the thesis data set have an attribute for such an identifier. As with
the other two initiative’s data, we decided to create a new node label to store
these constructions and connect the cell morphology nodes with the digital
reconstructions by matching the morphology identifiers.

4.2.4 Graph analytics

Following the high-level architecture of the thesis solution, the third component
to design was the graph analytics. There are many tools available to analyze
graph data. The chosen GDBMS, Neo4j, provides a graph data science (GDS)
library6 that can be added to the database system to analyze and modify
data entries. Many Python packages can also perform graph analytics. In
this thesis, we chose to use the Python package NetworkX7. Another useful
tool to analyze graph data is graph visualization. Both Neo4j and NetworkX
provide ways to visualize the data, but the visualization has size limitations.
Thereby this thesis research utilized Gephi, an open-source software program
for exploring and manipulating networks through visualization [82]. Figure 4.5
presents the solution design of graph data analysis in this thesis. The following
paragraphs describe each of the mentioned tools and present their relevance
in this thesis.

Neo4j Graph Data Science Library6: The Neo4j graph data science
library provides a wide range of algorithms to run on projected graphs. A
graph projection is a subset of the graph and can be created in Neo4j by
either specifying node labels and relationship labels or Cypher queries. The
general process of running graph algorithms with this tool is to load the
desired graph projection, run the algorithms on the projection, and finally
output the result and optionally write the values back to the database. As
the murine basal ganglia database is in Neo4j, Neo4j’s graph data science
library is a natural choice of tool to run algorithms on the data set.

NetworkX7: NetworkX is a Python package where one can create,
manipulate, and study networks. It provides a wide range of algorithms
and supports many graph file formats. Multiple Python packages provide
implementations of graph algorithms. However, the Python package manager,
PyPi8, provides an API that can tell how many times Python projects have

6https://neo4j.com/docs/graph-data-science/1.3
7https://networkx.org
8https://pypi.org
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Figure 4.5: Solution design of the graph data analysis.

downloaded a package over the past 365 days. Searching this list for the term
"network" returns the package NetworkX as the most popular. By being
popular, a large community uses the package, and we can quickly obtain
documentation and support. Therefore, we chose to use this package in the
research.

Gephi: Gephi is an open-source software program for exploring and
manipulating networks [82]. The program provides both advanced visual-
ization and the possibility to manipulate the data directly in the program.
In this thesis, the primary use of Gephi was to provide visualizations of the
findings provided by the other tools. As presented above, it is possible to
visualize data in both NetworkX and Neo4j. However, Gephi is very powerful
in handling large amounts of data and provides multiple graph data layout
algorithms. We choose to use Gephi for data visualization based on the ease
of use, community support, and powerful visualization.

4.2.5 Web-based data access

The final part of the solution design was to specify the web-based data
access that intends to improve the data set usability. The developed software
includes an API and web application to improve researchers’ access to the data
programmatically and through a user interface. The next sections present
the technological decisions and user interface design.
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Figure 4.6: Application architecture for web-based access.

Technological design

When choosing web technologies, one should consider the requirements of the
developed system and the purpose of the application. There are many API
standards and website frameworks to choose from in modern web development,
each with their advantages and disadvantages. In this thesis, the web and API
application was built based on the GRANDStack9 architecture, which consists
of GraphQL, React, Apollo, and Neo4j. We desired to develop a product
that other researchers can understand while using the least possible effort to
integrate the different components. Therefore, we chose to use the architecture
of GRANDStack as it provides libraries that simplify system integration.
Further, each GRANDStack component is matured and has development and
community support. Figure 4.6 presents the solution architecture of the API
and web application.

GraphQL10 is a schema-based API query language that fits well with highly
interconnected data where the user of the API often needs data of multiple
types simultaneously [83]. As the structure allows flexible and customized
queries, it is also appropriate when the use cases differ between users or are
not clearly defined. We decided to build the API application with GraphQL
as it is well suited to represent the data in the murine basal ganglia database
for programmatic access, reflecting the structure of the database model well.

9https://grandstack.io
10https://graphql.org
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React11 is a popular JavaScript library developed by Facebook for building
user interfaces [83]. React is the most popular JavaScript library per August
2020, based on downloads from the JavaScript package manager npm12. As
React is widely popular and well-known, the library is an appropriate choice
when building the web application and user interface.

Apollo13 works as the connector between the client and GraphQL API
applications by offering plenty of libraries assisting effective implementation
in a development stack that utilizes GraphQL [83]. Thus, Apollo was the
natural choice for these applications.

User interface design

We decided that the web application user interface should be similar to the
graph and domain model and desired it to be usable by researchers. From
the user interface requirements, presented in Section 5.3.1, we observe that
the user stories collectively represent the graph model’s requirement that the
data should be accessible from three main entry points. Following this, we
decided that the application should consist of three top-level pages: one for
cell types, one for brain regions, and one for analyses. Figure 4.7 presents a
sketch of the user’s high-level user interface we designed.

In addition to the pages presented in the figure, we designed a page for
each distinct cell type, brain region, and analysis. We chose to represent the
data interconnectedness by linking the endpoints. A user can start at any
entry point and find data regarding all three areas. A cell type links to brain
regions and analyses, a brain region link to cell types and analyses, and a
specific analysis links to at least one brain region and cell type. With these
choices, the user interface followed the structure of the graph model. The
following paragraphs describe the final content and usage of each of these
entry points.

The analyses page: This page displays a table of the analyses reported
in the data set. On this page, the researcher can filter the results or search
for analyses through a search field. The filter includes the data type, which is
either a quantitation, distribution, or morphology. When a researcher selects
an analysis, it opens a page with information about the selected analysis
displayed in tabs. The information on the first tab differs for the three data

11https://reactjs.org
12https://www.npmjs.com
13https://www.apollographql.com
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Figure 4.7: A sketch of the basal ganglia web application user interface.

types. For quantitations, it presents the quantification or counting information.
For example, how many investigated cell types the researcher observed in the
investigated region or regions. For a distribution, the tab presents how the
object of interest distributes. Finally, for morphologies, the tab presents an
illustration of the cell morphology, collected from NeuroMorpho.org, together
with detailed information about the investigated cell morphology.

The remaining tabs on the analysis page are alike for all three data types.
There is a tab with animal information that presents specimen information,
including weight, age, species, and strain. The next tab displays data acqui-
sition, presenting the research methods used to extract the analysis result,
including information about the microscope used, the antibody used, and
sectioning details. The anatomical metadata tab contains information about
the investigated brain region and region zone and metadata about what the
researchers have included in the original publication. Next, the source tab
includes a reference to the original publication, including publication year and
journal. Finally, there is a tab with similar analyses. The analyses presented
in this tab are results from the graph data analysis.

The cell type page: On this page, the user can search for cells, or
select them by their cell class or cell group, presented in a tree structure.
When the researcher selects a cell type, a pane opens up and presents the
cell type with a definition from InterLex, if one exists. In this pane, there
are two tabs, one for brain regions and one for analyses. The brain region
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pane presents all the regions where experiments have recorded the cell type.
Selecting a region directs the researcher to the information page of that region.
In the analyses tab, the researcher can see all analyses that investigate the
selected cell type. Selecting an analysis from the list navigates the user to
the information page of that analysis.

The brain regions page: This page presents all regions related to
the basal ganglia for mice and rats in two tree structures. The researcher
can search for a region and filter on species. Selecting a region opens up a
side pane like with the cell types. There are two tabs for the mouse brain
regions and three for the rat brain regions in this pane. The third tab presents
connectivity information derived from BAMS. In this tab, the user can see the
regions connected to the selected region and filter on direction and strength.
Selecting a connection displays the original connectivity information from
BAMS with citations and links to where we have collected the connection.
The two other tabs are cell types and analyses. The analyses tab displays
a list of the analyses that have investigated the selected brain region. The
cell type tab presents all the cell types that experiments have recorded in the
selected region.

4.3 Implementation

Implementation is the process of putting the decisions made in the previous
section into effect. For some artifacts, the previous section presented some
technological choices as they were necessary for the design. This section
complements the previous by presenting how we implemented each of the
presented components, including technological decisions and component in-
tegration. Most of the implementation details presented in this section are
available through Notebooks in a common Jupyter Notebook project [84].

4.3.1 Data migration

We created a Notebook at the root of the common Jupyter Notebook project
for migrating the data from CSV-files into a Neo4j database instance [84].
The following list presents the main steps of the Notebook, and the next
paragraphs describe each of these steps with an example.

1. Connect to the Neo4j instance through a driver.
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2. Delete all nodes and constraints if any exist.

3. Create all the nodes from the CSV files.

4. Create all the relationships from the CSV files.

5. Create relationships based on the existing relationships.

The first step generates the connection to the Neo4j database instance.
Listing 4.1 presents the connection set-up. In this example, the variable
boltUrl refers to the Bolt URL of the Neo4j database instance, and the
variables user and pwd represent the database login username and password.
The variable driver is the driver object used to create sessions towards the
database instance for running queries on the database.

1 from neo4j import GraphDatabase, basic_auth
2
3 driver = GraphDatabase.driver(boltUrl,auth=basic_auth(user, pwd))

Listing 4.1: Python code to create a Neo4j Python Driver.

The second step in the Notebook deletes the existing nodes, indices, and
constraints on the database. We decided to have this step to simplify database
regeneration by making it possible to run the migration on instances with
existing data. Listing 4.2 presents the Cypher query to remove all the nodes
in the database.

1 MATCH (n) DETACH DELETE n

Listing 4.2: Cypher query to remove all the nodes in the database.

The third step entails converting the data from the relational database
presented in CSV-files into the graph structure. Listing 4.3 presents an
example of the code to insert the data from a table into the database using
Python. Specifically, it displays moving the data of the regions.csv file into
BrainRegion nodes. In this example, the first line calls a method that returns
the full path to the CSV-file passed as an argument. The next line declares a
variable with the Cypher query. This query loads the CSV-file and makes the
data available in the row object. The query then has a CREATE-statement, first
declaring the node label, and in the square brackets, placing the properties of
the node. The row object contains the value of the properties. In the seventh
line, the code connects to the Neo4j database through the driver object. Line
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8 and 9 create an index on the brain regions’ name for faster retrievals and a
constraint stating that the brain region node’s name must be unique. Finally,
the code runs the query on the database. We moved all the data from the
original tables into the graph database as nodes with multiple similar code
blocks.

1 csv_file_path = get_csv_file_path("regions/regions.csv")
2 query="""
3 LOAD CSV WITH HEADERS FROM "%s" AS row
4 CREATE (:BrainRegion {id: row.ID, name: row.Region_name, abbreviation: row.

Abbreviation, comments: row.Comments})
5 """ % csv_file_path
6
7 with driver.session() as session:
8 session.run("CREATE CONSTRAINT ON (n:BrainRegion) ASSERT n.id IS UNIQUE")
9 session.run("CREATE INDEX ON :BrainRegion(name)")

10 session.run(query)

Listing 4.3: Python code to run a query to insert a table from a CSV file into
nodes in the Neo4j graph database.

With all the nodes created, the fourth step was to create the relationships.
For some of the relations described in the graph model, we needed to create
joined tables from the existing database. We did this mainly to the nodes
related to the specimen, experiment, or analysis nodes that should connect
to another of these nodes. These relationships were extracted by converting
the Access 2016 database into an MSSQL database and running join queries.
We converted the resulting table to a CSV-file for the graph database query.

Listing 4.4 exemplifies the code for relationship creation from CSV-files.
It presents the code to create relationships between BrainRegion nodes and
Nomenclature nodes. In this example, the Cypher query again loads data
from a CSV-file and uses it to match the desired nodes. The fifth code line
connects the matched node with the relationship NAMED_BY. Finally, the code
executes the query on the graph database.

1 query="""
2 LOAD CSV WITH HEADERS FROM "%s" AS row
3 MATCH (brainRegion:BrainRegion { id: row.ID})
4 MATCH (nomenclature:Nomenclature { id: row.Nomenclature })
5 MERGE (brainRegion)-[:NAMED_BY]->(nomenclature)
6 """ % csv_file_path
7 with driver.session() as session:
8 session.run(query)

Listing 4.4: Python code to run a query to create relationships between
nodes from a CSV-file.
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Once the initial relationships and nodes were in place, the final step was
to produce relationships derived through the graph. Listing 4.5 presents
such a query. This example creates a relationship from the brain regions
to cell types informing which cell types researchers have observed in that
region. The symmetric relationship would be the brain regions researchers
have observed for a specific cell type. However, there is no need to add
symmetric relationships, as graph traversal in Neo4j is equally fast in either
direction. An analysis is only linked to one cell type, while it can examine
multiple regions. An analysis node has a primary and secondary region, and
we cannot be sure that analysis researchers observed the cell type in the
secondary region. In the example query, we derive the relationship for cell
type and brain region using only the PRIMARY_REGION relationship between
the BrainRegion and RegionRecord nodes. The last line in the query will
then match all regions and cell types connected through the presented path
and connect them directly.

1 query = """
2 MATCH (region:BrainRegion)<-[:PRIMARY_REGION]-(r:RegionRecord)<-[:REGION_RECORD]-()

<-[:DATA_TYPE]-(:Analysis)-[:CELL_TYPE_PUTATIVE]->(cell:CellType)
3 MERGE (region)-[:CELLS_IN_REGION]->(cell)
4 """
5 with driver.session() as session:
6 session.run(query)

Listing 4.5: Python code to run a query to create relationships derived from
existing nodes and relations.

The Jupyter Notebook project with the code to migrate the data and
necessary database CSV-files is available in a GitHub repository under the
account of the author of this thesis [84]. With this code, anyone interested
can clone the repository, connect to a Neo4j database instance, and insert
the basal ganglia data.

4.3.2 Extending the data set

The implementation of data integration followed the same structure as the
data migration presented in the previous section. As we needed to regenerate
the database on multiple occasions, we chose to store the external data in the
common Jupyter Notebook project instead of directly integrating the data.
Consequently, the Jupyter Notebook project also contains the data necessary
to extend the database with data from the brain-related initiatives BAMS,
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InterLex, and NeuroMorpho.org. The following list presents the general steps
used to integrate data from these sources into the murine basal ganglia data
set. For each of the integrated data sources, the following paragraphs present
the specific details of each step.

1. Retrieve the data from the external source.

2. Convert the data to CSV format.

3. Store the data in the Jupyter Notebook project.

4. Migrate the data to the Neo4j database instance.

As presented in Section 4.2.3, we integrated brain region connectivity
information from BAMS. The first step, retrieving the BAMS data, was
set up by calling the BAMS website, with the specified input and output
regions defined in the URL. We stored the output of these calls in temporary
HTML-files. In the second step, we converted the HTML data into CSV-
files. This method used the Python library BeautifulSoup14 to retrieve the
table-element in the HTML-file and read out the table data. When looping
through the table rows, the method stores the data in a 2D list and converts
it to a CSV-file. In the third step, we stored the CSV-file with connectivity
information from all the basal ganglia-related BAMS regions in the Jupyter
Notebook project. Listing 4.6 presents the final integration step, where we
inserted the BAMS brain regions, connectivity information, and mapping
information into the database, based on the generated CSV-files.

1 bams_regions_csv = get_csv_file_path("regions/bams2_regions.csv")
2 # Query to create the BAMS brain region nodes
3 bams_region_query= """
4 LOAD CSV WITH HEADERS FROM "%s" AS row
5 CREATE (:BamsRegion {id: row.id, name: row.name, description: row.desciption})
6 """ % bams_regions_csv
7
8 connectivity_csv = get_csv_file_path("regions/region_connectivity.csv")
9 # Create relationship CONNECTS_TO between BamsRegion and BamsRegion

10 bams_rel_query= """ LOAD CSV WITH HEADERS FROM "%s" AS row
11 MATCH (a:BamsRegion { id: row.bams_id_from})
12 MATCH (c:BamsRegion { id: row.bams_id_to})
13 MERGE (a)-[:CONNECTS_TO]->(c)
14 """ % connectivity_csv
15 # Add properties to the relationship
16 bams_rel_prop_query="""

14https://pypi.org/project/beautifulsoup4
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17 LOAD CSV WITH HEADERS FROM "%s" AS row
18 MATCH (a:BamsRegion {id: row.bams_id_from})-[r:CONNECTS_TO]->(b:BamsRegion { id:

row.bams_id_to})
19 SET r.strength = row.strength
20 SET r.technique = row.technique
21 SET r.description = row.description
22 SET r.reference = row.reference
23 """ % connectivity_csv
24
25 mapping_csv = get_csv_file_path("regions/bams2_mapping_regions.csv")
26 # Query that maps the BAMS brain regions to the brain regions in the data set
27 mapping_query = """
28 LOAD CSV WITH HEADERS FROM "%s" AS row
29 MATCH (a:BamsRegion { id: row.bams_id})
30 MATCH (c:BrainRegion { id: row.bg_id})
31 MERGE (a)-[:RELATES_TO]->(c)
32 """ % mapping_csv
33
34 with driver.session() as session:
35 session.run(bams_region_query)
36 session.run(bams_rel_query)
37 session.run(bams_rel_prop_query)
38 session.run(mapping_query)

Listing 4.6: Python code to integrate the BAMS brain region connectivity
data.

The second data integration extended the murine basal ganglia data set
with cell descriptions from InterLex, connected to the cell type nodes through
ontological identifiers. For the first step, to load the data from InterLex, we
wrote a program that calls the SciCruch API and retrieves the description for
each cell type with an ontological identifier. Listing 4.7 presents an excerpt
from the program. In this program, we used the Python library urllib15 to
call the SciCrunch API. We performed the second and third step by storing
the cell descriptions with their identifier in a CSV-file that the program saved
to the project. We performed the final step, adding the information to the
graph database, in a similar manner as for the BAMS data, by loading the
CSV-file and adding all the cell descriptions to the database before matching
cell type nodes with description nodes by the identifier and connecting them
with a relationship.

1 import urllib, json
2 def getDescription(identifier):
3 url = "https://scicrunch.org/api/1/ilx/search/curie/%s" % identifier
4 req = urllib.request.Request(url, headers=headers)
5 response = urllib.request.urlopen(req)
6 data = json.loads(response.read())

15https://docs.python.org/3/library/urllib.html
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7 resData = data["data"]
8
9 definition = resData["definition"]

10 return definition

Listing 4.7: An extraction of the program that retrieves cell descriptions
from InterLex.

The steps to integrate the morphologies from NeuroMorpho were relatively
similar to the InterLex data integration. The main difference is that the
NeuroMorpho data are images instead of text. We stored the image data as
base64 data. Listing 4.8 presents the properties of the integrated morphology
nodes. We included all of these properties to cite the morphology in the graph
and web application properly.

1 LOAD CSV WITH HEADERS FROM "<path to csv file>" AS row
2 CREATE (:Neuromorpho { id: row.neuromorphoId, href: row.href, base64: row.base64, archive:

row.archive, dois: row.original_paper_doi })

Listing 4.8: Cypher query to migrate the morphology data from
NeuroMorpho to the graph database.

4.3.3 Overview of graph algorithms set-up

As with the other implemented artifacts, the code that runs the graph
algorithms is available in a Notebook in the common Jupyter Notebook project,
aiming to make the research reproducible and verifiable [84]. Section 4.2.4
presented the solution design of the graph analysis effort, including the
analysis tools, specifying that we used Neo4j’s GDS Library, the Python
package NetworkX and the visualization tool Gephi to analyze the data. This
section presents how we technically performed data analysis with the three
selected tools.

When using the Neo4j GDS Library to run graph algorithms, it is necessary
to create graph projections. Listing 4.9 presents how one can create such a
projection. In this example, the projection contains the entire graph. We
primarily used this projection containing all the nodes. It is possible to write
the algorithm results back to the graph by setting the configuration parameter
writeProperty.
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1 CALL gds.graph.create("whole-graph", "*", "*")

Listing 4.9: Procedure call to create a projection of all nodes and
relationships.

To integrate the NetworkX data analysis with the Neo4j graph database, we
exported the graph database as a GraphML-file, a standard graph format, that
NetworkX can import as a graph object. For the NetworkX data analysis, we
had to remove some relationships, as the algorithm we used in NetworkX did
not support multigraphs. We only included the PRIMARY_REGION relationship
between the brain region and region record nodes, and the experiment’s
chemical perfusion fix medium solution and specimen’s chemical treatment
solution. We deleted the excluded relationships from the graph, returning a
pure directed graph model in the graph database.

Listing 4.10 presents the procedure call statement to load the Neo4j
database into a GraphML-file. In this call, we have specified the format
and useTypes. The format property "gephi" makes the label type export
properly, and useTypes set to True provides types that NetworkX desire. To
get the results back into the database, we can either store the algorithm’s
results and insert it for specific nodes or write the result back to the NetworkX
graph object and export it to a GraphML-file and load the exported file into
the Neo4j database.

1 CALL apoc.export.graphml.all("graphml_digraph.graphml", {format: "gephi", useTypes: True})

Listing 4.10: Procedure call to load the Neo4j database into a GraphML file
format.

When the graph algorithms returned results of interest, we loaded the
relevant data into Gephi to visualize the result. Gephi presents the results
visually by using one of the program’s many layout algorithms. Neo4j provides
a library, APOC16, that allows the user to stream data directly from the
database into Gephi. To allow data to come into Gephi, we configured the
server mode to be "Streaming." Listing 4.11 presents the Cypher statement
we used to load data from Neo4j to Gephi. The <gephi-workspace> is the
name of the Gephi workspace, and the <nodes-and-relationship-query>
represents the Cypher query that matches the nodes and relationships that
streams to Gephi.

16https://neo4j.com/developer/neo4j-apoc
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1 MATCH path = <nodes-and-relationship-query> as paths
2 CALL apoc.gephi.add(null,"<gephi-workspace>", paths) YIELD nodes, relationships, time
3 RETURN nodes, relationships, time

Listing 4.11: Cypher statement to load data from Neo4j to Gephi.

4.3.4 Web-based access implementation

The final artifacts we implemented were applications that provide web-based
data access. When implementing applications to have high usability, it is vital
to consider the application’s users. Multiple software development processes
take the user into account. In recent years, many development projects use
the Lean Methodology as it has a high user-focus. The Lean Methodology
is iterative, meaning that the development happens in cycles consisting of
development, deployment, and feedback [85]. As the solutions in this thesis
did not have any current users, Bjerke was the user that came with feedback
in each development iteration. In the final phases of the development, we
considered the feedback from the usability tests. In developing the API and
web applications, we followed lean development principles, using feedback
and metrics from users to prioritize features while continuously integrating
and deploying versions of the applications.

As the GRANDStack architecture inspires the application architecture,
we initialized the applications using the GRANDStack starter project on
GitHub17. We extracted the GraphQL API application and the React web
application from the starter project and moved these to a separate repository
on GitHub [86, 87]. When we had developed a prototype of the web and API
applications, we needed them to be available online to receive feedback from
users. To host the applications, we used the Heroku platform18. Heroku is a
cloud platform that allows users to deploy and host apps and is suitable for
prototypes [83]. As the Neo4j Desktop version is not reachable by the hosted
API, and as Neo4j does not offer any other free database servers, we set up
a Neo4j Sandbox for demonstration purposes and ran the Python code that
loads the data from the CSV files into the database. With this, the API and
web applications were available for users1920.

17https://github.com/grand-stack/grand-stack-starter
18https://www.heroku.com
19https://basal-ganglia.herokuapp.com
20https://basal-ganglia-graphql.herokuapp.com/graphql
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Figure 4.8: The basal ganglia web application top-level user interface.

The key feature of a GraphQL API is its schema. The schema works as
a contract between the API and the client and defines what data can be
retrieved (queried) and changed (mutated) and the data types. In developing
the schema, we followed the Neo4j guide on how to expose a Neo4j database
through a GraphQL API. In addition to the schema file, there is an index.js
file. This file is responsible for serving the application and connecting it
to the Neo4j database. In short, the code in the index.js file creates an
executable GraphQL schema object from the schema file, a Neo4j driver
instance to connect to the database, and a new ApolloServer instance, serving
the GraphQL schema, and finally, runs the app on a specified path and
port. The repository also includes a README-file that describes the primary
application usage, including how to run the application locally. The code for
the API application is available on GitHub [87].

Figure 4.8 presents the resulting top-level entry points of the web appli-
cation, and Appendix B presents the complete sitemap of the website. We
implemented the web application as a standard React application using the
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programming language TypeScript. The application uses React’s Context
API to maintain state across the application and the Apollo client package to
get data from the GraphQL API. The application consists of three primary
entry points, as defined in Section 4.2.5. As with the API, the source code of
the web application is available on GitHub [86].

4.3.5 Summary of artifacts and used technologies

We summarize here the implemented artifacts and the used technologies
of this thesis. Table 4.2 summarizes the produced software artifacts, and
Table 4.3 presents the technologies used to develop these artifacts.

The first artifact that we provided is a Jupyter Notebook project that
generates the data set, including the data from external sources. This project
is available in a GitHub repository licensed under the Creative Commons
Attribution 4.0 International license21 [84]. With these Notebooks, anyone can
generate the murine basal ganglia data set in a Neo4j graph database instance.
Although not required, we recommend that other researchers use this data
set and solution under the same license. Additionally, this solution contains
Notebooks to perform data analysis, as described in the evaluation chapter,
Section 5.2. The README.md file at the root of the GitHub repository
provides documentation of the scripts in the solution.

The two other artifacts produced through the work of this thesis are the
web application and the GraphQL API application that provide web-based
access to the data set. The web application provides a graphical user interface
to the data and can be accessed online. The source code is available through
a public GitHub repository [86]. The GraphQL API application, providing
programmatic access to the data, is also available online, and the source
code is available on GitHub [87]. We have licensed both code repositories
under the Apache License 2.0 license22. Anyone can download the code,
run, and distribute the API and web solutions or provide implementation
suggestions directly in these repositories. For each code repository, there is a
README.md file documenting the solution set-up.

21https://creativecommons.org/licenses/by/4.0
22https://www.apache.org/licenses/LICENSE-2.0
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Artifact Description Purpose

Jupyter
Notebook
project

(1) A Notebook for
onboarding the murine basal
ganglia data set into a Neo4j
database instance.
(2) Notebooks for data
integration and data analysis.

(1) Provide a way for other
researchers to obtain the
murine basal ganglia graph
database.
(2) Provides reuse of the
research methods for data
integration and graph
algorithm data analysis.

GraphQL
API

Integrates with the murine
basal ganglia graph database,
using the graph data query
language GraphQL and
optimization from Apollo.

Provides programmatic
access to the murine basal
ganglia graph database.

Web
application

Developed with the React user
interface and integrates with
the GraphQL API.

Provides a user interface for
the murine basal ganglia
data where researchers can
interact with the data .

Table 4.2: Summary of implemented software artifacts.
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Technology Type Purpose

Python Language
The thesis programming language for
data onboarding, data integration, and
graph data analysis.

TypeScript Language The programming language for the
developed web and API applications.

Jupyter
Notebook Application

To create a document for the data
onboarding to the Neo4j database
instance and to create data integration
and graph data analysis documents.

Neo4j GDS
library Library To run graph algorithms on the Neo4j

database.

Neo4j APOC
library Library

To stream sub-graphs from Neo4j to
Gephi and to export the Neo4j graph
in the GraphML file format.

NetworkX Python package
The run graph algorithms on the graph
data, using an exported GraphML file
of the data.

Gephi Application Visualize the graph data.

GraphQL API query
language The developed API query language.

React Library Utilized for building the web
application user interface.

Apollo Data Graph
Platform

Used to optimize the GraphQL API
workflow.

Heroku Cloud platform Hosts the API and web application.

Table 4.3: Summary of the chosen technologies.
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Chapter 5

Evaluation
This chapter presents an evaluation of the artifacts developed in this thesis
based on the requirements from Chapter 3 and further research performed
with the artifacts. Section 5.1 presents the evaluation of the graph model
and graph database. Next, Section 5.2 describes the results of the graph
analysis on the graph model data and the evaluation of the resulting findings.
Finally, Section 5.3 presents the user interface evaluation with a review of
the functional requirements in Section 5.3.1 and the usability study’s set-up
and results in Section 5.3.2.

5.1 Evaluation of the graph model and database

In Section 3.3, we defined a set of requirements for the graph model and a
set of suggestions for the selected GDBMS. Table 5.1 displays the overall
evaluation of the graph model requirements.

The first requirement is a general requirement and difficult to measure
directly. However, we marked it as fulfilled because the domain model includes
the use of the data set and the user requirements, and by grouping the nodes
based on user needs, we have represented the domain model. The usability
study presented in Section 5.3.2 further evaluates how the graph model
satisfies the user requirements, and indirectly the domain model.

Figure 5.1 presents the original database structure as a conceptual graph,
as presented in Section 3.2, and the updated graph model, as presented in
Section 4.2.1. In this figure, node labels are omitted for clarity. Evaluating
the second research question, we observe that most of the nodes within a
category connect. The exception is the green nodes that contain sources of
information. As the separation is between nomenclatures and experiment
sources, we decided it was acceptable to divide these.

For the third requirement, we increased the connections to the three
primary access nodes: cell types, brain regions, and analyses. The figure
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# Requirement Status

1
The graph model must follow the domain model
so a researcher can easily find and compare
experiment data.

X

2 The model should connect nodes within the same
category together. X

3
Data should be easily reachable from three
primary access nodes: cell types, brain regions,
and analyses.

X

Table 5.1: Evaluation of the graph model requirements.

denotes these nodes with text and outlines. Compared to the original database
structure, the graph model presents higher connectivity for these nodes. We
observe that the node label with the potentially highest node degree is the
Analysis node. Further, the cell type and brain region node are node labels
with high node degrees. Having a high node-node degree means these nodes
connect to many others in the graph directly, and by this are good starting
points for accessing data.

We are not evaluating the GDBMS in detail, as that is beyond the scope
of this thesis, but we note that the selected system, Neo4j, satisfies the
suggestions defined in Section 3.3. Instead, we provide some information
about the generated data: The database generated for the research of this
thesis consisted of 9539 distinct nodes with 46 distinct node labels, 29807
distinct relationships, and 66 distinct relationship types. Further, we extended
the data set with 142 nodes with three labels from integration with external
sources. Eighty of these nodes were brain regions from BAMS. The integration
added 351 new distinct relationships, where 335 of these represent brain region
connectivity.

5.2 Data analysis results

To answer research question RQ2, we aimed to observe whether graph analytics
can derive new information from the data, and by that, observe if a graph
model can provide a better understanding of the data. We have separated the
data analysis into exploratory data analysis and confirmatory data analysis.
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Figure 5.1: Comparison of (a) the original database structure as a conceptual
graph and (b) the graph model.

The first was done to obtain general information about the data and the
latter to answer specific questions. The Jupyter Notebook project contains
the complete algorithm set-up for the graph data analysis [84]. This section
presents technical experiment set-up in Section 5.2.1, the results of the
exploratory data analysis in Section 5.2.2, and the confirmatory data analysis
results in Section 5.2.3.

5.2.1 Exploratory data analysis set-up

As previously presented, exploratory data analysis looks for general infor-
mation about the data. We used a combination of clustering algorithms
and graph visualization to investigate the general data structure. First, we
visualized the entire graph to see if we could observe any clustering. To
visualize the entire graph, we loaded all the nodes and relationships into the
visualization tool Gephi with the query presented in Listing 5.1. Figure 5.2
presents this visualization which uses the ForcedAtlas2 graph layout algorithm
[88]. From the entire graph visualization, we observed that the data naturally
groups into two almost separate clusters. There is a large cluster on the right
side and a smaller cluster on the left side, with some nodes combining them.
Investigating the smaller cluster, we identify that it solely consists of data
concerning considered papers and their exclusion reason. It is only source
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Figure 5.2: The murine basal ganglia data set visualized using the
ForcedAtlas2 layout algorithm in Gephi.

nodes that combine the two clusters. Knowing this, we could investigate these
clusters separately.

1 MATCH path = (n)-[r]-(m) as paths
2 CALL apoc.gephi.add(null,"whole-graph", paths) YIELD nodes, relationships, time
3 RETURN nodes, relationships, time

Listing 5.1: Procedure call to load the entire murine basal ganglia graph into
Gephi.

Looking at the excluded papers, we only have three types of nodes: the
papers, their exclusion reason, and their source. Each paper connects to
precisely one exclusion reason and one source. For this reason, the only
relevant feature to investigate is the influence of the source and exclusion
reasons. After discussing these observations with Bjerke, we decided to
exclude these nodes from the analysis. Figure 5.3 visualizes the largest node
cluster. The nodes presented here are the basis for the remainder of the graph
algorithm experiments.

This thesis utilized community detection algorithms to investigate the
graph data structure, specifically the Label propagation algorithm (LPA) and
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Figure 5.3: The murine basal ganglia data set with the excluded paper data
removed, visualized using the ForcedAtlas2 layout algorithm in Gephi.

Louvain algorithm. We choose these algorithms as the LPA performs commu-
nity detection based on the structure, while the Louvain algorithm applies
heuristics based on the nodes’ modularity. By applying both algorithms, the
results displayed two approaches to community detection. We applied these
algorithms directly on the graph database, using the Neo4j GDS library. The
nature of community detection algorithms makes it necessary to write the
result back to the graph, and the GDS library facilitates this. As we were
interested in understanding the structure better, it was relevant to include
the entire graph. Listings 5.2 and 5.3 present the procedure calls to run the
algorithms on the whole-graph projection. As the LPA is iterative, we had
to define the number of iterations. For the murine basal ganglia graph, the
algorithm converged after four iterations. To observe the community detection
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algorithms’ results, we investigated the labels and names and visualized the
largest communities.

1 CALL gds.labelPropagation.write( "whole-graph",
2 { maxIterations: 5, writeProperty: "community" }
3 )

Listing 5.2: Procedure call to run the LPA in the projection of all nodes.

1 CALL gds.louvain.write("whole-graph",
2 { writeProperty: "louvain" }
3 )

Listing 5.3: Procedure call to run the Louvain algorithm in the projection of
all nodes.

A suitable method for finding influential nodes in a graph is to run cen-
trality algorithms. There are multiple centrality algorithms. In this thesis,
we applied the PageRank algorithm and betweenness centrality algorithm
in Neo4j, and the closeness centrality, the betweenness centrality, and the
HITS algorithm from NetworkX. We chose these algorithms as they imple-
ment differing measures for centrality, including direct and indirect influence.
Listings 5.4 and 5.5 presents the algorithm set-up for the Neo4j procedure
calls and Listing 5.6 presents the NetworkX code. We ran the algorithms on
the whole graph as we were not looking for specific results. The centrality
algorithms use information about other nodes, so we did not want to exclude
nodes that could affect this.

1 CALL gds.pageRank.stream("whole-graph")
2 YIELD nodeId, score
3 RETURN gds.util.asNode(nodeId).name AS name, labels(gds.util.asNode(nodeId)) as label,

score
4 ORDER BY score DESC

Listing 5.4: Procedure call to run the PageRank algorithm in Neo4j on the
whole-graph projection.

1 CALL gds.betweenness.stream("whole-graph")
2 YIELD nodeId, score
3 RETURN gds.util.asNode(nodeId).name AS name, labels(gds.util.asNode(nodeId)) as label,

score
4 ORDER BY score DESC

Listing 5.5: Procedure call to run the betweenness Centrality algorithm in
Neo4j on the whole-graph projection.
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1 G = nx.read_graphml("graphml_digraph.graphml")
2 betweenness_centrality = nx.betweenness_centrality(G)
3 hits = nx.hits(G)
4 closeness_centrality = nx.closeness_centrality(G)

Listing 5.6: Python code that uses NetworkX to run the betweenness and
eigenvector centrality algorithms.

The final experiment for retrieving new information about the data was
to investigate similar nodes. This thesis used the Node Similarity algorithm,
described in Section 2.1.4, provided through the Neo4j GDS library to analyze
similarities. We chose to use the Neo4j Node Similarity algorithm mainly due
to its efficiency for comparing all of the graph’s nodes. In the Neo4j algorithm
implementation, one can define parameters that reduce the runtime. In
comparison, the similarity algorithms provided by NetworkX do not support
a search of the entire graph, only between a pair of nodes. This causes
a worse runtime for the NetworkX similarity algorithms than the Neo4j
implementation when evaluating the entire graph.

Listing 5.7 presents the procedure call to run the Node Similarity algorithm
in Neo4j on the entire graph. Some configuration properties need to be set
before running the algorithm. The degree cutoff defines the minimum degree a
node can have in order to be considered by the algorithm. This cutoff was set
to three, stating that nodes need at least three relationships for consideration.
The similarity cutoff defines the minimum similarity requirement. This
research sets the similarity cutoff to 0.5, which means that the nodes must
have at least 50 percent of the compared nodes in common. It is possible
to add a configuration, topN, that defines the number of nodes that the
algorithm search returns. However, as we were interested in all the results,
we did not specify it. The topK configuration specifies how many similarity
matches each node can have. As the algorithm returned all the similarities,
we configured each node to return a maximum of two similar nodes. We
investigated the top similarities for each of the central node labels to collect
results.

1 CALL gds.nodeSimilarity.stream( "whole-graph", {degreeCutoff: 3, similarityCutoff: 0.5,
topK: 3})

Listing 5.7: Procedure call to run the node similarity algorithm in Neo4j on
the "whole-graph" projection.
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Figure 5.4: Two communities centered around the species Rattus norvegicus
(left) and Mus musculus (right).

5.2.2 Evaluation of exploratory data analysis results

This section presents the results of the exploratory data analysis. The
results include Bjerke’s evaluation of the findings. Table 5.2 summarizes
all the findings, including the algorithms used to obtain them and Bjerke’s
evaluation of the findings.

What can we say about the data structure?

The Neo4j GDS community detection algorithms outputted an overview of
the communities in the data set, marked with a community identifier and the
number of nodes in each community. Although the nodes and sizes of the
clusters were different, both algorithms presented many of the same findings.
The largest cluster, found by the LPA, revolved around the cell phenotype
category Expressing. The second and third clusters gathered around the
species Rattus norvegicus and Mus musculus, as visualized in Figure 5.4.
The Louvain algorithm also found clusters around the cell phenotype Ex-
pressing and the species Rattus norvegicus and Mus musculus. However,
these communities were more balanced in size compared to the LPA. The
remaining communities clustered around influential cell types, brain regions,
and methods. The paragraph presenting the influential nodes describes these.
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Can we say something about data quality?

Running the graph algorithms, we found some results that might say something
about the data quality. The PageRank algorithm yielded that the second
most used anesthetic solution and fourth most used perfusion fix medium
solution was unspecified. Further, this algorithm yielded that the second most
used software was custom. Figure 5.5 presents a graph-visualization of the
chemical solution nodes connected with the analysis nodes.

When presenting these results to Bjerke, she stated that although she
added all the data and knows the quality of method reporting is low, she
found the results intriguing. First, she was not aware that the anesthetics are
worse than the reporting on perfusion fix mediums. Second, as researchers
should report the perfusion fix medium (it affects the antibody penetration
and tissue shrinkage), the fact that this is unspecified in many reports is not
beneficial. About the reporting of custom software, she stated that it could
imply that much research use self or company developed software, which
again makes the research results challenging to reuse.

Influential nodes

We found that the most influential journals were Neuroscience, Brain Re-
search, and Journal of Comparative Neurology, who contributed with 32, 20,
and 17 experiments, respectively. The most studied brain region was the
caudoputamen, both for rat and mouse. The study of the murine basal ganglia
database by Bjerke et al. also presented these results, making them already
known [19].

Further, we found that the rostral zone is the most studied part of the
brain regions. Bjerke expected this, as she observed that many articles
presented data about this part in the caudoputamen. The rostral region
might be preferred in the caudoputamen because it is easier to separate from
surrounding regions. However, it is an interesting result as it presents a bias
in the research indicating that neuroscience largely bases its knowledge of the
caudoputamen on one region zone.

In the evaluation of influential cell types, the algorithms found that the
most studied cell object was the neuron as a whole. With a small margin,
the most influential cell phenotype category was expressing. Further, the
results presented that the most investigated cell type was neurons, followed
by Tyrosine hydroxylase expressing (TH) cells. Figure 5.6 presents a graph-

87



Figure 5.5: Graph-visualization of the chemical solution nodes and analysis
nodes in the data set.

visualization of influential cell types.
Bjerke stated that these findings are evident as well, although some are

interesting. She is aware that most research investigates the more generic
cell type neurons and that cell classification based on what they express is
widespread. Bjerke expected the finding that much research defines neurons
as the object of interest because it is the easiest for scientists to observe.
However, she stated it was interesting as it tells us that neuroscience knows
much more about the whole cells than the sub-cellular entities.
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Figure 5.6: Graph-visualization of cell type nodes and analysis nodes from
the murine basal ganglia data set.

The TH cells are the first cells to be affected by Parkinson’s disease, and
much of the basal ganglia research investigate this disease [57]. Thus, Bjerke
states that it is expected that this data set contains much TH cell research
due to their relevance in Parkinson’s disease.

Of the experimental methods, we investigated the most influential visual-
ization method, microscope, sectioning instrument, and reporters. For these
categories, the algorithms found the bright-field microscope as the most used
microscope type and immunohistochemistry as the most used visualization
method. Further, it found Cryostat and Freezing microtome as the most
used sectioning instruments. Finally, it found tyrosine hydroxylase and Rabbit
antibody as the most used reporter targets and Goat anti rabbit_biotin as the
most used reporter.
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Evaluating these findings, Bjerke stated that the microscope and visual-
ization methods are common and thereby expected. Bjerke did not expect
the sectioning instruments finding but stated that these instruments are mun-
dane. Further, the Rabbit antibody is common in research, and the tyrosine
hydroxylase reporter target is influential in this data set due to the amount
of research on TH cells. According to Bjerke, the Goat anti rabbit_biotin
represents a group of reporters, suggesting something about the data quality;
it might be a unique antibody, but we cannot say based on the data reporting.

Finally, we investigated the influence of the nodes related to specimens.
From this investigation, we found that in the data set, Adult was the most
common age category, the most common strain of rat is Wistar, and the most
common strain of mouse is C57BL/6. To Bjerke, these results were already
known or highly expected.

We also found that male is in this data, by a large amount, the most
studied sex. Figure 5.7 presents the nodes representing sexes and analyses
and their relationships. From presenting this to Bjerke, we learned that it
is common knowledge that most research uses male specimens. A research
article evaluating the sex balance in cell and animal studies states that the
preference towards males often comes from concerns about varying results
due to the estrous cycle; however, this does not display any effect for most
applications [89]. Bjerke stated that although this is known for research in
general, it was interesting to observe visually and a significant finding as the
murine basal ganglia data set was collected unbiased.

Are there any similarities?

We observed that many analyses that investigate low expressing cells also
investigated high expressing cells. This similarity is natural as the study
probably investigates the specific cell type, and that analysis investigates the
different types. Further, for brain regions, we observed in the same manner
that the internal segment of the brain region was similar to the external
segment of the region. Bjerke stated that this finding is already known as the
internal and external segments are sub-regions of the same region, Globus
pallidus, and naturally studied in combination. The next section evaluating
the use cases presents a more detailed evaluation of similar analyses.
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Figure 5.7: Graph-visualization of analyses and the sex they study from the
murine basal ganglia data set.

Summary of findings

Table 5.2 summarizes the findings and evaluations from the exploratory graph
data analysis. In summary, the information extracted with graph data analysis
provided a good understanding of the structure and content of the data set.
One should consider Bjerke’s evaluation of the findings noting that she is
the one who has gathered all of the data. Although she knows the data
very well and evaluated many of the findings as expected or already known,
she concluded that the graph algorithms combined with graph visualization
yielded potent results that provide useful insights and data representations.
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Result - information Algorithms Evaluation

Cell type information: The
most investigated cell type
category is "Expressing"

Louvain,
LPA,
PageRank

This is already known.

Data structure: Community
around the data set species.

Louvain,
LPA This is already known.

Data quality: Chemical
solution Unspecified is the second
most used anesthetic and fourth
most used perfusion fix medium.

PageRank,
Louvain

Expected as it is known
that solution information
is poorly reported but
fascinating to observe for
this data.

Data quality: The second most
used software is Unspecified. PageRank

Unexpected and
interesting as it will make
the research results
challenging to reuse.

Source information: The
most influential publications are
Neuroscience, Brain Research,
and Journal of Comparative
Neurology.

PageRank

Already known as the
original database paper by
Bjerke et al. also stated
this.

Cell type information:
Neuron is the most investigated
cell type.

PageRank,
Closeness
centrality

Expected as it is the
easiest for scientists to
observe.

Cell type information:
Tyrosine hydroxylase expressing
(TH) cells are the second most
investigated cell type.

PageRank,
Closeness
centrality

Already known due to
TH-cells relevance in
Parkinson’s disease.

Cell type information: Most
of the experiment investigate
entire neurons.

PageRank,
HITS

Interesting as it implies
that neuroscience knows
much more about the
whole cells than the
sub-cellular entities.

Method information:
“Bright-field microscope” is the
most used microscope type.

PageRank Expected as it is a very
common microscope.
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Method information:
Immunohistochemistry is the
most used visualization method,
histochemistry the second most.
No difference between species.

PageRank Expected based on the
data Bjerke has collected.

Method information:
Tyrosine hydroxylase and Rabbit
antibody are the most used
reporter targets.

PageRank Expected as the data
contains many TH studies.

Method information: "Goat
anti rabbit_biotin" is the most
used Reporter.

PageRank,
HITS

Unexpected and
interesting as it can tell us
something about the data
quality.

Method information: The
most used sectioning instrument
is "Cryostat", followed closely by
“Freezing microtome”.

PageRank
Not evident but of little
interest as cutting
instruments are mundane.

Brain region information:
The data set contains the most
information about the brain
region caudoputamen for both
species.

PageRank,
Betweenness
centrality,
Node similarity

Already known from the
data set paper.

Brain region information:
Most of the data investigates the
rostral region zone.

Betweenness
centrality

Expected, but interesting
as it displays a bias in the
data.

Brain region information:
When a study investigates the
internal segment region, they
also investigate the external
segment region.

Node similarity
Already known as they
are sub-regions of the
same region.

Specimen information:
“Adult” is the age category, most
often used (big difference).

PageRank

Expected as researchers
use other age categories
mostly for research specific
to the age category.
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Specimen information: Most
influential strain is Wistar for
rats, C57BL6 for mice.

PageRank Expected as these are
common strains.

Specimen information:
“Male” is the most influential sex. PageRank

Expected, but interesting
as it displays a bias in the
research.

Table 5.2: Graph data analysis restuls and evaluation.

Having the results presented, we wished to evaluate which of these pre-
sented findings we could have obtained using a relational data model. We have
investigated three analysis methods: clustering, centrality, and similarity.

Clustering methods would be challenging to replicate in a relational model
as the method heavily bases itself on node connectivity. A relational database
cannot fully represent the connectivity in the thesis data set. Even though
one could fully represent the data structure properly with the limitations of
relational models, the model must be converted to a graph for the clustering
algorithms to analyze the data.

Evaluating the centrality measure, we could have obtained some of the
graph algorithms’ findings with a relational model using relational join and
grouping. These are the cases where the nodes connect to only one other
node type and when this node type is not highly connected. For example,
in the thesis data set, the source nodes only connect to analysis nodes, and
discovering which journal has published the most experiments in the data
set is trivial. When the node connects to many other node labels, which are
highly connected, the graph algorithms present a considerable advantage.

When it comes to the similarity analysis results, we could not easily have
obtained these using only a relational database. One would have to compare
each row in a table against all other nodes they connect to, which would
require nested SQL queries that can become complex and prone to mistakes.
Moreover, as with centrality measures, the more interconnected the data
becomes, the more difficult it is to analyze in a relational model. In summary,
except for some of the centrality measures, we could not have obtained the
findings from most of the graph analysis approaches in this thesis using a
relational database.
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5.2.3 Evaluation of confirmatory data analysis results

In the confirmatory data analysis part, we aimed to answer the two use cases
presented in Section 3.5, concerning specific inquiries for the murine basal
ganglia data set.

Use case 1: Find similar analysis on specific criteria

The analysis nodes represent one of the data sets’ three primary entry points
and are what researchers often use when comparing results. For this use
case, we were interested in finding analyses investigating the same cell type
in the same brain region and having the same object of interest. As with the
exploratory data analysis, we utilized the Neo4j implementation of the Node
Similarity algorithm. Compared with the exploratory data analysis, we used
a slightly adjusted graph projection because we only want the analyses that
were entirely similar with respect to cell type, brain region, and object of
interest.

We created a graph projection containing only the four relevant labels
with a direct relationship between them. The node similarity algorithm ran
on this projection with degree-cutoff set to 3 and similarity-cutoff set to 1
and configured to write the relationship back to the graph for the nodes
that matched the criteria. These efforts created a relationship between
the analyses with the same cell type, brain region, and object of interest.
Figure 5.8 presents the analyses (in orange) in the data set connected to the
specified nodes and species. The yellow nodes represent the two species in
the data set, and the central node in the middle is the cell type "neurons."

We evaluated the result by querying nodes with their similar nodes and
verifying that they match the requirements presented above. The result was
that the use case was possible to answer and easily achieved with the graph
model as it only required a few lines of code to retrieve.

Use case 2: Can the graph model facilitate an evaluation of meth-
ods and results in the data set?

In this use case, we aimed to examine how one could compare experimental
methods in the rodent basal ganglia data set. There are two parts to this
process. The first is to find analyses that research the same topic. Specifically,
this entails the same cell type, brain region, and object-of-interest. The second
part is to evaluate the methods and results of the analyses that investigate
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Figure 5.8: The data set analyses with related nodes.

the same topic. The following list presents our graph-based experiment to
investigate this use case:

1. Connect analysis nodes directly to the topics they investigate and create
a projection with only these nodes.

2. Run a community detection algorithm and store a community identifier
on the analysis nodes.

3. Connect analysis nodes directly with relevant methods

4. Create a projection of analysis and connected method nodes for each of
these communities.

5. Run a similarity algorithm on each projection.

In the first step, the analysis nodes were connected directly with the cell
type, brain region, and object-of-interest nodes, and in the third step, we
used the Louvain algorithm to create communities. In the fourth step, we
connected the analysis nodes with the method nodes presented in purple
in Figure 5.9. We derived some of the presented relationships through the
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Figure 5.9: The projected graph model used for obtaining method similarity
in the second use case experiment.

experiment and data type nodes and removed others that were distinct per
analysis. In the fifth step, we set the similarity cutoff to 90 percent, aiming
to find all analyses that have used the same methods, except one or two
methods, and compare them afterward.

From this investigation, we could conclude that there is not enough data
in this data set to compare methodology against the result. The largest
community with the same cell type, brain region, and object of interest
consisted of 73 nodes, and the second-largest consisted of 26 nodes. When
looking for similar nodes having all methods in common except one, we could
only find analyses from the same experiment, and those were not relevant for
comparison. However, other researchers can use the proposed approach and
available code to investigate the same use case.
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5.3 User interface evaluation

To evaluate the third research question, RQ3, we developed a web-based user
interface for the graph model data as a basis for evaluating the usability of
the graph model. This section presents an evaluation of the web application
user interface’s functional requirements, verifying that it supports the desired
features, before presenting the user interface usability evaluation.

5.3.1 Fulfillment of functional requirements

Section 3.6.2 presented a list of functional requirements, formulated as user
stories, for the graph model web application’s user interface. The developed
web application user interface fulfills these requirements, as presented in
Table 5.3. The application implements the first user story through the brain
region page, where a user can search and select a brain region and see all
analyses that investigate the selected region. It fulfills the second user story
in the same manner for cell types. The application completes the third user
story through the analysis page, where the user can search and filter all
analyses on the listed methods. It realizes the final user stories on the web
page of a specific analysis. In the implementation of all the pages mentioned
in this paragraph, the user can select a specific analysis and observe multiple
analysis properties, including the requirements listed in user stories 4-6.

5.3.2 Usability study

In addition to evaluating the functional requirements, we wanted to evaluate
the developed user interface’s usability. Section 3.6.3 presented a set of
requirements for the usability study. Based on the first requirement, we
applied formative testing. Although formative testing does not provide any
statistics, it gives a good indication of what the users like and dislike and a
general impression of the product’s usability. The following list presents the
process of a formative usability study, as defined by Barnum (2010)[79]:

1. Define the user profile

2. Create task-based scenarios

3. Use the think-aloud process
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Functional requirements: User stories Status

US1: As a researcher, I want to find analyses performed on a
specific brain region. X

US2: As a researcher, I want to find analyses performed on a
specific cell type. X

US3: As a researcher, I want to find analyses based on species,
strain, and other available analysis properties. X

US4: As a researcher, I want to see the anatomical findings and
information of an analysis. X

US5: As a researcher, I want to study detailed information about
the methodology used in an analysis. X

US6: As a researcher, I want to be able to find the original
publications that exhibit the data. X

Table 5.3: Evaluation of the web application’s functional requirements.

4. Make changes and test again

For the first step in this process, Section 3.6.1 presents the user and the
context: We defined the specified user as a neuroscientist, using a persona,
and the context as the neuroscientist’s usual workplace. Answering the third
requirement, we created tasks related to finding and understanding brain-
related research data based on the persona. The set of tasks performed by
the usability study participants are presented in its entirety in Appendix D.

In addition to observing how users completed the tasks, we wanted to
evaluate the users’ overall understanding and experience of data presented
in the graph format through web-based access. Naturally, the ease with
which they can perform the tasks indicates this. However, we decided to also
interview the users after performing the tasks as part of the usability test.
An interview is an appropriate method, as we aimed to understand the user’s
total understanding and experience interacting with the data. The interview
questions are formulated not to guide the users into specific answers. The
following list presents the general steps of the usability tests performed in
this thesis:

1. The observer introduces the thesis and the web application.

2. The observer describes how to think-aloud and encourages the user to
apply the technique.
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3. The observer presents the tasks to the user and explains that there will
be no communication during the tasks, and if the user can not complete
a task, they should continue with the next.

4. The user performs the tasks while thinking out loud.

5. The observer interviews the user to evaluate the user’s overall experience.

The second usability study requirement presented in Section 3.6.3 states
that the participants must be neuroscientists. To find suitable participants,
we contacted neuroscience and medicine faculties from multiple universities.
However, all the researchers who expressed interest in participating were from
the University of Oslo. We verified that the participants were researchers,
often working with publicly available data.

The fourth usability study requirement states that the test must use a re-
mote communication tool familiar to the user. For the remote communication
tool, we used Zoom as all the researchers at UiO were familiar with it.

Table 5.4 presents the result of the usability study tasks. The order of the
usability tests was as presented in the table. Between each usability test, we
performed small adjustments to the applications. The users completed the
tasks sequentially, in the order presented in the table. The red cells mark the
tasks the user did not manage to complete, the yellow cells mark the tasks
the users completed but were unsure of, and the green cells mark the tasks
the user completed with satisfaction.

As presented in the fifth and final usability study requirement, we aimed
to measure whether the applications assist the user’s needs (effectiveness
and efficiency) and if the users can complete the tasks with self-perceived
satisfaction. Thus, we evaluated if the user managed to complete the task
and separately evaluated if the user completed the task with satisfaction. The
table separates this by marking green cells for tasks the user completed with
satisfaction and yellow cells where the user completed the task but did not
feel confident.

Evaluating the results, the first two participants struggled with task 5.1
and task 9, while the third participant experienced some struggles with the
filter function. Task 5.1 regards finding the total number of axonal varicosities
observed by Fujiyama (2016) in the substantia nigra. After observing the
two first participants struggling with finding this number, we adjusted the
interface to present this number more clearly, and according to the final
usability tests, this was successful.
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X Completed with satisfaction
∼ Completed, but not confident
× Not completed

Task User 1 User 2 User 3 User 4
1.1 X X X X
1.2 X X X X
2 X X ∼ X
3 X X X X
4 X X X X
5 X X X X
5.1 ∼ ∼ X X
5.2 X X X X
5.3 X X X X
6 X X ∼ X
6.1 X X X X
7 X X X X
8 X X X X
8.1 X X X X
8.2 X X X X
9 × ∼ X X
10 X X X X
11 X X X X
12 X X X X
12.1 X X X X
12.2 ∼ X X X
13 X X X X
14 X X X X
14.1 X X X X
15 X X X X
15.1 X X X X
15.2 X X X X
16 X X X X

Table 5.4: Task completion in the usability study.
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Task 9 asks the user to find the number of mixed-class neurons observed in
the mouse caudoputamen. When the user selects a cell type, the resulting page
presents all the cell types observed in that region. The goal was that the user
should count the number of mixed-class neuron cell types on this page. For the
first two participants, this was not clear. The first participant also struggled
with task 12, where the user was to find a morphology illustration’s source
repository. We updated the page to reference the morphology repository more
clearly, and the next participants found it with ease.

The third participant struggled with the filter-function at the beginning
of the test, which caused the unsatisfactory completion of task 2 and task
6. However, the participant learned how it worked and managed all the
subsequent tasks. In summary, the user feedback improved the applications
to a point where the users managed to complete almost all tasks confidently.
Further, the participants grew more confident throughout the usability test.

In the user interviews, performed right after the tasks, we asked the
users about their overall user experience. All the participants had an overall
good impression. They felt they understood the application and that the
interface provided the necessary entry points for finding data relevant to them.
One participant suggested the possibility for community building, such as
having a contact page with more information and sharing data. However,
as presented in the solution design, sharing data was not possible in the
prototype, as we did not have a persistent database. We suggest that the
developed applications should implement community functions in the further
work chapter.
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Chapter 6

Conclusion and further work

6.1 Summary

With technological advances over the past decades, the amount of data gener-
ated in the neuroscience domain has increased exponentially. Neuroscience
research generates large amounts of brain-related data, and now a challenge
is how this research field should deal with all the available data. Simultane-
ously, in the field of data management, graph databases experience increased
popularity due to their ability to handle large data sets that are highly
interconnected and dynamic. The research of this thesis investigated how
graph-based data representation can improve neuroscience data management.

This thesis presented a graph-based approach for representing neuroscience
data, exemplified with the murine basal ganglia data set. We addressed
multiple ways of working with a graph model in the neuroscience domain
from a data management perspective based on the proposed data set graph
model. The thesis described how data from external sources can integrate
with neuroscience data in a graph model, applications for web-based access
to improve the usability of the data, and the use of graph analytics to extract
new information and improve the understanding of the data. Further, the
thesis presented evaluations of the developed software, the usability of the
data, and the results obtained by applying graph algorithms.

Our goal with this thesis was to evaluate the benefits of graph-based data
representation in the neuroscience domain with respect to usability, extend-
ability, and understanding of the data. We presented definite advantages of
graph-based data representation through our work, including ease of data
analysis, support for data integration, and availability through web-based data
access. In light of the thesis scope, we will not conclude that graph-based data
representation provides the stated benefits for all neuroscience data. However,
we presented a thorough example of how to work with graph-based data
representation for neuroscience data. The technical approach from this thesis
is practical and generic and can be applied to other data sets. We believe
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that the developed artifacts and evaluations contribute valuable insights that
promote further research into graph-based data representation in the field of
neuroscience.

6.2 Contributions

The thesis research produced software artifacts and a graph model to repre-
sent the murine basal ganglia data set in a graph database. With this graph
model as a basis, we addressed the following research questions and hypothesis:

RQ1 Can a graph representation of brain-related data facilitate the integration
of data from a variety of neuroscience data sets?

Multiple initiatives provide brain-related data, and Chapter 3 presented
the related initiatives we analyzed for integration with the murine basal
ganglia data set. Chapter 4 presented how we extended the graph model
with data from three external data sources; BAMS, InterLex, and Neu-
roMorpho.Org. We found overlapping data for cell morphologies, cell
types, and brain regions that were straightforward to integrate into the
existing graph model due to the flexibility of graph database models and
standardization of cells. However, the main challenges we experienced
with data integration were the lack of data documentation from the
initiatives and the lack of data related to the basal ganglia. We had
to manually map the brain regions loaded from BAMS to the regions
in our data set. By these efforts, we conclude that although a graph
model facilitates data integration, other challenges in the neuroscience
domain, such as low data availability and lacking documentation and
standardization, are more blocking.

RQ2 Can a graph model provide a better understanding of the data in a
brain-related data set?

The thesis research contributed with a solution and evaluation for
utilizing graph algorithms to improve the understanding of the data in
the murine basal ganglia data set. Chapter 3 presented the research
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methods and requirements for the data analysis, and Chapter 4 pre-
sented the technical aspects of designing and running the algorithms on
the graph data model. Chapter 5 presented the specific experiments
we used to retrieve new information, the resulting findings, and an
evaluation of each finding. The data analysis performed in this thesis re-
search is publicly available through the thesis Jupyter Notebook project.
The analysis evaluation concluded that it was possible to extract new
information about the data and that some of the information provided
an increased understanding. Specifically, we observed that the analyses
that evaluate multiple aspects of the node and node constitutions, such
as data topology and similarity, are the areas in which graph analyses
provide the most noticeable results in the case of the murine basal
ganglia.

RQ3 To what extent can a graph-based approach to neuroscience data man-
agement improve the usability of the data?

There were two primary objectives with this research question. First, we
needed a way for researchers to interact with the data set. Second, we
wanted to present how computer scientists can integrate the graph data
model with applications that provide a user interface and programmatic
data access. Chapter 3 presented the requirements of the developed
applications and the background for the usability evaluation. Chapter 4
presented how we developed the applications, and Chapter 5 presented
how the application user-interface satisfied the presented requirements
and the usability evaluation results. We provided web-based access
to the graph data through a web application user interface and an
API application. These applications are publicly available on GitHub.
Further, the usability study exhibited overall high usability of the user
interface. The researchers who initially created the data set found the
applications usable and wish to continue to use and maintain them.
The produced artifacts and usability evaluations suggest that a graph
model could increase the usability of the data, although we need further
research into this to conclude.
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H Organizing neuroscience data in a graph model provides a better under-
standing of the data, facilitates data integration with other brain-related
data sets, and improves the usability of the data.

The thesis research exemplified the process of graph-based representa-
tion of brain-related data through the murine basal ganglia data set.
Further, the research investigated multiple areas of the model guided
by the research questions presented above. The research showed that
although it does not solve all the challenges with data integration, a
graph model facilitates the integration of brain-related data from ex-
ternal sources. In combination with graph analysis, graph-based data
representation can provide new information about the data, and our
results indicate that this data representation can improve the usability
of the data.

Summary of thesis contributions

• A graph model for the murine basal ganglia data set.

• A solution for migrating the data in the murine basal ganglia data
set from a relational model to the proposed graph model.

• An analysis of basal ganglia-related data in relevant neuroscience
data initiatives.

• An approach for integrating data from multiple neuroscience data
sources using the proposed graph model.

• A solution for performing graph data analysis on the murine basal
ganglia data set.

• An improved understanding of the data in the murine basal ganglia
data set.

• A user interface and programmatic endpoint to access the data,
improving the usability of the data.
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6.3 Further work

Many of the presented areas of graph-based data representation in the neuro-
science domain are still uncharted terrain. It is relevant to continue evaluating
the implications of graph-based data representation and work to solve the
challenges with data management in the field of neuroscience.

Neuroscience data quality
In extending the murine basal ganglia graph model with data from other
neuroscience data initiatives, it was challenging to obtain information about
the content the initiatives provided, programmatic data access, and, occasion-
ally, the data format. We suggest that further research performs a thorough
review of neuroscience data initiatives and present what data are available
from where and how the researchers can access the data, preferably including
the data formats. Another approach could be to look at standardization for
programmatic access to neuroscience data.

Neuroanatomical data standardization
As many before us have experienced, there are challenges related to integrating
neuroanatomical data. There are many ways to name cell types and no
standard format. One suggested approach is to create a naming standard for
cell types, such as an ontological approach. Standardized naming will make it
possible for researchers to find data and studies of relevant cell types across
literature and facilitate programmatic and automatic data integration. From
our work with cell type data, we believe this is an essential aspect for further
research in the data management and neuroscience domain.

For brain regions, there are naming standards, namely the brain region
nomenclatures. However, the existing nomenclatures are not compatible, and
there is currently no overview that provides a complete mapping of terms
between nomenclatures. Bjerke et al. (2019) started the work to create such
a mapping between a set of nomenclatures. The data overview they created is
a considerable contribution, but it needs to be adequately standardized and
extended to all the relevant regions and nomenclatures that exist. An overview
of the relations between different nomenclatures would greatly benefit data
management in the field of neuroscience, and we recommend that researchers
in data management collaborate with neuroscientists to continue this work in
the future.
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Further research on graph-representation of neuroscience data
This thesis presented an approach for modeling and storing a neuroscience
data set in a graph model. We believe that the results of this thesis encourage
further research into this area. Further research can investigate a graph-based
approach for representing other data types to observe if the benefits and
challenges are different for these and on a larges data set in combination with
other graph analytics techniques to evaluate the performance and usability.
With more research on graph-based data representation in the neuroscience
domain, we encourage further research into developing an ontological frame-
work for storing all types of neuroscience data, including the metadata with
experimental and specie information. However, to do so, there is a need for
further evaluations of multiple data sets to define such an ontology’s scope
and requirements.

Further development of the thesis artifacts
This thesis research produced a graph database with basal ganglia data,
together with a web and API application for web-based data access. Re-
searchers at the Faculty of Medicine at the University of Oslo, who created
the relational murine basal ganglia database, see a great benefit of using
the developed artifacts and express a desire to continue working with these
solutions. By this, there is a need for maintenance and further development of
the artifacts. One feature we could not implement, due to the non-persistent
database, was the feature for researchers to share their research data. The
next step in this context would be to provide a persistent database instance
and allow the sharing of more data. This feature would provide a significant
improvement as it will promote the solution’s relevance for current and future
research.
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Appendix A

Summary of the murine basal ganglia database

This appendix presents the entity-relationship (ER) diagram of the relational
of the murine basal ganglia database before it describes the content of this
database in greater detail.Figure A.1 presents the ER diagram produced by
the relational database. Figure A.2 presents the same diagram colored in the
categories presented in Section 3.2.

Figure A.3, collected from Bjerke et al. (2020), presents a summary of the
murine basal ganglia database [19]. In this figure, the hierarchical structure is
visible. The figure denotes the data types as either quantitative estimates or
cell morphologies. In addition to presenting the structure, Figure A.3 presents
some key information about the data in the data set.

Figure A.4 presents the workflow proposed by Bjerke et al. that includes
three researcher scenarios use; (1) researchers who want to find basal ganglia
data for modeling, (2) researchers who want to update the database, and (3)
researchers who want to share their data. For further inquiry about the data,
please review the article "Database of literature derived cellular measurements
from the murine basal ganglia" by Bjerke et al. [19].

The remainder of this appendix describes the nodes and how they relate
to each other, for each of the categories presented in Section 3.2.
Experiment data: The experiment data has a hierarchical structure where
an Experiment node connects to one or many DerivedDataRecord nodes,
and a DerivedDataRecord node relates to only one Experiment node. A
DerivedDataRecord node connects to one or more of the following data type
nodes; Distribution, Quantitation, or CellMorphology, and each of these
is only related to one DerivedDataRecord node.

Each of these three levels has related information. The Experiment nodes
relate to information about chemical solutions and the experiment specimens,
with all the specimen information directly connected to the Experiment
nodes, rather than the Specimen nodes. The Experiment nodes connect
to DerivedDataRecord nodes through a Specimen node. Some experiment-
related nodes connect to the Specimen node, such as the specimen treatment,
how the cells are labeled, the sectioning details, and the reporters used.
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Figure A.1: ER diagram of the murine basal ganglia database.



Figure A.2: Categorized ER diagram of the murine basal ganglia database.



Figure A.3: Summary of the relational murine basal ganglia database.

Credit: Collected with permissions from Bjerke et al. (2020) [19].

Of experiment data, the DerivedDataRecord nodes have information about
the microscope and visualization protocol used and the relation to the data
types. The DerivedDataRecord nodes also connect to the cellular information,
describing the investigated cell, including the cell type, object of interest,
and cell phenotype. The data types listed above can have information about
stereology and software used. The different data type nodes connect to the
brain region nodes through a data type-specific RegionRecord node. They
are also related to the nodes defining the zone of the region and the cellular
region. Regarding the data types defined in Section 2.2, all the purple nodes
are metadata, except the data types (Distributions, Quantitations, and
CellMorphologies) that are the derived data type, containing the results.

Sources of information: The source nodes divide into two groups; the
nomenclatures and the sources that initially contained the experiments. In



Figure A.4: Workflow for researchers to find, explore, and integrate derived
data in the relational murine basal ganglia database.

Credit: Collected with permissions from Bjerke et al. (2020) [19].

the latter group, the Source nodes contain a specific publication or repository
where Bjerke collected the experiment information. The Source node con-
nects to one SourceOriginLookup node, containing the information about
where the source was published. The SourceOriginLookup nodes are usually
journals or larger initiatives. A SourceOriginLookup node connects to one
or many ConsideredPaper nodes, containing all the papers Bjerke has con-
sidered. These again connect to a ConsideredPaperDesicion stating if the
paper is included in the data set or not, and if not, it contains the exclusion
reason. The second category contains nomenclatures. In the data set, Bjerke
has mapped all the data to fit with the data set nomenclatures, referenced
in the NomenclaturesPreferred nodes. The NomenclaturesOther nodes
comprise the information about the original nomenclatures used in the source.

Specimen data: All the Specimen nodes related directly to the Experiment
nodes. The Specimen nodes represent the experiment subject. Information
about this specimen exists in the remaining specimen-related nodes, including
the Specie nodes, Strain and Substrains nodes, and the nodes describing
sex and age categories.

Neuroanatomical data: The brain region nodes contain the region’s
name and the nomenclature that provided it. The Regions nodes refer to this
data set’s nomenclatures, and the RegionsOther nodes refer to the original



experiment’s nomenclature. If an experiment only observes a specific part of
the region, it relates to the RegionZone nodes that describe parts of brain
regions. The same goes for the CellularRegion nodes that are zones, or
regions, of the cell. The CellType nodes are different cell types, and the
CellPhenotype nodes describe the cell’s appearance or physical attributes [48,
p. 312]. The CellPhenotypeCategory nodes categorize the CellPhenotype
nodes. Finally, the ObjectOfInterest nodes define the object the experiment
observed, which can be any neural structure from generic cells to more specific
cell types or cell regions.



Appendix B

Sitemap of web interface

Figure B.1 presents the sitemap of the web application developed as part of
this thesis.

Figure B.1: Sitemap of the basal ganglia web application.
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Appendix C

Survey on usage of neuroscience data

This appendix presents the survey presented by this thesis to obtain a deeper
understanding of the usage of publicly available neuroscience data. We
sent the survey to multiple research institutes, and manged to get fourteen
responses. We created the survey using Google Forms. The first section
presents the results of the survey questions, while the second section presents
the Google form.

C.1 Survey results

Chart B.1 presenting the results of the first survey question asking about the
participants’ research background, displayed in a pie chart.

Chart B.1: Results of the first survey question asking about the participants’
background.
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Chart B.2 presents the results of the second survey question asking how often
the participants work with a range of publicly available neuroscience data
repositories, shown in a column chart.

Chart B.2: Results of the second survey question asking how often the
participants work with a range of publicly available neuroscience data

repositories.

Chart B.3 presents the results of the survey question that asks which data
repositories the survey participants use, displayed in a bar chart.

Chart B.3: Results of the survey question regarding which data repositories
the survey participants use.

Chart B.4 presents the results of the survey question asking for what tasks
the participants use the publicly available data, shown in a column chart.



Chart B.4: Results of the survey question asking for what tasks the
participants use the data.



The finding that the respondent researchers predominantly use publicly
available data to address new hypotheses and compare results and findings
is visible from Chart B.3, where six and five respondents respectively stated
this.

The result that Finding data of high enough quality, connecting data from
multiple sources, and understanding the data structure and format were found
the most challenging was calculated by summing the number of respondents
that selected moderately challenging, challenging, and very challenging.



C.2 Survey questions
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Appendix D

Usability study set-up

We performed a usability study to validate the usability of the web-based
user interface of the murine basal ganglia graph data. For each test in the
study, there was one observer and one participant. The observer refers to
the person facilitating the test, and the participant refers to the researcher
testing the user interface. We performed all the usability tests over Zoom.
During the test, the participant shared their screen with the observer. This
appendix describes the general set-up of a usability test.

The test started with the observer introducing the background and purpose
of the study to the participant. The following text was the basis for the
introduction:

We are currently working on the master’s thesis; Graph-based
representation,integration, and analysis of neuroscience data —
The case of the murine basal ganglia.
In the thesis, we research how a graph data model can provide
a better understanding of the existing data, how easy it will be
to combine with other data sets, and how web-based access can
improve the usability of the data. To evaluate these statements,
we have built a web application where researchers can interact
with the data set. This web application’s interface is what we are
here to test today.

After introducing the purpose of the test, the observer introduced the
participant to the concept of thinking-out-loud. The following text was the
basis for this explanation:

Before we start with the tasks, we ask you to think out loud
during the test. This means that you verbalize your thoughts as
you move through the website. There is nothing that is wrong to
say, and we would rather you say too much than too little.

Before the participant performs the tasks, the observer presented that if
the participant cannot complete a task, the participant can say so, and the
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observer would provide the next task. The observer also stated that she could
not answer questions during the test and provides the next task when the
participant states they have completed the task. At this point, the observer
asked if the participant had any questions and answered those. Before the
tasks commenced, the observer provided the URL for the website and verified
that the participant navigated to it correctly.

Table D.1 presents the tasks in the usability study. For each task, the
observer presented the task, both orally and through the Zoom chat. A task is
either a task or a sub-task, and the observer presented the sub-task(s) only if
the participant managed to complete the tasks before. We grouped the tasks
into three categories. The first set of tasks, 1-6, are aimed at the analyses;
the second set, 7-12, is intended to evaluate the cell type pages; tasks 13-15
are focused on the brain regions pages. The participant was not informed of
this grouping and could freely start the navigation on any page.

Task Type

1a Can you find how many analyses have been performed on
Rattus norvegicus?

Task

1b Can you find how many analyses have been performed on
Mus musculus?

Task

2 How many morphology analyses have been performed on the
species Mus musculus?

Task

3 How many analyses, performed on rat, have used the antibody
with unique id RRID:AB_476894

Task

4 How many analyses are performed on a juvenile rat (19-28
days)?

Task

5 Can among the analyses find the study by Fujiyama (2016)? Task

5a In the study by Fujiyama (2016), how many axonal varicosi-
ties in total were observed in the substantia nigra?

Sub-task

5b In this study, what was the weight range of the specimens
used?

Sub-task

5c In which journal was this study published? Sub-task

6 See if you can find the study by Echeverry (2004) on NAD-
PHD expressing neurons?.

Task



6a In this study, what part of the Caudoputamen was covered? Sub-task

7 How many analyses that have been performed on the rat
substantia nigra?

Task

8 Can you find the number of regions that are connected to
the rat Caudoputamen?

Task

8a Which of the connected regions does the Caudoputamen have
a very strong, afferent relationship to?

Task

8b Can you find how these relationships were derived? Sub-task

9 In the mouse Caudoputamen, how many mixed class neuron
cell types are observed?

Task

10 For this region, can you find how many analyses are performed
on dopamine 1 receptor expressing cells?

Task

11 Staying on this page, can you get back all the analyses per-
formed on mus musculus?

Task

12 See if you can find a morphology analysis of medium spiny
neuron cells.

Task

12a Select one of these morphologies. Sub-task

12b From which repository was the morphology illustration col-
lected?

Sub-task

13 How many cells are returned when searching for “dopamine
receptor”?

Task

14 Can you find a description of the cell type “Glia”? Task

14a Where was this description collected from? Sub-task

15 Calretinin expressing interneuron is the cell type investigated
in a number of analyses, can you find how many?

Task

15a Can you find how many brain regions Calretinin expressing
interneuron are observed in?

Sub-task

15b Can you find the number of analyses concerning Calretinin
expressing interneuron in the substantia nigra?

Sub-task

16 Can you find the sources and repositories that have con-
tributed to the website data

Task

Table D.1: Usability study tasks



After the participant was done with the tasks, the observer performed
an interview to get the participant’s overall impression and get feedback
exceeding the tasks. The following list presents the questions used as a basis
for the interview. As a general notion for all the questions, we aimed not
to guide the participants into desired answers. In addition to the presented
questions, the observer asked questions specific for each participant based on
their task performance, such as asking about a task the participant struggled
with or had difficulty solving.

1. What is your overall impression of navigating this data?

2. In this graph database we have integrated data from

• Morphologies from NeuromMorpho.Org

• Cell descriptions from InterLex

• Brain region connectivity from BAMS

Do you have a comment on that?

3. What properties of the analysis are most valuable for you to search on?

4. Would it be an interesting feature to find similarities between analyses?
If so, what properties that you have seen here would be interesting to
compare the analyses on?

5. Do you have any other feedback or questions?
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