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Abstract

Acute Myeloid Leukemia (AML) is a heterogeneous malignancy involving the clonal expan-
sion of myeloid progenitor cells (blasts) in the bone marrow and peripheral blood. Most AML
patients are treated with intensive chemotherapy, but despite initially high complete response rates,
many patients relapse and die from their disease. New methods are required to better stratify
patients in different treatment groups. A model system that can potentially identify personalized
treatments from both novel and approved drugs is Ex vivo drug screens. However, little is known
about the level of the predictivity of drug screen outcomes for clinical efficacy, and the preservation
of cancer dependencies to ex vivo cultures. In this study, we used L2 regularized Cox regression to
analyze ex vivo drug profiling data of 349 drugs form an ex vivo drug screen covering 55 AML
patients who were subjected to standard 7+3 chemotherapy to predict patient survival.

Strikingly, while the WHO-AML classification system showed some predictive value for
the prognosis of AML patients (out of currently available clinical prediction methods), ex vivo
drug screens proved to be superior at predicting survival compared to mutations, karyotype, age,
gender and WHO class combined. Surprisingly, we also see that the doctor’s prognosis based
on the ELN-NET system did not have predictive values. This suggests a potential use of ex vivo
drug sensitivity data in cancer prognostics and forecasting. Additionally, analyzing the regression
coefficients (log-hazard ratios) we could determine the direct association between drug sensitivities
in patient samples and survival outcomes. As a proof of principle, ex vivo response to the standard
treatment drug, Daunorubicin, was associated with favourable prognosis. This reveals a direct
linear relation between response to a drug ex vivo and probability of survival in the clinic. We
also discovered 33 drugs that were significantly associated with survival; we believe that some
of these drugs have treatment potential as alternatives to the standard treatment or as second-line
treatments. Furthermore, drug target data was projected using UMAP in order to reveal a functional
enrichment of the protein network targeted by the 33 identified drugs. Based on the drug-target
network we found a clear separation of high-risk and low-risk clusters, which we believe can
provide valuable insight into the underlying mechanisms of cellular dependencies that drive AML
cancer progression. entailing possibilities for drug development. Finally, we have discovered a
negative. In conclusion, drug sensitivity screening is a superior method for predicting AML patient
survival, and we envision that ex vivo drug screening can be implemented in the clinic as a tool for
clinical decision-making and patient stratification.
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CHAPTER 1

Introduction

1.1 Background

1.1.1 Cancer and cancer diversity

Cancer is one of the most researched diseases in our time as it affects so many people, yet there is
room for massive advancements to be made, especially in terms of treatment. As many as one in
two men and one in three women will develop cancer during their lifetime. Additionally, one in five,
unrelated to gender, will die from cancer [1]. As so many people are affected by cancer, finding new
and more effective treatments is a central topic in biological sciences and medicine. Media often talk
about "the cure of cancer" but the picture is much more complicated than what the phrase entails.
Cancer is used as a bag term for a large number of diseases. The National Cancer Institute (NCI)
defines cancer as: "A term for diseases in which abnormal cells divide without control and can invade
nearby tissues. Cancer cells can also spread to other parts of the body through the blood and lymph
systems" [2].

What makes cancer such a diverse group of diseases is its variability, not only amongst the various
cancer types but also within specific cancers or even a single tumour. At its core, the various cancers
are named after the tissue the cancer cells resemble and organ from which the cancer originates [3].
Additionally, cancers are very heterogeneous even within specific cancer types as cancer development
is driven by random mutations. Cells with mutations in oncogenes or tumour suppressors will be
subjected to natural selection to make the cell, and its clones, grow and adapt to the environment. This
selection process can result in cancers with similar-looking phenotypes, but with different underlying
driving mechanisms. Furthermore, these genetic differences can, in turn, give rise to variation in
transcription, epigenetic regulation, further mutation burden and so on.

1.1.2 Targeted therapy and personalized medicine

As cancer is such a complex disease the variability both within and between cancer types causes
an enormous challenge in terms of treatment. Finding treatments that work across the spectrum of
individuality is a hurdle to overcome. Treatment sensitivity may vary greatly between individual
patients. Additionally, within-tumour heterogeneity may result in one specific treatment not being
enough to kill all cancer cells and treatment-resistant variants may be selected for.

Over the last few decades, patients diagnosed with the same type of cancer usually receive a
standard treatment. Many standard regimens entail radiation therapy, surgery or administration of
unspecific and cytotoxic chemotherapies that kill both cancer cells and healthy tissue. The use of
standard treatments is problematic for several reasons. Firstly, because the current way of diagnosing
cancers does not take patient individuality into account, treatment efficacy is highly unpredictable.
Secondly, standard treatments using chemotherapeutics can often result in severe side effects.

The problems with the standard treatment regimen have shifted the focus of patient treatment
towards a more tailored system. Tailored treatment systems entail targeted therapy, which aims to
selectively inhibit the mechanisms that drive a specific cancer type. A form of tailored treatment
selection is personalized medicine which is based on finding relevant markers and deciding on
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1. Introduction

treatment according to said markers for individual patients [4]. Finding markers is done through
an extensive diagnosis using screens to identify mutations and chromosomal abnormalities, and
sometimes immunophenotyping or transcriptional profiling [5]. Consequently, the treatment will
consist of highly specific drugs predicted to work for the individual patient.

An example of targeted therapy can be found in breast cancer where a mutation screen can identify
a mutation in the BRCA genes (1 and 2) which is involved in DNA-repair. If BRCA is mutated,
homologous recombination is impaired, severely increasing the risk of breast cancer [6]. A common
treatment option is PARP inhibitors are common. These disable double stranded break repair, another
means of DNA repair. The combination of BRCA mutation and PARP inhibitors with radiation-
induced DNA damage will result in the death of cancer cells as they cannot repair themselves, whereas
the healthy cells with functioning BRCA can survive through homologous recombination [7]. Another
example of targeted therapy can be found in chronic myelogenous leukemia where patients with the
Philadelphia chromosome’s key mutation, BCR-ABL, can be treated using Imatinib. BCR-ABL is a
fusion protein caused by recombination between chromosomes 9 and 22, resulting in a constitutively
active tyrosine kinase that leads to increased proliferation, genetic instability and disruption of the
cell cycle. Imatinib targets the tyrosine kinase domain in ABL, but also other tyrosine kinases such as
c-kit and PDGF-R resulting in reduced tyrosine kinase activity [8].

Despite the fact that targeted therapy has been revolutionary for treatment of some cancers, there
are still challenges related to the heterogeneity between individuals in addition to the development
of resistance to targeted therapy. Furthermore, finding effective treatments predicted from specific
single-markers for most cancers has not been trivial [9]. A more realistic strategy has been to collect
larger amounts of data for each patient in order to get a more complete profile of the individual patient
that can help predict the appropriate treatment option.

1.1.3 Drug screens

Shifting the current treatment system towards personalized medicine is both tedious and expensive.
Nevertheless, more cost and time-efficient methods exist. One such method is high-throughput drug
screens, where the need for intermediate biomarkers is bypassed by going straight to testing treatment
options on acquired patient cells. How the patient cells react to the drugs (drug responses) will then
help make informed decisions on what optional treatments are suitable for individual patients.

As tactics for personalized medicine are becoming more sophisticated and efficient, so are the
methods for analyzing them. Machine learning is becoming more widespread in biological medicine.
Machine learning a term describing the use of computers to detect patterns in data based on complex
mathematical and statistical methods [10]. Machine learning is becoming a powerful tool, in cancer
research particularly, as it can aid in areas like patient stratification and increasing accuracy for
treatment prediction is showing promise for making great advances in personalized medicine

2



1.2. Acute Myeloid Leukemia

1.2 Acute Myeloid Leukemia

Acute Myeloid Leukemia (AML) is a blood cancer affecting the myeloid lineage of cells marked
in orange in figure 1.1. The cancerous cells will limit the production of normal cells, causing
malfunctioning granulocytes and a lack of platelets and red blood cells [11, 12]. AML occurs in
both children and adults. However, the average onset of the disease is at 70 years of age in Norway.
Additionally, the average incidence of AML in Norway from 2011-2015 was 129 people per year
with a five-year survival rate ranging from 90% to 10% depending on underlying conditions, age and
severity of the disease [11]. AML usually arises as a de novo disease spontaneously, but can also
occur as a consequence of previous anti-cancer therapy [13].

Blood stem cell  

Myeloid 
stem cell  

Myeloblast 

Red blood 
cell Platelets 

Lymphoid stem cell  

Granulocytes 

Lymphoblast 

B-cell NK-cell 

T-cell 

Blood Cell  
Formation 

Figure 1.1: AML development: An overview of the development of blood cells from a blood stem
cell with the cells affected in Acute Myeloid Leukemia marked in the orange frame. Created with
BioRender.
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1. Introduction

AML is highly associated with large chromosomal rearrangements or aberrations. Apart from the
karyotypic abnormalities, AML is a highly heterogeneous disease genetically, with a large number of
mutations identified. Only a few mutations are found in more than 25% of AML patients, including
nucleophosmin (NPM1), Fms-related tyrosine kinase 3 (FLT3), and DNA methyltransferase 3A
(DNMT3A) [14]. Table 1.1 shows an overview of key genetic abnormalities found in AML and their
incidence [15]. This overview illustrates the vast heterogeneity and complexity of AML.

Table 1.1: Heterogeneity of AML: An overview of key genetic subgroups detected in AML, and their
incidence, illustrating the complex heterogeneity of AML. The table is based on a study conducted by
Papaemmunuli et al in 2016 containing 1540 patients [15].

AML genetic subtype Incidence

NPM1 mutation 27%
Mutated chromatin, genes involved in RNA splicing or both 18%
TP53 mutations, chromosomal aneuploidy or both 13%
Driver mutations but no other class-defining lesions (FLT3, DNMT3A) 11%
Inversion(16)(p13.1q22) or t(16;16)(p13.1;q22) resulting in CBFB-MYH11 5%
biallelic CBPA mutations 4%
t(15;17)(q22;q12); PML-RARA 4%
t(8;21)(q22;q22) RUNX1-RUNX1T1 4%
MLL fusion genes t(x;11)(x;q23) 3%
inv(3)(q21q26.2) or t(3;3)(q21;q26.2); GATA2, MECOM (EVI1) 1%
IDH2 mutations 1%
t(6;9)(p23;q34); DEK-NUP214 1%
no detectable driver mutations 4%

1.3 Treatment of AML

Although certain systems have been implemented to stratify AML patients into risk groups, the
treatment still remains largely the same. The common practice in Norway is providing a standard
treatment to all patients regardless of their risk group or underlying genetic background. The standard
treatment in Norway is a combination treatment regimen consisting of a 100-200 mg/m2 Cytarabine
intravenously around the clock for 7 days followed by a three-day treatment of 60mg/m2 Daunorubicin
(see figure 1.2). This treatment regimen is repeated over six months with a three to four-week rest in
between treatments [16].

Cytarabine is an analogue to cytosine and acts as an antineoplastic agent by inhibiting DNA
synthesis [17]. Daunorubicin is an antibiotic and cytotoxic agent that inhibits DNA replication, DNA
repair, RNA synthesis and protein synthesis [18]. As both agents used in the standard treatment of
AML have a very broad mechanism of action, they can also be considered toxic agents as they target
both cancerous and healthy cells.

There has also been a practice of additional treatment of bone marrow transplantation. The bone
marrow transplantation can be either heterologous (from another person, preferably unrelated) or
autologous (healthy hematopoetic stem cells are purified from the patient themselves). The bone
marrow transplant can only take place if the patient is under 70 years of age and does not have any
underlying health condition that might affect the treatment, and is still associated with high mortality
[19]. Both treatments also require close monitoring as well as supportive treatments of supplementary
red blood cells and platelets in addition to treatment of infections [19].
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3 days of 
60mg/m 2 

daunorubicin 

7 days of 
24 hour 
treatment 
with 
100-200 
mg/m 2 

cyterabine 

Bone marrow transplant from 
unrelated donor. Highly 
dependant on the patients 
health and age. 

AML treatment regimen in Norway 

Standard 

Optional 

Figure 1.2: Treatment of AML: A simplified overview of the treatment regimen of AML in Norway.
The standard treatment is repeated over 6 months in four-week intervals. Created with BioRender.

A special subgroup of AML, acute promyelocytic leukemia (APL), recieves an alternative treat-
ment to AML. APL patients recieve All-trans-retinoic acid (ATRA, tretinoin, or Vesanoid) or arsenic
trioxide (ATO, Trisenox). APL needs a different therapy, as the blast cells affected by APL contain
proteins that when released into the blood stream cause severe clotting, and is thereby not suited for
cytotoxic chemotherapy [20].

In cases of relapse post treatment there have been some experimental use of second line drugs like
the Bcl-2 inhibitors Navitoclax and Venetoclax. Both drugs can work in some cases, but have severe
side effects including neutropenia (low white blood cell count) and thrombocytopenia (low platelet
count). Navitoclax is closely related with thrombocytopenia and is thereby dose restricted, Venetoclax
on the other hand is showing more promise but is not commonly used in the clinic for AML [21].
There are also clinical trials using targeted therapy for specific genetic markers like Gemtuzumab
ozogamicin for mutations in CD33, Ivosidenib for IDH1 gene mutation and Enasidenib if the AML
cells have an IDH2 gene mutation [22]. Furthermore, clinical trials have been conducted in Norway
using immunotherapy [23]. Regardless of the second line and alternative treatments, most AML
patients still receive the standard treatment of Cyterabine and Daunorubicine.
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1.4 Problems Associated With Standard Treatment

With the standard treatment mentioned above the average five year survival of AML patients is
roughly 50% [11]. Nevertheless, most patients are put on the standard treatment regimen in hopes
that it will cause them to go into remission. Regardless, the standard combination therapy has a long
list of side affects including[24]:

1. hair loss

2. fatigue

3. dry mouth

4. loss of appetite

5. low red and white blood cell counts

These side effects can take a toll on all patients, especially the elderly or the ones with underlying
health conditions [19]. Furthermore, the low cell counts of red and white blood cells are often
accompanied with a high increase in risk of infections in addition to other side effects. Worryingly,
the current treatment strategy can cause death, either directly from the severe the side effects, or as a
secondary effect from infects manifesting in the absence of white blood cells[24].

As mentioned in section 1.1, the standard treatment is based on superficial similarity between
patients and not the actual drivers of the cancer in the individual patients. Additionally, the current
treatment regimen uses unspecific cytotoxic drugs, killing both healthy and cancerous cells. As the
diversity in the genetics of AML patients is so vast, the response to the standard treatment is also
highly variable. Although there are screening methods to find markers (see section 1.5) that can aid
in assessing the potential success of the standard therapy, or finding another therapeutic option, the
current practice still involves a certain element of guesswork. As there is uncertainty related to the
standard treatment, elderly patients and patients with other severe health conditions are often put on
palliative care as a last resort [19].

Even tough patients are fit for the standard treatment, it is not only extremely demanding for the
body, but is also mentally challenging. The current treatment combination requires long hospital
stays, both during treatment and often for observation in relation to the side effects post treatment.
The amount of hospitalization limits the patient’s social contact with family and friends, which can
be isolating and lonely for any individual. However, the current treatment regimen attempts to allow
patients to have as much time at home as possible due to the intervals of treatment [19]. Regardless,
putting all patients thorough this physical and mental strain that could increase probability of death is
not optimal. There must be a way to determine at an earlier stage whether patients should undergo
the standard treatment regimen, so that the patients who do not have effect from the treatment, can be
spared from undergoing this demanding process.

1.5 Approaches to Diagnosing Patients with Higher Precision

The common practice for diagnosing AML in Norway is mainly based on a blood test and a bone
marrow biopsy. The blood test is used to determine the cell count of the various blood cells in addition
to platelets and whether immature blood cells are present in the blood [25]. The bone marrow is used
to do a haematological study in order to determine the blast count. The AML diagnosis will be given
in cases where the blast count is more than 20 % (with the exception of AML with t(15;17), t(8;21),
inv(16) or t(16;16)) [26]. In later years the bone marrow biopsy has also been used for genetic tests in
order to determine how the patient will respond to the standard treatment.

As haematological and morphological studies of blood or bone marrow can offer challenges to
correctly define what type of leukemia is present in a patient, there has been an increasing use of
other prognostic tools to more accurately diagnose patients [25]. These tools allow for more detailed
information about the cancer based on genetics, immunology and so on. It is also worth mentioning
that the current development of diagnosing cancer is leaning towards separating the cancer into
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smaller and more specific cohorts in relation to biomarkers, like specific insertions/deletions, single
nucleotide variants of chromosomal translocations. [27]. Concurrently, there is a growing challenge
with the increasing amount of information to extract which markers are relevant for treatment choice.
This more narrow classification approach reflects the current trend in drug development, where
drugs with highly specific targets are in focus. Concurrently, the increasing amount of information
poses a growing challenge when it comes to extracting which markers are relevant for treatment
choice. Döhner et al has written a review on the various diagnosis techniques used in AML [26]. The
remainder of this section will discuss a few of these techniques in short in correlation with Döhner’s
descriptions.

1.5.1 Immunophenotyping

Immunophenotyoing of acute leukemia is used not only for assessing the correct diagnosis, but
also to assess the patients into risk groups (see section 1.6 in addition to measuring the residual
disease post treatment. Immunophenotyping uses flow cytometry with a large group of selected
markers (usually clusters of differentiation markers) in order to measure and detect a large variety
of physical and chemical properties of the AML cells. Immunophenotyping can be used to separate
three types of acute leukemias: AML, ALL and acute promyelocytic leukemia (APL). Furthermore,
immunophenotyping can be used to detect subgroups within all three classes, in AML these include
with AML minimal differentiation and AML with granulocytic or monocytic differentiation [5].

1.5.2 Cytogenetics

Cytogentics is the study of chromosomes and is thereby used in AML diagnosing to determine if
there are chromosomal abnormalities present in the bone marrow, which in turn can affect prognosis.
For instance cytogenetics is often used to determine whether the cancer has a complex karyotype or a
monosomal karyotype, as these variants are associated with a very poor prognosis [28] . Additionally,
fluorescence in situ hybridization (FISH) can be used to further study the cytogentics on a molecular
level to detect specific fusion genes, translocations and other rearrangements. FISH is especially
useful for detecting minimal residual disease after treatment [28].

1.5.3 Molecular genetics

In certain cases molecular genetics techniques, such as reverse transcriptase–polymerase chain
reaction (RT-PCR), can be used to identify mutations associated with high-risk prognosis in order
to determine whether patients should receive palliative care instead of unspecific chemotherapy.
Examples of such high-risk genes are NPM1, CEBPA, and FLT3. As these genes are associated
with high risk, there is ongoing research to find effective inhibitors for them. For instance there is
extensive research to find and improve FLT3 inhibitors for AML treatment [29].

Standard procedure for diagnosis of AML in Norway involves all the above mentioned tests. Addi-
tional tests might be performed depending on underlying health risks. The diagnosis is usually set
two to five days after the medical examination has commenced [30].

1.6 Assessment of AML

Regardless of the large heterogeneity in genetic AML profiles, certain mutations and karyotypical
aberrations are components used to assess patients into risk groups through classification systems.
These risk classification systems can be used in order to determine whether the patient is fit for
standard treatment or whether the patient has a subtype of AML that will require an alternative
treatment. There are three main assessment systems: the French, American and British (FAB)
classification system, its successor, the World Health Organization (WHO) classification system and
the 2017 European LeukemiaNet (ELN) system. However, it is important to note that the WHO
system is more commonly used as a diagnostics tool. There are other classification systems for risk
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assessment of AML as well, however these are not relevant for this thesis and will therefore not be
discussed.

1.6.1 The FAB classification system

The FAB classification system was developed in the 1970 as a joint effort between seven French,
American and British haematologists [31]. Due to its time of invention the FAB classification
technique is largely based on the morphology of cells studied under the microscope after staining.
The system was originally based on six subgroups but with the advances of immunological markers
two new subgroups were added [32]. The current FAB system can be seen in 1.2 [33].

Table 1.2: FAB classification system: The names of the seven subtypes of AML in the FAB
classification system alongside their names and association with prognosis compared with the average
in AML[34].

FAB subtype Name Prognosis compared to AML average

M0 Undefferentiated acute myeloblastic leukemia Worse
M1 Acute myloblastic leukemia with minimal maturation Average
M2 Acute myloblastic leukemia with maturation Better
M3 Acute Promyelocytic leukemia Best
M4 Acute myelomonocytic leukemia Average
M4 eos Acute myelomonocytic leukemia with eosinophilia Better
M5 Acute monocytic leukemia Average
M6 Acute erythroid leukemia Worse
M7 Acute megakaryoblastic leukemia Worse

The FAB system is used for assessing risk in patients to determine whether they should have
standard treatment or whether they should be put on palliative care. However, it also aids in
identification on subgroups who should receive alternative treatments[35]. An example of this
is the subgroup M3 or APL (which was discussed in section 1.3). APL patients have the best
prognosis of all AML subtypes if detected early, but prognosis can severely worsen with delayed
detection [20].

1.6.2 The WHO classification system

Like the FAB classification system, the WHO system aims at dividing AML into subgroups based on
morphology. However, as the WHO system was developed in 2001 and later revised in both 2009
and 2016, it takes into account other factors that we know affect prognosis today, such as mutations,
genetic and chromosomal abnormalities[36]. The WHO system is much more detailed than the FAB
system. It is based on dividing AML into large classes with highly specific subgroups. The subgroups
in the WHO system can contain a few mutations, or very specific chromosomal translocations. The
four main classes of the WHO system are listed in table 1.3 [37] . Each main group has multiple
subgroups based on genetic abnormalities [34]
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Table 1.3: The WHO classification system: An overview of the four main WHO classes for AML,
their characteristics and their incidence [34, 37].

WHO class Characteristics Incidence

1 AML with recurrent genetic abnormalities 30-40%
2 AML with multi-lineage dysplasia 10-15%
3 AML and myelodysplastic syndrome, therapy related 5-10%
4 AML, not otherwise categorised 30-40%

After assessing the specific subgroup of leukemia, these classes can further be used to determine
the prognosis for the individual patients. The prognosis set by the risk classification systems will,
alongside factors such as age and underlying health conditions, in turn decide whether the patient is
suited to undergoing treatment or if he/she should be put on palliative care [34].

1.6.3 The ELN system

The European LeukemiaNet, an international expert panel, attempted to make a classification system
of AML based on findings from using previous classification systems such as WHO and FAB. The
ELN system was developed first in 2010 and later revised in 2017. As opposed to the WHO and FAB
systems, the ELN-system has very clear guidelines for how genetic abnormalities should be associated
with risk [38]. However, the system does not take into account co-occurring genetic abnormalities.

1.7 Ex Vivo Drug Screens

An ex vivo drug screen is a tool that aims to identify novel or approved drugs with patient-specific anti-
cancer properties for possible personalized treatment. It is most commonly used in myelodysplastic
syndromes (MDSs) and AML due to the heterogeneity of these cancers [39].Ex vivo drug screens
are based on isolating cells from patient material before adding the cells in well plates. The cells are
dispensed in equal amounts in each well, and drugs will be added in a set concentration range. The
cells will be counted in order to determine changes in growth in response to the drug (see figure 1.3
and chapter 2 for further explanation).

Drug sensitivity can be measured in multiple ways, however the common practice is using Hill
equations to fit a dose response curve to the data. Followingly, a variety of metrics can be used to
determine drug sensitivity: inhibitory concentration 50 (IC50), effective concentration 50 (EC50) and
area under the curve (AUC) are the most commonly used (see figure 1.3).

IC50 describes the half maximal inhibitory concentration, EC50 describes the half maximal
effective concentration and AUC describes the entire area under the fitted dose response curve [40].
The different drug sensitivity metrics describe different qualities related to drug sensitivity and which
metric to use depends on what you desire to study.

IC50 and EC50 both describe differences in sensitivity based on the dosage, but they do not
explain the effect a drug has on cell growth. Additionally, neither IC50 nor EC50 for responses
with differing maximal inhibitory effects. However, if drug responses share the same potency across
patient samples both the IC50 and EC50 can be used to compare the change in patient sensitivity.
Further, the IC50 has little validity for describing responses that have a lower potency and it can only
be used in cases where responses go below 50% [40].

AUC, on the other hand, will detect both changes in doses sensitivity and maximal potency for a
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drug. Additionally, AUC as a measure of drug-sensitivity has been reported to yield a higher degree
of reproducibility in screens when panels of drugs and cell lines are compared across independent
studies. Furthermore, it has been reported that when comparing AUCs across studies using different
concentration ranges it is beneficial to adjust the integration interval [41].

Additionally, it is also common to use the differential integral between drug responses from
healthy cells (or donors) and drug responses from cancer cells (or patients) to adjust the AUCs for
non-cancer specific drug toxicity. This is sometimes referred to as selective drug sensitivity score
[42]. In a seminal paper on ex vivo drug sensitivity screening of AML by Pemovska et al. they also
reported to adjust the integration range to cover 10-100% of maximal inhibition [42].

Ex vivo drug screens are not commonly practised in the clinic, but can often be a component of
clinical trials as a precision medicine approach. In the trial setting they can be utilized to determine
which drug is best suited for a patient, or to study the effects of drugs in development on patient
cells based on the cells’ responses. In addition to patient cells, healthy donor cells are also included
in the ex vivo drug screen as reference point to determine whether the drugs are toxic or cancer
specific. Despite its usage in clinical trials and in drug exploration, little is known about the extent of
information from an ex vivo drug screen that can be extrapolated for clinical application.

10



1.8. The Current Tactic for Drug Development

Calculate drug response 

IC50 EC50 AUC 

Drug concentration 

 C
el

l 
re

sp
on

se
/v

ia
bi

lit
y 

IC50 

Drug concentration 

 C
el

l 
re

sp
on

se
/v

ia
bi

lit
y 

EC50 

Drug concentration 

 C
el

l 
re

sp
on

se
/v

ia
bi

lit
y 

AUC 

Figure 1.3: Ex vivo drug screen:A simplified illustration of an ex vivo drug screen. In AML, mono
nuclear cells are isolated from patient tissue (either bone marrow or blood). These cells are a mixture
of healthy and cancerous cells as indicated by the blue ring. The cells will be transferred into a
well plate in with an equal amount of cells in each well. A large variety of drugs in a range of
concentrations can subsequently be added to the wells of the plate. The plate will thereafter be
analyzed by performing a cell count in each well to asses the cell response, to the added drugs. The
drug responses can be evaluated in various ways, the lower right square shows examples using IC50,
EC50 and AUC. Created with BioRender.

1.8 The Current Tactic for Drug Development

Historically there have been great advancements in cancer therapy, from the early days where the
only treatment was surgery, to the discovery of radiation therapy, moving towards chemotherapeutic
compounds to present day where immune therapy and precision medicine is the main focus[43].

The goal of precision medicine is to take into account individual variability in relevant cancer
markers, in order to accurately predict which treatment options will work. The aim of this treatment
tailoring is to create drugs that target mutations specific to subgroups identified on the basis of
"common heterogeneity". The process of studying drug effects on the premise of the genetic
background of subgroups is referred to as pharmacogenomics [9].

The focus in drug development is on highly specific drugs targeted to a few mutations in relation
to a disease. Additionally, there is an increasing focus on developing drugs towards conditional cancer
dependencies, entailing that drugs are developed against targets ,or factors, that are conditionally
important for growth and viability of the cancer cells [4]. Further more, there is an increasing use of
immunotherapy in AML, for instance using monoclonal antibodies, Alirocumab and Evolocumab,
developed for treatment of diseases caused by the gene PCSK9 [44]. The current trend is thereby
moving away form the previous use of chemotherapy where unspecific drugs kill both healthy and
cancerous cells.
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1.9 Applications of Machine Learning in Cancer Biology

Machine learning is a term describing the use of statistics and computer algorithms to learn patterns
in data or finding predictive relations between sets of observations [10]. Machine learning is typically
categorized into two groups, supervised and unsupervised learning, see figure 1.4.
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Figure 1.4: Machine Learning:An illustration of how machine learning encompasses both supervised
and unsupervised learning with examples of techniques for both subgroups. Created with BioRender.

Supervised learning is concerned with optimizing, or training, models for maximizing prediction
of measurable outcomes or target variables from other sets of variables. Techniques for performing
supervised learning include linear and logistic regression, decision trees, support vector machines
and neural networks (deep learning). Supervised learning can for instance use neural networks for
image classification [45], tree models for diagnosing COVID19 based on chest X-rays[46] or Cox
regression for survival predictions in breast cancer patients [47].

Unsupervised learning on the other hand, involves finding low-dimensional patterns or differ-
entiable classes in high-dimensional data through the use of various clustering techniques, such as
hierarchical clustering, k-means clustering or principal component analysis (PCA). Unsupervised
learning can for example be used to determine aggressive phenotypes of prostate cancer using hierar-
chical clustering [48] or to determine genetic ancestry based on single nucleotide polymorphisms
(SNPs) by PCA [49].

The application of machine learning in cancer research is gaining momentum due to the increased
focus on personalized medicine in addition to the advantages of machine learning in clinical forecast-
ing and patient diagnostics. Machine learning in clinical cancer research is mainly focused on two
key issues [50]:

1. Prediction: Forecasting survival, prognostics, and treatment selection

2. Inferences on disease relevant biological mechanisms, often to aid further drug development
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An example of forecasting is the use of Cox regression to predict survival from genomic aberra-
tions in chronic lymphocyte leukemia [51]. An example of inference is doing whole genome sequenc-
ing on blood to determine mutations associated with development of haematological cancers using
the Genome Analysis Tool-Kit, GATK, a set of bioinformatic tools for analyzing high-throughput
sequencing [52].

1.9.1 Forecasting

Forecasting is a term used in machine learning referring to predicting future outcomes based on data
explaining the past (hence weather forecast and not weather prediction). In oncology forecasting has
a wide array of application areas but the main focus is on forecasting survival, relapse and treatment
response. The main goal is to eliminate guesswork in the clinic to relieve patients of unnecessary
treatment, hospitalization and tests.

Forecasting can use a wide array of machine learning techniques, but the main challenge is
choosing the right one. One of the unique challenges of performing prediction and inference from
biological data is the large inequality between numbers of variables measured over number of samples.
For instance, various omics measurements, such as RNA sequencing or genomic profiling on a given
patient can range in the thousands of individual makers. However, the number of patient samples
in any given study is generally low. Thus, finding a generalizable pattern or subset of predictive
covariates is an inherent challenge.

1.9.2 Inference

In addition to predicting treatment outcome and selection of appropriate therapy, a fundamental
concern of machine learning in cancer precision-medicine is to derive and understand the predictive
biological relations or mechanisms to aid the development of new drugs/therapies (as seen in the
lower part of figure 1.5). For any given model used in cancer medicine, interpretability is critical,
such that inferences can be made about which variables are important for a prediction and what they
mean.
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Figure 1.5: Machine Learning in cancer research:An example of the applications of machine
learning on omics data from cancer patients separated into forecasting and inference. Created with
BioRender.
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Finding relevant drug-sensitivity related patterns in cancer data (genomics, transcriptomics etc.)
is an inherent challenge due to the high degree of variability and presence of confounders in cancer,
in combination with the commonly low sample size. The advent of high-throughput drug-screens is
overstepping this challenge by directly characterizing drug sensitivity profiles of individual cancer
samples, and thereby skipping identification of markers as well as expensive tests. However the
problem of a large number of variables in relation to a reduced sample size still holds true for more
direct methods like high-throughput drug screens.

1.9.3 Problems associated with machine learning on biological data

There is a problem in cancer biology in terms of finding generalizable patterns or subsets of predictive
covariates on biological data due to the variable-to-sample size problem. Increasingly complex
models, containing high numbers of variables, are more prone to what is known as over-fitting, which
is the condition where a model has high predictive accuracy on its training data, but low accuracy
on new data. This is related to something known as the bias-variance trade-off. The bias-variance
trade-off is the phenomenon of when the complexity of a model increases, the bias will be reduced
and the variance will increase. Both bias and variance contribute to prediction error, however low-bias
high-complexity models can over-fit the few sample points that exists in a low sample size context and
thus will have high sensitivity to sampling variance. Such models lack generality and thus have low
predictive accuracy on new observations (1.6). Selecting a less complex model, like linear regression,
tend to be more predictive when the sample variance is low.

In addition to choosing high-bias models, removing or reducing non-predictive covariates, a
process known as variable selection, is also a common strategy to counter over-fitting. A widely used
method to reduce complexity is by penalizing the total magnitude or number of correlations that can
be trained in the model during the optimization procedure. This process is known as regularization.

However, the most important aid to maximize predictivity is to have as much data as possible
so that the model can be trained on a sample, which represents the true diversity within possible
future observations, as best possible. The data acquisition is the main bottleneck in machine learning,
especially in biology due to the cost and time it takes to produce it as well as limited access to patient
samples.

Finally, a disadvantage of high-complexity models is their lack interoperability and reduced
ability to make inference. For example a high complexity model like a neural net with high numbers
of non.linear relations through the so-called hidden layer can often be challenging to interpret.
Advantages of linear models include the direct interptretability of the regression coefficients.
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Figure 1.6: An illustration of the bias-variance trade-off: A models complexity (x-axsis) is highly
associated with bias and variance. Both bias an variance contribute to prediction error (y-axis) on
training and test data. Less complex models are associated with high bias and low variance as simpler
generalizations within the training data are made. The prediction error in both the training (blue) and
test (orange) data tend to be high for low complexity models. More complex models on the other
hand will be associated with low bias and high variance. High complexity models tend to be prone
to overfitting on the training data and do poorly on new observations (test data). The key is to find
a model that has the correct complexity to minimize the error for the test data in order to optimize
prediction, here indicated by the stapled line. Created with BioRender.
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1.10 Scope of the Study

This study aims to answer the following questions:

• What information can be extrapolated from an ex vivo drug screen for clinical application? And
to what extent can it be used to forecast patient survival?

• Can an ex vivo response correlate with a clinical response to a drug?

• Can information from ex vivo drug screens be used to stratify patients into treatment groups?

• Can we make inferences about the mechanisms of AML disease progression based on clinically
predictive information in ex vivo drug screens?

The experiments and analyses were conducted at the Departement of Molecular Cell Biology in
Jorrit Enserink’s group, Cancer Molecular Medicine, at the Norwegian Radium Hospital.

1.11 Outline

The master’s thesis has been organized in the following manner:

Chapter 2 provides an in depth explanation of the methods and materials used for experiments and
analysis.

Chapter 3 presents the results from the analyses of the ex vivo drug screen and clinical data as well
as the results from exploration of drug target networks.

Chapter 4 discusses the results that are presented in Chapter 3 with consideration of prior studies.

Chapter 5 Presents the conclusions drawn based on the obtained results. Furthermore, future
perspectives of the project are presented.

Appendix A contains supplementary methods

Appendix B contains supplementary results

Bibliography.
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CHAPTER 2

Materials and Methods

The following chapter describes methods and materials utilized in the study. All data preparation and
the drug screen were performed by Pilar Ayuda-Durán, PhD before my time in the lab commenced.
The experimental methodology is briefly described in section 2.1.2. Every analysis from 2.1.3 and
onward have been executed by me using the statistical programming environment R (version 3.6.2
GUI 1.70 el capitan build) and RStudio (version 1.2.5033). At the end of this chapter there is a table
containing information about the R packages used, their version and for which method they were
used.

2.1 Data Preparation

2.1.1 Obtaining data

To answer the aims of this study the two following datasets were used:

1. Drug Screen data previously generated in the Enserink lab testing 349 drugs from the Selleck
Anti-cancer Compound Library (see A) on 119 AML patients. This dataset will henceforth be
referred to as the DS-dataset.

2. Clinical data covering survival, gender, mutations and age as well as other clinical variables (see
B) were generated at the department of Hematology at Oslo university hospital. The Clinical
data covered 210 patients. The clinical data will henceforth be referred to as the clinical dataset.

In the DS-dataset the patients included are all AML patients who have been diagnosed and treated
at the Department of Hematology at Oslo University Hospital in Norway. All 119 patients have
had bone marrow samples collected after signing a written informed consent form. The ethical
review board (REK Sør-øst 2015-1012) has approved the study in accordance with the Declaration of
Helsinki [53].

The clinical dataset was obtained in cooperation with Yngvar Fløisland, PhD head physician at
the department of Hematology at Oslo university hospital. All clinical data was anonymized prior to
leaving the clinic according to Norwegian laws concerning general data protection regulation (GDPR)
and the Norwegian patient registry regulation (NPR) [54, 55].

2.1.2 Clinical samples and Drug screen

The bone marrow derived blast cells were purified from the patient samples by gradient centrifugation
using Lymphoprepa ™(Stemcell )before culturing in Mononuclear Cell Medium (PromoCell) that
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had been supplemented with 100 units/ml Penicillin and 100 µg/mL streptomycin. Followingly,
10,000 cells per 25 µL were dispensed in a 384-well plate (Greiner Bio-One) by a Multi Drop Combi
peristaltic dispenser (Thermo Scientific) (if cell counts were low, fewer cells were used without a
noticeable change in the outcomes of the experiment). Subsequently, the cells were treated with
compounds from the Selleck Anti-cancer Compound Library consisting of 349 compounds with
anti-cancer properties (see A). Each compound was dissolved in DMSO before being dispensed in
the 384-well microplate using an Echo 550 (Labcyte Inc.) at the Biotechnology Center of Oslo. The
compounds were dispensed in five concentrations covering a 10,000-fold concentration range from
1 to 10,000 nM. The only exception was VPS, which was dispensed at 100 mmol/L to 1 mmol/Ll.
DMSO was added as a negative control and BzCl served as a positive control. The plates (seven per
patient) were then incubated for 72 hours at 37°C in a 5% CO2, humidified environment. CellTiter-
Glo illuminecent assay (Promega) was used to assess cell responses with an EnVision 2104 Multilable
plate reader (Perkin Elmer). The final readouts were measured in counts per second (CPS) [56].

2.1.3 Outlier identification and removal

In order to ensure the quality of the results, patients with a median log10(CPS) under 7.5 were removed
from the DS-dataset. After removal of outliers, 55 patients overlapped between the DS-dataset and
the clinical dataset.

2.1.4 Normalization to BzCL and DMSO

The CPS of CellTiter-Glo illuminecent assay (Promega) is a quantitative measure of the relative ATP
levels in a given well and serves as an alternate measure for the number of viable cells. To measure
the drug responses as a relative change in cell growth, all CPS values were normalized to the median
CPS of the positive control (BzCL) and the negative control (DMSO) using the following formula:

ResponseNormalized =
CPS−median(CPSBzCL)

median(CPSDMSO)−median(CPSBzCL)
(2.1)

All negative response values were adjusted to the lowest positive value in each plate.

2.1.5 AUC calculation, log-transformation and standardization

The drug sensitivity was measured as the area under the curve (AUC) of the dose responses for every
drug-patient combination using the function below:

AUC =
m

∑
d=2

Responsed(log10(Cd)− log10(Cd−1))

log10(Cm)− log10(C1)
, (2.2)

where Cd indicates a specific concentration of a drug, ranging from the lowest concentration d = 1
to the highest concentration d = m.

The AUCs were transformed to fold drug sensitivity, −log2(AUC), such that a value of -1 would
be a halved population and a value of 1 would be a doubled population over the integration interval of
the AUC.

Both drug sensitivty scores, AUCs and -log2 transformed AUCs were also standardized over the
55 patient samples using the following formula:

Zi =
Xi−mean(X)

sd(X)
, (2.3)

where Xi is the input drug sensitivity score for patient i, and mean(X) and sd(X) is the mean and
standard deviation of a drug sensitivity for a given drug over the patient population. Thus, Zi represents
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a standardized drug sensitivity score for patient i, where the Z-scores for each drug are distributed
with zero mean and standard deviation of one.

2.2 Regression and Work With Regression Coefficients

2.2.1 Cox proportional-hazard model

To predict patient survival we used the Cox proportional-hazard model, also known as Cox regression,
on the different drug sensitivity measures and the clinical data. Cox regression is a form of linear
regression that can investigative the effect a magnitude of variables has on a timed event. In our case
the event is death. The survival times were computed as the time from first registered visiting date in
the clinic, until the registered date of death. The last recorded visiting date was used for censoring
surviving patients.

The Cox regression uses a hazard function, h(t|Xi), to model how change in a baseline risk for
death at time t, h0(t), changes as a function of some covariates Xi for patient i,

h(t | Xi) = h0(t)exp(β1Xi,1 + ...+βpXi,p) = h0(t)exp(β ·Xi) = h0(t)θi. (2.4)

Here β are the regression coefficients that represent a change in log-hazard ratio as function of a
drug sensitivities X . A positive coefficient indicates that sensitivity to a specific drug is negatively
associated with survival by increasing the likelihood of dying. Likewise a negative coefficient
indicates the opposite, and zero indicates no relation between a variable and survival.

Given the model and input variables Xi the likelihood of death occurring for patient i at its true
time of death Ti, over the set of patients (indexed by j), who are still alive and still in the study (not
censored), is given by

Li(β ) =
h(Ti | Xi)

∑ j:Tj≥Ti h(Ti | X j)
=

h0(Ti)θi

∑ j:Tj≥Ti h0(Ti)θ j
=

θi

∑ j:Tj≥Ti θ j
. (2.5)

If the hazard-ratio θi > 1, the likelihood of death for patient i will be greater than the baseline
probability.

2.2.2 Univariate Cox regression on clinical data

To test for survival association within clinical variables we used univariate Cox regression. Mutation
and chromosomal abnormalities were encoded as binary variables. Prognosis, WHO-class and FAB-
class was represented as binary dummy variables. Age was represented as birth year and gender was
represented binary where the baseline, zero, represented male and one represented female.

2.2.3 Model testing and concordance index

In order to objectively compare different models we split the data into a training set and a test set. The
training set is designated for training the models. The test set is used to assess the predictive accuracy
of the models on unobserved data. The test set approach gives a clear indication of how the models
will perform in prognostic forecasting on new patient data. The data was randomly separated into a
training set of 45 patients and a test set of 10 patients. The proportions of alive and dead patients
were maintained from the original dataset, such that the test set always contained four and six patients
respectively. This randomized splitting into training and test data was performed 200 times for each
model to test predictive accuracy on data with different sample compositions.

The predictive accuracy on test data was scored with a concordance index (C-index). The C-index
measures the fraction of patient pairs in the test data where the patient with lower survival time is
also predicted with higher risk. The C-index is calculated using the equation
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C-Index =
∑i j 1Tj<Ti ×1θ j>θi ×δ j

∑i j 1Tj<Ti ×δ j
, (2.6)

where i and j are patients, T is the survival time, θ is the hazard-ratio associated with the patients,
and δ j is a binary variable where δ j = 1 indicating that patient j died. The C-index will thereby be
an output between zero and one. A model that perfectly predicts the outcome for all patients will
provide an output equal to one. A model that incorrectly predicts the outcome for all patients will
have an output equal to zero. A C-index of 0.5 is thereby equal to random guessing.

2.2.4 Training

To train the Cox model, the partial likelihood function is maximized with respect to the regression
coefficients:

argmax
β

L(β ) =
n

∏
i=1

Li(β ), (2.7)

which is equivalent to minimizing the negative log-partial likelihood function

argmin
β

− l(β ) =−
n

∑
i=1

(β ·Xi− log( ∑
j:Y j≥Yi

exp(β ·X j))). (2.8)

2.2.5 Regularization and cross-validation

In datasets with a high number of covariates p compared to sample size n, overfitting the model to the
training data is a high risk. This can be countered by restricting the total magnitude, or number of
coefficients, that can be trained, by penalizing the sum magnitude of β -values during the optimization
process, thus constraining the maximum achievable model complexity. This is called regularization
and works by adding a penalty term to the negative log-likelihood function that is minimized. If the
penalty is on a sum of squared β -values, it is called L2-regularization, and the following function is
minimized:

argmin
β

− l(β )+λ

p

∑
k=1

β
2
k . (2.9)

If the penalty is a sum of absolute β -values, it is called L1-regularization, and the following
function is minimized:

argmin
β

− l(β )+λ

p

∑
k=1
|βk|. (2.10)

The constraining of the model training is determined by size of the λ -parameter, which is selected to
maximize prediction accuracy in unobserved data. Linear regression with L2-regularization is known
as Ridge regression, and linear regression with L1-regularization is known as Lasso. The fundamental
difference between the two methods is that Lasso will shrink coefficients of non-predictive covariates
to zero, and thus works as a variable selection technique. On the other hand Ridge regression only
shrinks the magnitude of the coefficients towards zero, and tends to maintain better predictive accuracy
compared to Lasso. Lasso will usually shrink the model to a number of covariates less than the sample
size n, regardless of whether more covariates have predictive relations to the target variable.

An intermediate method to Ridge regression and Lasso, called elastic-net uses, both the L1 and
the L2-penalty, which are weighted with an α-parameter:

argmin
β

− l(β )+λ ((1−α)/2
p

∑
k=1

β
2
k +α

p

∑
k=1
|βk|). (2.11)
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Here α = 1 results in Lasso, and α = 0 results in Ridge regression. Elastic-net, with α-values between
0 and 1, also shrinks coefficients to zero, but tends to retain more non-zero coefficients compared to
Lasso, and thus is a softer variable selection method.

To optimize the regularized regression for prediction in unobserved data, the λ -parameter needs to
be optimized for prediction of out-of-sample data (non-training data). This was done by testing several
λ -parameters and selecting the best one, using leave-one-out cross-validation. In this procedure one
patient is retained from training dataset, and thereby the the model optimization, such that the model
is trained on 44 patients. Followingly, the prediction accuracy is evaluated on the one retained patient.
This splitting is iterated through the whole dataset, and the average prediction accuracy is computed
for that particular λ -parameter. The prediction accuracy was evaluated by the partial-likelihood
deviance

Devi
λ
=−2(li(β̂ (−i)(λ ))− l−i(β̂ (−i)(λ ))), (2.12)

where β̂ (−i)(λ ) are the model coefficients trained on the training data minus data from patient i,
using penalty λ . li(β̂ (−i)(λ )) is the log-partial likelihood for the left out patient i, and l−i(β̂ (−i)(λ ))
is the maximized log-partial likelihood for the model. The λ -parameter, which yields the lowest
Devλ = 1

n ∑
n
i=1 Devi

λ
, is selected.

2.2.6 Variable importance

To evaluate importance of each variable (drug sensitivity) on forecasting survival, models with one
variable (drug) taken out (p−1), were tested and scored using the C-index. The difference in mean
C-index from the complete model (p) was computed to score the change in predictive accuracy upon
retaining a drug.

2.2.7 Bootstrapping and t-test of regression coefficients

To statistically evaluate the associations between clinical outcomes and ex vivo drug sensitivities,
we estimated standard errors for the model coefficients through Ridge regression on bootstrapped
training data samples. Bootstrapping is a method which uses random sampling with replacement in
order to simulate sampling variability from the original data set. Regression coefficients, representing
the log-hazard ratio change for each drug sensitivity, were estimated from B = 200 bootstrapped
training datasets, of which the means and standard errors were computed. Statistical significance
in association between ex vivo drug sensitivity for drug d and survival was assessed through the
t-statistic

tβd

β̄d

s.e.(βd)
, (2.13)

where β̄d = 1/B∑
B
b=1 βd,b indicates the mean and s.e.(βd) = 1/B

√
∑

B
b=1(βd,b− β̄d)2 is the standard

error. A t-statistic above 1.96 or below −1.96 was considered statistically significant.

2.2.8 Quantile analysis

Patient drug sensitivity distributions were stratified into sensitivity quantiles of 25%, 50% and 75%.
The quantile would hold the top percentage of patients with the strongest responses to a given drug.
Based on the drug sensitivity cut-offs Kaplan-Meyer survival analyses were performed for the two
groups.

2.3 Hierarchical Clustering

Hierarchical clustering was done on the −log2(AUC) drug sensitivity matrix to study the relation
between the drugs as well as the patients. Euclidean distance measure and Ward-D2 clustering was
used. The Hierarchical clustering was visualized in a heatmap. The coefficients (log-hazard ratio
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change) of significantly associated drugs were indicated along the rows and mutations, whereas
gender and survival status were indicated along the columns.

To weigh the clustering by the forecasting potential of ex vivo drug sensitivities, the same
clustering was performed on a log-hazard ratio matrix, where the −log2(AUC) data was multiplied
with the Ridge estimated coefficients for each drug (X j,dβd , where Xj,d is the −log2(AUC) for drug
d and patient j and βd is the regression coefficient).

2.4 Generation of Drug Target Networks

Functional enrichment of drug targets and cell processes in the significantly associated drug sets
was assessed through projection and clustering of drug target networks. All experimentally verified
drug-drug target interactions were collected from the Drug Target Commons database, in addition to
those reported in the Selleck library (see A).

2.4.1 Drug Target Commons Database

The Drug Target Commons (DTC) database is a community driven web platform improving the
consensus on drug-target interactions. DTC contains information about compounds, targets and
bio-activities uploaded by a magnitude of labs globally. DTC covers:

1. over seven million compounds

2. over 13 thousand targets

3. Over 14 million bio-activities

2.4.2 STRING database

To map and cluster the enriched drug-targets based on functional relations we used interaction data
from the STRING database. The STRING database is a collection of protein-protein interactions, both
known and predicted. The interactions cover both direct/physical interactions and indirect/functional
interactions. The database covers over 24 million proteins across more than 5000 different organisms.
The data collected in the STRING database stems from:

1. High-throughput experiments

2. Genomic Context Predictions

3. Conserved Co-expression

4. Automated text mining

5. Previous knowledge collected in primary databases

2.5 UMAP of string data

All drug-targets were represented in a binary matrix with their reported string interactions, and
projected in two dimensions into functionally related clusters using Uniform Manifold Approxima-
tion and Projection (UMAP). UMAP is an algorithm used to do dimension reduction, similarly to
techniques such as t-SNE and PCA. UMAP is based on manifold learning techniques, meaning that it
is a non-linear dimension reduction technique.

We used the Pearson correlation coefficient as a distance metric and tested different number of
neighbours-parameters for the clustering analysis. Number of neighbours is used to determine what

22



2.6. GO-analysis

class a variable should be included in by looking at the nearest number of neighbours and determining
their clusters in order to cluster the variable in question[57] .

2.6 GO-analysis

Gene Ontology enrichment analysis (GO-analysis) was used to assess the optimal functional clustering
in UMAP in the distinct k-means clusters in the UMAP space. K clusters for the kmeans were set to
k=15 with approximately 50 drug targets in each cluster.

GO-analysis is used to study the enrichment in a set of genes. It can also be used to indicate
annotations on the gene set. The annotations are:

1. Molecular function (MF)

2. Biological Process (BP)

3. Cellular compartment (CC)

To select the optimal UMAP clustering, the UMAPs were scored by the number of enriched GO
terms and average −log(p− value) for the enrichment (using a Fisher’s exact test). To annotate the
drug target network, the most significant GO terms from CC, BP and MF for each respective cluster
were selected.

Drug localization in the drug target networks was computed by the Euclidean distance form all
targets related to a drug. Drugs were binary color-coded based on clinical association with drug
sensitivity (-1 representing association with negative prognosis, and +1 representing association
with positive prognosis). The Drug targets were color-coded based on the average binary clinical
association from all of the drugs reported to inhibit said target.

2.7 Packages in R

The table below is an overview over which packages have been used in R to conduct the methods
mentioned above. The table also provides information about where to find the citation for the
packages.

Table 2.1: R packages: An overview of packages used in this project, their version, what section
they have been utilized for and their citation

R-package Verison Used in section Citation

umap 0.2.6.0 2.4 [58]
org.Hs.eg.db 3.10.0 2.4 [59]
clusterProfiler 3.14.3 2.4 [60]
ChemmineR 3.38.0 2.4 [61]
STRINGdb 2.2.0 2.4 [62]
glmnet 3.0-2 2.2 [63]
survival 3.1-8 2.2 [64]
survminer 0.4.6 2.2 [65]
heatmap3 1.1.7 2.2 [66]

23





CHAPTER 3

Results

3.1 Assessment of Drug Screen Predictivity

3.1.1 Overview and pattern conservation

In order to assess the predictive potential of ex vivo drug screens in forecasting survival of AML
patients, a drug screen was performed on bone marrow and peripheral blood samples from a cohort
of newly diagnosed AML patients. All patients received the standard treatment of Daunorubicin
and Cytarabine and were followed up over a five-year period, during which disease progression and
treatment response was recorded.

The study comprised 210 patients with clinical metadata, mutation mapping and karyotype aber-
rations collected. Additionally, regular clinical assessment of AML through cytogenetic classification
using the WHO and FAB systems was included in the dataset for each patient.

The drug screen was performed on samples from 119 patients with a drug library of 349 anticancer
drugs from the Selleck Anti-Cancer Compound Library (see appendix B). Each drug was tested at
five different concentrations ranging from 1 to 10,000 nM. The drug screen was performed using an
ATP chemiluminescent assay yielding counts per second (CPS) value representing viable cell density
after 72 hours of drug treatment.

A total of five outliers were removed from the DS dataset on the basis that their median log10 CPS
was under 7.5. The overlap between the DS data and the clinical data resulted in a dataset consisting
of 55 patients with 385 variables: CPS for each drug at all five concentrations in the ex vivo drug
screen for all 349 drugs as well as the 36 variables from the clinical dataset, in addition to survival
status and time recordings from the patient cohort.

To confirm that the combined dataset with a reduced population had maintained a distribution
which was representative of the overall distribution of the original clinical dataset, Kaplan-Meier
plots were generated to investigate the two populations. The larger population of 210 patients from
the clinical dataset (figure 3.1b) exhibited an estimated overall survival of about 41% with the patient
longest included in the study recorded at 1835 days. The reduced population in the combined dataset
(figure 3.1c), used for the remainder of the study, was recorded to have an estimated survival of
roughly 43%, with the patient longest included in the study recorded to be 1079 days. The reduced
dataset thereby showed a distribution sufficiently conserving the patterns seen in the original dataset.

Ensuingly, the CPS values from the drug screens were normalized in accordance with the positive
and negative plate controls according to formula 2.1, resulting in a drug response representing
the relative change in growth. In order to score drug sensitivity, AUCs were computed from the
normalized dose-response curves for all 349 drugs used in the ex vivo drug screen. The AUC’s were
also -log2 transformed and standardized for individual patients. Cox regression was then used in
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order to predict survival from the different variables. In cases where the number of variables exceeded
the number of patients, regularization was used to counter overfitting and find the minimal predictive
patterns (see figure 3.1a for a schematic overview).
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Figure 3.1: Patient survival: (a) Overall survival from all 210 patients with clinically available
data involved in the study. The estimated overall survival is at roughly 41%, and the longest survival
time was recorded to be 1835 days. Ticks indicate last follow-up date. (b) Overall survival in the
55 patients with overlap in the two datasets. The estimated overall survival is roughly 43%, and the
longest recorded survival was 1079 days. Ticks indicate last follow-up date. (c) A schematic overview
of the process of assessing accuracy of AML patient survival prediction from ex vivo drug screens
and clinical data using penalized Cox regression.
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3.1.2 Survival association of clinical variables

In order to investigate the association of the individual covariates in the clinical dataset with patient
survival, we performed univariate Cox regression for all available variables. The regression was done
on the data including all 210 patients to increase statistical coverage. All covariates except birth
year were represented as binary variables, such that the reported regression coefficients indicated the
log-hazard ratio for the indicated variable, while for birth year it indicates the log-hazard ratio change
per year. A positive log-hazard ratio represents an increased probability of dying over the baseline
risk. To assess statistical significance, t-statistics were computed from the log-hazard ratios for all
clinical variables (figure 3.2.

The analysis showed that only three variables tested in the clinic had a statistical significance
associated with patient survival: WHO class 4, deletion in chromosome 20 and FAB class 4-5. All
three variables were associated with an increase in risk and thereby indicated a poor prognosis. Three
variables showed a weak tendency towards a negative association, or good prognosis: translocation
of chromosomes 9 and 11, FLT3TKD and year of birth. However, none of these variables were
significant. Additionally, for gender, with male representing the baseline risk, there was a slight, but
non-significant, tendency towards an increased risk for females.

Surprisingly, the doctors’ prognoses, which are based on cytogenetic data according to the ELN
system [38], all had non-significant associations with patient survival (figure 3.2).
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Figure 3.2: Statistical association of clinically available data and patient survival: Associations
are reported as t-statistics of log-hazard ratios (log-HR) where the direction indicates association with
risk. Significance thresholds 1.96 and -1.96 are indicated by the dotted lines for positive and negative
associations, respectively.
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3.1.3 Survival prediction from ex vivo drug screens

To optimize survival prediction from ex vivo drug screens, we tested multiple drug sensitivity measures:
AUC and −log2-transformed AUC. To predict patient survival, we used a multivariate Cox regression
model for all 349 drugs used in the ex vivo drug screen for the 55 overlapping patients. Penalized
regression (Ridge, Lasso or elastic-net) was performed because of the low sample size relative to the
number of drugs. In order to test the model on unobserved data, we randomly split the dataset into 45
patients for training and 10 patients for testing. The proportions between alive and dead in the training
and testing sets were conserved concerning the clinical data with 6 alive and 4 deceased patients in
every test set. The random splitting of the datasets and testing of the model were performed for 200
iterations. The models were scored on their predictive accuracy, using a concordance index (C-index)
that measures the fractions of correctly matched predicted risk and survival time for pairs of patients
(figure 3.3a.

Using Ridge regularized Cox regression, we found that all methods showed high predictive accu-
racy in the training set with a median C-index above 0.9. However, on test data the−log2-transformed
AUCs had the highest predictive accuracy with a median C-index just below 0.7. Furthermore, stan-
dardization significantly lowered the predictive accuracy of both drug sensitivity metrics. The
difference in predictive accuracy between the test and training data indicated substantial over-fitting
to the training data.

After deciding to -log2 transform the AUCs, we proceeded to study different regularization
techniques to overcome the problem of a large number of variables to a small number of samples
resulting in overfitting (the model is significantly more adapt to make predictions on the training data
than the test data seen in figure 3.3a). We therefore performed the same testing and training regimen
on the DS-dataset while testing different regularization techniques, by modulating the α-parameter
that scales between L2-penalty (Ridge) and L1-penalty (Lasso) (see section 2.2.5. An α-value of 0
equals Ridge regression, whereas an α-value of 1 equals Lasso regression. All α-values between 0
and 1 are called elastic-net. The prediction accuracy was then evaluated using the C-index (figure
3.3b.

We found that regularization using Lasso, or elastic-nets with stronger L1-penalties, caused a
reduction in predictive accuracy. Furthermore, there was little difference in the median C-index of
Ridge and elastic-nets with lower α-values.
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Figure 3.3: Model optimization: (a)Prediction accuracy was assessed for various drug sensitivity
measures by obtaining a median C-index in the testing and training datasets. (b) Prediction accuracy
was assessed for regularization methods by plotting α-parameters between 0 and 1 for the training
and testing datasets and measuring their respective median C-indexes.
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3.1.4 Comparing survival prediction across datasets

To study the predictive accuracy of the ex vivo drug screen data compared to clinically available data,
we used the optimized Cox model with Ridge regression to predict survival from the clinical data, the
drug sensitivity data (−log2-transformed AUCs) and the combined dataset containing both clinical
variables and drug sensitivity data. We followed the same testing and training regimen as described
above in section 3.1.3 (figure3.4.

We saw that all three models were capable of predicting survival in the training set with scores
over 0.5. However, in terms of predicting survival in the test set, the clinical dataset had no predictive
power with a score below 0.5, which is even less accurate than random guessing. On the other hand,
the two data sets containing drug sensitivities from the Ex vivo drug screen show predictive power on
foreign data with scores just below 0.70.
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Figure 3.4: Survival prediction compared for Cox regression models trained on clinical data,
drug sensitivity data and combined data:. Prediction accuracy is scored with C-index for 200
randomized stratifications into test data (left) and training data (right).
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3.2 Identifying Predictive Drugs

In order to estimate the smallest number of drugs needed to make solid survival predictions, we used
the property of L1-regularization as a variable selection technique, and how elastic-net with higher
leverage on the L1-penalty (α-values closer to one) will increase the number of coefficients forced to
zero. Based on the C-index in figure 3.3b we see that the predictivity drops in the test data set with an
α-value of 0.40, indicating that penalizing with a stronger α removed variables that are important for
predicting survival. We found that the median number of non-zero coefficients associated with an
α-value of 0.40, is 20 drugs. This means that in order to predict survival based on data from an ex
vivo drug screen the smallest number of drugs is on average 20 drugs, given the library and sample
size at hand.
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Figure 3.5: Identifying the smallest number of predictive drugs: Number of non-zero coefficients
in models trained as a function of α-scaling between L1 and L2 regularization.

Further, we wanted to determine which drugs had a statistically significant association with patient
survival out of the 349 drugs, meaning that we wanted to find the drugs associated with predicting
either increased risk (bad prognosis) or lower risk (good prognosis). To do this, we performed Ridge
regression on bootstrapped patient data and computed mean and standard errors for the regression
coefficients (log-hazard ratio for drug sensitivity change). Statistical significance was concluded for
drugs with a t-statistic greater or smaller than 1.96 or -1.96, respectively(figure 3.6).
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Figure 3.6: Identifying drug sensitivities with statistically significant associations with survival:
Mean log-hazard ratio with a 95% confidence interval per unit of change drug sensitivity plotted
against the drugs ranked by a t-statistic in relation to their log-hazard ratio. 33 drugs with a statistically
significant association are indicated. The upper right corner indicates drug sensitivities associated
with poor prognosis. The lower left corner indicates drug sensitivities associated with good prognosis.

We found 33 drugs with a statistically significant association with patient survival (figure 3.6). 14
of these drugs had drug sensitivities associated with an increase in risk, and thereby poor prognosis.
19 drugs had drug sensitivities associated with reduced risk, and thereby a good prognosis. It is
however important to note that the prognosis in relation to these drugs is based on all patients received
the standard of Cytarabine and Daunorubicine in the clinic.

As a proof of principle, we find Daunorubicine in the cluster associated with reduced risk (figure
3.6, lower left), indicating that a good response to this drug ex vivo predicts a favourable response to
the standard treatment in the clinic. Further, we find the drug ABT-263 (Navitoclax) in the opposite
group (figure 3.6, upper right). Venetoclax, a molecular analogue of Navitoclax, is a drug that has
been used in the clinic in cases where patients do not respond to the standard treatment, or for patients
with high risk [67].
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3. Results

Further, we wanted to study which drugs affected predictivity the most. Thus, using the same
training and testing regimen as described in section 3.1.3, we scored the prediction accuracy on test
data for models where one drug was left out. The difference in the mean C-index compared to the
model with all drugs included was calculated to score C-index loss for each drug (figure 3.7).
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Figure 3.7: Variable importance for survival predictions: A waterfall plot of the mean C-index
loss for models leaving out one drug relative to the full model. The top 19 drugs and Daunorubicin are
indicated. The color-coding highlights the drug sensitivities identified with a statistically significant
association with risk. Blue indicates a positive association and orange indicates a negative association.

We found that very few of the 33 drugs with significant association (indicated in either blue or
orange, depending or their direction of affecting risk) had a substantial effect on predictivity on their
own when left out of the model. However, we could observe a weak displacement in predictivity
reduction for the 33 drugs. This is indicative of a high degree of multicollinearity between the drugs
in the dataset, but the absence of strong correspondence could also be due to low sample size. The
one exception we identified was Navitoclax, resulting in a predictivity loss of 4%. This effect on
predictivity suggests that the drug sensitivity profile of Navitoclax contains unique information for
forecasting patient survival.
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3.2. Identifying Predictive Drugs

To verify the identified drugs, we plotted the dose-response curves for all 55 patients and colour-
coded them according to survival. A selection of six of the 33 drugs is shown in figure 3.8. Three
of the plots correspond to drugs associated with higher log-hazard ratios: WYE-354, ABT-263
(Navitoclax) and Imatinib. Three plots correspond to drugs associated with lower log hazard ratios:
Daunorubicin, Lapatinib and Estrone. For some of the drugs, like WYE-354 and Daunorubicin, we
see clear differences in the responses for alive and dead patients. On the other hand, some drugs had
a less prominent difference in the distribution of survival, like Imatinib.

Further, we wanted to study how the change in survival was associated with drug sensitivity
cut-offs for the six drugs (figure 3.8). Thus, we stratified the distributions of drug sensitivities for
the 55 patients into quantiles (25%, 50% and 75%) of sensitive and non-sensitive patient groups.
Subsequently, we studied the survival of the two groups by plotting Kaplan-Meyer estimators of the
percentage of patient survival over time.

We found that some drugs, like ABT-263(Navitoclax), show clear separation in survival for the
25% and 75% quantiles of sensitivities and less clear separation of survival in the 50% quantile. The
separation in drug sensitivity to Navitoclax across the population could indicate a varying dependency
on Bcl-2. Surprisingly, Estradiol also showed clear separations for the 25% and 75% quantiles, but a
less clear separation at the 50% quantile. These groups of survival separation based on sensitivity can
be material for further studies. Imatinib and Lapatinib, on the other hand, showed a more prominent
separation in survival as we included more weak responses. This indicates that weaker responses to
these drugs have a higher association with survival than the strongest responses.
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Figure 3.8: Drug sensitivity separation: (a) Dose response curves of six of the 33 dugs associated
with log hazard ratios. The responses have been colour coded based on survival. Green indicates
alive and purple indicates dead) (b) Histograms and survival plots for the six drugs are separated by
quantiles of 25%. The orange line indicates patients deemed sensitive and the gray line indicates
patients deemed as non-sensitive. Ticks indicate censoring.
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3.3. Patient Clustering

3.3 Patient Clustering

Ensuingly, we wanted to study the association of drug sensitivity profiles in relation to potential
patient groups. We performed hierarchical Ward-D2 clustering on the drug sensitivities with the
Euclidean distance measure. To weight the clustering with the forecasting potential of the drug
sensitivities, we multiplied the−log2 AUC with the Ridge regression coefficients for each drug.
This resulted in an array where each element represented the log-hazard ratio for each patient-drug
combination. The sum of each patient column thereby resulted in the total log-hazard ratio, or risk,
for a given patient (figure 3.9).

Firstly, we found that the clustering results in a clear stratification of drugs into groups based on
the risk-weighted drug sensitivity profiles.

On top of the heatmap, we find drugs that are associated with strong drug-responses. Some
of the drugs in this group have previously been associated with increased log hazard ratios, for
instance, ABT-263 (Navitoclax) and WYE-354. In the bottom of the heatmap we find drugs with
reduced log-hazard ratios. In the middle of the group with reduced log-hazard ratios we find some
strong responses, such as for Daunorubicin, which is part of the standard treatment. In the middle
of the heatmap we find a group of drugs with mixed drug sensitivities flanked by drugs with neutral
sensitivity.

Secondly, in the rightmost patient cluster, it becomes evident that the survival clustering of patients
is highly dependent on a balance in dug sensitivities that are positively and negatively associated
with survival. Deceased patients tend to have strong responses to drugs associated with increasing
log-hazard ratios, and weaker responses to drugs associated with lower log-hazard ratios. For patients
that are alive, on the other hand, the opposite applies.

Furthermore, we found that the clustering of the patients relates to survival to some extent. We
see alive and dead patients clustered together respectively. To some extent, we also see certain
patterns for clustering of prognosis, WHO class and gender. On the other hand, for the mutations
and chromosomal abnormalities, it is evident that the coverage is suboptimal even after removing
the variables with the lowest coverages. However, we see that certain mutations group together, like
NPM1 and FLT3ITD.
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3.4. Identification of Survival Associated Protein Networks in AML Based on Drug-Target
Data

3.4 Identification of Survival Associated Protein Networks in AML
Based on Drug-Target Data

In light of the large coverage of drug targets in the Selleck drug library, we wanted to investigate
if we could generate a drug-target network for AML to better understand the underlying cellular
mechanisms of disease progression and survival. An overview of the process is shown in figure 3.10.

String
data

Figure 3.10: Creating a survival associated protein network in AML based on drug target
data: (1) Drug targets were collected from the Selleck library and the DTC database for the 33 drugs
identified as statistically significantly associated with survival. (2) String data for interactions between
all drug targets was collected and projected using UMAP. (3) k-means clustering was performed to
identify drug-target clusters. (4) GO-analysis was done to assess the optimal number of clusters from
the k-means analysis and to asses GO-terms to each cluster of drug targets.

We began using the 33 drugs identified with a statistically significant association with survival, and
gathered information about their drug targets form the Selleck Anti Cancer Compound Library (B).
Additionally, we used information from the Drug Target Commons (DTC) database to supplement
with additional known drug targets for all 33 drugs (point 1 in figure 3.10).

After collecting all the drug targets for the 33 drugs, we used the STRING database to gather
information about known and predicted functional protein interactions for our collected drug targets.
The STRING database covers both direct, or physical, interactions and indirect, or functional,
interactions, such as participation in similar pathways. After collecting the interaction data, we
generated a binary matrix representing all drug targets and their reported string interactions. To
visualize the network, we used Uniform Manifold Approximation and Projection (UMAP) (point 2 in
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3. Results

figure 3.10). Functional drug-target clusters in the UMAP were identified with k-means clustering
and analyzed for gene ontology (GO) enrichment (point 3 in figure 3.10).

The GO-analysis was used to functionally characterize the individual clusters of drug targets
based on molecular function (MF), biological process (BP) and cellular compartment (CC). The GO
analysis was also used to determine the ideal UMAP clustering based on the number of enriched
GO terms and the average −log(p− value) using a Fisher’s exact test for the enrichment (point 4 in
figure 3.10).

After generating the UMAP with the optimized number of clusters, we computed the position of
the drugs based on the average distance to its related targets (3.11). The drugs were binary colour
coded according to how the drugs associated with survival. The interaction between drug targets and
drugs was colour coded in accordance with the survival association of the drugs.
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Figure 3.11: Interaction between drugs and targets in an AML protein network: A UMAP of
an AML drug-target network generated based on the 33 drugs identified as statistically significantly
associated with survival. Drugs have been mapped onto the network based on the average distance
to all its related targets. The drugs are coloured based on association with survival. Red drugs are
associated with high log-hazard ratios and blue drugs are associated with low log-hazard ratios. Lines
are drawn from each drug to all its targets and coloured in relation to the drug.

To our surprise, we see a clear functional separation of drugs and drug targets associated with high
risk and low risk. We see a cluster of drug to drug-target interactions in the lower right of the UMAP
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3.4. Identification of Survival Associated Protein Networks in AML Based on Drug-Target
Data

associated with decreased survival when receiving the standard treatment. On the other hand, in the
upper left corner, we find drugs and drug targets associated with increased survival when receiving
the standard treatment.

As a consequence of the clear separation of risk association in the drug-target network, we wanted
to study if there were biological similarities within the 15 drug target clusters in light of their risk
association. We therefore associated each cluster of the UMAP with GO terms. We included the top
most significant GO terms for all three GO classes for each cluster. All drug targets were then colour
coded based on the clinical association with drug sensitivity based on an average of all the drugs
reported to inhibit said target (figure 3.12).
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Figure 3.12: Identifying drug target network clusters with GO-terms: Top significant GO-terms
were enriched for each drug-target cluster in the the AML protein network generated in figure 3.11.
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are colour-coded based on the average clinical association with drug sensitivity based on all drugs
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We discovered that each cluster of drug targets was mainly associated with either increased risk
or reduced risk if the targets in the cluster were inhibited. The clusters, associated with a reduction in
risk if targets are inhibited (in blue, see figure 3.12) are enriched for pathways related to hormone
regulation, regulation of foreign DNA and chromatin modifications. For example, the two top clusters
are associated with xenobiotic metabolic processes and regulation of viral genomes.

Further, we find that the clusters dominated by drug targets associated with an increase in risk, if
inhibited show, a saturation of kinase activity. Specifically, activity related to tyrosine, threonine and
serine kinases is highly present in these high-risk clusters. For example, we see that the lowest cluster
is associated relatively strongly with increased risk upon inhibition and contains targets related to
protein tyrosine kinase activity. This may reveal an increased dependence on tyrosine kinase signaling
in standard treatment-resistant AML.
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3.5. Experimental Limitations

3.5 Experimental Limitations

Some parts of this project included experimental limitations which are listed below.

• This study is largely based on a population of 55 patients as a result of the overlap between the
clinical dataset and the drug screen dataset. This resulted in poor coverage of some clinical
variables and especially affected the clustering analysis in terms of mutations and chromosomal
abnormalities.

• All patients included in this project have received the same standard treatment, regardless
of the findings in this study and previous studies using the same data. This has limited the
investigation of survival to be in the light of a singular treatment, and we have no indicators of
how changing the treatment in accordance to our findings would alter survival.
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CHAPTER 4

Discussion

4.1 Assessment of Drug Screen Predictivity

Acute myeloid leukaemia is a highly heterogeneous disease, but a standard treatment is still the
current practice. Even though risk assessment systems are in place, there are currently no alternative
treatment options commonly used in Norwegian clinics, and it remains a challenge for clinicians to
determine which patients are eligible for the standard treatment resulting in a survival rate of 40%
(figure 3.1c). As a means of hurdling this problem, we studied how ex vivo drug screens could aid in
predicting survival using machine learning.

In the first part of this study, we tested if ex vivo drug screens contained information that could
be used to forecast patient survival. Indeed, we found that ex vivo drug screens have the ability to
predict survival using a dataset of only 55 patients. We see that ex vivo drug screens are better at
predicting survival than the current variables used to aid in setting a prognosis in the clinic. It is
however important to note that, when performing the multivariate Cox regression, the clinical dataset
used in this study only covers 55 patients of sparsely represented binary variables. Regardless of
this, we see that even with a larger dataset of 210 patients there are still only three variables that have
a significant association with survival when using a univariate Cox regression. However, a larger
dataset with larger variable coverage across patients might elevate the predictive ability of clinical
data both in the univariate and multivariate Cox models.

To our surprise, the doctor’s prognosis does not have a statistically significant association, re-
gardless of the severity of the prognosis. Furthermore, the good prognosis, even with an incidence
of 43 out of 210, does not hold any predictive power at all. This is indicative of the need for a new,
or improved, system to assess the prognosis that is less reliant on genetic markers. It is, however,
noteworthy that the final prognoses are not only based on mutations and chromosomal abnormalities,
but the fact that doctors take other factors into consideration, like underlying disease and previous
medical history.

We see that there is overfitting of the training data for all our multivariate models, as observed
by discrepancies in C-indexes for the training and testing predictions. However, we have used a
model linear regression with regularization to maintain minimal complexity to battle this problem.
Additionally, the test set of 10 patients is representative of adding new patients to the study in the
future. A group of 10 patients might be close to a realistic supplementary patient group due to the low
incidence of AML. Furthermore, when we tested the model on 10 patients, it resulted in a training set
of only 45 patients, which is a highly limited dataset for use in machine learning. The best way to
minimize over-fitting and maximizing the generalization in a model, is to increase the amount of data
to get a more complete picture of the true variance in a larger population.

Further, we have determined that the optimal method for representing ex vivo drug sensitivities
is by using a −log2 transformation of the AUCs to maximize survival predictions on out of sample
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4. Discussion

data. We believe that the −log2 transformation is better because it results in a scenario where halved
and doubled populations are weighted equally, whereas untransformed AUCs represent an average
relative cell density over the integration range and will be exponentially distributed as a function of
variations in cell growth rate. Thus, the transformation increases the likelihood of more normally
distributed data as opposed to the non-transformed AUCs.

These findings indicate that there exists a linear relationship between the−log2 transformed AUCs
and the log hazard-ratio. The AUC can be seen as an average response value over the integration range
of a drug response curve. Thus, the AUC represents a relative growth of cells in culture in response to
a drug, given the integration range. This, in turn, makes the transformed AUCs representative of a
differential growth rate, as can be seen by:

(n(t,drug)/n(t,control))AUC = etgdrug|AUC−tgcontrol = et∆gdrug|AUC , (4.1)

where t is time and g represents the growth rate under the drug treatment and DMSO control
respectively. The log hazard ratios, on the other hand, portray the differential decay rate of patient
populations in the clinic. Combining these ideas mathematically has resulted in the following
equation:

log
h(t,AUCdrug)

h(t)
=−β × log(AUCdrug) =−β × t∆gdrug|AUC (4.2)

This suggests that there is a direct negative linear relationship between the degree of inhibition of
a cancer cell proliferation in culture and the probability of survival of a patient in the clinic when
exposed to the same drug, as observed for Daunorubicin.

In this study we have not performed Hill curve fitting of the dose responses, and rather performed
a discrete integration under the empirical response-curve between the lowest and highest dose in
log10-scale. This is in order to avoid curve-fitting bias or artifacts of non-Hill type responses or
drug responses with insufficient data points to support a full curve fit. Because, we normalize on the
maximal dose range, such that the integration interval is in one unit, the AUC becomes a weighted
average for the drug response. This value is sometimes referred to as drug sensitivity score [42].
Furthermore, we have not used healthy donor cells as a reference point for drug toxicity. In some
studies the differential integral between the response-curves of patient samples and healthy donors is
used [42]. In our study this would simply shift the average of the drug sensitivity distribution and
would have no effect on the variational relation between drug sensitivity and survival for individual
drugs. However, for analytical purposes in our quantile analysis, a reference point for cancer unspecific
toxic responses would be valuable.

Additionally, we also found that Ridge regression or elastic-net with more weight on L2-
regularization, is the best way of penalizing the ex vivo drug screen data. We believe the L2-penalty
is superior, as it is maintains more variables in the analysis, whereas larger α-values in elastic net or
Lasso will force a disproportionate number of coefficients to zero. The fact that this hard variable
selection reduces predictivity, suggests a high degree of correlation (or collinearity) between variables.
This is supported by our finding that the predictivity loss when removing a single drug is minuscule.
Using Ridge, where no coefficients are forced to zero, therefore includes all variables potentially
leading the model to detect patterns that are lost with a harder variable selection.

4.2 Identifying Predictive Drugs

After determining that ex vivo drug screens could predict survival, we found that a minimum of 20
drugs was needed to maintain the predictive accuracy, using the respective α-value of 0.4. However,
this amount is based on an average for all 200 Cox regressions performed on random samples of 45,
and thus the number is likely higher.
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4.2. Identifying Predictive Drugs

We have also found a set of 33 drugs with a significant association with survival. Interestingly,
we find Daunorubicin in the group associated with reduced risk. This finding is coherent with the
fact that all patients have received a treatment where Daunorubicine is one of the components. An
ex vivo response is thereby related to the patients having a positive effect on the treatment. In the
same group we find Quizertinib, an inhibitor of FLT3, which is commonly mutated in AML. In
the group associated with elevated hazard ratios, and thereby an increased risk, we find the Bcl-2
inhibitor Navitoclax. This corresponds well with the fact that a molecular homologue of Navitoclax,
Venetovlax, is being used as a second-line treatment in clinical trials if patients do not respond to
Daunorubicin [67]. A response to Navitoclax ex vivo could thereby be indicative of a poor response to
the standard treatment. Additionally, we found that Navitoclax was the drug that affected predictivity
the most when left out of the analysis. As Bcl-2 is an anti-apoptotic protein, this finding indicates
that resistance to standard treatment in AML is related to an increased dependency on anti-apoptotic
mechanisms.

Interestingly, we also find another Bcl-2 protein family inhibitor, Obatoclax, in the group of
drugs associated with reduced risk. This could be an indication that the Bcl-2 family of proteins can
influence treatment resistance in different ways, or that there are some off-target effects to either of
the two drugs. Interestingly, Obatoclax is also included in clinical trials for AML treatment [68].
Furthermore, we found a group of multiple estrogen regulators (Estradiol, Estrone and Exemestane),
both steroid hormones and estrogen inhibitors. A previous study performed by Roma and Spanguolo
proposes to use Estrogen receptors (ER) as a new biomarker for deciding on AML treatment [69].
They further report that activation of ERα is in line with a good response to standard therapy and that
ERβ suppresses cancer cell growth [69]. This is also in line with our observations of Estradiol in the
quantile analysis, where we see that strong responders have an increased chance of survival.

From the quantile analysis we also believe that there can be found treatment clues for AML. For
instance, we see that those who strongly respond to the mTOR inhibitor, WYE-354 and Navitoclax
have the most severe prognosis. This could entail a possible combination treatment of the two as
an alternative to standard treatment for these individuals. Interestingly, we see that the strongest
responses to Daunorubicine are not associated with a better outcome compared to the more weak
responses. This may indicate that if patients are very responsive to the chemotherapeutic, it will be
too strong to treat the patients and yield severe side effects, as both healthy cells and cancerous cells
will die.

When studying the effects the individual drugs had on predictivity, we surprisingly found that
removing Daunorubicin from the analysis had a minimal effect on predictivity. We believe this is
caused by a great deal of multicollinearity in the data, where the response to Daunorubicin can be
explained from the response patterns of the other drugs. Furthermore, the observation that Navitoclax
has the strongest reduction in C-index loss, at 4%, indicates that Navitoclax embeds a unique drug
sensitivity pattern that is not represented by other drugs in the Selleck library.

Additionally, in light of the quantile analysis, we see that survival differences for many drugs are
dependant on a patient stratification based on strong or weak responses. This could potentially explain
why leaving out single drugs has a small effect on predictivity due to sparse representation of high-
leverage patient responses under the sampling scheme used to test prediction accuracy. Intriguingly,
we also see that some drugs increase predictivity when they are left out of the regression analysis.
We believe these are drugs that do not have an association with survival and only contribute noise to
the analysis. Furthermore, we find a group of drugs that have largely reduced predictivity when left
out, but are not present in the identified group of 33 drugs with statistically significant association to
survival. We suppose these drugs are the ones with a clear average change in the log-hazard ratios,
but with a wide 95% confidence interval that crosses the zero line, and thus represent high-variance
drug sensitivity distributions that are highly sensitive to sub-sampling with the small patient number
present in this study.
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4. Discussion

4.3 Patient Clustering

From the clustering analysis performed, it becomes apparent that there is a significant number of
patients who have no detected genetic marker and die. This indicates the need for better markers,
or better yet, a new system that will allow patients to get the correct treatment and that can assess
prognosis. In cases like these, preforming an ex vivo drug screen could be the answer both to predict
survival and to find a possible alternative treatment. Additionally, extensive genetic analyses can be
expensive and time-consuming, further indicating the need for a modernized, efficient and effective
alternative.

Furthermore, we see that 30 of the 33 identified drugs are placed in areas with high log-hazard
ratio weighted drug sensitivities. However, there are multiple drugs in these areas that have not been
identified, due to a lack of statistical association with survival, which could be interesting to study
further. The last 3 drugs identified are placed in a space of relatively weak log-hazard ratio weighted
responses. This could be due to the drugs having a small association with survival.

4.4 Identification of Protein Networks in AML Based on Drug Target
Data

Upon identifying a relation between ex vivo drug sensitivity and survival in the clinic, we decided
that we would further investigate whether we could use the underlying information from the drug
screens to understand the underlying mechanisms of AML survival through the identified cellular
dependencies. Interestingly, we see two distinct groups of drug target clusters and target interactions
that are associated with a positive or negative change in log-hazard, respectively.

When we mapped the drugs onto the network itself, we saw that the drug sensitivities associated
with increased hazard and a poor prognosis when receiving the standard treatment, are located in the
lower right of the map. The clusters associated with their targets are associated with protein kinase
activity, specifically serine/threonine and tyrosine kinases. This correlates well with a review provided
by Ling et al in 2017. They report an increase in the development of protein kinase inhibitors as
developing drugs for AML treatment, with multiple drugs being in phase III of clinical trials [70].

Furthermore, in the group with low hazard and good prognosis (marked in blue in figure 3.12) we
found targets associated with foreign entities, like xenobiotic metabolic processes and viral genome
regulation. This is in line with the standard treatment as Daunorubicin is an anthracycline antibiotic.
Additionally, we see multiple clusters identified to be involved in epigenetic modification. In the
centre of figure 3.12, we find drugs associated with chromatin regulation, and in the upper right
corner of the blue region we find drugs associated with histone H3 deacetylation. There are multiple
papers published about the role of histone H3 deacetylation of AML and its induction of the t(8:21)
translocation and its repression of RUNX1. However, why this subtype is associated with a good
response to standard treatment remains unclear. Additionally, as we see clear clusters of drug targets,
we believe that it might potentially be a future strategy to target multiple drug-targets within a cluster,
rather than a highly specific target. This could potentially reduce the rate of developing resistance and
be a more robust option for treatment.

However, within groups associated with a risk in one direction or the other, we often find drugs
that are associated with the opposite hazard level. This could be attributed to the fact that a drug
highly associated with hazard in one particular direction could have targets (or off-target effects) in a
group associated with the opposite hazard. It could also represent a protein with a negative regulatory
role of the surrounding drug-targets in the cluster.

It is, however, important to note that this drug-target network has been created solely based on
the 33 previously identified drugs. We hope that increasing the number of drugs can provide a more
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4.4. Identification of Protein Networks in AML Based on Drug Target Data

detailed picture of how AML is driven. In the future, we aim to use all 349 drugs included in the
study to generate a map with more coverage to reveal new drug clusters and their association with
patient survival.

We believe that the drug-target network can help understand the underlying mechanisms of AML
based on drug-to-drug target interactions as well as functional interactions between drug targets.
Additionally, we envision that the use of drug-target networks can become a powerful tool for future
drug development by identifying novel cellular dependencies that are associated with survival and
disease progression.
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CHAPTER 5

Conclusion

There is a pressing need for improving the way we assess risk in AML patients, and to open up to
alternatives in order to the current standard treatment to increase patient survival. Thus, being able to
predict whether a patient will respond to treatment, is a necessity. Tactics like ex vivo drug screens are
used in clinical trials to determine how patient cells respond to specific drugs ex vivo, and potentially
to find treatment alternatives. In this master’s thesis we aimed to address whether ex vivo drug screens
could forecast patient survival, and whether there was more information in these high-throughput
screens that could have clinical applications.

We have found that ex vivo drug screens have the ability to predict patient survival better than the
current markers, risk assessments and prognoses used in the clinic. We have optimized predictivity
through an extensive study of various data handling methods resulting in a −log2 transformation of
AUCs for dose responses. Based on this finding, we have mathematically determined that cancer cell
fitness ex vivo exhibits a negative linear relationship with patient fitness in the clinic when all patients
are subjected to the same treatment.

Further, we have identified 33 drugs that have an unambiguous association with survival that can
potentially be used in the clinic to help aid in setting a prognosis and to give indicators of treatment
options. Furthermore, we have determined that Navitoclax is the drug that has the largest effect on
the predictivity of patient survival, underlining its importance as a second-line treatment option for
AML patients.

Finally, we sought to determine whether there was more underlying information in an ex vivo
drug screen that could be of clinical importance. Our research on drug-drug target interactions has
resulted in an extensive drug target network that can help shed light on the complicated mechanisms
driving AML. Furthermore, we believe there is great potential in this drug-target network to find and
determine targets for future drug development related to AML.
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5. Conclusion

5.0.1 Future studies

Patient population and treatment

As described in previous sections, the number of patients in this study affects the coverage of clinical
variables and prediction accuracy. It would be beneficial to run our analysis on a larger patient
population to determine how this affects survival predictivity, specifically in light of clinical variables.
Additionally, it would be interesting to conduct a similar analysis on a patient population that has
received an alternative to the standard treatment.

Screen dimension and regularization

Further, it would be of interest to use the elastic net with the optimal α-value in the Cox model to
see how variable selection will affect the survival predictions. Additionally, it would be interesting
to study to what degree we can shrink the dimensions of the screen to find the lowest number of
drugs needed to maintain prediction accuracy across different patient sub-samples. This could save
economic costs associated with individual patient screening. With more patient data we can determine
the causes for the discrepancy between C-index loss and statistical association for single drugs.

Dose-response sensitivity in relation to survival

Extensive studies on the quantile analysis would also be of interest to determine if underlying factors
behind the differential survival association to weak or strong drug responses.

Generating a larger drug-target network

Generating a larger drug-target network, using all 349 drugs, is also of great interest, as we hope to
gain a deeper understanding of the mechanisms regulating AML disease progression in the clinic.
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APPENDIX A

Supplementary Tables
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A. Supplementary Tables

A.1 Selleck Anti-cancer Compound Library

The following pages include a table of the complete Selleck Anti-cancer Compound Library. The
table includes names of compounds/drugs, the CAS number and drug-target(s).
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APPENDIX B

Supplementary data

The code for reproduction of the results was developed in R, version 3.6.2 and is available at a GitHub
repository (https://github.com/Andreabrodersen/A-study-of-ex-vivo-drug-screen-survival-predictions-
in-AML-patients-for-clinical-application.git).
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