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Abstract Time evolution of hot and dense nuclear matter
produced in central gold-gold collisions at energies between
Ejqsp = 10 and 160 AGeV is studied within two transport
string models, UrQMD and QGSM. In contrast to the previ-
ous studies, here we investigate the macroscopic character-
istics of the system before the state of chemical and thermal
equilibrium is attained. For all energies in question two inter-
esting observations are made for times starting already from
t > 1fm/c. (1) The matter in the cell expands almost isentrop-
ically with nearly constant entropy per baryon. (2) Pressure
in the cell appears to be very close to the pressure calculated
for equilibrated hadron gas with the same values of energy
density, baryon density and strangeness density. The pres-
sure linearly depends on the energy density, P = a(./s)e.
Therefore, both observations endorses the formal application
of relativistic hydrodynamics from the very early stages of
heavy-ion collisions, despite of the fact that the matter in the
fireball is out of equilibrium.

1 Introduction

Hydrodynamic, or rather hybrid, models are common tools
nowadays for the description of heavy-ion and hadron-
nucleus collisions at relativistic energies, for review see [1,2]
and references therein. The original model of hydrodynamic
description of multiparticle production in relativistic colli-
sions was formulated by Landau in [3,4]. Its basic postulates
are as follows. The first stage of the collision consists of inter-
penetration of two Lorentz-contracted nuclei which results to
momentary stopping and formation of a hot blob of violently
fluctuating liquid. Pomeranchuk once called it “boiling liquid
of operators”. The second stage deals with the expansion of
hot and dense matter governed by relativistic hydrodynamics.
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Its main equation reads

8, T™ =0, (1
where TV is the energy-momentum tensor

T = (¢ + Pyutu’ + Pg"" +nH", 2

containing pressure P, energy density ¢, local four-velocity
ut, and dissipative tensor n'. In the first approximation
one may consider perfect fluid with no dissipative pro-
cesses. Expansion of such fluid proceeds isentropically. Since
utu, = 1, we have five equations and six unknown vari-
ables, namely, four components of u*, ¢, and P, meaning
that one equation is still missing. The missing equation is
the well-known equation of state (EOS) which links pres-
sure to energy density. Landau has picked up the EOS of gas
of ultrarelativistic particles,

P = C?{;‘ = —8’ (3)

where the proportionality coefficient is the square of the
speed of sound. Later on the estimate of the sonic speed
in multicomponent hadronic gas with resonances was dimin-
ished fromc? = 1/3toc? ~ 1/5[5]and thentoc? ~ 1/7[6].
Further consideration of the expanding system takes place
under fundamental assumption of local thermodynamic equi-
librium. Note, that the initial conditions in Landau model are
relativistically non-invariant. This imperfection is fixed in the
Bjorken model [7]. The latter postulates that the thermody-
namic characteristics of the system are constant on the hyper-
surface T = const, where the proper time is T = +/2 — z2,
with 7 and z being time and coordinate along the beam axis,
respectively. In terms of T one gets from Eq. (1)

d P
e )
dt T
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Inserting in Eq. (4) thermodynamic relations

e+ P=Ts (@)
de =Tds (6)

containing temperature 7 and entropy density s, we arrive
again to the condition of isentropic expansion
ds s 0 -
= ™

Modern hydrodynamic models usually include hadronic
cascade as afterburner after the chemical freeze-out in the
system, when the inelastic collisions have ceased. They
nicely describe the basic features of heavy-ion collisions in a
broad range of bombarding energies [8,9]. Nevertheless, all
models employ the assumption of local thermal equilibrium
in the expanding fireball. It appears that the thermalization
time needed to match the experimental data is very short,
e.g. T &~ 0.1 = 0.5 fm/c. Such an extremely rapid thermal-
ization looks a bit suspicious. Several possible explanations
have been proposed. For instance, the approach formulated
in [10] concludes that hydrodynamic description with a large
coarse-graining scale is sufficient for observables which do
not require a precise space-time resolution of the system. In
this case, the local thermal equilibrium is not a necessary
prerequisite of the hydrodynamic description. According to
other explanation, the low-order hydrodynamics can well
approximate the hydrodynamic attractor solution describing
out-of-equilibrium systems, thus justifying its applicability
[11,12]. Hydrodynamization of nuclear matter produced in
relativistic heavy-ion collisions has been studied extensively
in the last years, see, e.g., [13—15] and references therein. One
of the interesting results states [13] that the hydrodynamiza-
tion time is proportional to shear viscosity n and inversely
proportional to entropy density s and temperature T

n/s

Thydro ™~ ? (8)

Note, however, that rigorous definition of temperature does
not exist for the out-of-equilibrium system.

There is another group of models, which do not based
on the assumption of local equilibrium, namely, microscopic
transport models. Relaxation of hot and dense matter, pro-
duced in the central area of relativistic heavy-ion collisions,
to local equilibrium in microscopic model calculations was
studied in [16-26]. In present paper the employed two differ-
ent transport models are ultra-relativistic quantum molecular
dynamics (UrQMD) [27,28] and quark-gluon string model
(QGSM) [29,30]. Results of microscopic calculations are
compared to those of statistical model (SM) of ideal hadron
gas with essentially the same degrees of freedom. In previous
studies it was found that at any collision energy the system
nearly attains the state of chemical and thermal equilibrium
irrespective of the model employed. However, relaxation pro-
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cess needs at least # = 6 fm/c or longer. The main goal of our
paper is to investigate the fulfillment of basic conditions for
formal application of hydrodynamics before the equilibrium
is reached.

The paper is organized as follows. Description of simi-
larities and differences between the two microscopic trans-
port models is given in Sect. 2. Section 3 presents basic
features of the statistical model (SM) of ideal hadron gas.
Study of the evolution of bulk characteristics of matter pro-
duced in the central area of central heavy-ion collisions is
performed in Sect. 4. Energies of colliding nuclei are vary-
ing from Ej,, = 10 to 160 AGeV accessible for both NICA
and FAIR facilities (up to approximately 40 AGeV) and for
SPS CERN (up to 160 AGeV). Of primary interest is the
evolution of energy density, pressure gradients, entropy per
baryon, as well as comparison of these parameters with those
calculated for the ideal hadron gas in chemical and thermal
equilibrium. Conclusions are drawn in Sect. 5.

2 Similarities and differences between the microscopic
models

Both UrQMD [27,28] and QGSM [29,30] are designed
as Monte Carlo event generators for the description of
hadron-hadron (hh), hadron-nucleus (#A) and nucleus-nuc-
leus (A+A) collisions in a very broad range of bombarding
energies. Particles propagate according to Hamilton equa-
tions of motion. They can interact both elastically and inelas-
tically if the distance d between their centers is smaller than
V(o9 /), where o' is the total cross section of the interac-
tion. This is the so-called “black disk” approximation. Pro-
duction of new particles takes place via the excitation and
fragmentation of colored strings. The UrQMD applies the
classical Lund picture [31] of the string longitudinal excita-
tion. Here the strings are stretching between the (anti)quarks
and (anti)diquarks, belonging to the same hadron. The string
masses arise due to the momentum transfer, and the string
always splits into a substring and a hadron on a mass shell.
For hard processes with the momentum transfer larger than
1.5 GeV/c UrQMD uses PYTHIA [32]. In contrast, the
QGSM belongs to the class of models based on the Gribov
Reggeon field theory [33,34]. In these models the strings
are stretching between the constituents belonging to differ-
ent hadrons, and the string masses emerge due to the color
exchange mechanism. The number of various subprocesses
is very rich and the method is known as 1/N or topologi-
cal expansion [35,36] of Lagrangian in quantum chromody-
namics (QCD). Although it is not possible to assign a proper
weight to each arising diagram within the first-principles the-
ory, these diagrams appear to have one-to-one correspon-
dence to the processes going via exchange of certain amount
of Pomerons and Reggeons in the RFT [37-39].
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Decays of strings in the QGSM proceed according to the
Field-Feynman algorithm [40] with independent hadron for-
mation from both ends of the string. Similarly for both mod-
els, strings are stretching uniformly between the constituents
with the constant string tension ¥ =~ 1 GeV/fm. Production of
new hadrons proceeds via the Schwinger-like mechanism of
quark-antiquark and diquark-antidiquark pair creation. The
produced particles are uniformly distributed in the rapidity
space. Both models employ the available experimental data,
such as cross sections of hadrons, widths of resonances and
their decay modes. In case of lacking the information, the
models apply the one-boson exchange model, isospin sym-
metry conditions, and detailed balance consideration. Tables
of resonances in both models, however, are different. For
the description of 7A and A+A collisions hadronic rescatter-
ing scheme, or hadronic cascade, is implemented. Because
of the uncertainty principle, newly produced hadrons cannot
interact immediately. They become on-shell particles only
after a certain formation time, see [42,43] and references
therein. Only the hadrons containing the valence quarks can
interact immediately after the rescattering with the reduced
interaction cross section. The Pauli principle, prohibiting the
creation of a fermion if the outgoing phase space is already
occupied, is implemented, whereas no Bose enhancement
effects are taken into account. Further details of the models
can be found elsewhere [27-30,41,44]. It was our intention
to choose two models which have quite different underlying
principles. In this case one may expect significant reduction
of the influence of model-dependent effects on the analysis
of relaxation of hot and dense partonic matter in heavy-ion
collisions in a broad energy range.

3 Basic principles of statistical model

If the system of hadrons reaches the state of thermal and
chemical equilibrium, its properties are fully determined by
the distribution functions of hadron species. In system of
natural units with ¢ = kg = i = 1, the distribution function
for a hadronic specie ”i” at temperature 7 reads

Ei — i B
f(p,mi) = [eXp (T) + 1} ©)

Here p is the full momentum, m; is the mass, E; is the
energy, El2 =p*+ ml2 and p; is the total chemical poten-
tial of the i-th hadron specie, respectively. The 7+ sign is
for Fermi-Dirac statistics, and the ”—" sign stands for Bose-
Einstein one. Obviously, the u; depends on the chemical
potentials associated with the conserved charges in strong
interactions, i.e. baryon charge B; and strangeness content
S; of the hadron,

Wi = Biup + Sius, (10)

where up and g are the baryon- and the strangeness chem-
ical potentials.!

Hadron number density and energy density of the i-
th hadron specie with spin-isospin degeneracy g; are the
first and the second moments of the distribution function
f(p, m;), respectively

m= i [ fwmods. (an
8i 3
i = s [ £ omdp. (12)

The partial hadron pressure is given by

8i 2
P— s [ 4 rwmodp, (13)

and the entropy density reads

§ = (2n)3/f(p,m) [In f(p.mi) — 11d’p. (14)

We see that all thermodynamic characteristics of the sys-
tem are functions of three parameters, 7', i p and pt 5. In order
to find these parameters one has to extract energy density

£™i¢ baryon density ,o”“C and strangeness density pg”" from
the selected volume in microscopic calculations and insert it
into a system of equations

Z&(T 1B, 13, (15)
P ZB ni(T. ip. L), (16)
Py Zs ni(T. g, 1s). (17)

The number of particle states employed as independent
degrees of freedom in microscopic and macroscopic cal-
culations should be essentially the same. If the system of
hadrons in microscopic model calculations is in the vicinity
of equilibrium, its partial particle abundances and particle
energy spectra have to be close to those given by the sta-
tistical model. Note, that we do not use for the comparison
the statistical model with the excluded volume effects, see
e.g. [45,46]. This is done because the system of hadrons in
microscopic model resembles an ideal gas of point-like par-
ticles rather than finite-volume ones, despite of the fact that
the average interaction distance between the hadrons is far
from zero, see [47] for details.

' We drop the dependence on electric charge or isospin chemical poten-
tial, because their values are order of magnitude weaker compared to
wp and ws.
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4 Early stage of heavy-ion collisions

Similar to the previous analysis, we opted for the cubic cell
with volume V = 5 x 5 x 5 = 125 fm? centered around
the center-of-mass of colliding heavy ions. Obviously, at the
very beginning of the collision the pressure gradients along
the beam axis z and in the transverse plane (x, y) must be
different. One can calculate the components of the pressure
tensor Pj, j = {x,y, z} by using the virial theorem [48]

1 P'z{ i}

P = — L’ 18

1Y Z E; (1%
where V is the volume of the cell, p;(;y is the j-component of
the momentum of i-th hadron, and E; = (mi2 + pl.z)l/ 2 s its
total energy. After that the total pressure P’ in the system
can be calculated. Because of the radial symmetry of A+A
system of nuclei colliding with zero impact parameter, it is
enough to compare just two tripled diagonal components of
the pressure tensor, 3P, and 3P,, with P'°’, Results of the

108 |-
10° |-

10°

10

P, GeV/fm®

10"

10° L

108 : : (b) 7

P, GeV/fm’

t, fm/c

Fig. 1 (Color online) The tripled transverse (3 Py, dash-dotted curves)
and the tripled longitudinal (3 P;, dashed curves) diagonal components
of the microscopic pressure tensor in the central cell with volume
V = 125 fm? in a UrQMD and b QGSM calculations of central Au+Au
collisions at energies from Ej,, = 10 to 160 AGeV. Solid curves indi-
cate the total microscopic pressure, and asterisks denote the pressure
given by the statistical model
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microscopic calculations are shown in Fig. 1. The statistical
model pressure, calculated according to Eq. (13), is plotted
onto the microscopic results also. We see that for all four
bombarding energies the system quickly develops the trans-
verse pressure. Convergence of P, and Pr, however, takes
place at t+ = 7—8 fm/c in the UrQMD calculations and at
t = 4—6 fm/c in the QGSM ones. Thus, there is no even
kinetic equilibrium, which assumes isotropy of the pressure,
in the system at early times, not to speak about chemical or
thermal equilibrium. These times can be diminished some-
how. As was shown in [26], the disregard of spectators and
application of less strict isotropization criterion within the
same UrQMD model can decrease the isotropization time
of pressure to t = 3—6 fm/c. And transition to macro-
scopic hydrodynamic evolution can occur even for rather
anisotropic systems with Pr/P, ~ 0.5 [13,15]. Thus, the
beginning of hydrodynamic description may take place sig-
nificantly earlier compared to rather conservative numbers
extracted from Fig. 1. What surprises us further is that the
pressure PSY | obtained for the hadron gas under complete
thermal and chemical equilibrium, appears to be very close
to the total microscopic pressure in the central cell even at
t ~ 1 fm/c after beginning of the collision. Note, that the
cell is an open system. Its particle composition is rapidly
changing during the fireball expansion, whereas the energy
density drops. However, one can study the time evolution of
the entropy-per-baryon ratio, s/ pp. This ratio is displayed in
Fig. 2 for Au+Au collisions at all six energies in question.
For all reactions entropy-per baryon seems to be quite stable
within the 10% accuracy limit for both employed models. At
early stage of the collision, t < 2 fm/c, the ratio s/pp is just
a bit larger than that at > 3 fm/c. Note also that the entropy
density here is overestimated for early stages of the collisions,
because the entropy density in non-equilibrium stage is lower
than the equilibrium entropy density. In case of microscopi-
cally determined entropy density the ratio s™¢/pp becomes
rather flat, see [21]. One may conclude that the expansion pro-
ceeds nearly isentropically with the almost constant entropy-
per-baryon ratio. This behavior is similar to the isentropic
expansion of ideal hadronic fluid.

Now we can study the simultaneous evolution of the
pressure and the energy density in the cell. Although the
microscopic and the macroscopic pressures appear to be
very close to each other, as shown in Fig. 1, we plot the
evolution of P™¢(¢) and PSM (¢) separately in Fig. 3 and
in Fig. 4, respectively. Macroscopic pressure PS™ demon-
strates remarkably linear dependence on the energy density,
PSM = ae, a ~ const from the very beginning of the col-
lision. The slope, which is related to the speed of sound in
the system as a = cf, remains nearly constant throughout
the expansion of the system. For microscopic pressure P"¢
some deviations from the straight line behavior are seen, i.e.
the slopes d P /de of the distributions are steeper at earlier
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Fig. 2 (Color online) Time evolution of the entropy-per-baryon ratio
s/pp in the central cell with volume V = 125 fm> in a UrQMD and
b QGSM calculations of central Au+Au collisions at energies from
Ejp = 10 to 160 AGeV, respectively. Dashed lines denote the non-
equilibrium stage of the collision, whereas solid lines indicate the equi-
librium phase

times. Also, the slopes are slightly increasing with rising
collision energy. This behavior emulates the hydrodynamic
expansion of nuclear matter, though the conditions of local
chemical and thermal equilibrium are not fulfilled yet. The
slope parameter varies from a = 0.130(0.125) at Ej,;, = 10
to 0.145(0.138) at Ejsp = 160 AGeV in UrQMD (QGSM)
calculations. These numbers are close to those obtained in
[49] within the UrQMD hybrid approach, but the latters rise
steeper with increasing bombarding energy. Possible expla-
nation is that we study just the central cell and not the whole
rapidity region as in [49]. It is quite interesting also that the
best agreement with measured mean transverse mass distri-
bution at energies below /s = 10 GeV is obtained in [49]
for calculations with a hadron resonance gas equation of state
with c% = 1/8 = 0.125, which matches our data very well.
To see the possible deviations of bulk characteristics of
the system from the ideal gas ones, it is instructive to check
the evolution of the energy density and the entropy density
with the temperature in microscopic model calculations. Evo-
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0 1
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U, 0.2 e
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Fig. 3 (Color online) Time evolution of the microscopic pressure P
and the energy density ¢ in the central cell with volume V = 125 fm?
in a UrQMD and b QGSM calculations of central Au+Au collisions
at energies from Ej;; = 10 to 160 AGeV, respectively. Dashed lines
denote the non-equilibrium stage of the collision, whereas solid lines
indicate the equilibrium phase

lutions of these parameters as functions of temperature T
within the expanding perfect fluid with zero chemical poten-
tial are related to the speed of sound as follows. Combining
the equations

dP = sdT, (19)
dP = ade, (20)

with Egs. (5) and (6), one gets

d 1 dT

de _1tadl 1)
e a T

ds 1dT

_— = (22)
s a T

Integration of the last two equations provides us the desired
dependencies

1+a
e T\ « (23)
g0 \To '
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Fig. 4 (Color online) The same as Fig. 3 but for macroscopic pres-
sure PSM defined from the SM fit to extracted microscopic parameters
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Figure 5 displays the evolution of ratios ¢/g9 vs T/Tp
(Fig. 5a) and s /sg vs T/ Ty (Fig. 5b) calculated in the central
cell for two energies, Ej,, = 20 and 40 AGeV. One can
see that the difference between the model predictions for
these energies is very small. Calculations for ideal hadron
gas made according to Eqgs. (23) and (24) with @ = 0.14
are plotted onto the model results as well. The difference
between the curves is weak indicating that effects caused
by deviations from equilibrium, and non-zero baryon and
strangeness chemical potentials do not play a decisive role
here. The fit of the microscopic distributions to both Egs.
(23) and (24) provides us exactly a = cf = 0.2. In other
words, behavior of initially non-equilibrated hot and dense
matter in transport model calculations can be approximated
by hydrodynamic model of nearly perfect fluid almost from
the very beginning of nuclear collision.
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Fig. 5 (Color online) a Evolution of energy densities /&9 with tem-
perature 7'/ Ty in the central cell with volume V = 125 fm? in central
Au+Au collisions. Solid line and dashed line denote UrQMD calcula-
tions at Ejq, = 40 and Ej,p = 20 AGeV, respectively. Dash-dotted
line and dotted line represent the QGSM results for these reactions.
Analytic calculations given by Eq. (23) with a = 0.14 are shown by
asterisks. b The same as for a but for the evolution of entropy densities
s /so with temperature 7'/ Tjy. Asterisks show the calculations according
to Eq. (24)

5 Conclusions

We have studied the evolution of energy density, entropy
density and pressure gradients in the central cubic cell with
volume V = 5 x 5 x 5 = 125 fm® of central gold-
gold collisions modeled within the transport models UrQMD
and QGSM at bombarding energies from Ej,, = 10 to
E;sp = 160 AGeV. The models employ different mech-
anisms of string excitation and fragmentation, and dif-
ferent sets baryon and meson resonances. These circum-
stances enable us to estimate the range of distortions caused
by model-dependent effects. The time step was chosen as
At = 1 fm/c. At each time t = nAt, n = 1,2,3,...
the energy density ¢, the net baryon density pp, and the
net strangeness density ps were extracted from the cen-
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tral cell in microscopic calculations. These three parame-
ters were inserted then in a set of non-linear equations pro-
vided by the statistical model of ideal hadron gas containing
essentially the same set of hadronic states as the transport
model.

Results of microscopic model calculations show that the
extracted total pressure can be well approximated by a linear
dependence P = ae. Parameter a, which is the square of
the sonic velocity in the system, a = cf, is slightly decreas-
ing as the system becomes more dilute. Also a increases
with increasing bombarding energy from 0.13(0.125) at
Eap = 10 GeV to 0.145(0.138) at Ejp = 160 GeV in
the UrQMD(QGSM) calculations. This ratio becomes nearly
constant almost from the very early stage of nuclear col-
lisions, at ¢+ > 1 fm/c. Then, the hot and dense nuclear
matter expands practically isentropically with the conserva-
tion of the entropy per baryon. Both conditions are neces-
sary prerequisites for application of hydrodynamic descrip-
tion. But, in presence of large pressure anisotropy the micro-
scopic energy-momentum tensor cannot be mapped to the
energy-momentum tensor of ideal, or viscous, hydrodynam-
ics. On the other hand, pressure gradients in longitudinal and
transverse directions are rapidly equalized. This means that
the hydrodynamic stage can come before the conditions of
local thermal and chemical equilibrium are fulfilled (typi-
cally, about 6-10 fm/c after beginning of heavy-ion colli-
sions).
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