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Abstract 13 

This paper considers data-based real-time adaptive Fault Detection (FD) in Grid-connected PV 14 

(GPV) systems under Power Point Tracking (PPT) modes during large variations. Faults under PPT 15 

modes remain undetected for longer periods introducing new protection challenges and threats to the 16 

system. An intelligent FD algorithm is developed through real-time multi-sensor measurements and 17 

virtual estimations from Micro Phasor Measurement Unit (Micro-PMU). The high-dimensional high-18 

frequency multivariate characteristics are nonlinear time-varying where computational efficiency 19 

becomes crucial to realize online adaptive FD. The adaptive assumption-free method is developed 20 

through Principal Component Analysis (PCA) for dimension reduction and feature extraction with 21 

reduced complexity. Novel fault indicators 𝐷𝑥(𝑡) and discrimination index 𝐴𝐷(𝑡) are developed using 22 

Kullback–Leibler Divergence (KLD) for an accurate evaluation of Transformed Components (TCs) 23 

through recursive Smooth Kernel Density Estimation (KDE). The algorithm is developed through 24 

extensive data with 2.2 × 106 measurements from a GPV system under Maximum PPT (MPPT) and 25 

Intermediate PPT (IPPT) switching modes. The validation scenarios include seven faults: open circuit, 26 

voltage sags, partial shading, inverter, current feedback sensor, and MPPT/IPPT controller in boost 27 

converter faults. The adaptive algorithm is proved computationally efficient and very accurate for 28 

successful FD under large temperature and irradiance variations with noisy measurements. 29 
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Nomenclature 1 

I-V Current-voltage (curve)  𝑛  Number of samples 

P-V Power-voltage (curve)  𝑚  Data set dimension 

𝑽𝑃𝑉 Output voltage  𝑿𝑟  Reference healthy data matrix 

𝑰𝑃𝑉 Output current  𝑛𝑟  Number of samples in 𝑿𝑟 

𝐼𝑖𝑟𝑟 Photocurrent  𝑿𝑡𝑠𝑡   Online testing data matrix 

𝐼0 Diode saturation current  𝑛𝑡𝑠𝑡  Number of samples in 𝑿𝑡 

𝑅𝑠 Series resistance  𝐻0  Null hypothesis 

𝑉𝑡ℎ𝑒𝑟𝑚 Cell thermal voltage  𝐻1  Alternative hypothesis 

𝓃 Ideality factor of the cell   𝐷𝐾𝐿  Kullback-Leibler divergence 

𝑅𝑠ℎ Shunt resistance  𝜀𝑠𝑎𝑓𝑒   Control limit 

𝜅 Boltzmann constant   𝑁  Normal distribution 

𝑞 The electron’s charge   𝝁  Mean vector 

𝑇 Actual cell temperature   𝚺  Covariance matrix 

𝐺 Actual solar irradiance  𝑡𝑟  Trace of a matrix 

𝐺𝑠𝑡 Std. cond. irradiance 1000 𝑊/𝑚2  𝑔  Density ratio 

𝑇𝑠𝑡 Std. cond. cell temperature 25 ℃   𝐾  Kernel function 

𝐾𝐼 Relative temperature coefficient  𝜎  Kernel width 

𝑁𝑠 Number of cells in series  ℎ Kernel smoothing factor 

𝑁𝑝 Number of cells in parallel  𝑱  Objective function 

𝑇𝑠 Sampling Time  𝜽  Parameter vector 

𝓨 Real time measured data matrix  ℜ  Set of real numbers 

𝔂 Real time measured signal  𝑿̅  Auto-scaled data matrix 

𝑽𝑑𝑐 DC voltage  𝑺  Estimated covariance matrix 

𝑰 Current  𝑷  Loadings matrix 

𝒇𝐼 Current frequency  𝚲  Eigenvalues diagonal matrix 

𝑽  Voltage  𝜆  Eigenvalue 

𝒇𝑉  Voltage frequency  𝑡  Time 

𝑼𝑎𝑏𝑐   3-phase voltages  𝑛𝑡  Sliding window size 

𝑰𝑎𝑏𝑐   3-phase currents  𝒄𝑘
∗   𝑘th reference TC 

𝑃𝑡 Distribution of window samples at 𝑡  𝑝𝑡 PDF of window samples at 𝑡 

𝒙   Smoothed version of a noisy signal 𝒗  𝒄𝑘,𝑡  𝑘
th online TC at time 𝑡 

𝑟  Weighting factor  𝑝𝑘
∗    Probability density function of  𝒄𝑘

∗  

𝑤  Window length  𝑝𝑘,𝑡  Probability density function of 𝒄𝑘,𝑡 

𝑃𝑟𝑒𝑓  Reference distribution  𝑝̂   Density function estimation 

𝑃𝑡𝑠𝑡  Testing distribution  E  Expectation 

𝑝𝑟𝑒𝑓   Reference probability density function  𝐷𝑘  𝑘th fault indicator 

𝑝𝑡𝑠𝑡   Testing probability density function  𝐴𝐷  Discrimination index 

𝑿  Data matrix  𝐶𝐿𝐷𝑘   Control limit of 𝐷𝑘 

   𝐶𝐿𝐴𝐷   Control limit of 𝐴𝐷 
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Abbreviations 2 

AC  Alternating Current MW  Megawatt 

AI  Artificial Intelligence PC  Principle Component 

ANN  Artificial Neural Networks PCA Principal Component Analysis 

ARL  Average Run Length PI Proportional Integral 

DC  Direct Current PLL  Phase Lock Loop 

FD  Fault Detection MPPT Maximum Power Point Tracking 

FL Fuzzy Logic PMU Measurement Unit 

FNR  Fault to Noise Ratio PSO  Particle Swarm Optimization 

GPV  Grid-connected PV VOC  Voltage Oriented Control 

GW  Gigawatt PV   Photovoltaic 

IEC  
International Electrochemical 

Commission 
RF  Random Forest 

IPPT  Intermediate Power Point Tracking SFR  Signal to Fault Ratio 

KDE  Kernel Density Estimation SNR  Signal to Noise Ratio 

KLD  Kullback–Leibler Divergence SVD  Singular Value Decomposition 

kWh  Kilowatt-hour SVM  Support Vector Machines 

LPF Low Pass Filter SVPWM Space Vector Pulse Width Modulation 

MIMO Multi-Input Multi-Output TC Transformed Component 

MISE  Mean Integrated Squared Error 𝑇2 Hotelling 𝑇2 
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1. Introduction 1 

 The record low solar prices that were achieved in 2016 had caught many energy experts by 2 

surprise. That year, bids awarded in several tenders were below the 3 US cent per kWh level (2.95 US 3 

cents for an 800 MW project in Dubai, 2.91 US cents for a power supply contract in Chile, 2.42 US cents 4 

for the ‘winter’ supply part of the 1.18 GW plant PPA in Abu Dhabi) [1].  The largest increments in 2017 5 

were recorded in China (53 GW) and the US (11 GW), together accounting for two-thirds of the growth 6 

in global solar capacity. Japan provided the third largest addition (7 GW). China also leads in terms of 7 

cumulative installed capacity (130 GW), with one-third of the global total. The US (51 GW) and Japan 8 

(49 GW) are in second and third with Germany (42 GW) now in fourth [2]. The cumulative installed 9 

solar PV power capacity grew by 32% to 404.5 GW by the end of 2017, up from 306.4 GW in 2016. In 10 

only ten years, the world’s total PV capacity increased by over 4,300% (43 times) – from 9.2 GW in 11 

2007; and under optimal conditions, the capacity could reach the terawatt level by the end of 2022 [1]. 12 

 Solar power costs will continue to decrease due to technical improvements. One key factor of 13 

reducing the costs of photovoltaic systems is to increase the reliability and the service lifetime of the PV 14 

modules [3]. PV systems are also vulnerable to several anomalies that should be diagnosed as early as 15 

possible before any deviations from the designed nominal conditions. Preventive actions must then be 16 

implemented to avoid deteriorating the performance and drastically hindering efficiency, reliability, and 17 

safety. The ultimate objective is to meet the international protection standards of the International 18 

Electrochemical Commission (IEC) [4, 5, 6]. The early detection of potential anomalies in PV systems 19 

is crucial to the good performance to avoid small deviations from nominal conditions and to match the 20 

predicted energy yield [7] and the desired power quality. Depending on the operative functioning of 21 

various components and grid regulation, the availability factor [8] of a PV system is also improved 22 

through fast FD techniques by avoiding and/or minimizing the downtime. Besides, an accurate 23 

monitoring PV system increases its efficiency while reducing maintenance costs and maximizing the 24 

profit during the system lifetime [9]. In addition to their nonlinear time-varying characteristics and high 25 

dependency on environmental factors (temperature and irradiance), the properties of electrical systems 26 

are naturally inherited in PV systems which have very fast dynamics while abrupt changes have even 27 

faster dynamics. This justifies the need for high-frequency and multiple sensors measurements to monitor 28 

the GPV system and its faults dynamics. However, these facts introduce the bottleneck problem of 29 

computational complexity. 30 

 The detection of sensor faults in GPV systems was considered in [10], the authors also proposed 31 

the optimal location of current and voltage sensors to limit the increase in cost due to the redundancy of 32 
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sensory devices. Sensor-based analysis was also implemented in [11] to detect partial shading. Related 1 

approaches are based on observing a local signal such as the string current which is then compared to its 2 

known patterns to detect local faults [12, 13]. A comprehensive review of metaheuristic tools was 3 

provided in [14]. In PV systems, reported model-based FD techniques incorporate mathematical 4 

(analytical) models such as state observers [15], parameter identification [14], and impedance-based 5 

models [16]. Model-based methods were theoretically proved useful in simulations but their major 6 

drawback in practice is the robustness to measurement noise and model uncertainties. Analytical model-7 

based techniques fail to address the broad sense of FD in real PV systems which are complex and cannot 8 

be accurately described by a closed-form mathematical model, especially under different conditions. 9 

Similarly, FD in PV systems can be achieved through artificial models such as Fuzzy Logic (FL) [17, 10 

18], and Artificial Neural Networks (ANN) [19, 20]. Artificial models indeed provide a better 11 

approximation to the nonlinear behavior of a PV system, however, they are computationally demanding 12 

and cannot address the time-varying behavior through adaptive learning. Other common PV system FD 13 

tools are heavily based on classification methods such as Support Vector Machines (SVM) [21]. The FD 14 

task is reduced to classifying different measurements into normal/ faulty operations. The main drawbacks 15 

of artificial models are the requirement of labelled data, that’s sufficient measurements during real faults 16 

labelled by solar experts. Another issue to consider is the multi-classes of normal behavior due to changes 17 

in power point and temperature/ irradiance variations.  18 

A comprehensive review of fault diagnosis and protection challenges in PV systems were 19 

provided in [22], system faults were classified into physical, electrical, and environmental. Protection 20 

devices in the DC-side protect against over-current faults, grounding faults, and arcing faults [23]. It was 21 

mentioned in [22] that the mentioned protection devices have failed to detect their corresponding faults 22 

in the PV array due to: (i) Lower fault current magnitudes, (ii) Presence of MPPT and (iii) Non-linear 23 

PV characteristics and the colossal dependency on the insolation levels. Faults on the DC side have 24 

catastrophic effects on the system outputs and may cause the whole system to burn even though it is 25 

equipped with protective devices [24]. A critical review of AC Microgrid protection issues was also 26 

provided in [25], while their respective protection schemes were classified into protection for only grid-27 

connected mode, protection for only islanded mode, and protection for both modes. In the current digital 28 

era, the new aspect of cyber risk introduces emerging challenges for the detection and diagnosis of cyber-29 

attacks in wide-area power systems as highlighted in [64]. The three conditions (i, ii, iii) are 30 

experimentally considered in this work for the Grid-connected PV (GPV) system for which traditional 31 
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techniques are developed to consider the nonlinear time-varying characteristics of the system and its 1 

faults.  2 

Among the emerging methods based on a statistical analysis of time-series sensor data [26], 3 

Principal Component Analysis (PCA) is a common multivariate data analysis and dimensionality 4 

reduction technique [27, 28]. PCA plays a major role in solar engineering for various applications such 5 

as the analysis of big time-series data such as the satellite-derived irradiance data and string-level 6 

measurements from a utility-scale PV system. PCA is also used in PV systems for power forecasting and 7 

monitoring [29, 30]. Despite its paramount advantages in handling big data and reducing computational 8 

complexity, PCA theory relies on three heavy assumptions: (a1) multivariate Gaussian distribution of 9 

data, (a2) stationarity of the process assuming a fixed operating point of a system, and (a3) linear 10 

correlations assuming a linear time-invariant system. Due to these shortcomings, PCA applications for 11 

effective FD in PV systems is limited to simulation studies [31, 32] only. Unfortunately, these 12 

assumptions cannot be tolerated when considering the practical conditions under which all PV systems 13 

operate. [33] emphasized the physical adequacy of a power generation system under long-term 14 

conditions. On the other hand, variations of PV module parameters with irradiance and temperature were 15 

highlighted in [34, 35], and the influence of increased temperature on energy production was considered 16 

in [36]. Compared to the existing FD methods and considering the nonlinear time-varying characteristics, 17 

the developed adaptive algorithm updates its model and parameters (in a computationally efficient 18 

manner) to the prevailing power point through a novel discrimination index 𝐴𝐷(𝑡) that distinguishes the 19 

controlled changes of power point and triggers updates when necessary to classify faults from evolving 20 

normal behavior.  21 

More advanced FD approaches are generally required to detect PV system faults in the presence 22 

of MPPT and IPPT controllers. Advanced MPPT search algorithms such as dynamic leader based 23 

collective intelligence [61] and memetic salp swarm algorithm [62] are reported effective and faster in 24 

reducing power losses under partial shading conditions making it very difficult to detect faults for two 25 

main reasons: MPPT search algorithms mask the symptoms of mismatch faults, especially faults at low-26 

current, whereas faults have disparate characteristics due to MPPT controllers. A recent review of MPPT 27 

algorithms is provided in [63] while [22] highlighted the adverse effects of MPPT controllers on FD 28 

strategies in PV systems. This work takes this challenge into account in the design of the novel FD 29 

strategy. Real data are collected during real faults from a GPV system with MPPT and IPPT controllers 30 

which are based on the common Particle Swarm Optimization (PSO) technique. PSO is increasingly 31 

preferred and prompts researchers in recent studies [49] and it is commonly used for MPPT applications 32 
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in PV systems. PSO algorithm [49] is used as an experimental verification case for its popularity in the 1 

literature, whereas advanced MPPT search algorithms [61,62] pose the same challenges for FD strategy 2 

design in PV systems.  3 

It was highlighted in [64, 65, 66] that full modelling and analysis of spatiotemporal dependencies 4 

are crucial for a reliable fault detection and diagnosis and for a full comprehension of physical and cyber 5 

risk assessment in power distribution systems. In the presented work, spatial and temporal dependencies 6 

are respectively addressed through PCA and sequential analysis. In a typical MPPT/IPPT controlled GPV 7 

system under input variations, real data is far from a multivariate Gaussian distribution for which 8 

traditional PCA assumptions of data normality are not satisfied herein. This motivates the current work 9 

by proposing a novel non-parametric (distribution-free) indices. The resulting Transformed Components 10 

(TCs) are evaluated recursively using novel fault indicators named the 𝐷𝑥(𝑡) indices which are developed 11 

through nonparametric Kullback–Leibler Divergence (KLD) instead of the traditional 𝑄 and 𝑇2 statistics 12 

of PCA [37, 38]. In consequence, another challenge rises due to the high-dimensional high-frequency 13 

data acquired from grid-connected PV systems at a sampling time of 100 𝜇𝑠, multivariate KLD approach 14 

[39,40] is known for its high computational complexity as reported in [41, 42], this prevents the 15 

realization of real-time online FD. A common state-of-the-art solution to realize FD is through 16 

parametrized KLD approaches assuming a Gaussian distribution [43, 44, 45] or Gamma distribution [46]. 17 

FD is reduced to simple monitoring of statistical parameters such as mean vector and statistical dispersion 18 

for which approximate parametrized KLD approaches are less accurate. While computational complexity 19 

is reduced through PCA, accurate FD and discrimination indices 𝐷𝑥(𝑡) and 𝐴𝐷(𝑡) are obtained through 20 

nonparametric KLD through recursive smooth Kernel Density Estimation (KDE) without any 21 

assumptions on GPV system behavior or data distributions. This article validates the significance of the 22 

proposed algorithm through several experiments in which validation scenarios include real faults in a 23 

GPV system. Realistic faults have different levels of severity and are injected across different parts in 24 

the entire energy conversion system including array faults such as open circuit and partial shading, 25 

MPPT/IPPT controller faults in a boost converter, inverter fault in form of single IGBT failure, current 26 

feedback sensor fault, and grid anomalies such as voltage sags. Compared to the existing literature in 27 

solar engineering, this work is of practical novelty that considers (I) a wide-range of realistic faults in 28 

GPV systems and (II) further examining their online detectability and detection performance under 29 

MPPT/IPPT conditions with variation in temperature and solar insolation, such setups have not been 30 

reported before. The presented methodology is novel with advantages of (III) escaping theoretical PCA’s 31 

assumptions, (IV) greatly reducing the KLD complexity to match the online application, and (V) 32 
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improving the accuracy compared to parametrized PCA/KLD approaches for successful FD in GPV 1 

systems in practice. The algorithm was implemented in real-time online FD in the GPV system where 2 

the obtained results reflect its potential applications in practice as it outperforms state-of-the-art methods.  3 

 The rest of this article is organized as follows. Section 2 conducts a short description of the GPV 4 

system, its nonlinear time-varying characteristics, measured and virtually estimated signals, and the 5 

examined real faults. In Section 3, the main contribution of this work, the proposed algorithm is 6 

developed, justified, and its steps are detailed while highlighting novel contributions. Experimental 7 

results are then discussed in section 4 while comparing with several methods for computational time and 8 

memory complexity as well as the results of FD accuracy and robustness performance. Finally, potential 9 

applications are summarized and important conclusions and recommendations are drawn in section 5. 10 

2. System description and data preprocessing 11 

 In this article, a lab implemented typical grid-connected PV system is used to validate the FD 12 

performance of data-driven methods against real faults under MPPT/IPPT modes and practical 13 

conditions. In this work, statistical methods incorporate the general knowledge about the system 14 

functionality in order to construct a reliable and effective FD algorithm. 15 

2.1 Grid-connected PV system 16 

 This section highlights the theoretical particularities of PV systems in which the data-driven 17 

algorithm in section 3 is developed to solve.  The nonlinear time-varying behavior of PV systems can be 18 

theoretically highlighted according to ideal one-diode model [47] relating the output voltage 𝑽𝑃𝑉 to the 19 

output current 𝑰𝑃𝑉: 20 

𝑰𝑃𝑉 = 𝐼𝑖𝑟𝑟 − 𝐼0 [𝑒𝑥𝑝 (
𝑽𝑃𝑉 + 𝑅𝑠𝑰𝑃𝑉
𝑉𝑡ℎ𝑒𝑟𝑚𝓃

) − 1] −
𝑽𝑃𝑉 + 𝑅𝑠𝑰𝑃𝑉

𝑅𝑠ℎ
                                                   (1) 21 

where 𝓃 is the ideality factor of the cell and 𝑉𝑡ℎ𝑒𝑟𝑚 = 𝜅𝑇/𝑞 is the cell thermal voltage. 𝜅, 𝑇 and 𝑞 are 22 

respectively the Boltzmann constant, the temperature of the p-n junction, and the electron charge. 𝑅𝑠ℎ 23 

and 𝑅𝑠 are the shunt resistance and the series resistance respectively. This system is nonlinear and time-24 

variant since the diode saturation current 𝐼0 depends on the temperature of the cell, the photocurrent 𝐼𝑖𝑟𝑟 25 

is also linearly related to the irradiance level and the temperature of the cell [48]: 26 

𝐼𝑖𝑟𝑟 = 𝐼𝑖𝑟𝑟,𝑠𝑡 (
𝐺

𝐺𝑠𝑡
) [1 + 𝐾𝐼(𝑇 − 𝑇𝑠𝑡)]                                                                     (2) 27 

where 𝐼𝑖𝑟𝑟,𝑠𝑡, 𝑇𝑠𝑡 and 𝐺𝑠𝑡 are respectively the photocurrent, cell temperature, and solar irradiance under 28 

the standard test conditions (𝑇𝑠𝑡  =  25 ℃ and 𝐺𝑠𝑡 = 1000 𝑊/𝑚
2); 𝐺 and 𝑇 are respectively the actual 29 
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solar irradiance and the actual cell temperature; and 𝐾𝐼 is the relative temperature coefficient of the short-1 

circuit current. 2 

A PV panel of  𝑁𝑠 cells in series and 𝑁𝑝 cells in parallel have the following I-V relation: 3 

𝑰𝑃𝑉 = 𝑁𝑝𝐼𝑖𝑟𝑟 − 𝑁𝑝𝐼0 (𝑒𝑥𝑝 [
1

𝑉𝑡ℎ𝑒𝑟𝑚𝑛
(
𝑽𝑃𝑉
𝑁𝑠

+
𝑅𝑠𝑰𝑃𝑉
𝑁𝑝

)]),                                                        (3) 4 

in addition to nonlinear time-variant behavior, PV systems exhibit two known peculiarities [22]: (i) 5 

voltage and current are limited and highly dependent on solar insolation 𝐺 and temperature 𝑇 (Eq.(3)), 6 

and (ii) the presence of MPPTs/ IPPTs.   7 

In this article, the grid-connected PV system is implemented as shown in Fig.1 [48]. The PV array 8 

output is generated through the programmable Chroma 62150H-1000S solar array emulator that allows 9 

varying effects of environmental conditions (𝐺 and 𝑇). The programmable AC source Chroma 61511 is 10 

used as a grid emulator. The control algorithm was implemented on a DSpace 1104 environment, which 11 

is also used for data acquisition. Voltage Oriented Control (VOC) technique is used in combination with 12 

Space Vector Pulse Width Modulation (SVPWM) to control the active and reactive power based on the 13 

grid-side signals. The output voltage is synchronized with the grid voltage through the Phase Lock Loop 14 

(PLL). The AC load in this work is used for protection purposes while injecting real faults.  15 

This system controller is based on Particle Swarm Optimization (PSO) technique to ensure 16 

Maximum Power Point Tracking (MPPT) when the available power level is lower than the rated power 17 

𝑃𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ≤ 𝑃𝐿𝑖𝑚𝑖𝑡 and Intermediate Power Point Tracking (IPPT) [48] mode if 𝑃𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 > 𝑃𝐿𝑖𝑚𝑖𝑡 [48]. 18 

This system is used to generate and collect real faulty data for experimental validation of real-time online 19 

FD, we refer interested readers to [48] for more details on the control structure, Energy Management 20 

System (EMS), communication, and settings of this system. 21 

    22 
Figure 1. Overview of the implemented grid-connected PV system. 23 
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As demonstrated in Fig.2, the power point location varies along P-V curves for different 1 

temperature and irradiance levels Eq.(1-3). Collected GPV system data exhibit a varying covariance 2 

structure and disparate fault characteristics at various power points. The FD algorithm must update to 3 

such variations and distinguish the evolving normal behavior from faults.    4 

  5 
Figure 2. Overview of real-time online adaptive PCA-KDE-KLD FD algorithm in GPV. 6 

2.2 Measurements, estimations, and faults 7 

While the previous theoretical model is simple and cannot be extended for practical FD, the 8 

presented algorithm is fully data-driven based on system data and free from assumptions. Real-time 9 

measured signals are the PV array voltage 𝑽𝑃𝑉 and current 𝑰𝑃𝑉 and DC voltage 𝑽𝑑𝑐, as shown in Fig.1, 10 

these are acquired with a sampling time of 𝑇𝑠 = 100 𝜇𝑠. The 3-phase grid voltages 𝑼𝑎𝑏𝑐  and 11 

currents 𝑰𝑎𝑏𝑐 have distorted periodic patterns and their skewed multimodal distributions do not contribute 12 

good quality information in the training stage. Magnitude and frequency in addition to the phase shift 13 

(which is regulated for synchronization with the grid) are online estimated from the measured periodic 14 

signals using PLL positive-sequence PMU (IEEE Std C37.118.1-2011) [49] as depicted in Fig.3. This 15 

work is designed and validated based on a small-scale microgrid application since the process of injecting 16 

real faults and collecting real data is hazardous, costly, and impractical in a large-scale system. Data are 17 

collected from sensor measurements and a virtual PMU [67] is used to extract the positive-sequence 18 

components from three-phase signals. In the case of multi-source wide-area applications, micro-PMUs 19 

should be used; moreover, locations of PMUs are of great importance and should be optimized for 20 

complete observability [68]. Wide-area systems are also subject to inter-area oscillations and stability 21 

issues. Moreover, cyber risk emerges as a new challenge in intelligent digital powers systems where the 22 

detection and diagnosis of software failures and cyber-attacks become crucial. However, the broad scope 23 

of this work considers the various common physical faults in GPV systems which have a direct impact 24 

on the microgrid.   25 
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The PMU-estimated quantities are more sensitive to detect faults due to their unimodal 1 

distributions and they are more significant to the analysis of the system performance. The 3-phase 2 

currents and their PMU-estimated quantities are shown in Fig.4 over a short time window of 100 𝑚𝑠. 3 

The estimation is based on the simulated model of PMU [49] in Fig.3 where the reporting rate is set to 4 

64 while input data are interpolated and output data are extrapolated to observe the positive-sequence 5 

components at the inherited sampling time 𝑇𝑠. Phasor computations are based on Fourier analysis 6 

performed using a running average window of one cycle, full details are explained in the standard 7 

documentation [49].  8 

 9 
Figure 3. MATLAB block diagram of PMU for estimating 3-phase signals [49]. 10 

Without loss of generality, micro PMUs can be used in industrial applications to collect such 11 

measurements directly since they provide micro-second resolution with milli-degree accuracy, they are 12 

mainly advantageous in local applications to study the grid penetration of renewables and they are well-13 

suited to the current PV microgrid application. The minimum set of fault-relevant variables 14 

{𝑰𝑃𝑉, 𝑽𝑃𝑉, 𝑽𝑑𝑐, |𝑰|, 𝒇𝐼, |𝑽|, 𝒇𝑉} is used in this work for monitoring the GPV system. The real-time 15 

measured and estimated signals form a data matrix 𝓨 of seven columns: 16 

𝓨 = [𝑰𝑃𝑉, 𝑽𝑃𝑉, 𝑽𝑑𝑐, |𝑰|, 𝒇𝐼 , |𝑽|, 𝒇𝑉]
𝑇 ,                                                   (4) 17 

 18 

 19 
Figure 4. Three-phase currents and their PMU-estimated quantities 20 
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The measurements are highly corrupted by noise and hence a preprocessing stage is performed 1 

for signal de-noising. The major drawback of using a Low Pass Filter (LPF) is the destruction of the main 2 

details which increases fault detection delay and conceals the symptoms of intermittent and low-impact 3 

faults. In this direction, an exponential filter is used for smoothing the measured signals using an 4 

exponential window function. The 𝑗𝑡ℎ sample of smoothed version 𝒙𝑗 is obtained from noisy signals as: 5 

𝒙𝑗 =
1

∑ 𝑟𝑖𝑤
𝑖=1

∑ 𝑟𝑖 𝔂𝑗−𝑤+𝑖
𝑤

𝑖=1
                                                   (5) 6 

where 𝔂𝑖 =  𝓨𝑖𝑗 for 𝑗 = 1,2,⋯ , 7 represents the 𝑖𝑡ℎ row vector measurement of all variables, 𝑟 is a 7 

weighting factor that controls the smoothing versus the memory of the filter, and 𝑤 is the window length. 8 

This filter is applied to the 7 measured and estimated variables. For example, the measured PV outputs 9 

and their filtered versions are depicted in Fig.5. 10 

 11 
Figure. 5. Measured and filtered signals at the DC side.  12 

Table 1. Realistic injected fault in the GPV system. 13 
Fault Type Description 

F1 Inverter fault Complete failure in one of the six IGBTs 

F2 Feedback Sensor fault  One phase sensor fault 20% 

F3 Grid anomaly  Intermittent voltage sags 

F4 PV array mismatch 10 to 20% nonhomogeneous partial shading 

F5 PV array mismatch 15% open circuit in PV array 

F6 MPPT/IPPT controller 

fault 

-20% gain parameter of PI controller in MPPT/ 

IPPT controller of the boost converter 

F7 Boost converter 

controller fault 

+20% in time constant parameter of PI controller 

in MPPT/IPPT controller of the boost converter 

 14 

This article considers the detection of seven realistic faults that are listed in Table 1 and injected 15 

in the GPV system of Fig.1. These faults are of various types and locations to ensure a complete analysis. 16 

All faults are injected manually in several successive independent experiments, each experiment runs 17 

around 10 to 15 seconds where the fault is introduced around the 7th to 8th second. The sampling time for 18 

fault-free and faulty data acquisition is 𝑇𝑠 = 100 𝜇𝑠. Unlike simulation studies, the exact fault occurrence 19 

timestamp is unknown for the algorithm. PV array mismatches such as F4 and F5 are challenging to 20 
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detect due to the large variability in sensor data at the DC-side; Fortunately, these faults are of lower 1 

severity levels causing only power losses. Faults F1 and F3 occurring in the grid side of the grid-2 

connected PV system are easy to detect since they affect only the AC side where data exhibits very small 3 

variability as demonstrated in Fig.4. Due to their severity, however, these faults must be detected at their 4 

early stages within a limited fault time. This work also investigates parametric faults F6 and F7 in 5 

MPPT/IPPT Proportional Integral (PI) controller in the DC side, in addition to a feedback current sensor 6 

fault, F2. Controller fault F7 indicates an increased time-constant parameter whereas F6 is a biased gain 7 

in the PI controller which results in a reduced MPPT/ IPPT trajectory tracking performance without 8 

affecting the stability of the closed-loop system. These faults are widely common in practice, their impact 9 

on GPV systems, theoretical description, and I-V characteristics are well-detailed in a comprehensive 10 

review in [22]. It was stated in [22] that detecting faults of 20% to 40% mismatch levels is difficult, 11 

whereas challenging for mismatch levels below 20%. Moreover, the presence of MPPT/ IPPT controllers 12 

poses adverse effects on the detection of faults that have disparate characteristics and hidden symptoms 13 

due to MPPT/IPPT search algorithms. Incipient faults in PV systems may occur because of corrosion, 14 

cells degradation, and partial damage in interconnections, these degradation faults are not severe and 15 

they are generally avoided through regularly scheduled preventive maintenance. Degradation faults are 16 

not considered in this work, their detection requires long-term data at large sampling intervals.   17 

 18 

 19 

3. Proposed FD algorithms 20 

 Novel data-driven algorithms are designed in this framework for FD in grid-connected PV 21 

systems under practical conditions and time-varying parameters. The algorithm models the system 22 

behavior under its nonlinear evolving characteristics using its huge data from its high temporal resolution 23 

sensors. The effectiveness in detecting various types of faults is improved by accurate statistical 24 

modeling, online adaptation to prevailing conditions, and precise (assumption-free) evaluation. Novel 25 

fault indicators and a new discrimination index are proposed to detect faults and distinguish model 26 

updates. Since it only depends on the available data, the method is cost-efficient, however, major 27 

developments are implemented for this algorithm to match online realization. The computational 28 

efficiency is improved by extracting the few most sensitive features while monitoring the PV system. 29 

3.1 Kullback–Leibler Divergence 30 

The Kullback–Leibler Divergence (KLD), also called the relative entropy, is the most common 31 

of the f-divergence family [39] and widely used in practice. The KLD is a discriminant function between 32 



 14 

two probability distributions, a reference distribution 𝑃𝑟𝑒𝑓 and a test distribution 𝑃𝑡𝑠𝑡, defined on the 1 

same probability space, the KL divergence from 𝑃𝑡𝑠𝑡 to 𝑃𝑟𝑒𝑓 is defined for discrete distributions [40] to 2 

be: 3 

𝐷𝐾𝐿(𝑃𝑟𝑒𝑓 ∥ 𝑃𝑡𝑠𝑡) =∑𝑃𝑟𝑒𝑓(𝑖) log
𝑃𝑟𝑒𝑓(𝑖)

𝑃𝑡𝑠𝑡(𝑖)
𝑖

                                                   (6) 4 

and for continuous distributions as the integral [41]: 5 

𝐷𝐾𝐿(𝑃𝑟𝑒𝑓 ∥ 𝑃𝑡𝑠𝑡) = ∫ 𝑝𝑟𝑒𝑓(𝒙) log
𝑝𝑟𝑒𝑓(𝒙)

𝑝𝑡𝑠𝑡(𝒙)

+∞

−∞

𝑑𝒙                                                   (7) 6 

where 𝑝𝑟𝑒𝑓 and 𝑝𝑡𝑠𝑡  are the probability densities of 𝑃𝑟𝑒𝑓  and 𝑃𝑡𝑠𝑡, respectively. 7 

 The KLD represents the expectation over a reference distribution 𝑃𝑟𝑒𝑓 of the logarithmic 8 

difference between the probabilities. Let 𝑛 measurements data 𝑿 = [𝒙1,   𝒙2, ⋯ , 𝒙𝑛]  ∈ ℜ
𝑛×𝑚 be a 9 

sample of 𝑚-variate random vectors drawn from a common distribution where 𝑚 is seven for this PV 10 

system and 𝑛 can exceed 105. Suppose 𝑿𝑟 is a reference data recorded during normal operation and it 11 

contains 𝑛𝑟 samples described by 𝑃𝑟 distribution, and 𝑿𝑡 is an online measured data with 𝑛𝑡 samples 12 

following 𝑃𝑡 distribution. The KLD is widely used as a scalar monitoring index [43, 44] which quantifies 13 

the deviation between two m-variate time-series data-sets 𝑿𝑟 and 𝑿𝑡. It is zero if and only if the two 14 

distributions are equal, and it is positive and far from zero if the distributions are different. The GPV 15 

system is therefore considered to be under statistical control based on the following hypothesis test: 16 

{
𝐻0:     𝑃𝑡 = 𝑃𝑟
𝐻1:     𝑃𝑡 ≠ 𝑃𝑟

                                                                                                      (8) 17 

 According to Eq. (6,7), 𝐷𝐾𝐿(𝑃𝑟 ∥ 𝑃𝑡)  is zero under the null hypothesis 𝐻0 which represents a 18 

fault-free operation of the PV system. Also, 𝐷𝐾𝐿(𝑃𝑟 ∥ 𝑃𝑡)  is different (greater than) zero under the 19 

alternative hypothesis that represents a faulty operation. However, in practice, the measurements in both 20 

data-sets are not perfect and their samples are generally noisy, the distributions at different intervals are 21 

never identical. A critical region is hence defined to reject the null hypothesis through an upper control 22 

limit 𝜀𝑠𝑎𝑓𝑒 which is small but different from zero: 23 

{
𝐻0:    𝐷𝐾𝐿(𝑃𝑟 ∥ 𝑃𝑡) ≤ 𝜀𝑠𝑎𝑓𝑒
𝐻1:     𝐷𝐾𝐿(𝑃𝑟 ∥ 𝑃𝑡) > 𝜀𝑠𝑎𝑓𝑒

                                                                                    (9) 24 

 Unfortunately, this technique cannot be implemented for FD in real-time PV systems since the 25 

estimation of the joint distribution of 𝑚-variate data is highly challenging as reported in [42]. A linear 26 

increase in the dimension 𝑚 results in an exponential increase in the number of required samples, the 27 

estimated parameters, and also the computation time and complexity. To comfort this challenge, previous 28 
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works assumed all samples in 𝑿 to follow a multivariate Gaussian distribution, 𝑃𝑟(𝒙)~𝑁(𝝁𝑟 , 𝚺𝑟) and 1 

𝑃𝑡(𝒙)~𝑁(𝝁𝑡 , 𝚺𝑡). The KLD is then given as: 2 

𝐷𝐾𝐿(𝑃𝑟 ∥ 𝑃𝑡) =  
1

2
{(𝝁𝑡 − 𝝁𝑟)

𝑇𝜮𝑡
−1(𝝁𝑡 − 𝝁𝑟) + 𝑙𝑛

|𝜮𝑡|

|𝜮𝑟|
+ 𝑡𝑟(𝜮𝑡

−1𝜮𝑟) − 𝑚}                       (10) 3 

where the problem is reduced to the estimation of the mean vectors 𝝁𝑟𝑒𝑓 and  𝝁𝑡𝑒𝑠𝑡 of dimension 𝑚 and 4 

the covariance matrices 𝜮𝑟 and 𝜮𝑡 of dimension 𝑚 ×𝑚. Notice here that the KLD index is reduced to 5 

monitoring changes in the process mean and statistical dispersion, and therefore its FD sensitivity is 6 

highly deteriorated. Besides, the assumption of normality does not hold in practical applications and 7 

especially during a faulty operation. In recent FD applications, the KLD is estimated in [50,51] using the 8 

direct importance estimation [52], where the importance [53] represents the density ratio 𝑝𝑟(𝒙) ∕ 𝑝𝑡(𝒙), 9 

and it is given as a statistical model: 10 

𝑝𝑟(𝒙)

𝑝𝑡(𝒙)
= 𝑔(𝒙;  𝜽) = ∑𝜃𝑖𝐾(𝒙, 𝒙𝑡(𝑖))

𝑛𝑡

𝑖=1

                                                   (11) 11 

where 𝐾(𝒙, 𝒙′) is a kernel function, Gaussian Kernel is widely used in practice with a parameter 𝜎 as a 12 

kernel width: 13 

𝐾(𝒙, 𝒙′) = exp (−
‖𝒙 − 𝒙′‖2

2𝜎2
)                                                   (12) 14 

and 𝜃𝑖 are the 𝑛𝑡 parameters to be learned by minimizing the KLD of 𝑝𝑡(𝒙) with respect to its estimate 15 

𝑝𝑡̃(𝒙)  𝐷𝐾𝐿(𝑝𝑡(𝒙), 𝑝𝑡̃(𝒙)):  16 

𝐷𝐾𝐿(𝑝𝑡(𝒙), 𝑝𝑡̃(𝒙)) = ∫ 𝑝𝑡(𝒙) log
𝑝𝑡(𝒙)

𝑔̃(𝒙;  𝜽) 𝑝𝑟(𝒙)

+∞

−∞

𝑑𝒙    17 

= ∫ 𝑝𝑡(𝒙) log
𝑝𝑡(𝒙)

𝑝𝑟(𝒙)

+∞

−∞

𝑑𝒙 −∫ 𝑝𝑡(𝒙) log 𝑔̃(𝒙;  𝜽)
+∞

−∞

 𝑑𝒙                                  (13) 18 

since the first term is constant, the density is approximated by maximizing the following objective 19 

function 20 

𝑱 ≔ ∫ 𝑝𝑡(𝒙) log 𝑔̃(𝒙;  𝜽)
+∞

−∞

 𝑑𝒙  21 

≈
1

𝑛𝑡
∑log 𝑔̃(𝒙𝒕(𝑗);  𝜽)

𝑛𝑡

𝑗=1

=
1

𝑛𝑡
∑log(∑𝜃𝑖𝐾(𝒙𝒕(𝑗), 𝒙𝑡(𝑖))

𝑛𝑡

𝑖=1

)              (14)

𝑛𝑡

𝑗=1

 22 

with respect to the parameter vector 𝜽: 23 

𝜽̃ = arg max
𝜃1
𝑛𝑡

 (𝑱)                                                                                    (15) 24 
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The computational complexity of this approach is still high especially for high dimension data of GPV 1 

systems (𝑛𝑡 is large), another shortcoming of this approach is the density ratio divergence problem [42]. 2 

3.2 Dimension reduction 3 

 The KLD measure is very sensitive to anomalous behaviors, however, its computation is not 4 

feasible for large dimension multivariate data, especially in adaptive approaches. To comfort the curse 5 

of dimensionality, PCA is used in this framework to de-correlate the system variables and obtain the 6 

transformed components [54] at the prevailing power point. These features are more sensitive to faults 7 

because they capture the correlation among variables. More importantly, the estimation and evaluation 8 

tasks will be faster and efficient when reducing the dimensions of the estimated parameters, computation 9 

time, and the required number of samples.   10 

Suppose 𝑿𝑟 = [𝒙1, 𝒙2,⋯ , 𝒙𝑛𝑟] ∈ ℜ
𝑛𝑟×𝑚 is a reference data matrix of 𝑛𝑟 samples, this descriptive set is 11 

independent of time. The seven variables in Eq.(4) are observed with different units and scales and hence 12 

are auto-scaled: 13 

   𝑿𝑟̅̅̅̅ = [𝒙1̅̅ ̅, 𝒙2̅̅ ̅,⋯ , 𝒙𝑛𝑟̅̅ ̅̅̅], 𝒙𝑖̅ = [𝒙𝑖 − 𝝁𝑟] 𝜮𝑟
−1                                                    (16) 14 

𝝁𝑟 and 𝜮𝑟 are the reference standardization parameters, they respectively represent the mean vector and 15 

the reference standard deviation matrix: 16 

𝝁𝑟 =
1

𝑛𝑟
 ∑𝒙𝑖

𝑛𝑟

𝑖=1

= [𝜇𝑟 1,⋯ , 𝜇𝑟 𝑚]
𝑇                                                   (17) 17 

𝜮𝑟 = diag{𝜎𝑟 1,⋯ , 𝜎𝑟 𝑚} , 𝜎𝑟 𝑘
2 =

1

𝑛𝑟 − 1
 ∑[𝑿𝑟 𝑖,𝑘 − 𝜇𝑟 𝑘]

2

𝑛𝑟

𝑖=1

                                 (18) 18 

 Take a reference data matrix 𝑿𝑟̅̅̅̅  constructed from the PV system variables given in Eq.(4) and 19 

illustrated in Fig.2. These signals are filtered using Eq.(5) and down-sampled to 𝑇𝑠 = 1𝑚𝑠 then auto-20 

scaled as given by Eq.(16). Suppose an informative and descriptive data-set is collected, the covariance 21 

structure of the reference data matrix is approximated as follows:  22 

𝐜𝐨𝐯(𝑿𝑟̅̅̅̅ ) ≈ 𝑺 =
1

𝑛𝑟 − 1
𝑿𝑟̅̅̅̅

𝑇
𝑿𝑟̅̅̅̅                                                           (19) 23 

using Singular Value Decomposition (SVD), the covariance matrix is decomposed into: 24 

𝐒 = 𝑷𝚲𝑷𝑇 , 𝑷 = [𝑷𝟏, ⋯ , 𝑷𝒎]
𝑇 , 𝚲 = [

𝜆1   
 ⋱  
  𝜆𝑚

]                                                          (20) 25 

The orthonormal eigenvectors 𝑷𝒊 ∈ ℜ
𝑚×1 are the 𝑚 loadings which represent the independent directions 26 

of variability within the original data. The 𝑚 eigenvalues 𝜆𝑖 represent the amount of variation per each 27 
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direction, the eigenvalues are in descending order such that 𝑷𝟏 and 𝜆1 is the direction and amount of 1 

maximum variation. Conventional is based on defining two subspaces called the principal subspace and 2 

residual subspace: 3 

𝑷 = [𝑷̂|𝑷̃]
𝑇
, 𝚲 = [𝚲̂ 𝟎

𝟎 𝚲̃
]                                                                 (21) 4 

where 𝑷̂ ∈ ℜ𝑚×𝑙 and 𝚲̂ ∈ ℜ𝑙×𝑙 are the projection operators on the principal subspace, and they contain 5 

the first 𝑙 principal (significant) features which are interpreted as the useful information that represents 6 

the natural variability. 𝑷̃ ∈ ℜ𝑚×(𝑚−𝑙) and 𝚲̃ ∈ ℜ(𝑚−𝑙)×(𝑚−𝑙) are the projection operators on the residual 7 

subspace which is generally interpreted as noise. However, the determination of the appropriate number 8 

of Principal Components (PCs) is not clear even for a particular system. Data-sets generated from 9 

different systems exhibit different covariance structures and signal to noise ratios.  10 

PCA based FD is simply the measure of deviation within each subspace using the 𝑇2 and the 𝑄 11 

statistics. Based on the squared-distance these statistics are less accurate in detecting system faults. While 12 

relying on particular distribution assumptions, these statistics are also less robust to noise and outliers. 13 

Furthermore, the choice of 𝑙 is primarily related to overfitting or underfitting the constructed model which 14 

consequently controls the degree of a tradeoff between different measures of fairness. In this article, all 15 

the components are used to monitor all the changes in an online operation. The components are analyzed 16 

through a moving window using exact KLD.   17 

The transformed components (TCs) are obtained as linear combinations of the original variables, 18 

and they represent the projection of the online measurements on the orthogonal directions obtained in 19 

the offline stage. The TCs are obtained through this mapping: 20 

𝑇𝐶∗ = 𝑿𝑟̅̅̅̅  𝑷 = [𝒄∗1,⋯ , 𝒄∗𝑚]
𝑇                                                          (22) 21 

𝒄∗𝑘 ∈ ℜ
𝑛𝑟  (for 𝑘 = 1,⋯ ,𝑚) are the 𝑚 reference uncorrelated TCs obtained by projecting the auto-scaled 22 

reference data on the orthonormal loadings.  23 

Let 𝑿𝑡(𝑡) = [𝒙(𝑡 − 𝑛𝑡 + 1),⋯ , 𝒙(𝑡)] ∈ ℜ
𝑛𝑡×𝑚  is an online measured data-set of the most recent 24 

𝑛𝑡 samples. These samples are scaled in the same manner but using updated parameters:  25 

𝑿̅𝑡(𝑡) = [𝒙(𝑡 − 𝑛𝑡 + 1),⋯ , 𝒙(𝑡)], 𝒙(𝑖) = [𝒙(𝑖) − 𝝁(𝑖)] 𝜮−1(𝑖)                                         (23) 26 

where 𝒙(𝑖) is a vector measurement at time instance 𝑖, 𝝁(𝑖) and 𝜮(𝑖) represent the most recent updated 27 

scaling parameters where reference parameters are used for initial standardization. The new TCs are 28 

obtained by projecting the new scaled measurements:  29 

𝒕𝒄(𝑡) = 𝒙(𝑡)𝑷                                                                       (24) 30 

3.3 Novel detection indices 31 
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 The PV system measurements are online projected on the orthonormal loadings of the constructed 1 

model. The TCs are observed through a sliding window of size 𝑛𝑡, they are given at a time 𝑡 as: 2 

𝑻𝑪(𝑡) = [𝒕𝒄(𝑡 − 𝑛𝑡 + 1),⋯ , 𝒕𝒄(𝑡)] = [𝒄1,𝑡 , ⋯ , 𝒄𝑚,𝑡]
𝑇
                                                          (25) 3 

𝒄𝑘,𝑡 ∈ ℜ
𝑛𝑟 (for 𝑘 = 1,⋯ ,𝑚) are the 𝑚 online TCs at a time 𝑡. These are successively updating by 4 

removing the oldest values and augmenting the values of the new projections. The transformed 5 

components are analyzed in this framework. It is known in PCA theory that the first (principal) 6 

components are the most sensitive to incipient changes such as an evolving normal behavior (changing 7 

conditions) or incipient faults (not considered in this work). Distance-based statistics, such as the 8 

Hotelling 𝑇2, are however inefficient in detecting those changes within the principle subspace due to its 9 

large variability [55]. On the other hand, the residual components are more sensitive to small and abrupt 10 

shifts, but the distance-based 𝑄 statistic is very limited to measure the deviation within this subspace. 11 

The resulting TCs are orthogonal and have different sensitivities to faults; the most sensitive are 12 

hence independently analyzed through a fast and efficient methodology. Let 𝑝𝑘
∗  denote the density 13 

function of the 𝑘𝑡ℎ reference TC 𝒄𝑘
∗ , and 𝑝𝑘,𝑡 the density of the 𝑘𝑡ℎ TC 𝒄𝑘,𝑡  at time 𝑡. These densities are 14 

estimated through smooth Kernel Density Estimation (KDE) as:  15 

𝑝̂𝑘
∗(𝑐; ℎ) =

1

𝑛𝑟
 ∑𝐾ℎ(𝑐, 𝒄

∗
𝑘(𝑖))

𝑛𝑟

𝑖=1

   for   𝑘 = 1,2,⋯ ,7                                                          (26) 16 

𝑝̂𝑘,𝑡 (𝑐; ℎ) =
1

𝑛𝑡
 ∑𝐾ℎ(𝑐, 𝒄𝑘,𝑡(𝑖))

𝑛𝑡

𝑖=1

   for   𝑘 = 1,2,⋯ ,7                                                          (27) 17 

using the following kernel:  18 

𝐾ℎ(𝑐, 𝑐
′) =

1

√2𝜋ℎ
exp−(

1

2
(
𝑐 − 𝑐′

ℎ
)

2

)                                                            (28) 19 

with a smoothing factor ℎ [56], that minimizes the Mean Integrated Squared Error (MISE): 20 

𝑀𝐼𝑆𝐸(ℎ) = E [∫(𝑝̃(𝑐; ℎ) − 𝑝(𝑐; ℎ))
2
𝑑𝑐]                                                          (29) 21 

The KLD of some measurements at time 𝑡 along the 𝑘𝑡ℎ TC is hence obtained according to Eq.(7) as:     22 

𝐷𝑘(𝑡) = 𝐾𝐿𝐷(𝑝̂𝑘
∗  ∥  𝑝̂𝑘,𝑡) = ∫ 𝑝̂𝑘

∗(𝑐) 𝑙𝑜𝑔
𝑝̂𝑘
∗(𝑐)

𝑝̂𝑘,𝑡 (𝑐)
 𝑑𝑐  , for k = 1,2,⋯ , 7               (30) 23 

Seven different deviation measures are hence obtained. In this paper, three indices are used 𝐷1, 24 

𝐷7, and 𝐴𝐷 . The first two indices are referred to as the detection indices and used to detect various types 25 

of anomalies. Since they measure any deviation from the reference densities, these indices are super 26 
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sensitive to any change including small and slow variations of the operation mode. 𝐷1 is indeed the most 1 

sensitive to monitor the evolving normal behavior since it is associated with the first dominant TC 2 

reflecting the natural variability of the system. The adaptation index 𝐴𝐷 is hence obtained from 𝐷1 3 

through the Xbar chart [57] as follows: 4 

𝐴𝐷(𝑡) = 𝐷1(𝑡)̅̅ ̅̅ ̅̅ ̅ = ∑
𝐷1(𝑖)

𝑤𝐴𝐷

𝑡

𝑖=𝑡−𝑤𝐴𝐷+1

                                                                     (31) 5 

The 𝐴𝐷 index is used to monitor the local mean divergence over the dominant transformed component. 6 

𝑤𝐴𝐷 is the length of the window and it is taken as half the number of the reference samples 𝑛𝑟/2. This 7 

index is the most sensitive to normal behavior evolution and used to trigger model updates. Using these 8 

three indices, the hypothesis test of Eq (9) is generalized to decisions on the PV system operation to be 9 

made at a time 𝑡 following these three conditions: 10 

{
  
 

  
 
∎𝐶1:  𝐷1(𝑡) > 𝐶𝐿𝐷1 𝑂𝑅 𝐷7(𝑡) > 𝐶𝐿𝐷7                             

⇒ 𝐹𝑎𝑢𝑙𝑡, 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑎𝑙𝑎𝑟𝑚, ℎ𝑜𝑙𝑑 𝐴𝐷(𝑡) = 𝐴𝐷(𝑡 − 1)

∎𝐶2:  𝐷1(𝑡) < 𝐶𝐿𝐷1, 𝐷7(𝑡) < 𝐶𝐿𝐷7, 𝐴𝐷(𝑡) < 𝐶𝐿𝐴𝐷      
⇒ 𝐹𝑎𝑢𝑙𝑡₋𝑓𝑟𝑒𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛                                                 

∎𝐶3:  𝐷1(𝑡) < 𝐶𝐿𝐷1, 𝐷7(𝑡) < 𝐶𝐿𝐷7, 𝐴𝐷(𝑡) > 𝐶𝐿𝐴𝐷     
⇒ 𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡, 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑢𝑝𝑑𝑎𝑡𝑒.         

                                                             (32) 11 

 The densities are estimated for univariate TCs through sufficient samples (𝑛𝑟 and 𝑛𝑡 are large), 12 

the smooth KDE yields a very accurate approximation for the actual densities. Accordingly, the proposed 13 

indices are very robust to individual outliers and very sensitive to real changes. Therefore, the control 14 

limits for the detection indices are set empirically in the training stage without using confidence intervals 15 

and without any assumption on their distributions. The control limits 𝐶𝐿𝐷1 and 𝐶𝐿𝐷7 measure the highest 16 

acceptable divergence attributed to noise and inaccuracies without faults and condition variations. 17 

Validation fault-free data are collected separately from training data without condition variations and 18 

used in the validation stage to tune the control limits. The validation divergence indices 𝐷1(𝑡) and 𝐷7(𝑡) 19 

during the validation stage correspond to fault-free, variation-free, and they are independent of training 20 

data. Validation divergence in various directions is negligible and accounts for imperfectness aspects 21 

only. 𝐶𝐿𝐷1 and 𝐶𝐿𝐷7 are therefore tuned empirically just above the maximum values of their respective 22 

validation divergence 𝐷1(𝑡) and 𝐷7(𝑡) to ensure a minimum false alarms rate in fault-free conditions. 23 

Since model and reference parameters adaptation accounts for varying conditions, the control limits are 24 

constant once they are tuned in the validation stage. The control limit for the adaptation index is 25 

empirically set to be 𝐶𝐿𝐴𝐷 = 𝐶𝐿𝐷1/4. The adaptation index 𝐴𝐷 is derived from 𝐷1 (𝐴𝐷(𝑡) = 𝐷1(𝑡)̅̅ ̅̅ ̅̅ ̅) based on 26 

an Xbar chart such that 𝐴𝐷(𝑡) measures the variation in the mean value of the divergence within the first TC. Since 27 
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the Xbar chart has a longer Average Run Length (ARL) [58], 𝐴𝐷 is slower than 𝐷1(𝑡) in detecting fast changes 1 

(due to faults). However, since 𝐶𝐿𝐴𝐷 = 𝐶𝐿𝐷1/4, 𝐴𝐷 is more accurate than 𝐷1(𝑡) in triggering slow and small mean 2 

changes (varying conditions). Due to its longer ARL but smaller control limit, the adaptation index is triggered in 3 

cases of small, persistent, and slow variations only. In case of a fault, the detection of indices trigger alarms 4 

(𝐷1(𝑡)>𝐶𝐿𝐷1 or 𝐷1(𝑡)>𝐶𝐿𝐷1) before the adaptation index is triggered (𝐴𝐷(𝑡) > 𝐶𝐿𝐴𝐷) due to the fact that PV system 5 

faults have much faster dynamics compared to the slow variation speed of temperature and irradiance. On the 6 

contrary, in case of continuous variations of temperature and/or irradiance, the mean 𝐷1 will slowly increase by 7 

small steps (<𝐶𝐿𝐷1) where the adaptation index triggers an update (𝐴𝐷(𝑡) > 𝐶𝐿𝐴𝐷).  8 

The proposed algorithm is hence based on local data analysis around the current operating point. 9 

This point is in an unpredictable continuous change due to environmental inputs. Assuming changes due 10 

to anomalies are faster than changes in the operating point, this methodology is very efficient in 11 

discriminating faults from normal changes. The assumption is correct without a loss of generality since 12 

the PV system is known for faster dynamics compared to the natural slow variation of temperature and 13 

irradiance during normal operation (excluding abrupt partial shading which is regarded as a fault herein). 14 

The adaptation index is based on the change in the mean divergence across the first component, and the 15 

changes of the operating point are tracked through the changes in the local mean value and local statistical 16 

dispersion. Under the last condition (C3) in Eq.(32) an update is triggered so the normalization 17 

parameters are updated as follows: 18 

𝝁(𝑡) =
1

𝑛𝑡
 ∑ 𝒙(𝑖)

𝑡

𝑖=𝑡−𝑛𝑡+1

= [𝜇1(𝑡),⋯ , 𝜇𝑚(𝑡)]
𝑇                                                          (33) 19 

𝜮(𝑡) = diag{𝜎1(𝑡),⋯ , 𝜎𝑚(𝑡)} , 𝜎𝑘
2(𝑡) =

1

𝑛𝑡 − 1
∑ [𝑿𝑖,𝑘(𝑡) − 𝜇𝑘(𝑡)]

2
𝑡

𝑖=𝑡−𝑛𝑡+1

                       (34) 20 

Otherwise: 21 

𝝁(𝑡) = 𝝁(𝑡 − 𝑇𝑠), and 𝜮(𝑡) = 𝜮(𝑡 − 𝑇𝑠)                                                          (35) 22 

using the initial scaling parameters given at Eq.(11, 17) where 𝑇𝑠 = 1 𝑚𝑠 is the sampling time. 23 



 21 

 1 
Figure 6. A simplified flowchart for the overall algorithm. Between brackets are the corresponding equations for 2 

each statement. 3 

The overall algorithm is summarized in Fig.6. For simplicity purposes, this figure lists the steps 4 

of the entire procedure in one operation mode only, while the procedure is based on two parallel models. 5 

The developed algorithm, in fact, switches its monitoring models and their respective parameters once 6 

the real operation is changed from MPPT to IPPT and vice-versa. The versatile semi-supervised 7 

algorithm is optimally trained in an offline stage which yields one initial PCA model for each mode, 8 

initial scaling parameters, and reference densities. Outcomes of this training stage are first validated using 9 

independent measurements which are also offline collected and selected, but the validation stage 10 

interprets the data in an online-like manner to check if the obtained settings are applicable. After the 11 

validation stage, the control limits are calculated empirically from validation samples   12 

𝐶𝐿𝐷𝑘 = max(𝐷𝑘(𝑡)) + 𝜀, 𝑠. 𝑡.    𝑡𝑟 < 𝑡 < 𝑡𝑣                                      (36) 13 

where 𝜀 is a small number. The sensitivity of the max operator to noise in original data is not an issue 14 

since 𝐷𝑘(𝑡) is obtained through a moving-window sequential analysis and they it is robust to noise. Once 15 
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the settings are validated, the overall algorithm is put for online application with no prior knowledge 1 

about the class (faulty, fault-free, changed mode / operating point). The established models and their 2 

parameters are only updated once the discrimination index triggers an update and faults are detected 3 

through the D indices. 4 

4. Results and discussion 5 

This section describes the fault injection procedure and the collected data sets. The overall 6 

computational complexity is first compared across different methods. The sensitivity of different 7 

approaches in tracking the nonlinear time-varying behavior is then examined and compared. The 8 

detection performance of contemporary methods is then demonstrated and compared for each GPV 9 

system fault.  10 

4.1. Complexity analysis and comparisons 11 

Real-time data-sets are acquired at a high-frequency rate (𝑇𝑠 = 100 𝜇𝑠) during the experiments 12 

using the dSpace 1104 environment as illustrated in Fig.1, several tests were independently experimented 13 

in real-time (Table 1) as demonstrated in Fig.7 below, each test runs for around 15 seconds as described 14 

in subsection 2.2. It is worth mentioning again that the exact fault occurrence is unknown in this work 15 

because of a high sampling rate and the realistic experimental setup that reflects practical applications. 16 

The traditional theoretical FD performance assessment tools such as false alarm rate, detection rate, and 17 

detection delay are not accurate in this realistic setup. FD performance comparison is introduced through 18 

practical aspects. The reference training data is collected for both MPPT and IPPT modes where each set 19 

spans an initial operation period of 3.3 seconds (𝑛𝑟 = 3.3 × 10
4), 𝑿𝒓 ∈ ℜ

33000×7 during normal 20 

operation conditions while test experiments are of 10 to 15 seconds (𝑿 ∈ ℜ
100 000×7 to 𝑿 ∈ ℜ

150 000×7). 21 

This algorithm is hence developed, tested and evaluated based on such extensive data measurements. 22 

The online TCs 𝒄𝑘,𝑡 (for 𝑘 = 1,⋯ ,𝑚) are observed within a sliding window of 𝑛𝑡 = 1.1 × 10
4 in order 23 

to estimate their prevailing densities at each time instance and measure the online divergence with respect 24 

to their reference values 𝒄∗𝑘.  25 

 26 
Figure 7. Real fault experiment in the GPV system. 27 

 28 

It is known that kernel density estimation methods are very powerful for nonparametric analysis 29 

but also computationally highly expensive [59]. In an 𝑚-variate data the direct evaluation of kernel 30 
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density estimates at 𝑛𝑝 evaluation points given 𝑛𝑡 input sample points require a quadratic 𝒪((𝑛𝑡 × 𝑛𝑝)
𝑚
) 1 

operations in a single window only. This dictates the need for huge memory and computation 2 

requirements. These requirements are reduced to the 𝑚 decorrelated features through  𝒪(𝑚 × 𝑛𝑡 × 𝑛𝑝) 3 

which are a huge improvement for accurate density and KLD evaluations (𝑚 = 7, 𝑛𝑡 = 1.1 × 104, and 4 

𝑛𝑝 = 100).  5 

The reduced complexity of the proposed algorithm is a remarkable advantage since the 6 

computational time is crucial for online real-time application for GPV system FD in face of its high-7 

dimensional high-frequency data. The multivariate KLD change-point detection approaches [42, 50, 51] 8 

are implemented offline with a very rough approximation of multivariate density ratio estimation around 9 

only 10 points in each direction (107 points in total). For the seven-dimensional data of GPV system, 10 

approximate KLD approaches [42, 50, 52] take in average 170 to 190 seconds to verify the statistical 11 

control hypothesis for one single measurement only. These approaches are extremely far from realization 12 

in online practical applications since sensor measurements arrive at a rate of 𝑇𝑠 = 100 𝜇𝑠. These 13 

approaches are limited in the literature for univariate processes [50, 51] and cannot be extended to high 14 

dimensional problems except for very slow processes [42], they are hence expelled from comparisons in 15 

this work. On the contrary, the presented nonparametric PCA-DKE-KLD takes on average 0.65 × 10−4 16 

seconds only to evaluate each new measurement. This advantage is due to the fact that the correlation 17 

among the original attributes is already captured through PCA TCs which are orthogonal and vary in a 18 

one-dimensional space where only two univariate independent evaluations apply (Eq.(26-29)) without 19 

any loss of precision.  20 

 21 

 (a)        (b) 22 
Figure 8. FD performance under fault-free time-varying power point: (a) 𝐷𝑘(𝑡)-sensitivity to evolving normal 23 

behavior without model update, and (b) 𝐴𝐷(𝑡)-detected and triggered updates.  24 

4.2. Performance analysis and comparisons 25 

It is known in the literature that the principal subspace (first TCs) is more sensitive to incipient 26 

changes such as incipient faults but incipient changes can be an evolving normal behavior; whereas the 27 

residual subspace is more sensitive to small changes and small faults but the smallest changes can also 28 

be attributed to noise. The theoretically-proved temperature and insolation-dependent time-variant 29 
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behavior (recall Eq.(1-3)) is examined in Fig.8 during a normal (fault-free) GPV operation test where 1 

temperature and irradiance are gradually altered: Time-development of different fault indicators 2 

(𝐷𝑘(𝑡) 𝑓𝑜𝑟 𝑘 = 1, 3, 5, 7 of Eq.(30)) without any model update are demonstrated in Fig.8(a); Notice that 3 

all the indicators have a negligible value (around-zero) that is attributed to noise only; However 𝐷1(𝑡) 4 

exhibits an evolving pattern due to the normal evolving behavior. 𝐷1(𝑡) measures the divergence across 5 

the first TC which is commonly known as the most sensitive to normal evolving behavior, this fact 6 

supports the choice of this indicator as the basis for the discrimination index 𝐴𝐷(𝑡) of Eq.(31); In Fig.8(a) 7 

𝐷1(𝑡), 𝐷3(𝑡), and 𝐷5(𝑡) are plotted versus the left axis, while 𝐷7(𝑡) (divergence across the last TC) is 8 

plotted versus the right axis since it exhibits higher values, this justifies the selection of 𝐷1(𝑡) and 𝐷7(𝑡) 9 

as the main indicators. The two fault indicators are derived from the first and the last TCs which 10 

respectively measure the highest and lowest variabilities and are respectively sensitive to different types 11 

of controlled and uncontrolled variabilities in the GPV system. While Fig.8(a) shows the development 12 

of the indicators during varying power point without any statistical model update, Fig.8(b) shows the two 13 

indicators with their control limits for the same experiment under models updates which are triggered 14 

through the discrimination index 𝐴𝐷(𝑡) when it reaches its established threshold (Eq.(32)), all the indices 15 

are now under control limits during normal operations and remain within a negligible range as the system 16 

operation is safe. Fig.9 demonstrates the detection performance of several methods for fault F6 which 17 

stands for a biased controller gain in the PI controller of MPPT/IPPT unit of the boost converter controller 18 

(Fig.1) where gain parameters are deliberately biased after few seconds (around 11s) of normal operation 19 

as described in Table 1 in subsection 2.2. This fault does not imply a risk to the system but it may damage 20 

the converter and cause power losses if it remains undetected for a long time.  Fig.9 also reflects the 21 

successful detection of this fault by the proposed method (Fig.9(f)) versus the complete failure of recent 22 

methods to show any fault symptoms. Fig.9(a) and (b) show PCA performance for decorrelating its huge 23 

input data into uncorrelated PCs (Eq.(17-21)) for dimensionality reduction. However, the four relevant 24 

clusters corresponding to fault-free (training and testing) are not classified from faulty data (during and 25 

after fault F6). Recall in section 2.2 that the fault was implemented in the second half of the period of 26 

each test and remains until the end of the experiment, the traditional PCA’s 𝑄 and 𝑇2 statistics [27, 28] 27 

fail to show any sensitivity to this fault as demonstrated in Fig.9(c). These approaches completely fail to 28 

detect fault F6 where 𝑄 and 𝑇2 statistics remain within their respective thresholds 𝑄𝛼  and 𝑇2𝛼 established 29 

with a significance level of 𝛼 = 0.01 [37, 38]. Fig.9(d) shows the distributions of 𝑃𝐶1 at different 30 

instances, even 𝑃𝐶1 of training data does not follow a parametric distribution and it is instead multimodal, 31 

a fact that violates a heavy assumption of most statistical methods. The other plots of Fig.9(d) also show 32 
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the smoothed KDE of this PC (Eq.(26-29)) at pre-fault (Pref, PtestTr, PtestTs), during fault (PtestDF), and 1 

post-fault (PtestAF) which are fairly far from a Gaussian distribution. The change of such density estimate 2 

during pri-fault and post-fault is hardly distinguished from the change during pre-fault situations, the last 3 

change is attributed to measurement noise and varying power point of the GPV system. Fig.9(e) shows 4 

the performance of the 𝐼 index [43] based on a parametrized KLD approach that assumes a Gaussian 5 

distribution [44, 45]. The divergence measured by this conventional index is fairly high even before the 6 

fault is introduced, this implies that the Gaussian approximation is not correct. 7 

  8 
Figure 9. Comparison of recent methods for the detectability of fault F6 (biased PI MPPT/IPPT boost converter 9 

controller). 10 
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The failure of traditional methods to detect fault F6, as seen in Fig.9(a, b, c, e), is explained in 1 

Fig.9(d) where such theoretical assumptions lead to biased estimations of statistical parameters (mean 2 

and variance). Moreover, these parameters are changing during a normal behavior due to measurement 3 

noise and varying power point of the GPV system, notice the mean is not always zero, and the variance 4 

is changing. On the contrary, Fig.9(f) shows the successful detection of fault F6 using the proposed 5 

algorithm through both fault indicators 𝐷1(𝑡) and 𝐷7(𝑡) obtained through Eq.(25-30). Notice first that 6 

these indicators are very accurate as they have negligible values (<< 0.05) during normal operating 7 

conditions compared to the 𝐼 index, 𝐷1(𝑡) and 𝐷7(𝑡) remain clearly under their respective control limits 8 

𝐶𝐿𝐷1 and 𝐶𝐿𝐷7 (Eq.(32)). Both indicators increase considerably (>>1) above their control limits upon 9 

the fault occurrence and generate fault alarms (FA) a few seconds before the experiment ended due to 10 

protection purposes. Fig.9(f) also demonstrates the sensitivity of the adaptive discrimination index 𝐴𝐷(𝑡) 11 

(Eq.(31)) which discriminates an evolving normal behavior from GPV system faults where several 12 

updates have been triggered each time 𝐴𝐷(𝑡) reaches its upper control limit 𝐶𝐿𝐴𝐷 before 𝐷1(𝑡) reaches 13 

its 𝐶𝐿𝐷1 and triggers a false alarm.  14 

  15 
Figure 10. Comparison of detection of F2 (current feedback sensor fault 20%). 16 
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Among the different approaches in Fig.9, it is only the proposed assumption-free adaptive method 1 

in Fig.9(f) that yields a successful evaluation of 𝑃𝐶1 to detect F6. Considering now the closed-loop 2 

current feedback sensor fault F2 in Fig.10, the same comparison can be made between traditional PCA’s 3 

𝑄 and 𝑇2 statistics [27, 28, 37, 38] and the proposed method. This fault is more severe, compared to F6 4 

above, since it yields a non-zero steady-state error and leads to a wrong configuration of feedback 5 

controllers. This severe fault is poorly separated from normal data within both principal and residual 6 

PCA subspaces as seen in Fig.10(a, b), F2 is also poorly detected using PCA’s 𝑄 and 𝑇2 statistics [27, 7 

28, 37, 38] in Fig.10(c) with a lot of false alarms in the pre-fault stage. In comparison, the proposed 8 

method yields successful and clear detection that is confirmed through fault alarms (FA) of both fault 9 

indicators assisted by the discrimination index. 10 

   11 
Figure 11. Comparison of detection of F7 (slow-response of PI MPPT/IPPT boost converter controller). 12 

 The last comparisons are also made for fault F7 which stands for a slowed control that was 13 

introduced in the PI controller of the MPPT/IPPT boost converter controller. Again, the conventional 14 

PCA’s 𝑄 and 𝑇2 completely failed to detect this fault as demonstrated in Fig.11(a), while the fault is 15 

successfully detected through both 𝐷1(𝑡) and 𝐷7(𝑡) fault indicators in Fig.11(b).  16 
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 1 
Figure 12. Detection performance: (a) Inverter fault F1, (b) Grid anomaly F3, (c) Partial shading F4, (d) Open 2 

circuit F5. 3 

In addition to the previous comparisons across F6, F2, and F7, the successful fault detections 4 

(FD) of the remaining four faults of Table 1 are all illustrated in Fig.12. The presented recursive algorithm 5 

was hence proved computationally efficient compared to multivariate KLD approaches [42, 50, 51] to 6 

match online real-time FD in GPV systems.  The adaptive algorithm also considers the nonlinear time-7 

varying behavior of GPV systems by triggering updates upon changes of power point which were 8 

successfully sensed through the novel discrimination index 𝐴𝐷(𝑡). For these improvements, the obtained 9 

results of Fig.9-11 demonstrated superior detection performance compared to traditional PCA’s 𝑄 and 10 

𝑇2 statistics [27, 28, 37, 38]. Moreover, the developed assumption-free fault indicators 𝐷1(𝑡) and 𝐷7(𝑡) 11 

greatly outperformed the parametrized KLD approaches [43-45] as proved in Fig.9. Thus, the adaptive 12 

assumption-free PCA-KDE-KLD-based fault indicators and discrimination index are efficient and 13 

effective in detecting realistic faults in GPV systems in real-time. 14 

Table 2. Comparison of robustness, detection sensitivity, and computational time. 15 
 16 

FD 

approach 

False 

alarms 

Fault detection Computational 

time (s) F1 F2 F3 F4 F5 F6 F7 

PCA 𝑄, 𝑇2 1% ✓ ✓ ✗ ✗ ✗ ✗ ✗ 4.009 

𝐼 17.43% ✓ ✓ ✗ ✗ ✓ ✗ ✗ 98.474 
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KLD* 5.94% ✓ ✓ ✗ ✗ ✓ ✗ ✗ 21600* 

Proposed <1% ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.809 

* sampling frequency, number of evaluation points, and reference sample size are reduced to a rate of 1/10. 1 
 2 

Table 2 compares fault detection robustness and sensitivity as well as computational complexity 3 

of closely related methods for real-time fault detection performance, (✓) refers to definite detection, 4 

whereas (✗) means no prompt detection. The results are obtained through offline performance evaluation 5 

using real GPV system data collected during real faults which are injected manually in the system; the 6 

timestamp of the physical fault-occurrence is not known precisely. This poses a challenge for the fault 7 

detection algorithms which are trained in a semi-supervised approach. Unfortunately, the detection rate 8 

and detection delay cannot be assessed precisely without a reference method. Table 2 lists the highest 9 

false alarms rate, successful detection of the seven GPV system faults, and average offline computational 10 

time on experimental test data collected during 15 seconds. The computational time of a method should 11 

be under 15s to allow its online implementation. Recall that lower false alarms rates ensure higher 12 

robustness, the more detected faults reflect a higher detection sensitivity, and the shorter computational 13 

time indicates computational efficiency. A remarkable advantage of PCA is its dimensionality reduction 14 

which yields the fastest data processing to match online application (4.009 << 15s), this aspect is utilized 15 

in the proposed approach to reduce computational complexity without a loss of generality. Parametrized 16 

KLD approaches [43-46, 60] (referred to as the 𝐼 index in Fig.9(e)) exhibit a slightly increased 17 

complexity where local mean and covariance of a seven-dimensional data of size 𝑛𝑡 = 1.1 × 10
4 are 18 

updated each timestamp. Multivariate KLD approaches [42, 50, 52] based on direct density (or indirect 19 

density-ratio) estimation are impractical for the seven-dimensional data, sample data size and evaluation 20 

points are reduced to verify their performance in a finite time. On the other hand, the distance-based 𝑄 21 

and 𝑇2 statistics of PCA are ineffective in detecting faults due to their assumptions of normality and 22 

stationarity. The parametrized multivariate KLD is slightly better in terms of detection (3/7 faults 23 

detected), but it is less robust with 17.43% false alarms since the assumption of normality deteriorates 24 

its performance. Despite its reduced parameters to allow a feasible computational time, nonparametric 25 

KLD achieves better performance. The proposed approach reduces the dimensionality of the problem 26 

using PCA which allows full and nonparametric KLD evaluation without assumptions nor any 27 

approximations; Moreover, the highest sensitivity and lower complexity allow for sensing varying 28 

conditions and updating the models which greatly improves the FD robustness and detection 29 

performance.  30 



 30 

Faults in PV systems exhibit disparate characteristics under MPPT/IPPT controllers and varying 1 

environmental conditions. Consequently, fault classes exhibit varying characteristics which make it 2 

challenging for data-driven fault diagnosis approaches. The presented methods successfully mitigated 3 

this challenge for fault detection and they can be extended in future works from fault detection to fault 4 

diagnosis with cyber-attacks detection and diagnosis in multi-source wide-area power systems under the 5 

penetration of renewables with practical conditions. 6 

 7 

5. Conclusions 8 

This article presented an experimental analysis of real-time fault detection in grid-connected PV 9 

systems. Realistic-faults were injected in the system from which labelled data sets were collected from 10 

several experiments during varying power point through MPPT/IPPT modes and large variations in 11 

temperature and solar insolation. Moreover, this work examined the detectability of various types of GPV 12 

system faults at different levels and components including PV module mismatches such as open circuit 13 

and partial shading, inverter IGBT failure, grid anomalies in form of voltage sags, biased and slowed PI 14 

controller in the MPPT/IPPT boost converter controllers, and also current feedback sensor.  15 

This work aimed for the online real-time detection of a set of seven faults injected in a real system. 16 

The nonlinear time-varying behavior of the GPV system was successfully treated through the designed 17 

intelligent algorithm which is explicitly data-driven. The major issue of high-dimensional high-frequency 18 

GPV system data was solved through the decorrelation of such space into the transformed components 19 

from which the two most sensitive detectors 𝐷1(𝑡) and 𝐷7(𝑡) were developed and successfully employed 20 

for online FD. The presented discrimination index 𝐴𝐷(𝑡) was proved a very useful solution to distinguish 21 

the evolving normal behavior from faults to avoid false alarms and update statistical models and their 22 

parameters upon considerable changes in prevailing conditions only.  23 

On the other hand, the novel fault indicators 𝐷1(𝑡) and 𝐷7(𝑡) were proved superior in detecting 24 

GPV system faults during the various tests for their assumption-free approach compared to parametrized 25 

KLD approaches and PCA’s 𝑄 and 𝑇2 statistics. Their higher accuracy is due to the exact KDE-based 26 

KLD across decorrelated one-dimensional TCs where the measured divergence is indeed negligible near 27 

zero during a pre-fault stage and increases considerably once the GPV system is under a faulty operation.  28 

The novel algorithm of this work was designed, validated, tested, and compared based on 29 

extensive amounts of measured data from several tests on a GPV microgrid application. The obtained 30 

results proved the reliability of the proposed algorithm for computation-efficient and effective online 31 

real-time fault detection in GPV systems. 32 
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