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 We investigate a thick, biorturbated, storm-influenced shallow-marine succession 

 We compare several other examples develop in different basin styles  

 We challenge that deposition is controlled by frequency and magnitude of storms 

 We propose long-term biogenic reworking efficiency is related to basin-scale depositional factors 
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ABSTRACT 22 

Thick (>100 m-thick), highly bioturbated storm-influenced shallow-marine deposits are not 23 

frequent in the stratigraphic record, but they tend to be common in aggradational to 24 

retrogradational successions. Individual storm-event beds have typically low preservation potential 25 

in these successions, yet depositional settings are characterized on the basis of storms processes. 26 

Here we present a sedimentological study of a thick, bioturbated exhumed succession deposited 27 

during the early post-rift stage of the Neuquén Basin (Argentina) and compare its stratigraphic 28 

record with examples worldwide, in order to discuss the potential factors controlling the total 29 

overprint of storm-event beds during several million years.  30 

The Bardas Blancas Formation being 170-220 m thick in the study area is dominated by muddy 31 

sandstones and sandy mudstones, and it also includes subordinate proportions of clean sandstones 32 

and pure mudstones, collectively representing different environments of a storm-influenced 33 

shoreface-offshore system. The offshore transition and proximal offshore strata invariably comprise 34 

intensely bioturbated deposits, with only a few preserved HCS-sandstone beds. The unit shows for 35 

most of its thickness a long-term aggradational pattern spanning 7-10 Myr and is associated with 36 

low riverine influence. 37 

By combining the observations and interpretations of the Bardas Blancas Formation with 38 

other subsurface and exhumed intensely bioturbated, shallow-marine successions, we dispute the 39 

general assumption that these are associated with low frequency or low magnitude of storms. 40 

Alternatively, we argue that the long-lived efficiency of benthic fauna on overprinting most if not all 41 

the storm-event beds that reached the offshore-transition sector, results from the combination of 42 

several factors: deposition in relatively confined marine depocentres, persistent low riverine 43 

influence, and long-term aggradational stacking pattern. As these conditions can develop in a variety 44 

of basin styles, such as rift, early post-rift, and foreland settings, the recognition of thick, bioturbated 45 

successions as the ones discussed here can be used to infer more realistic constrains for depositional 46 

models and better predict facies distribution in such storm-influenced systems.  47 

 48 

Key words: storm-surge flows, biogenic destruction, long-term aggradational stacking pattern, 49 

Bardas Blancas Formation. 50 
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 52 

1. Introduction 53 

The deposition and preservation of individual storm-related event beds in shallow-marine 54 

settings have been reported and extensively discussed in the literature (Niedoroda et al., 1989; 55 

Wheatcroft, 1990; Snedden and Nummedal, 1991; MacEachern and Pemberton 1992; among many 56 

others). Facies models for wave- and storm-dominated shoreline and shallow-marine systems are 57 

relatively well established (e.g., Walker and Plint, 1992; Reading and Collinson, 1996; Johnson and 58 

Baldwin, 1996; Clifton, 2006; Plint, 2010), and they are recently incorporating two-dimensional, 59 

quantitative studies for refining shoreline reconstructions (e.g., Isla et al., 2020a, b). MacEachern 60 

and Pemberton (1992) characterized three types of shorefaces based on the intensity and frequency 61 

of storms: intense, moderate, and weak (low-energy) shorefaces. It is typically assumed that a 62 

thoroughly bioturbated succession with little or not preserved storm-event beds within a storm-63 

influenced shoreface-offshore system would represent weakly storm-affected shorefaces 64 

dominated by fair-weather deposits (MacEachern and Pemberton 1992; MacEachern et al., 1999, 65 

Pemberton et al., 2012). 66 

More than 100 m thick successions of storm-influenced, shallow-marine deposits 67 

characterized by highly bioturbated strata are not frequent in the stratigraphic record. However, 68 

they tend to be unusually common in rift to early post-rift stages of the North Sea Central Graben 69 

(Fraser et al., 2003; Gowland, 1996; Howell et al., 1996; Baniak et al., 2014), in rift stages of the 70 

North Sea Viking Graben (Råvnas et al., 1997; Løseth et al., 2009), and in early post-rift stages of the 71 

South American Neuquén Basin (Bardas Blancas Formation, Veiga et al., 2013). Other unusual 72 

examples of highly bioturbated, storm-influenced successions include the Bridport Sand Formation 73 

in the extensional Wessex Basin (Morris et al., 2006) and the Late Cretaceous Emery Sandstone 74 

Member of the Mancos Shale in the Western Interior foreland basin (Edwards et al., 2005). 75 

However, a thorough analysis of all these examples to test if they can be simply placed in the low-76 

energy shoreface end-member of the MacEachern and Pemberton (1992) spectrum, or if there are 77 

other controlling factors that contribute to produce thick bioturbated storm-influenced successions, 78 

has not yet been attempted.  79 

In this study, we present a detailed sedimentological study of a thick, highly bioturbated 80 

succession exposed in the northern Neuquén Basin (Lower-Middle Jurassic, Bardas Blancas 81 

Formation) with the following objectives: a) to describe and analyse an intensely bioturbated, 82 



 

 

storm-influenced shallow-marine succession, b) to compare the stratigraphic record of the Bardas 83 

Blancas Formation with thick, highly bioturbated units from other basins, c) to discuss the 84 

combination of several depositional controls that contribute to the complete destruction of original 85 

sedimentary structures and storm-event beds during several million years.  86 

 87 

2. Geologic and stratigraphic setting  88 

The Neuquén Basin is located on the eastern side of the Andes in west-central Argentina, 89 

between latitudes 32° and 40° South, covering an area of over 150,000 km2 (Fig. 1A). It comprises a 90 

nearly continuous stratigraphic record of up to 6,000 m thick strata from the Upper Triassic to Lower 91 

Cenozoic, and it is one of the most important petroleum provinces of South America (e.g. Uliana 92 

and Legarreta, 1993). The sedimentary record of the Neuquén Basin includes continental and 93 

marine siliciclastics, carbonates, and evaporites, deposited under a variety of basin settings 94 

(Legarreta and Uliana, 1991; Howell et al., 2005).  95 

During the Late Triassic to Early Jurassic, the western border of Gondwana was characterized 96 

by large transcurrent fault systems. This led to extensional tectonics within the Neuquén Basin and 97 

the formation of a series of narrow, relatively isolated depocentres (Franzese and Spalletti, 2001), 98 

which were filled mostly with volcanic and continental successions (Franzese et al., 2006; D´Elía et 99 

al., 2015). Due to continuous subduction at the proto-Pacific margin of Gondwana, a transition from 100 

syn- to post-rift conditions occurred in the late Early Jurassic (Vergani et al., 1995), marked by the 101 

first marine incursion into the basin (Gulisano et al., 1981; Veiga et al., 2013). The Neuquén Basin 102 

became a depocentre with regional slow subsidence in a back-arc position during the sag/post-rift 103 

phase that lasted to the end of the Early Cretaceous (Legarreta and Uliana, 1991). In the earliest 104 

stage of the post-rift phase, sediment gravity flows and mass movements were particularly common 105 

in marine settings, and this has been related to steep gradients (e.g., Legarreta and Uliana, 1996; 106 

Burgess et al., 2000; Privat et al., 2020). In this context, low-amplitude eustatic fluctuations, as well 107 

as short-lived events of tectonic inversion, probably had a strong influence during the entire post-108 

rift evolution (Legarreta and Uliana, 1991; Howell et al., 2005), but inherited topography and 109 

differential compaction had been invoked as potential local factors in the development of early post-110 

rift strata, particularly in the central Neuquén Basin (Cristallini et al., 2009; Veiga et al., 2013). 111 



 

 

The Cuyo Group represents the early post-rift sedimentation all across the Neuquén Basin 112 

(Figs. 1, 2). It commonly overlies the Precuyano volcanic and volcaniclastic succession deposited 113 

during the syn-rift stage (Gulisano et al., 1984), but it can also rest directly upon Paleozoic volcanic 114 

or plutonic rocks (e.g., Choiyoi Group, Fig. 2). The Cuyo Group spans from Lower to Middle Jurassic 115 

and comprises deep-marine to continental deposits in different proportion depending on the 116 

position in the basin, with a general east (proximal)-west (distal) depositional trend (Gulisano et al., 117 

1984; Arregui et al., 2011; Brinkworth et al., 2018). In the west-central sector of the Neuquén Basin 118 

(Fig. 1), the succession represents continuing deep-water sedimentation, strongly influenced by 119 

sediment gravity flows and mass-transport processes (Burgess et al. 2000, Hodgson et al., 2018), 120 

and is collectively known as the Los Molles Formation (Gulisano and Gutiérrez Pleimling, 1994). In 121 

the study area, in the east-central sector of the basin (Fig. 1A), early post-rift sediments deposited 122 

mostly in shallow-marine settings (Veiga et al., 2013), and accumulation started in the Late 123 

Toarcian–Aalenian (Riccardi 2008; Spalletti et al., 2012). Lithostratigraphically, in this region the 124 

Cuyo Group includes the Bardas Blancas, Los Molles and Lajas formations (Gulisano and Gutiérrez 125 

Pleimling, 1994; Spalletti et al., 2012; Veiga et al., 2013) (Fig. 2). The Cuyo Group is truncated by the 126 

Intra-Callovian unconformity and is overlain by the Lotena Group (Gulisano et al., 1984) (Fig. 2). 127 

The Bardas Blancas Formation, the focus of this contribution, is broadly defined as a Lower-128 

Middle Jurassic marine succession (Gulisano and Gutiérrez Pleimling, 1994). It crops out in the 129 

Malargüe anticline, particularly in the Potimalal area (Fig. 1A), where it has been described as mostly 130 

composed of shoreface to offshore sandstones and mudstones, with subordinated deltaic and 131 

terrestrial deposits (Bressan et al., 2013). This unit has been also the focus of investigation in the 132 

study area (Sierra de Reyes anticline, Fig. 1A), as part of larger-scale studies including the Cuyo and 133 

Lotena Groups (Veiga et al., 2011; Spalletti et al., 2012; Veiga et al., 2013). 134 

 135 

3. Study area and previous work 136 

Veiga et al. (2013) provided a detailed architectural and sequence stratigraphic analysis of the 137 

Bardas Blancas Formation in the Sierra de Reyes study area, integrating outcrop and subsurface 138 

information from a 3,000 km2 large area. They included two outcrop sections in the western and 139 

eastern sectors of the Sierra de Reyes anticline and several wells in the eastern subsurface region 140 

(Fig. 2). That study provides a framework in which to place the detailed sedimentological and 141 



 

 

ichnological analysis of the western outcrops of the Bardas Blancas Formation in the Sierra de Reyes 142 

anticline (Fig. 3A). 143 

The Sierra de Reyes anticline is located in the southernmost sector of the Malargüe fold and 144 

thrust belt, which is the product of tectonic inversion during Late Cretaceous-Neogene times 145 

(Giambiagi et al., 2009). The inversion in this region is related to reactivation of Mesozoic normal 146 

faults and new reverse structures that transferred shortening to the east (Giambiagi et al., 2009; 147 

Sagripanti et al., 2014). The study area in the western flank of the Sierra de Reyes anticline is about 148 

5 by 1.5 km, and the strata are mostly dipping 20-30° to the east. The Bardas Blancas Formation is 149 

exposed through a series of west-east gullies in which the main sedimentary sections were 150 

measured (Fig. 3B). A few reverse faults affect the strata but for the most part the outcrop is laterally 151 

continuous and allows reconstruction by means of key stratigraphic markers.  152 

The Bardas Blancas Formation is dominated by muddy sandstones and sandy mudstones, and 153 

it also includes subordinate proportions of coarser deposits up to pebbly sandstones and pure 154 

mudstones. The unit is 170-220 m thick and it unconformably overlies the syn-rift volcaniclastic 155 

deposits of the Remoredo Formation across all the area (Figs. 3B, 4A). In the southern sector of the 156 

study area (Agua del Ñaco and Agua de Heredia sections, Fig. 3), the Bardas Blancas Formation 157 

rapidly grades into a muddy, organic-rich unit defined as part of Los Molles Formation (Gulisano and 158 

Gutiérrez Pleimling, 1994; Spalletti et al., 2012) (Fig. 4B, C). The thickness of the Los Molles reaches 159 

20 m in the Agua del Ñaco section, and it thins and pinches out to the north. In the Agua del Campo 160 

section, the Bardas Blancas strata are sharply overlain by bioclastic and pebbly sandstones of the La 161 

Estrechura Member of the Lotena Formation (Veiga et al., 2011; Veiga et al., 2013). Biostratigraphic 162 

data based on ammonites of the study succession indicates that the Bardas Blancas Formation in 163 

the study area spans from the Late Toarcian to the Early Bathonian (Spalletti et al., 2012) (Fig. 2). 164 

According to present chronostratigraphic ages this time span represents no less than 7 Myr and as 165 

much as 10 Myr (Cohen et al., 2013). Further to the west of the study area, time-equivalent deposits 166 

of the Bardas Blancas Formation are dominantly composed of mudstone strata of the Los Molles 167 

Formation, but they occur mostly in the subsurface (e.g., well BjDC.x-1 in Fig. 2).  168 

The sequence architecture of the Cuyo Group in this region was investigated by Veiga et al. 169 

(2013). Integrating outcrop and subsurface data they identified four parasequence (PS) sets within 170 

the study interval (Figs. 2, 4), individually representing alternating conditions from retrogradational 171 

(PS Sets I and III) to aggradational (PS Set II), to progradational (PS Set IV) stacking patterns (Fig. 2). 172 



 

 

Collectively, the lower three parasequence sets were interpreted as representing long-term 173 

transgressive conditions during the early post-rift stage of the basin, where sustained 174 

accommodation was probably provided by a combination of thermal subsidence, differential 175 

compaction of syn-rift deposits and eustatic rise (Veiga et al., 2013). The observed changes in the 176 

stacking patterns were attributed to the effect of inherited topography from the underfilled syn-rift 177 

half-grabens, as sedimentation areas were expanding during progressive flooding and sediments 178 

were depositing in partially filled half-graben-segments with different gradients.  179 

For the present study, the sedimentology and stratigraphy of the Bardas Blancas Formation 180 

and its transition to Los Molles Formation in the eastern sector of the Sierra de Reyes anticline was 181 

recorded by detailed logging of two main sections, namely the Agua de Heredia section 182 

(36°55'22.82"S, 69°39'53.77"W), and the Agua del Ñaco section (36°57'9.07"S, 69°40'42.80"W) 183 

(Figs. 3B, 4), and complemented with information extracted from the Agua del Campo section of 184 

Veiga et al. (2013) (36°54'45.48"S, 69°39'29.94"W). Sedimentological data were recorded in each 185 

section (texture, sedimentary structures, palaeocurrents), along with ichnologic, macrofaunal and 186 

taphonomic information. Bioturbation intensity was characterized using the Bioturbation Index (BI 187 

0-6, Taylor and Goldring, 1993). Sand-silt-mud content in bioturbated facies was visually estimated 188 

by using X10 lenses. 189 

 190 

4. Facies associations and depositional model 191 

The facies and facies associations of the Bardas Blancas Formation and its transition to Los 192 

Molles Formation are presented in Table 1. Six facies associations (FA) have been defined for the 193 

study interval including: FA1 - Delta front, FA2 - Upper shoreface, FA3 - Lower shoreface, FA4 - 194 

Offshore transition, FA5 - Proximal offshore, and FA6 - Distal offshore. The definition and 195 

interpretation of these facies associations is broadly in agreement with the proposed by Veiga et al. 196 

(2013). Hereby we present a short description of facies associations and their interpretation and 197 

subsequently we describe the inferred depositional model.  198 

 199 

4.1. Delta front (FA1)  200 



 

 

FA1 occurs only at the base of the unit and is dominated by pebbly sandstones with planar 201 

cross-stratification or horizontal lamination, interbedded with subordinate conglomerates with 202 

quartz and volcanic pebbles (up to 5 cm in size), mudstone rip-up clasts and bioclasts in a chaotic to 203 

organized fabric (Table 1, Fig. 5A). Poorly defined coarsening-upward successions are observed 204 

locally. This association is interpreted to represent a high-energy nearshore setting, heavily 205 

influenced by coarse terrestrial input of river-related hyperpycnal flows, and partly reworked by 206 

subordinate coastal- wave processes (Veiga et al., 2013). 207 

 208 

4.2. Upper shoreface (FA2) 209 

FA2 is composed of amalgamated fine- to medium-grained sandstones mostly with trough 210 

cross-stratification and occasional lenses of highly fragmented bioclasts (Fig. 5B). Bioturbational 211 

structures are absent to low with sparse Ophiomorpha (Table 1). This association is thought to 212 

reflect a wave-dominated, upper-shoreface setting, intensely affected by longshore currents 213 

(Walker and Plint, 1992; Clifton, 2006; Isla et al., 2020a). 214 

 215 

4.3. Lower shoreface (FA3) 216 

FA3 mostly comprises tabular very fine- to fine-grained sandstones with HCS, and 217 

subordinated SCS, plane bed, and symmetrical ripples (Fig. 5C). Bioturbation intensity ranges 218 

significantly (BI 2-5) and is dominated by the Skolithos ichnofacies (Table 1). This association is 219 

interpreted as a lower-shoreface setting dominated by deposits related to storm-surge, purely 220 

oscillatory or combined flows (Walker and Plint, 1992, Dumas and Arnott, 2006) with high re-221 

mobilization potential and accordingly, low preservation of fair-weather sediments. 222 

 223 

4.4. Offshore transition (FA4) 224 

FA4 consists of tabular and massive muddy sandstones and subordinated sandy mudstones 225 

(Fig. 5D). Muddy sandstones have up to 30% mud and terrigenous coarse silt and very find sands 226 

dominate, whereas in sandy mudstones the mud fraction is estimated in about 50 to 70%. 227 

Bioturbation was mostly intense (BI 5-6), locally moderate (BI 4). A highly diverse Cruziana 228 

ichnofacies dominates (Table 1) in which Teichichnus and Chondrites prevail (Fig. 6A, B). 229 



 

 

Infrequently, medium- to thin-bedded, very-fine grained sandstones with HCS are recorded in this 230 

association. These beds invariably show an increment of bioturbation intensity at the top, passing 231 

abruptly to completely bioturbated muddy sandstones. This association is inferred to represent an 232 

offshore-transition setting, immediately below the fair-weather wave-base (Reading and Collinson, 233 

1996; Schwarz et al., 2013). Storm-surge flows delivered sand to distal marine settings, but post-234 

depositional bioturbation mixed mud and sandy event beds into muddy sandstones in almost all 235 

cases. 236 

 237 

4.5. Proximal offshore (FA5) 238 

FA5 is dominated by massive sandy and silty mudstones forming tabular beds with diffuse 239 

bedding planes (Fig. 5E). Bioturbation intensity is systematically high (BI 5-6). Ichnologically, a distal 240 

expression of the Cruziana ichnofacies is encountered (Table 1). Chondrites, Rhizocorallium, and 241 

Zoophycos sporadically occur in outcrops (Fig. 6C, D), whereas smaller traces such as Phycosiphon 242 

or Helminthopsis are commonly observed in cores of these sandy and silty mudstones (Veiga et al., 243 

2013, their figure 9c). As in FA4, very uncommon discrete sandstone beds occur interbedded in this 244 

association, but they tend to be finer grained and thinner than the ones interbedded in that facies 245 

association (Table 1). Due to the relatively lower proportion of sand in this association than in FA4, 246 

FA5 is interpreted as a proximal-offshore setting, representing the distal end of the running-distance 247 

of most storm-derived flows (Veiga et al., 2013).  248 

 249 

4.6. Distal offshore (FA6) 250 

FA6 includes mudstone-dominated successions that are common at the base and top of the 251 

study interval (Fig. 2, 5F). At the base, they consist of grey, massive, moderately bioturbated 252 

mudstones, grouped into the Zoophycos ichnofacies (Table 1) that is commonly observed in cores 253 

(Veiga et al., 2013, their figure 9D). Medium- to thin-bedded conglomerate layers with 254 

extraformational pebbles and mudstone rip-up clasts are locally interbedded in these mudstone 255 

beds. At the top of the unit, towards the Los Molles Formation, FA6 is mostly represented by black, 256 

fissile (platy), unbioturbated shales in which cm-thick tuffaceous layers occur. FA6 is interpreted to 257 

reflect the distal conditions of an offshore to shelf setting, but under two different conditions: the 258 

oxic sea-floor conditions as well as sediment gravity flows depositing coarse material were common 259 



 

 

when the distal offshore deposits of the early Bardas Blancas Formation accumulated; the overlying 260 

Los Molles Formation, however, exhibit high organic contents and original lamination that points to 261 

long-lived dysoxic to anoxic conditions (Doyle et al. 2005, Veiga et al., 2013).  262 

 263 

4.7. Depositional model 264 

Except for FA1 that is solely recorded at the base of the Bardas Blancas Formation (Table 1), 265 

the remaining facies associations are commonly stacked to form up to a few tens of meters thick 266 

shallowing-upward successions. Thus, a well-defined storm- and wave-dominated shoreface-267 

offshore depositional system is reconstructed for the unit (Fig. 7). The upper-shoreface was 268 

dominated by migrating dunes and bars associated with long-shore currents (FA2), whereas the 269 

adjacent lower-shoreface setting mostly exhibits event beds with HCS formed by the development 270 

of storm-surge combined flows (FA3, Fig. 7). The bioturbation intensity within the shoreface 271 

deposits increases offshore and hence, follows the normal pattern for wave-dominated shoreface-272 

offshore systems (Reineck and Howard, 1981; Walker and Plint, 1992; Gowland, 1996; Hampson, 273 

2000; MacEachern et al., 2007; Schwarz et al., 2016, 2018). 274 

In marked contrast, the preservation motifs and inferred conditions in the offshore transition 275 

(FA4) and proximal offshore (FA5) appear quite peculiar. These two adjacent settings record 276 

depositional conditions between fair-weather and storm wave-base (Fig. 7), and show a gradual 277 

increase in the proportion of mud versus sand fraction, because the storm-surge flows could export 278 

decreasing amounts of sand to more distal areas (Aigner and Reineck, 1982; Plint, 2010). With 279 

respect to the post-depositional mixing of mud and sand, these two environments are very similar, 280 

providing a similar capacity of burrowing organisms to rework almost 100% of the sands between 281 

the events. The fact that these conditions prevailed for a long period of time (7 to 10 Myr) is not a 282 

commonly reported motif for examples worldwide and is further discussed in this contribution. 283 

In the distalmost segment of the interpreted shoreface-offshore system, accumulation of 284 

mud prevailed and is considered to have been accumulated dominantly from settling out of 285 

suspensions in very low-energy hydrodynamic settings (FA6). Debris flows transporting gravel were 286 

common in early stages of the system (Fig. 7), but probably became infrequent later in its evolution, 287 

allowing to produce a mud-rich, distal offshore, occasionally colonized by Zoophycos-producing 288 

organisms. Distal offshore settings prevailed further to the west of the study area were substrate 289 



 

 

conditions probably remained constant during most of the Bardas Blancas Formation deposition 290 

(Figs. 2, 7). When a distal offshore setting was established in the southern sector of the study area 291 

(Los Molles Formation), a shift to prevailing dysoxic-anoxic conditions appears to have dominated 292 

in the sea-floor. 293 

 294 

5. Architecture of an intensely bioturbated succession 295 

The shallowing-upward units identified in the Bardas Blancas are parasequences bounded by 296 

flooding surfaces (Figs. 4, 8A), uncommonly demarcated by shell beds. These stratigraphic units are 297 

internally composed of bedsets with subtle stratigraphic boundaries (Fig. 8A). In the lower interval 298 

of the unit, parasequences show a complete transition from mudstones of FA6 (distal offshore) to 299 

clean, trough cross-bedded sandstones of FA2 (upper shoreface) (Fig. 4). In the middle and upper 300 

intervals of the Bardas Blancas Formation, parasequences are mostly composed of sandy mudstones 301 

and muddy sandstones of FA5 and FA4 (proximal offshore and offshore transition), sometimes with 302 

the presence of lower-shoreface HCS-sandstones at their top (FA4) (Figs. 8A). Bioturbation intensity 303 

in the lower-shoreface deposits is either similar or lower than the one recorded in the underlying 304 

offshore-transition facies (Fig. 8A).  305 

The most distinctive feature of the Bardas Blancas Formation is that most of the proximal 306 

offshore (FA5) and offshore transition (FA4) strata are intensely bioturbated (BI 5-6). Complete 307 

bioturbation (BI 6) is dominant and results in a completely structureless appearance of the beds (Fig. 308 

8B, Taylor and Goldring, 1993; Wetzel and Uchmann, 1998). It also typically prevents the 309 

identification of individual trace fossils. In these two facies associations, beds are defined by subtle 310 

variation in the sand-silt-mud content, usually aided by the weathering profile, where the muddier 311 

facies is less resistant (Fig. 8B). The relative dominance of muddy sandstones versus sandy and silty 312 

mudstones in a given interval defines the presence of FA4 or FA5 (Fig. 8B, C). Individual beds range 313 

from 0.10 m up to 1.5 m in thickness and they almost invariably show planar, horizontal lower and 314 

upper contacts defining tabular beds at different scales, from a few 10s to 100s of meters in length 315 

(Fig. 8C, D). 316 

Despite the intense bioturbation, these two facies associations contain sparsely 317 

unbioturbated sandstone beds providing information for interpreting their primary depositional 318 

processes. Where observed, these sandstone beds commonly have hummocky cross-stratification 319 



 

 

and are laterally continuous for up to a few 10s of meters (Fig. 9A, D). They have a sharp, irregular 320 

base overlying silty mudstone and invariably show an irregular, transitional or sharp top to muddy 321 

sandstones (Fig. 9B, E). In these overlying muddy sandstone, biotubation intensity is moderate to 322 

high (BI 4-5), and an ichnofabric dominated by Chondrites can be recognized in outcrop (Fig. 9C); 323 

however, a more diverse assemblage including Phycosiphon and Zoophycos has also been recorded 324 

in cores of the unit (Veiga et al., 2013). The discrete storm-generated deposit rapidly becomes a 325 

completely bioturbated muddy sandstone laterally, and exhibits the typical weathering profile as all 326 

of the similar beds (Fig. 9A, D). 327 

The aggradational to retrogradational stacking pattern of Parasequence Sets II and III has a 328 

major impact in the resulting distinctive stratigraphic architecture of the study succession (Figs. 2, 329 

4). As a result of these long-term aggradational conditions, about 100 m of the Bardas Blancas 330 

Formation in the study area are dominated by a vertical stacking of almost completely mixed 331 

deposits of FA4 and FA5 (Figs. 4, 8 and 9). The resulting stratigraphy is a storm-generated, but highly 332 

bioturbated, thick monotonous succession, with very little grain size variation (muddy sandstones 333 

to sandy mudstones), virtual absence of preserved primary physical (sedimentary) structures, 334 

bedding contacts that are invariably horizontal, and scattered fossil remains that rarely produce 335 

distinct shell concentrations.  336 

 337 

6. Discussion 338 

The preservation potential of individual storm-related event beds (or tempestites) in shallow-339 

marine settings and the lam-scram textures resulting from partial to total biogenic reworking of 340 

these event beds have been extensively reported and discussed (Wheatcroft, 1990; MacEachern 341 

and Pemberton 1992; among many others). Three types of shoreface settings are distinguished 342 

based on the intensity and frequency of storms: intense, moderate, and weak or low-energy 343 

(MacEachern and Pemberton, 1992). Commonly is assumed that a thoroughly bioturbated 344 

succession with little or no preserved tempestites within a storm-influenced shoreface-offshore 345 

system would represent weakly storm-affected shoreface facies dominated by fair-weather 346 

deposits. Following this reasoning, stacked, well-preserved tempestites would be interpreted as 347 

storm-dominated shoreface deposits (MacEachern and Pemberton 1992; MacEachern et al., 1999, 348 

Pemberton et al., 2012).  349 



 

 

The facies associations interpreted to represent offshore-transition (partially equivalent to 350 

the “distal lower shoreface” of MacEachern et al., 1999) to proximal offshore settings of the Bardas 351 

Blancas Formation are invariably composed of highly bioturbated muddy sandstones, sandy 352 

mudstones, and very few preserved tempestites. Most, if not all, of the presently bioturbated 353 

deposits were delivered by storm-surge flows. Following the MacEachern and Pemberton (1992) 354 

characterization, the Bardas Blancas system would, therefore, match the low-energy category of the 355 

storm-influenced shoreface systems.  356 

 357 

6.1. Thick bioturbated storm-influenced shallow-marine successions: where do they occur? 358 

Monotonous, more than 100 m thick successions of storm-influenced, shallow-marine 359 

deposits formed by persistent combination of processes that resulted in highly bioturbated strata 360 

are not common in the stratigraphic record, but they tend to be restricted to certain conditions 361 

(Figs. 10, 11; Table 2). The Upper Jurassic Farsund Formation in the Norwegian Central Graben (distal 362 

equivalent of the Ula Formation, Bergan et al., 1989; Fraser et al., 2003), the Upper Jurassic Heather 363 

and Lower Kimmeridge Clay formations in the UK Central Graben (distal equivalents of the Fulmar 364 

Formation, Donovan et al., 1993; Gowland, 1996), and the transition from the Middle Jurassic 365 

Tarbert to Heather Formations in the North Viking Graben (Råvnas et al., 1997; Råvnas and Steel, 366 

1998; Løseth et al., 2009) are all subsurface examples showing facies and bioturbation patterns that 367 

are remarkably similar to the ones observed in outcrops and subsurface for the Bardas Blancas 368 

Formation (Fig. 10D). The Lower to Middle Jurassic Bridport Sand Formation in the Wessex Basin 369 

(Morris et al., 2006) and the Upper Cretaceous Emery Sandstone Member of the Mancos Shale 370 

(Edwards et al., 2005) provide outcrop examples of highly bioturbated shallow-marine successions. 371 

The Farsund Formation in the Norwegian Central Graben is dominated by intensely 372 

bioturbated muddy sandstones and sandy mudstones reaching 200 m in thickness in Well 2/1-6 (Fig. 373 

10A) (FactPages - Norwegian Petroleum Directorate, 2020). The equivalent more proximal Ula 374 

Formation is mostly composed of highly bioturbated sandstones, interpreted to reflect weak to 375 

moderate shoreface types (Baniak et al., 2014, 2015), following the model from MacEachern and 376 

Pemberton (1992). The sedimentology and ichnology of the Fulmar Formation in the UK Central 377 

Graben has been described in detail by Howell et al. (1996) and Gowland (1996). They concur on 378 

the long-lived development of a storm-influenced shoreface-offshore system, in which intense 379 

bioturbation extinguished depositional structures largely in the lower shoreface and offshore-380 



 

 

transition settings (Fig. 10B). As in the Ula Formation, intense bioturbation in the offshore transition 381 

zone of the Fulmar Formation was interpreted as the result of low magnitude and/or low frequency 382 

of storm events (Howell et al., 1996). Collectively, these Upper Jurassic units of the Central Graben 383 

developed in a rifting regime and show long-term (several million years) aggradational to 384 

retrogradational stacking patterns (Howell et al., 1996; Mannie et al., 2014; 2016) (Fig 11).  385 

The facies associations and stacking patterns of the Tarbert and Lower Heather succession in 386 

the North Viking Graben were described by Løseth et al. (2009), based on cores and several key 387 

wells including well 30/9-14 (Fig. 10C) . In this well, the gamma-ray log for most of the Lower Heather 388 

interval shows a very uniform response and cores display relatively homogeneous, highly 389 

bioturbated muddy sandstones (Fig. 10C) grading into bioturbated sandstones with poorly 390 

preserved HCS beds. This uppermost succession has been interpreted to represent a parasequence 391 

with progradation from offshore, into offshore-transition settings and lowermost shoreface, within 392 

a long-term retrogradational stacking pattern (Løseth et al., 2009) (W3 in Fig. 11). These authors 393 

suggested that bioturbation intensity increases from W2 to W3 within the retrogradational stacking 394 

pattern (Løseth et al., 2009, their figure 4). This net transgressive trend developed within a syn-rift 395 

setting during the Bathonian and probably lasted for 1-2 Myr (Mannie et al., 2016). 396 

The Lower to Middle Jurassic Bridport Sand Formation in the Wessex Basin (UK) is another 397 

example of a storm-influenced, intensely bioturbated succession (Morris et al., 2006). According to 398 

the high degree of biogenic reworking, the dominant siltstones and silty sandstones with uncommon 399 

preserved storm beds were interpreted as reflecting low-energy lower-shoreface and offshore-400 

transition settings (Morris et al., 2006). Interestingly, no evidence of nearby fluvial influence or river-401 

mouth processes were recorded, and sand supply to the shoreface settings was related to along-402 

shore transport. Moreover, the unit was attributed to represent a long-term aggradational stacking 403 

pattern developed in an extensional fault‐bounded depocentre, formed due to localized high 404 

tectonic subsidence (Morris et al., 2006) (Table 2). A well exposed example of thick, highly 405 

bioturbated storm-influenced shallow-marine deposits occurs within the Upper Cretaceous Emery 406 

Sandstone Member of the Mancos Shale (Book Cliffs, Utah, USA). This units is up to 250 m thick and 407 

represents an aggradational stack of storm-dominated shoreface parasequences developed in a 408 

foreland basin (Edwards et al., 2005) (Table 2).  409 

All of these examples illustrate that the Bardas Blancas Formation is a good analogue for thick 410 

bioturbated shallow-marine successions occurring in a variety of basinal settings, but preferentially 411 



 

 

in those where: (1) storm-surges act as main across-offshore transport within relatively confined or 412 

small marine depocentres, (2) the fluvial influence is low to moderate, and (3) on the long-term the 413 

sediment supply and accommodation is balanced and expressed by aggradational stacking patterns 414 

(Fig 11). Thus, it is an oversimplification to assume that these depositional conditions would be 415 

overruled by the frequency and magnitude of atmospheric processes (such as the storms), which 416 

also vary significantly during the long-term periods represented by these successions.  417 

 418 

6.2. Factors fostering thick bioturbated storm-influenced shallow-marine successions  419 

Based on the occurrence of similar, thick, storm-generated, shallow-marine successions 420 

sharing more geological attributes than just their highly bioturbated nature, we propose to relate 421 

the intense bioturbational mixing of the original storm beds and sedimentary structures over several 422 

million years to a suite of factors, rather than constant low frequency and/or magnitude of 423 

atmospheric processes (the storms).  424 

Most of the examples mentioned above are related to complex syn-rift or early post-rift 425 

topography, which defines relative small depocentres during long-term marine transgressions 426 

(Howell et al., 1996; Veiga et al., 2013). These depocentres were mostly elongated and a few to tens 427 

of kilometers wide (Fig. 11). This depositional context is essential for the benthic fauna to inhabit 428 

almost the entire extent of these small depocentres, to produce not only total bioturbation in 429 

vertical sections (as seen in 1D cores, Fig. 10), but also to obliterate original beds for several 430 

kilometers laterally, as recorded in the outcrops of the Bardas Blancas Formation. In other words, 431 

we relate the relatively small size of the depositional setting to the high efficiency of benthic fauna 432 

to rework most of the individual storm deposits, independently of how fast the benthos establishes 433 

on the event bed, or the storm frequency. This bioturbational mixing efficiency is steadily high across 434 

the depositional environment, from the lower shoreface to proximal offshore, and does not 435 

necessarily follow the trends observed on modern shelves (Reineck, 1977; Howard and Reineck, 436 

1981). Howell et al. (1996) already used this basin-scale factor to support their process-realistic 437 

depositional model for the bioturbated, sand-dominated deposits of the Fulmar Formation. 438 

Moreover, Morris et al. (2006) suggested that small areas of accumulation in the Bridport Formation 439 

could have been more prone to extensive biotic proliferation, increasing the destruction success of 440 

storm-event beds. Going further, it can be speculated that relatively small-sized depocentres would 441 



 

 

allow a more homogeneous distribution of the food source for the benthic fauna, which would 442 

ultimately account for its success in utilizing the entire depositional setting at all times.  443 

An additional, long-term control on these thick bioturbated successions is related to the 444 

potential riverine water, sediment, and solute input to the marine realm. Modern studies have 445 

shown that individual, hurricane-related storm-event beds have high probability to be completely 446 

destroyed by bioturbation when riverine influence is relatively low and water depth is shallow (< 30 447 

m), for example in the inner shelf of the Gulf of Mexico (Snedden and Nummedal, 1991; Dashtgard 448 

et al., 2015). Likewise, it has also been recently demonstrated that amalgamated storm beds can be 449 

completely bioturbated fairly rapidly (< 10 years) under conditions of high riverine influence, such 450 

as several hurricane-event layers described immediately downdrift of the Missisippi River delta, in 451 

similar water depths (Walsh et al., 2018).  452 

The stratigraphic record of the intensely bioturbated succession reported in our study 453 

suggests a sustained biogenic reworking efficiency close to 100% during several million years (Fig. 454 

11). Consequently, ecologic factors affecting the benthic fauna typically associated with nearby, high 455 

riverine influence, such as turbidity or salinity fluctuations, were short-lived or uncommon episodes 456 

in the reported depositional settings. Therefore, for most of the Bardas Blancas Formation (PS Sets 457 

II and III, Fig. 4) we infer that riverine entry points were far from the study area and sand was 458 

supplied mostly by along-shore transport. This seems to be the case also for other examples 459 

discussed in section 6.1 and shown in Table 2. Howell et al. (1996) inferred absence of large deltas 460 

and low-discharge fluvial systems to deliver the clastic supply for the marine sandstones of the 461 

Fulmar Formation, whereas Morris et al. (2006) related the highly bioturbated succession to the lack 462 

of nearby river-mouth processes and significant along-shore transport. Significantly, the intensely 463 

bioturbated Emery Member was formed when small rivers drained the Sevier Orogen, rather than 464 

a large fluvial system as inferred for the shoreface settings of the underlying and overlying units 465 

(Edwards et al., 2005). 466 

Another evident similarity between all the aforementioned examples is associated with the 467 

long-term stacking pattern (Fig. 11). The early post-rift Bardas Blancas Formation and the rift to early 468 

post-rift successions of the Central Graben show a consistent aggradational to retrogradational 469 

stacking covering from 7 to 20 Myr (Fig. 11) (Table 2). The transition from the fluvial to estuarine 470 

deposits of the Tarbert Formation and thereafter into the marine deposits of the lower Heather 471 

Formation, represents at the base a net retrogradational trend that becomes more aggradational-472 



 

 

to-retrogradational upward (W2 and W3, Fig 11). Interestingly, the overall bioturbation index in the 473 

offshore-transition deposits increases in the W3 interval (Løseth et al., 2009), suggesting that the 474 

maximum bioturbational mixing efficiency of storm-event beds occurred at that time.  475 

The Emery Sandstone succession represents another unusual record of long-term 476 

aggradational stacking pattern (1.7 Myr, Table 2), in which the sedimentation rates were low 477 

compared to those of the underlying and overlying units (Edwards et al, 2005). Coincidently, the 478 

offshore-transition to lower-shoreface deposits of the Emery Sandstone reflect one of the highest 479 

bioturbational mixing efficiency of storm-event beds in the Upper Cretaceous record of the 480 

Wasatch-Book Cliff section (Edwards et al, 2005). This shows a marked difference with less 481 

bioturbated, environment-equivalent deposits, for example the younger Kenilworth Member (Eide 482 

et al., 2015) and the Grassy Member (Onyeanu et al., 2018) of the Blackhawk Formation, both units 483 

developed in progradational stacking patterns. Thus, a delicate long-lived balance between 484 

sediment supply and accommodation to create thick successions with highly aggradational (to 485 

slightly retrogradational) stacking patterns could be linked to sedimentation rates across the 486 

shoreface-offshore system. The offshore-transition and proximal offshore sectors of the system 487 

would have experienced low net sedimentation rates that – if all other variables remained fairly 488 

constant – would have produced a similar effect than low frequency storm-surge flows reaching 489 

those regions. The lack of significant progradational events expressed by basinward facies shifts also 490 

contributed to create thick, fairly homogeneous strata, without major breaks in sedimentation or 491 

sequence boundaries, and representing only one or two segments of the depositional system. In the 492 

case of the investigated examples, those segments correlated approximately with the areas 493 

between the fair-weather and the storm wave-base, in which the highest bioturbational mixing 494 

efficiency of storm-event beds took place.  495 

By combining the observations and interpretations of different thick, intensely bioturbated, 496 

shallow-marine successions the common assumption that the final bioturbated product can be 497 

associated only to low frequency or magnitude of storm events is questionable. Alternatively, the 498 

long-lived efficiency of benthic fauna reworking most if not all the storm-event beds reaching the 499 

offshore transition sector, results from the combination of two or three factors: (1) deposition in 500 

relatively confined marine depocentres, (2) persistent low fluvial influence, and (3) a long-term, 501 

aggradational to slightly retrogradational stacking pattern. As these conditions can be develop in a 502 

variety of basin styles, such as rift, early post-rift, and foreland settings, the recognition of thick, 503 



 

 

bioturbated successions as the ones discussed here can be used to infer more realistic constrains 504 

for depositional models and to better predict facies distribution in such storm-influenced systems.  505 

 506 

7. Conclusions 507 

1 - The Lower-Middle Jurassic Bardas Blancas Formation represents an up to 220 m thick, highly 508 

bioturbated, storm-influenced shallow-marine succession developed during the early post-rift 509 

stage of the Neuquén Basin. 510 

2 - Most of its stratigraphic record is dominated by muddy sandstones and sandy to silty mudstones 511 

deposited in offshore-transition to proximal-offshore settings, in which benthic- fauna efficiency 512 

to rework individual storm-event beds was persistently close to 100 % during a time span ranging 513 

from 7 to 10 Myr. This highly efficient biogenic reworking was mostly associated to deposit-514 

feeding organisms of the Cruziana ichnofacies. 515 

3 - The Bardas Blancas Formation shares several attributes with other > 100 thick, intensely 516 

bioturbated successions including: (i) deposition in relatively confined marine depocentres, (ii) 517 

persistent low riverine influence, and (iii) long-term (2 -20 Myr) aggradational stacking pattern. 518 

Yet, all these biogenically reworked successions are developed in a variety of structural styles, 519 

including rift, early post-rift, and foreland settings. 520 

4 – Therefore, it is questionable to assume that the resulting architecture of these unusually thick, 521 

bioturbated shoreface-offshore successions at different scales should be directly associated to 522 

low-frequency or magnitude storms. Alternatively, the long-lived efficiency of benthic fauna 523 

reworking almost all the storm-event beds formed in these depositional environments during 524 

several million years was more likely controlled by the co-occurrence of the following 525 

depositional factors: a) relatively small depocenters with infauna evenly distributed in 526 

intermediate to distal sectors, b) benthic fauna very rarely affected by considerable physico-527 

chemical changes in those regions due to overall low riverine influence, and c) delicate balance 528 

between sediment supply and accommodation producing an aggradational stacking and 529 

relatively low net sedimentation rates across the depositional area.  530 

5 - These depositional conditions can establish in a variety of basin styles, so the outlined factors 531 

controlling the formation of thick, highly bioturbated successions can be applied to infer more 532 



 

 

realistic constrains for depositional models and improving facies predictions in such confined 533 

storm-influenced systems.  534 
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Fig 1. A. Map of the Neuquén Basin with approximate location (red square) of the study area (Fig. 749 

2). CM: Chacay Melehue area; PL: Picún Leufú area; PM: Potimalal area; SR: Sierra de Reyes (Study 750 

area) B. Paleogeographic reconstruction of the Neuquén Basin during the Jurassic – Early-751 

Cretaceous. The onset of subduction on the western margin of Gondwana and the early 752 

development of the Andean arc led to development of a large triangular-shape epicontinental basin, 753 

partially connected to the proto-Pacific Ocean through a volcanic arc. Modified after Howell et al. 754 

(2005). 755 

Fig. 2. A. Cross-section (integrating outcrop and well data) showing the stratigraphic setting and 756 

overall depositional architecture of the early post-rift succession (Bardas Blancas, Los Molles and 757 

Lajas formations) in central Neuquén Basin, as well as the older Remoredo Formation (syn-rift 758 

volcaniclastic deposits) and Choiyoi Group (basement) units. Inset shows detailed map of the cross- 759 

section. Modified from Veiga et al. (2013). B. Chronostratigraphic chart for the study area, showing 760 

the temporal distribution of the Cuyo Group succession. Asterisks (Levels 1 to 4) show the location 761 

of ammonite levels described by Spalletti et al. (2012). The studied Bardas Blancas Formation 762 

(Toarcian-Bathonian) would represent a time interval ranging from 7 Myr to 10 Myr.  763 

Fig. 3. A. Geologic map of the Sierra de Reyes region, showing the different locations studied by 764 

Veiga et al. (2013) (black stars) and this study (white stars). B. Satellite image of the study area, in 765 

the eastern flank of the Sierra de Reyes anticline, showing the location of the sections studied in 766 

the Cuyo Group.  767 

Fig. 4. Field panoramas of Agua del Campo (A) and Agua de Heredia (B), showing the location of 768 

main stratigraphic units, and their bounding surfaces. C. Simplified stratigraphic section showing the 769 

overall aggradational-to-retrogradational stacking of the Bardas Blancas Formation, and its vertical 770 

relationships with the underlying and overlying lithostratigraphic units. Parasequence sets (PSS’s) 771 

after Veiga et al. (2013).  772 

Fig. 5. Outcrop examples of the different facies associations defined in this study. A. Cross-bedded, 773 

organic-rich and poorly-sorted pebbly to medium-grained sandstones (FA1 - Delta Front). 774 

Parasequence Set I, Agua de Heredia. B. Amalgamated, trough cross-bedded, well-sorted fine-775 

grained sandstones (FA2 – Upper shoreface). Parasequence Set I, Agua de Heredia. C. Tabular to 776 

slightly undulate, medium-bedded fine-grained sandstones, with hummocky cross-stratification 777 

(HCS) (FA3 - Lower shoreface). Parasequence Set II, Agua del Campo. D. Moderate to highly 778 

bioturbated sandstones and muddy sandstones, with local preservation of HCS (FA4 - Offshore 779 

transition). Parasequence Set II, Agua del Campo. E. Highly bioturbated sandy and silty mudstones, 780 

with subordinate muddy sandstones (FA5 - Proximal offshore). Parasequence Set II, Agua de 781 

Heredia. F. Massive to crudely laminated gray mudstones with occasional diagenetic nodule-rich 782 

horizons (FA6 - Distal offshore). Parasequence Set II, Agua de Heredia. See Table 1 for more details 783 

about their main attributes, and Figs. 2 and 4 for location in stratigraphy.  784 

Fig. 6. Selected examples of trace fossils found in offshore transition (FA4) and proximal offshore 785 

(FA5) facies associations.  786 

Fig. 7. General depositional model of the Bardas Blancas Formation in the study area, showing the 787 

distribution of different facies associations (FA’s) and their associated depositional environments. 788 

Note the influence of inherited and under-filled rift topography in the stratigraphic architecture of 789 



 

 

early post-rift deposits. Also note that the fluvial entry point and deltaic system within the study 790 

area would apply for the early stages of evolution. Not to scale. 791 

Fig. 8. Architecture, bedding and bioturbation of the study interval at different scales. A. Detailed 792 

stratigraphic section with the lithological, sedimentary and bioturbation trends of a 10’s of m-thick, 793 

shallowing-up succession (parasequence), made by several m-scale bedsets, and bounded by 794 

regional-scale flooding surfaces. Parasequence Set II, Agua de Heredia. See Figs. 2 and 4 for location 795 

in stratigraphy. B. Highly bioturbated, dm-scale muddy sandstones and sandy mudstones in offshore 796 

transition deposits (FA5). Parasequence Set III, Agua del Ñaco. C. Bioturbated offshore transition 797 

deposits (FA5), stacked in m-scale, well-defined bedsets. Parasequence Set III, Agua de Ñaco. D. 798 

General view of several m-scale bedsets, showing the homogeneous and tabular nature of the 799 

studied deposits. Parasequence Set II, Agua de Heredia. See stratigraphic position in A. 800 

Fig. 9. Two examples of preserved HCS in storm beds. A. General view of the gradual vertical 801 

transition from proximal offshore (FA5) to offshore transition deposits (FA4). B. Example of partially 802 

preserved HCS in dominantly highly bioturbated proximal offshore deposits (FA5). Parasequence Set 803 

II, Agua de Heredia. C. Detailed view of the contact between the fully bioturbated (Chondrites 804 

ichnofabric) upper part and the non-bioturbated lower part (preserving the original sedimentary 805 

structures) of the same event bed. Parasequence Set II, Agua de Heredia. D. Outcrop view of 806 

offshore transition deposits (FA4). E. Example of preserved HCS in a partially mixed event bed, 807 

overlain and underlain by highly bioturbated muddy sandstones and sandy mudstones (offshore 808 

transition, FA4). Parasequence Set III, Agua del Campo Sur. 809 

Fig. 10. GR well logs and core examples of highly bioturbated, storm-dominated shallow-marine 810 

successions comparable to the studied deposits. A. Upper Jurassic Farsund Formation, interpreted 811 

as the equivalent offshore transition deposits of the bioturbated, sand-rich Ula Formation in the 812 

Norwegian Central Graben. B. Heather and Intra-Heather Sandstone Formation, the offshore 813 

transition deposits overlying the transgressive shallow-marine sandstones of the Tarbert Formation, 814 

in Northern Viking Graben/Western Horda Platform. C. Heather Formation, also the equivalent 815 

offshore transition deposits of the highly bioturbated, Fulmar Formation, in the UK Central Graben. 816 

D. Lower-Middle Jurassic Bardas Blancas Formation, Neuquén Basin (this study).  817 

Fig. 11. Structural setting, overall stratigraphic architecture and stacking pattern of the different 818 

highly bioturbated, storm-dominated shallow-marine successions shown in Figure 10, and the 819 

Bardas Blancas Formation.  820 

 821 

Table 1. Facies association classification, description and interpretation of the main processes and 822 

environments of deposition. Trace fossil content is listed in relative order of abundance. FWWB: 823 

Fair-weather wave-base; SWWB: Storm-weather wave-base. 824 

Table 2. Main characteristics of the thick, intensely bioturbated successions discussed in this 825 

contribution.   826 
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