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 14 

Abstract 15 

The fine particulate matter (e.g. PM2.5) gains an increasing concern of human health 16 

deterioration. Modelling PM2.5 concentrations remains a substantial challenge due to 17 

the limited understanding of the dynamic processes as well as uncertainties residing in 18 

the emission data and their projections. This study proposed a hybrid model (CNN-BP) 19 

engaging a Convolutional Neural Network (CNN) and a Back Propagation Neural 20 

Network (BPNN) to make accurate PM2.5 forecasts for multiple stations at multiple 21 

horizons at the same time. The hourly datasets of six air quality and two 22 

meteorological factors collected from 73 air quality monitoring stations in Taiwan 23 

during 2017 formed the case study. A total of 639,480 hourly datasets were collected 24 

and allocated into training (409,238, 64%), validation (102,346, 16%), and testing 25 
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(127,896, 20%) stages. The forecasts of PM2.5 concentrations were first characterized 26 

as a function of air quality and meteorological variables. Then the proposed CNN-BP 27 

approach effectively learned the dominant features of input data and simultaneously 28 

produced accurate regional multi-step-ahead PM2.5 forecasts (73 stations; t+1−t+10). 29 

The results demonstrate that the proposed CNN-BP model is remarkably superior to 30 

the BPNN, the random forest and the long short term memory neural network models 31 

owing to its higher forecast accuracy and excellence in creating reliable regional 32 

multi-step-ahead PM2.5 forecasts. Besides, the CNN-BP model not only has the power 33 

to cope with the curse of dimensionality by adequately handling heterogeneous inputs 34 

with relatively large time-lags but also has the capability to explore different PM2.5 35 

mechanisms (local emission and transboundary transmission) for the five regions 36 

(R1-R5) and the whole Taiwan. This study shows that multi-site (regional) and 37 

multi-horizon forecasting can be achieved by exactly one model (i.e. the proposed 38 

CNN-BP model), hitting a new milestone. Therefore, the CNN-BP model can 39 

facilitate real-time PM2.5 forecast service and the forecasts can be made publicly 40 

available online.  41 

Keywords: PM2.5 forecast; Deep learning; Convolutional neural network; Back 42 

Propagation neural network; Multi-step-ahead forecasts; Taiwan 43 
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1. Introduction  45 

Air quality deteriorations have attracted intensive public attention for decades, 46 

and fine aerosols (e.g. PM2.5) in suspended particulates are one of the critical 47 

indicators of health hazards and air pollution. Air pollutants with particle sizes smaller 48 

than 2.5 microns are difficult to control. Besides, the composition of fine particles is 49 

too complex to be blocked by the cilia in the respiratory tract, and therefore they are 50 

labeled as "pulmonary particulate matter" (Kong et al., 2017; Nurkiewicz et al., 2011; 51 

Tang et al., 2017; Yang et al., 2018; Zhou et al., 2018). Once being inhaled, it will 52 

reach the lungs, invade the alveoli and enter into the blood vessels, causing serious 53 

harms to human health (Lai et al., 2019; Li et al., 2017; Qiu et al., 2013; Tsai and Kuo, 54 

2005). In recent years, air pollution caused by industrial development and 55 

transportation intensity upon rapid urbanization has become a severe issue in Taiwan. 56 

Besides, in winter a large number of aerosols are entrained in the northeast monsoon 57 

over the West Pacific Ocean (Hsu et al., 2006), coupled with a gradual expansion of 58 

long-range transboundary air pollution (Chan et al., 2006; Du et al., 2010; Hsiao et al., 59 

2017; Hsu et al., 2016; Widiana et al., 2019). It is observed more and more people in 60 

Taiwan are substantially affected by air pollution. According to the statistics released 61 

by the Environmental Protection Administration in Taiwan (TW EPA), the primary 62 

sources of air pollution in Taiwan are building construction (37%), traffic pollution 63 
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(23%), industrial emissions (23%) and others (17%) (EPM, 2015). This projects that 64 

PM2.5 is a multi-sources pollutant in relation mainly to industrial and automobile 65 

emissions from physical and chemical processes (Li et al., 2019). Therefore, many 66 

efforts have been made to forecast PM2.5 concentrations (Cheng et al., 2019; Fernando 67 

et al., 2012; Loy-Benitez et al., 2019); nevertheless, challenges have arisen in the 68 

course of regional multi-step-ahead forecasting when facing high spatio-temporal 69 

variability in PM2.5 concentrations. This creates a thirst for in-depth research on 70 

modelling approaches needed for regional multi-step-ahead PM2.5 forecasting.  71 

Modelling is an important tool for understanding the linkages between emissions 72 

and observations as well as for predicting ambient concentrations under a 73 

self-consistent framework. For instance, air quality forecasting is considered critical 74 

to early warning and control management of air pollution. Air quality forecast models 75 

can be broadly classified into physically-based models and machine learning models. 76 

Physically-based models have received extensive attention over the last decades, 77 

while notorious complexity and high uncertainty raised in modelling PM2.5 has made 78 

their development full of thorns and challenges (Karambelas et al., 2018). Machine 79 

learning models such as the most commonly used Artificial Neural Networks (ANNs) 80 

have served to effectively characterize PM2.5 as a function of its affecting factors for 81 

rapidly depicting the interdependence between air quality and meteorological systems, 82 
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and thereby have been considered as a better choice for air quality forecasting (Cheng 83 

et al.,2019; Feng et al., 2015; Feng et al., 2019; Fernando et al., 2012; Gao et al., 2018; 84 

Loy-Benitez et al., 2019; Ma et al.,2019; Ma et al., 2020; Mihăiţă et al., 2019; Wang 85 

et al., 2020). A variety of machine learning techniques have been used to predict PM2.5 86 

concentrations, such as the backpropagation neural network (BPNN) (Elbayoumi et 87 

al., 2015), the neuro-fuzzy neural network (Ausati and Amanollahi, 2016; Mishra et 88 

al., 2015), the long short term memory neural network (LSTM) (Bai et al., 2019; Zhao 89 

et al., 2019; Zhou et al., 2019a), the random forest (RF) (Liu et al., 2018; Stafoggia et 90 

al., 2019), and the support vector machine (SVM) (Zhou et al., 2019b). Hybridization 91 

approaches integrating different machine learning techniques have also been explored 92 

in recent years to improve PM2.5 prediction reliability and accuracy, with satisfactory 93 

forecast results (e.g. Du et al., 2018; Huang et al., 2018; Jiang, et al., 2017; Mahajan, 94 

et al., 2018; Mishra, et al., 2015; Niu, et al., 2016).  95 

It is noted that the methods mentioned above have been usually adopted to 96 

construct site-specific data-driven models for individual air quality monitoring station. 97 

High spatio-temporal variability in PM2.5 concentrations also occurs at plenty of 98 

monitoring stations spreading over a large region. These issues inevitably create great 99 

challenges in regional multi-step-ahead PM2.5 forecasting. Bearing this in mind as a 100 

motivation, this study intends to develop a novel hybrid deep learning model for 101 
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multiple site/horizon PM2.5 forecasting, with missions to extract the spatio-temporal 102 

correlation features and interdependence of multivariate air quality-related and 103 

meteorological time series data, explore PM2.5 mechanisms (local emission & 104 

transboundary transmission), and make PM2.5 forecasts for multiple sites at multiple 105 

horizons simultaneously.  106 

To achieve these goals, we propose a hybridization approach (CNN-BP) that 107 

seamlessly integrates a Convolutional Neural Network (CNN) and a BPNN in the 108 

interest of improving the reliability and accuracy of regional multi-step-ahead PM2.5 109 

forecasts, where. One of the study goals is to extend the prediction interval is exended 110 

from one hour up to ten hours. Four machine learning models (i.e. CNN-BP, BPNN, 111 

RF, and LSTM) are independently constructed for creating regional multi-step-ahead 112 

PM2.5 forecasts based on hourly observed data collected at 73 air quality monitoring 113 

stations spreading over the whole Taiwan, where the two static (BPNN and RF) and 114 

one dynamic (LSTM) models are taken as benchmarks for the purpose of comparison. 115 

The proposed CNN-BP forecast model (Figure 1) is a meta model enabled to predict 116 

multiple site/horizon attributes at once (i.e. 730 forecasts (73 stations x 10 horizons) 117 

each time), and the real-time regional multi-step-ahead PM2.5 forecasts can be 118 

visualized in a 2D map using the Kriging method. Following the Intodruction Section, 119 

this study is organized to outline the study area and materials in Section 2, introduce 120 
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the methods in Section 3, show and discuss the multi-step-ahead PM2.5 forecast results 121 

in Section 4, and make concluding remarks in Section 5.  122 

 123 

2. Study area and materials 124 

2.1. Study area  125 

The fast booming economy and high population density of Taiwan has made air 126 

quality deterioration rank high on the hot topic list in recent years. Air pollution not 127 

only induces respiratory diseases but is also a matter of life and death. Therefore, it is 128 

imperative to make accurate and reliable PM2.5 forecasts for assisting in the reduction 129 

of the health risk associated with air pollution. Air quality monitoring stations in 130 

Taiwan constitute the case study, and the study area is partitioned into five regions 131 

according to geographic locations, i.e. R1−northern region, R2−central region, 132 

R3−southern region, R4−eastern region, and R5−surrounding islands (Figure 2). Four 133 

machine learning models are separately constructed to produce regional 134 

multi-step-ahead PM2.5 forecasts. 135 

2.2. Data collection and statistical analysis 136 

The TW EPA provides an open data platform accessible to the public, where 137 

environmental monitoring datasets such as local air quality and meteorological 138 

conditions are on demand (EPA, 2019). This highly facilitates the collection of 139 
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reliable data for research use. It is noted that there are a total of 76 ground-based air 140 

quality monitoring stations in Taiwan but this study adopts data only from 73 stations 141 

because 3 stations encountered the problem of massive missing data. The attribiutes of 142 

the five regions defined in this study are give as follows. R1 (26 stations) centers on 143 

economic activities with heavy traffic loads and intensive commercial trading. R2 (17 144 

stations) and R3 (23 stations) encompass industrial areas locating chemical and 145 

thermal power plants. R4 (4 stations) embraces high-elevation mountains with natural 146 

scenery famous for tourism. R5 (3 stations) contains three groups of small islands 147 

surrounding Taiwan. This study utilizes hourly data of six air quality factors (PM2.5, 148 

PM10, SO2, CO, NO2, and O3) and two meteorological factors (ambient temperature 149 

and relative humidity) collected between 1/1/2017 and 31/12/2017. A total of 639,480 150 

hourly datasets (=24 hours x 365 days x 73 stations) were collected, where 409,238 151 

datasets (64%) were for model training, and the remaining 102,346 datasets (16%) 152 

and 127,896 datasets (20%) were for model validating and testing, respectively. The 153 

prediction interval is set as one hour, in accordance with the data collection interval of 154 

the 73 stations. 155 

Table 1 presents the results of the statistical analyses on air quality and 156 

meteorological data for use in this study. The results indicate that high NO2, SO2 and 157 

CO concentrations occur in R1 (northern region), providing evidence that R1 suffers 158 
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mainly from vehicle exhaust emissions. R2 (central region) and R3 (southern region) 159 

have the highest mean values of PM2.5 and PM10 concentrations due to their thermal 160 

power plants. R2, R3, and R5 (surrounding islands) have relatively large standard 161 

deviations of PM2.5 concentrations. It is conceivable that long-term prediction of 162 

PM2.5 concentrations at the three regions should be very challenging because their 163 

high variations in concentrations would create a barrier to capturing the future trends 164 

of PM2.5 concentrations. As for R4 (eastern region), its mean and standard deviation 165 

of PM2.5 concentrations are the lowest on account of few industrial and commercial 166 

activities here. It is worth noting that R5 (surrounding islands) is less industrialized 167 

but has relatively high concentrations in PM2.5, PM10 and O3, which suggest that air 168 

quality in R5 could be largely affected by transboundary transmissions (Yuan et al., 169 

2004). As known, the deposition process of PM2.5 is highly correlated with relative 170 

humidity because moisture adheres to fine particles and accumulates to a larger size 171 

(Hernandez et al., 2017; Hien et al., 2002; Lou et al., 2017; Tai et al., 2010). The high 172 

relative humidity over the whole Taiwan, with an annual average exceeding 70%, 173 

implies that PM2.5 in Taiwan is profoundly affected by relative humidity (Hien et al., 174 

2002; Lou et al., 2017). 175 

 176 

3. Methodology 177 
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3.1. Problems and motivations  178 

Accurate air quality forecasting at longer lead times is the key to early warning 179 

and management of air pollution. Our goal is to anticipate changes in PM2.5 180 

concentrations at monitoring stations over time. Air quality forecasting becomes 181 

highly challenging under the rapidly changing conditions of weather and pollutant 182 

emission, in addition to the influence imposed by plenty of nonlinear and dynamic 183 

factors. Therefore, it is difficult to precisely predict air quality for a region at a 184 

specific time. Artificial Intelligence (AI) has been significantly empowered to bridge 185 

the gap between the capabilities of humans and machines. The advancements in 186 

Computer Vision with Deep Learning has been constructed, primarily by the CNN. 187 

This study explores a hybridization approach (CNN-BP) driven by CNN and BPNN 188 

for producing reliable and accurate regional PM2.5 forecasts at longer horizons. Three 189 

ANN models (static-BPNN and RF; and dynamic-LSTM) form the benchmarks for 190 

comparison purpose in this study.  191 

Figure 3 shows the graphical illustration of the proposed air quality forecasting 192 

framework, which consists of three main components: the CNN for learning the 193 

spatial pattern of each sample in time series (Figure 3(a)); the BPNN for extracting 194 

the interdependency and temporal features from the corresponding time series data 195 

(Figure 3(b)); and the hybrid CNN-BP model for producing multi-site and 196 
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multi-horizon PM2.5 forecasts (Figure 3(c)). To be more precise, the proposed 197 

CNN-BP model implements a two-phase procedure engaging feature extraction from 198 

air quality and meteorological samples (CNN, configured with three one-dimensional 199 

convolutional layers) and forecasting (BPNN, configured with two fully connected 200 

hidden layers) for multi-site multi-horizon PM2.5 forecasting. The methods involved 201 

are briefly introduced as follows.  202 

3.2. Convolutional Neural Network (CNN)  203 

The CNN configured with a deep learning algorithm is a type of ANNs. It has 204 

the merit to effectively differentiate one sample from the others owing to feature 205 

extraction, where each sample is assigned importance to gain various objects in the 206 

sample and to extract its high-level features/characteristics for differentiating itself 207 

from the other samples. The CNN typically has three layers: the convolutional layer 208 

that extracts features from the inputs to form a feature map matrix, the pooling layer 209 

that reduces the spatial size of the convolved feature, and the fully connected layer 210 

that flattens the output into one column vector and feed it into a feed-forward neural 211 

network. Therefore, the model can successfully capture the spatio-temporal 212 

dependencies in each sample and distinguish between dominating and certain 213 

low-level features in samples. The CNN has been widely used in natural language 214 

processing and image processing, and it has also been applied to time series 215 
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forecasting recently (Borovykh et al., 2017; Li et a., 2017). The implementation of the 216 

CNN is briefly introduced below. 217 

In this study, there are 73 stations and each station has 8,760 samples (24 hours x 365 218 

days). Each sample allows 4 types of time lags (6-h, 12-h, 24-h and 36-h), and there 219 

are 8 input variables (6 air quality and 2 meteorological variables) at each time lag. 220 

The number of filters is set as 100, and the filtering process is conducted on each 221 

sample. It is noted that the CNN has a concept of “weight sharing”, that is, a filter 222 

does not change its weight values when screening each sample during training and 223 

validation stages. This leads to lesser parameters required for the CNN during model 224 

construction than for other feed-forward ANNs. As a result, the CNN is easier to train, 225 

with an avoidance of overfitting, which makes the CNN an attractive deep learning 226 

algorithm. More details of the CNN can be found in Chen et al. (2019).  227 

3.3. Back Propagation Neural Network (BPNN) 228 

The BPNN is a fully connected neural network with three layers, i.e. one input 229 

layer, one hidden layer, and one output layer (Figure 3(b)). This static neural network 230 

enables two main actions: propagation (forward and backward) and weight adjustment. 231 

In the forward propagation, an input signal is assigned a weight by the activation 232 

function (i.e. the Rectified Linear Unit (ReLU) function in this study) in the hidden 233 

layer, and then the weighted signal is passed to the output layer for calculating the 234 
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output value. After the forward propagation finishes, the backward propagation will 235 

be activated if the difference (error) between the output value and the target output 236 

value falls outside the tolerable error range. More detailes of the BPNN can be found 237 

in Hecht-Nielsen (1992). 238 

3.4. Hybrid of CNN and BPNN (CNN-BP) 239 

The proposed CNN-BP approach aims at simultaneously producing PM2.5 240 

forecasts of 73 monitoring stations at horizons t+1 up to t+10, and its two-phase 241 

implementation procedure engaging feature extraction by CNN and PM2.5 forecasting 242 

by BPNN (Figure 3(c)). The CNN-BP model seamlessly connects a CNN (configured 243 

with three one-dimensional convolutional layers, determined by trial and error 244 

procedures) to a BPNN (configured with two fully connected hidden layers, 245 

determined by trial and error procedures).  246 

The CNN is a powerful tool for feature extraction because each output of the 247 

CNN contains multiple time-attributes. The similarity in patterns among samples can 248 

be considered as an auxiliary to improve forecast accuracy; that is to say, learning of 249 

similar patterns greatly assists in forecasting, especially for multiple stations and 250 

multiple horizons. In brief, the CNN can effectively capture the spatial dependencies 251 

and distinguish between dominating and certain low-level features and classify them.  252 

Following feature extraction, the flatten layer that links the feature map of the 253 
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CNN with the fully connected hidden layer of the BPNN has a mission to reshape 254 

each multi-dimensional input into a one-dimensional input (Jin et al., 2014). Then, the 255 

two fully connected hidden layers and the output layer in the BPNN constitute the 256 

forecasting phase of the CNN-BP model. It is worth noting that we set up ten neurons 257 

in the output layer for producing ten-dimensional outputs (i.e. horizons t+1 up to t+10 258 

of PM2.5 concentrations in this study).  259 

The ReLU function is employeed as the activation function for the three ANN 260 

models in this study, and its formula is shown below. 261 

      
        
        

                       (9) 262 

where      is a linear function when x is greater than 0, otherwise 0. The ReLU 263 

function is very powerful and has several advantages: a) able to solve the problem of 264 

gradient disappearance or explosion; b) able to mimic the computational structure of 265 

the human brain; c) has a fast calculation speed; and d) easier to converge than the 266 

sigmoid activation function ((Glorot et al., 2011; Romero et al., 2015).  267 

3.5. Random Forest (RF) 268 

The RF evolved from the decision tree is an ensemble machine learning method 269 

and has two cores: "random" for random feature selection and "forest" for bagging 270 

(Ho, 1995). It is implemented by establishing a multitude of decision trees at the 271 

training stage and then outputting the class that is the status of the classes 272 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

15 

 

(classification) or mean prediction (regression) of the individual trees (Karginova et 273 

al., 2012; Liaw and Wiener, 2002). The RF has been widely used in the field of data 274 

mining and time series forecasting (Feng et al., 2019; Kamińska, 2018; Kumar, 2018). 275 

In this study, the random forest regressor that averaging the outputs of the individual 276 

trees is used.  277 

The training procedure of the RF regressor is described as follows.  278 

1) Draw a bootstrap sample from the original data. 279 

2) For each bootstrap sample, grow a regression tree with the following modification 280 

at each node: choosing the best split-point predictors among the m predictors and 281 

picking the best variable associated with the best split. 282 

3) Predict new data by aggregating the predictions of the n trees, where the final 283 

output is produced by aggregating and averaging the prediction results of all 284 

decision trees  285 

More details of the RF can be found in Liaw and Wiener (2002). 286 

3.6. Long Short Term Memory Neural Network (LSTM) 287 

The LSTM is a well-known recurrent architecture in the deep learning field. It 288 

has two capabilities, namely long-term memory and short-term memory, owing to its 289 

internal self-looped cell that can pass the previous state to the next (Hochreiter, 1998). 290 

The LSTM unit is composed of six parts, including the input block, three gates (input, 291 
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forget and output gates), the self-looped cell, and the output block. The training 292 

procedure of the LSTM is briefly described as follows.  293 

(1) The input gate determines what information to produce and what information to 294 

add to the current cell state based on the output of the previous state and the input 295 

of the current state. 296 

(2) The forget gate determines what information to remove from the current cell state. 297 

In other words, information considered unimportant can be forgotten. Otherwise, 298 

it will be “memorized” by the LSTM cell.  299 

(3) The output gate determines the output state and the output of the LSTM cell.  300 

More details of the LSTM can be found in Zhou et al. (2019). 301 

3.7. Techniques to prevent overfitting 302 

To avoid overfitting during model training, this study employees the nonlinear 303 

L2 regularization technique and the early stopping criterion. The nonlinear L2 304 

regularization can discourages the learning of a model to avoid overfitting by adding 305 

penalty terms (Chang et al., 2010). Model training will terminate with early stopping 306 

when the model reaches the minimum validation loss (Prechelt, 1998), which means 307 

the network stops training if the validation error is no longer reducible after n 308 

iterations (n=15 in this study).  309 

3.8. Evaluation indicators 310 
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We use three indicators to evaluate model performance, which are the Mean 311 

Absolute Error (MAE), the Root Mean Square Error (RMSE), and the coefficient of 312 

determination (  ). The formula of the three indicators are given below. 313 

    
        

 
   

 
                             (10) 314 

      
        

  
   

 
                              (11) 315 

    
      

 
       

 
      

 
   

     
      

 
    

  
   

     
  

        
 
    

 
                (12) 316 

where    denotes observed data,    denotes forecasted values, and L denotes the 317 

data length.  318 

The MAE is the average of the absolute difference between forecasted values 319 

and observed data, which measures the average magnitude of forecast errors. The 320 

RMSE is an error index favorable for the assessment on forecast accuracy of peak 321 

values due to significant magnification of forecast errors. A model with higher    322 

values but lower RMSE and MAE values performs better. In general, higher    323 

values may coincide with smaller RMSE and MAE values.  324 

 325 

4.  Results and discussion 326 

In this study, the CNN-BP model is proposed to produce regional 327 

multi-step-ahead (t+1− t+10) PM2.5 forecasts based on hourly data of six air quality 328 

and two metrological factors from 73 air quality monitoring stations in Taiwan. Two 329 
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static ANN models (i.e. BPNN and RF) and one dynamic ANN model (i.e. LSTM) are 330 

employed for comparison purpose. The results and findings are presented in the order 331 

of the data preprocessing, model construction, and model comparison, shown as 332 

follows.  333 

4.1. Data preprocessing 334 

To overcome the different scales of heterogeneous data and/or over-fitting 335 

encountered in model training, data normalization is the first step of data 336 

pre-processing. The goals of normalization are to adjust the values of variables in 337 

datasets to a common scale and to make sure different features take on similar ranges 338 

of values so that gradient descents can converge effectively. The second step of data 339 

pre-processing is to randomly allocate the normalized samples into training (64%), 340 

validation (16%) and testing (20%) datasets.  341 

4.2. Model construction 342 

4.2.1. Parameter setting 343 

A large number of trial and error procedures are executed to identify parameters 344 

the most suitable for each ANN model based on the training and validation datasets, 345 

and the obtained parameter settings of the ANN models are presented in Table 2. 346 

4.2.2. Input factor selection 347 

For the determination of the best input combination, two input scenarios 348 
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(Scenario 1 & Scenario 2) are designed to assess the impacts of air quality and/or 349 

meteorological factors on PM2.5 forecasts. Scenario 1 considers six air quality factors 350 

(PM2.5, PM10, SO2, CO, NO2 and O3) as model inputs because these six factors are the 351 

components of the Air Quality Index (AQI) defined by the TW EPA (Hao and Liu, 352 

2016; Moisan et al., 2018; Zhang et al., 2018). Scenario 2 considers PM2.5 forecasting 353 

as a function of the same air quality factors and two meteorological factors (i.e. 354 

ambient temperature and relative humidity). 355 

Figure 4 shows the forecast performance of CNN-BP, BPNN and RF models at 356 

horizons t+6 and t+10 for the whole of Taiwan under Scenarios 1 and 2. The results 357 

reveal that the three ANN models perform better (higher R
2
 and lower RMSE values) 358 

under Scenario 2 than under Scenario 1, especially obvious for the CNN-BP model. 359 

This gives a useful hint that high correlation is implicitly expressed between PM2.5 360 

concentrations and the two meteorological factors. Previous studies provided the 361 

following findings. When there is high relative humidity in the air, the deposition 362 

process of PM2.5 will occurs (Li et al., 2017). In summer (high temperature), 363 

temperature inversion may occur so that a layer of cool air at the surface would be 364 

overlaid by a layer of warmer air due to difference in air density; while in winter (low 365 

temperature), a slower inversion of temperature may occur due to similar and lower 366 

air densities in upper atmospheres (Wallace and Kanaroglou, 2009). This points out 367 
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that temperature is another important factor affecting PM2.5 concentrations. 368 

Considering our results shown in Figure 4 and the findings from the previous studies, 369 

the air quality and meteorological factors of Scenario 2 are determined to form the 370 

input combination for carrying out regional multi-step-ahead PM2.5 forecasting in this 371 

study. The next step is to identify the time-lag of the input variables needed for 372 

multi-step-ahead forecasting. 373 

    To fully investigate the time-lag effect, several historical temporal patterns (i.e. 374 

6-h, 12-h, 24-h, and 36-h) of all the eight input variables are incorporated into model 375 

training and testing stages of the three ANN models. Taking the CNN-BP model as an 376 

example, Table 3 shows the model performance in training/validation and testing 377 

stages at horizons t+6 and t+10 based on the inputs with different time-lags for the 378 

whole of Taiwan. The results clearly explain that the model based on inputs with a 379 

24-h time-lag patterns would produce the best performance (the highest R
2
 values and 380 

the smallest RMSE values) in both training/validation and testing stages. When the 381 

time-lag increases from 6-h to 24-h, there is a significant improvement in model 382 

performance over time. When the time-lag extends from 24-h to 36-h, the model 383 

performance, however, deteriorates in both training and testing stages. Such 384 

phenomenon might be because uncertainty keeps increasing and more noise 385 

information involves as the time-lag exceeds 24-h (a day), which prohibits the model 386 
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from being well trained and well validated. Consequently, the eight inputs with 24-h 387 

time-lag are determined as the final input combination of the three ANN models for 388 

carrying out the following analyses. 389 

4.3. Comparison of ANN models for PM2.5 forecasts 390 

4.3.1. Regional multi-step-ahead PM2.5 forecasts 391 

Figure 5 gives the comparison of regional multi-step-ahead PM2.5 forecasts 392 

(R1−R5, the whole Taiwan) obtained from three ANN models in the training and 393 

testing stages at horizons t+6 and t+10. The comparative results demonstrate that the 394 

CNN-BP model can produce the most accurate PM2.5 forecasts in terms of the 395 

smallest RMSE values in both training and testing stages at horizons t+6 and t+10. 396 

The reason is that the CNN-BP model can adequately handle inputs with relatively 397 

large time-lags to cope with the curse of dimensionality. In other words, this model 398 

can more effectively and deeply learn and extract useful information (knowledge) 399 

from high-dimensional datasets (input-output patterns), as compared with BPNN and 400 

RF models.   401 

We next take the regional CNN-BP model as an example for further evaluation. 402 

In the training stages, it is noticed from Figure 5(a) that the southern region (R3) has 403 

the largest RMSE values (5.38 µg/m
3
 at t+6, and 5.98 µg/m

3
 at t+10), followed by the 404 

central region (R2, 4.99 µg/m
3
 at t+6, and 5.63 µg/m

3
 at t+10), while the lowest 405 
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RMSE values (3.74 µg/m
3
 at t+6, and 4.22 µg/m

3
 at t+10) occur in the eastern region 406 

(R4). In the testing stages, Figure 5(b) indicates that the southern region (R3) gives 407 

the largest RMSE values (6.77 µg/m
3
 at t+6, and 7.67 µg/m

3
 at t+10), followed by the 408 

central region (R2, 6.32 µg/m
3
 at t+6, and 7.29 µg/m

3
 at t+10), while the lowest 409 

RMSE values (4.49 µg/m
3
 at t+6, and 4.95 µg/m

3
 at t+10) occur in the eastern region 410 

(R4). It appears that the constructed CNN-BP model (one model) could be well 411 

trained (very small RMSE values) and could make reliable and accurate 412 

multi-step-ahead (t+1 up to t+10) PM2.5 forecasts in the testing stages for all the 73 413 

stations. That means multi-site (regional) and multi-horizon forecasting can be 414 

achieved by exactly one model (i.e. the proposed CNN-BP model), hitting a new 415 

milestone. 416 

From the perspective of pollution sources, thermal power plants would be the 417 

main source of PM2.5 emission in the two most polluted regions, i.e. R2 and R3. Both 418 

regions suffer larger RMSE values because changes in PM2.5 concentration are more 419 

dramatic and irregular here (Figure 5, Table 1). R1 and R5 have moderate PM2.5 420 

concentrations and RMSE values. The primary source of PM2.5 emission in R1 (the 421 

economic center of Taiwan) would be a great number of moving vehicles, resulting in 422 

high traffic loads. It is noticed that R5 (the surrounding islands) does not produce the 423 

smallest RMSE values among the five regions (Figure 5) even though this region has 424 
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neither large industrial facilities nor many vehicles. In consideration of the 425 

geographical locations of these surrounding islands, we speculate that the primary 426 

source of PM2.5 emissions in R5 would be transboundary transmissions, especially the 427 

monsoon blows from China. As for R4, PM2.5 concentration is relatively low here and 428 

its RMSE values are also the smallest in both stages (Table 1, Figure 5). We also 429 

notice that there is no major industry in R5 and PM2.5 concentration does not change 430 

much throughout the investigative period. Here are two interesting findings. First, the 431 

sources of PM2.5 emission in R1−R4 are associated primarily with local emissions 432 

from industrial and/or human activities, which reveals PM2.5 concentrations of these 433 

four regions are closely related to the six air quality factors (PM2.5, PM10, SO2, CO, 434 

NO2 and O3). Second, transboundary transmission would be the source of PM2.5 435 

emission in R5 (surrounding islands), which implies PM2.5 concentrations here are 436 

closely related to meteorological factors (ambient temperature and relative humidity).  437 

Furthermore, the CNN-BP model is compared with the LSTM model, a dynamic 438 

model that preserves the previous state in forecasting. The parameter setting of the 439 

LSTM model is shown in Table 2. Figure 6 shows the forecast performance of 440 

CNN-BP and LSTM models at horizons t+6 and t+10 for the whole of Taiwan. The 441 

forecast results indicate that the CNN-BP model is significantly superior (higher R
2
 442 

and lower RMSE values) to the LSTM model. The main reason could be that the 443 
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LSTM model capable of preserving the previous state of a time series (single station) 444 

encountered the over-fitting problem, while the samples of the large region with 445 

multiple stations (73 stations) we investigated were time-discontinuous among various 446 

stations, which led to poor forecast accuracy. 447 

In brief, the results demonstrate that the CNN-BP model not only performs better 448 

than the BPNN, RF and LSTM models for multi-step-ahead PM2.5 forecasts but is also 449 

able to model different PM2.5 mechanisms (local emission and transboundary 450 

transmission) for the five regions (R1−R5) and the whole Taiwan. In other words, we 451 

extract data features from multiple stations to make multi-site multi-horizon forecasts 452 

using only a single CNN-BP model. Therefore, the model’s applicability is largely 453 

increased. Moreover, forecast accuracy is significantly improved by learning more 454 

similar data features from samples of other stations, rather than just of a single station. 455 

4.3.2. PM2.5 forecasts at a station with high PM2.5 concentrations 456 

We further investigate the three ANN models for PM2.5 forecasting at the Nantzu 457 

air quality monitoring station (see Nantzu Station in R3 of Figure 2) that suffers high 458 

PM2.5 concentrations (maximum=94 µg/m
3
, mean=46.81 µg/m

3
, standard 459 

deviation=17.45µg/m
3
). Figure 7 displays the comparative results of the three ANN 460 

models at horizon t+10 for this station regarding the errors between the observed and 461 

forecasted PM2.5 concentrations in the testing stages spanning between 3/1/2017 and 462 
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18/1/2017 (24 hours x 16 days = 384 hours). The results show that the absolute errors 463 

of peaks exceed 50 µg/m
3
 for the RF model and the BPNN model but is less than 30 464 

µg/m
3
 for the CNN-BP model (Figure 7). Moreover, it is easy to tell that the patterns 465 

(384 time series) of forecast errors created by all three models are similar and the 466 

absolute errors of the CNN-BP model are significantly smaller than those of RF and 467 

BPNN models. This supports that the CNN-BP model not only can efficiently handle 468 

heterogeneous data with large time-lags but also can effectively characterize the PM2.5 469 

trend and features of each sample using the filter in the CNN. This also explains why 470 

the CNN-BP model can catch the variation in PM2.5 concentration more precisely than 471 

RF and BPNN models. 472 

    Furthermore, it is noticed from Table 4 that the CNN-BP model has the lowest 473 

MAE values in both training (9.46 µg/m
3
) and testing (9.18 µg/m

3
) stages, followed 474 

by the RF model (10.35 µg/m
3 

in training, and 10.40 µg/m
3 

in testing), then by the 475 

BPNN model (12.98 µg/m
3
 in training, and 12.78 µg/m

3 
in testing) at the Nantzu 476 

Station. The results clearly demonstrate that the CNN-BP model serves as a better 477 

predictor than the RF and the BPNN models for long-term (e.g. 10 hours) PM2.5 478 

forecasting. 479 

4.3.3. PM2.5 forecasts for the whole of Taiwan 480 

We also investigate the reliability and accuracy of the constructed CNN-BP 481 
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model with a recent snapshot of PM2.5 concentration. Figure 8 presents the 482 

observations and the forecasts obtained from the CNN-BP model at horizons t+6 and 483 

t+10 for the whole Taiwan upon a snapshot at 2 am on 21
th

 January in 2018, where the 484 

Kriging method is implemented to make a two-dimensional visualization of the 485 

observations and the forecasts through spatial interpolation. The color scale of Figure 486 

8 refers to the Indicator Table announced by the TW EPA 487 

(https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/3007/File_369488 

7.pdf). PM2.5 concentration higher than 54.5 µg/m
3
 is considered harmful to the 489 

human body (EPA, 2019). The results of Figure 8 show that the CNN-BP model, in 490 

general, can well forecast PM2.5 concentrations at both t+6 and t+10. It appears that 491 

PM2.5 concentrations are much higher in central (R2) and southern (R3) regions. 492 

According to Figures 8(b)-8(e), the model does suitably catch the variations of PM2.5 493 

concentrations at both t+6 and t+10 under the conditions of good and moderate PM2.5 494 

concentrations while slightly underestimating in certain areas of southern region (R3) 495 

under the condition of unhealthy PM2.5 concentrations.  496 

Figure 9 gives the results of the RMSE values between the observed and 497 

forecasted PM2.5 concentrations associated with Figure 8. The southern region (R3) 498 

has the largest forecast errors (15.45 µg/m
3 

at t+6, and 18.02 µg/m
3 

at t+10), followed 499 

by the central region (R2, 9.97 µg/m
3
 at t+6, and 7.70 µg/m

3 
at t+10). Besides, the 500 

https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/3007/File_3697.pdf
https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/3007/File_3697.pdf
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RMSE values of the eastern region (R4) are 2.53 µg/m
3 

and 2.3 µg/m
3 

at t+6 and t+10, 501 

respectively, while the RMSE values of the surrounding islands (R5) are 4.70 µg/m
3 

502 

and 4.26 µg/m
3 

at t+6 and t+10, respectively. The relatively low forecast errors in R4 503 

and R5 would be a consequence that the CNN-BP model can easily catch the trends of 504 

PM2.5 concentrations under conditions of low concentrations (Table 1). As for the 505 

whole Taiwan, the RMSE values are 9.36 µg/m
3 

and 10.68 µg/m
3 

at horizons t+6 and 506 

t+10, respectively. In sum, the results of the recent case (2 am on 21
th

 January, 2018) 507 

support the generalizability and reliability of our proposed CNN-BP model.  508 

 509 

5. Conclusion 510 

Fine particulate matter (e.g. PM2.5) is a complicated air pollutant because it 511 

involves a great variety of pollution sources. To model the nonlinear and dynamic 512 

multivariate time series of PM2.5 concentrations, we propose a deep learning 513 

framework hybriding CNN and BPNN for sharing the features extracted from air 514 

quality- and meteorological-related time series data to make multi-site (73 stations) 515 

multi-horizon (one to ten hours) PM2.5 forecasts concurrently. The main contributions 516 

of the proposed approach (CNN-BP) are three-fold. Firstly, the CNN-BP model can 517 

adequately characterize the PM2.5 concentrations into a function of air quality and 518 

meteorological variables based on a large number of high-dimensional hourly 519 
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observed datasets at various stations. Secondly, the CNN-BP model can combine the 520 

essential features of CNN and BPNN to significantly improve the forecast accuracy of 521 

PM2.5 concentrations. Thirdly, the CNN-BP model can effectually produce PM2.5 522 

forecasts for multiple stations at multiple horizons simultaneously.   523 

This study evaluated the proposed CNN-BP models with three types of machine 524 

learning models (static BPNN and RF, and dynamic LSTM). The results demonstrated 525 

that the CNN-BP model performed the best, in terms of the smallest RMSE and the 526 

highest R
2
 values for the whole of Taiwan and the five regions (R1−R5). The accuracy 527 

and reliability of PM2.5 forecasts increased significantly for the CNN-BP model. We 528 

also demonstrated that the CNN-BP model could more adequately handle 529 

heterogeneous inputs with relatively large time-lags to tackle the curse of 530 

dimensionality and could more effectively and deeply learn and extract useful 531 

information (knowledge) from high-dimensional datasets (input-output patterns), as 532 

compared with BPNN, RF and LSTM models. From the standpoint of a monitoring 533 

station (Nantzu Station) representative of high PM2.5 concentrations, the CNN-BP 534 

model could create more precise and stable multi-step-ahead PM2.5 forecasts. 535 

Therefore, the proposed CNN-BP model can significantly contribute to improving the 536 

reliability and accuracy of long-term PM2.5 forecasting. In light of methodological 537 

transferability, future research can extend the CNN-BP methodology from one single 538 
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pollutant (PM2.5 in this study case) to multi-pollutant (e.g. PM2.5, PM10, O3, etc.) 539 

forecasting as well as from deterministic forecasting to probabilistic forecasting by 540 

means of post-processing techniques, for instance, Kalman filtering, Generalized 541 

Likelihood Uncertainty Estimation (GLUE), and Bayesian methods (Djalalova et al., 542 

2015; Kamińska, 2018; Pucer et al., 2018). Besides, for a longer lead time (e.g. daily 543 

forecast), it is very difficult to make accurate forecasts based solely on hourly datasets. 544 

Therefore, future work can be extended to daily forecasting in consideration of a 545 

collaboration with physical based models. 546 
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