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Escape problem for active particles confined to a disk
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We study the escape problem for interacting, self-propelled particles confined to a disk, where particles can exit
through one open slot on the circumference. Within a minimal two-dimensional Vicsek model, we numerically
study the statistics of escape events when the self-propelled particles can be in a flocking state. We show that
while an exponential survival probability is characteristic for noninteracting self-propelled particles at all times,
the interacting particles have an initial exponential phase crossing over to a subexponential late-time behavior.
We use a phenomenological model based on nonstationary Poisson processes which includes the Allee effect to
explain this subexponential trend and perform numerical simulations for various noise intensities.
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I. INTRODUCTION

A common trait for many active matter systems, formed
by the self-propelled (active) individuals, is their ability to
self-organize into complex flowing states that arise due to
many-body interactions and an energy input on the particle
level [1,2]. A wide range of systems live under the umbrella
of active matter, including biological microswimmers [3,4],
Janus particles [5–7], and vibrated granular rods [8,9], and
most of these systems are embedded into an environment or
a spatial confinement which can alter the open-space par-
ticle dynamics [10]. Recently, experiments and simulations
have shown that the interactions between the self-propelled
particles or interactions with obstacles and boundaries give
rise to interesting behaviors like particle migration towards
walls [11,12], separation in systems with more than one type
of active particles [13], as well as trapping [14]. The role
of confinement of active particles is undoubtedly of central
importance in realistic systems, especially for biological mat-
ter and biotechnology [15,16]. However, it is also one of
the least understood and open topics in current active matter
research.

Many living systems form ordered states where the un-
derlying organizational principle is assumed to be local
ferromagnetic-like alignment interactions. Just like in mag-
netic systems, such interactions can give rise to globally
ordered states, in this case called flocks, as well as disordered
states in the noise-dominated regime. In such systems, con-
finement will introduce a length scale which interacts with
the many other length scales that are already present, possibly
changing the emergent patterns in the ordered states. In the
simple case of a confining disk, one can broadly distinguish
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between three phases, sketched in Fig. 1(a): a disordered
gas-like phase at low densities or in the noise-dominated
regime, and a flocking state with complete orbital order when
interactions dominate. In between these phases there is what
may be called a motile droplet phase where smaller flocks of
varying sizes move as individual units with a renormalized
interaction strength. In an open system, however, this picture
may change. In the narrow escape problem, particles move
inside a bounded two-dimensional (2D) domain with a small
open window through which the particles may escape [see
Fig. 1(b)]. In addition to geometric effects from the confining
domain which may change the patterns of motion one can
expect, the nonconservation of the particle number may also
have a nontrivial effect on the order of the system.

Recently the narrow escape problem has gained renewed
interest due to its relevance in biological processes, where the
absorbing window may for example represent a small patch
of a cellular membrane where receptors are located, and the
diffusing particle represents an ion [17,18]. An exponential
decay is also found in chaotic billiard systems, while deter-
ministic billiards give rise to a 1/t decay in particle number
[19]. Escape problems for active particles without alignment
interactions have also been studied recently in the case of a
wedge geometry and a disk geometry [20,21]. The survival
probability in a 1D setting has also recently been studied in a
run-and-tumble model of bacterial motion [22].

In this paper we study the narrow escape problem for
interacting active particles, modeled with a Vicsek-like model,
confined to a circular domain. The system is sketched in
Fig. 1(b). In the high-noise, weak-interaction limit the prob-
lem is similar to that of the Brownian escape problem in the
sense that interactions are negligible, while in the opposite
regime we expect collective effects to alter the escape pro-
cess, leaving the decay of particle number nonexponential.
It is the low-noise regime that is of primary interest in this
paper. We perform numerical simulations for both interacting
and noninteracting self-propelled particles, and study both
the rotational order and the escape statistics. The simulations
reveal a subexponential decay at late times, which may be
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FIG. 1. A sketch of the system considered in this paper. The
polar particles [head and tail particles as in (c)] have a small volume
exclusion radius rve = 1 in units of the particle step length. The parti-
cles interact through a Vicsek-type alignment interaction with range
rint = 5, enabling collective escape events. The angular opening of
the escape window is fixed to 2π/18.

captured by a phenomenological model with an escape rate
that is density dependent.

The paper is organized as follows. Section II discusses the
rotational order in the system, and consequently which phases
of the Vicsek model to be expected when the system is open
and particles can escape. Section III discusses the connection
to Poisson processes as well as the role of memory in the
escape process, and proposes a phenomenological model to
capture the escape statistics. Section IV discusses the results
of escape simulations of both interacting and noninteracting
particles, before concluding remarks are given in Sec. V.

II. ROTATIONAL ORDER IN OPEN SYSTEMS

The Vicsek model is undoubtedly the archetypal numerical
model for collective swarming and flocking effects [23,24].
The particles are self-propelled with velocity �̇xi = v0P̂i(θ )
where the polarization vector P̂i(θ ) for particle i is updated
according to the standard Vicsek rule [25]

P̂i(t + 1) = Dη

(
vi

||vi||
)

, (1)

vi =
∑

k:||�xi−�xk ||�rint

�vk, (2)

where Dη is a rotation matrix rotating a vector by a random
uniformly chosen angle in (−ηπ, ηπ ). The parameter η ∈

(0, 1) determines the noise in the system. The velocity vi in
Eq. (2) is the average velocity of the neighboring particles of
particle i, representing the velocity with which particle i tries
to align. The alignment interaction has a range rint. Note that
the velocity of particle i itself is included in the sum leading
to vi, so that in the noninteracting limit rint → 0, the particle
moves according to a very simple stochastic model governed
only by the parameter η and the self-propulsion speed v0,
which we here set to unity without loss of generality.

Equations (1) and (2) must be supplemented with addi-
tional information when boundaries or obstacles are present.
In the current case, the reflecting boundary of the disk can
be simply dealt with by letting the director P̂i be reflected
about the tangent to the circle at the point of impact. When
interactions are present and clusters of particles are formed,
we include a small volume exclusion interaction with range
rve to avoid clusters being compressed by the bounding walls.
This is numerically included simply by moving particles a
step length apart in the direction separating them should they
come to close to each other. Figure 2 shows an example of the
dynamics produced by this model.

In unconfined space the Vicsek model is known to produce
a wide range of phases, like the gaseous phase at high noise,
a band phase, and a globally ordered phase. Confinement and
complex environments typically interfere with these phases
and result in new behaviors requiring new ways of character-
ization. For example, the band phase of the Vicsek model is
a consequence of the toroidal topology of periodic boundary
conditions [26]. Hence we do not expect that such phases are
present in the confined case. Because of the symmetry of the
circular domain it is natural to consider a rotational order pa-
rameter that distinguishes collective orbital motion where the
particles are moving collectively clockwise or anticlockwise
around the system boundary, and other types of dynamics of
varying degree of correlation. Such an order parameter may
be written as

�R(t ) =
∣∣∣∣∣

1

n(t )

n(t )∑
i=1

( �xi

||�xi|| × P̂i

)
· ẑ

∣∣∣∣∣,
where we should note that when the system is open the particle
number is no longer a conserved quantity so the range of
the sum is time dependent. For a closed system, a gas phase
(�R ≈ 0) still exists at strong noise and/or weak interaction,
and a motile droplet phase (0 < �R < 1), where smaller clus-
ters of particles move as collective units, exists between the
disordered �R = 0 and ordered �R = 1 phases.

In an open system the story is different. Here the order
parameter does not stabilize at the would-be value in the
closed case due to the inherent nonstationary nature of the
problem. Instead, the order quickly increases at short times
when the particles form flocks, while as time goes on the
order decreases again due to the diminishing particle number.
By construction the order parameter is an intensive quan-
tity, so the diminishing nature of �R(t ) is a consequence of
lack of order rather than an effect of the particle numbers.
However, the rotational order does not immediately approach
zero, but rather stabilizes at a lower value, indicating some
remaining order. This is shown in Fig. 3. This may be inter-
preted as follows. At early times the particles form clusters in
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FIG. 2. Snapshots of a simulation based on Eqs. (1) and (2) with active particles confined to a disk with an absorbing window with opening
angle 2π/18 centered at (R, 0). The background color map shows relative particle density for all the particles (absorbed and nonabsorbed),
bright implying high density. We see that as time progresses the density at the absorbing window increases as particles accumulate. System
parameters: η = 0.2, rve = 2, n(0) = 29.

accordance with the given noise strength and interaction
range. As time goes on, (collective) escape events take place,
reducing the particle number. However, the rotational order
does not immediately fall to zero, implying that the low-
density states at late times still carry some correlations. Large
flocks in the confined Vicsek model are well known to create
edge currents that move along the system boundary, and such
motion will eventually lead to large escape events as the
cluster reaches the exit. At late times, it is therefore likely
that smaller clusters, that may not move long the boundary,
remain in the bulk for some time, with some remaining but
decreased rotational order. Such flocks will move more or less
ballistically, but since the flock size distribution is not likely
to be sharply peaked around a constant value, one should not
expect the 1/t scaling in particle number as in the case of
ballistic billiards. Rather the size of the flocks depends on how
many particles have already escaped, and hence depends on
the history of the system. Such memory effects are discussed
further in the next section.

FIG. 3. Plot showing the rotational order parameter �R(t ) as a
function of time for some select choices of the noise strength. The
inset shows the corresponding order parameter for a system without
an escape window. Timescale set by the ratio of particle size to self-
propulsion speed, which for convenience is set to unity.

III. PHENOMENOLOGICAL MODEL FOR ESCAPE
STATISTICS

In general terms, an escape process consists of particles
moving in a 2D bounded domain � with boundary ∂� =
∂�r ∪ ∂�a, where the subscripts denote the reflective and ab-
sorbing parts of the boundary respectively. The particles have
a density ρ(�x, t ), assumed to be normalized to unity at t = 0,
which follows a continuity equation. From this probability
density the survival probability is defined as

S(t ) =
∫

�

d�ρ(�x, t ). (3)

The first hitting time (FHT), in this case also the escape
time, is the time at which a particle escapes the domain. The
distribution of first hitting times H (t ) is closely related to the
survival probability, namely

S(t ) =
∫ ∞

t
ds H (s),

which simply states that the probability of survival up to time
t is equivalent to the FHT being larger than t . This implies for
the FHT distribution that

H (t ) = −∂t S(t ). (4)

We see that the distribution of escape times can be interpreted
as the probability flux out of the system.

On the hydrodynamic scale, let us assume that the phase
space density 	(�x, θ, t ) of an active particle satisfies a
Boltzmann-type mean field equation Dt	 = Q[	], where the
total time derivative includes the self-propulsion term and
takes the form Dt = ∂t + v0P̂(θ ) · ∇x. This must of course be
supplemented with appropriate boundary conditions for the
reflective and absorbing parts of the boundary. The operator
Q[	] contains a part resulting from the noise in the direction
of motion and a nonlinear part that originates in alignment
interactions [27]. The particle density and velocity fields are
simply the zeroth and first velocity moments of the field 	:

ρ(�x, t ) =
∫

dθ 	(�x, θ, t ), (5)

ρ �V =
∫

dθ �v(θ )	. (6)
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By integrating the Boltzmann equation over the angles one
obtains the mass conservation equation

∂tρ(�x, t ) + ∇x · (ρ(�x, t ) �V (�x, t )) = 0. (7)

Since the collision operator is in general nonlinear, we do not
expect a full solution to be available for 	 through the method
of separation of variables. However, it is instructive to make
the somewhat weaker assumption that the density is separable
after integration of the angles, namely ρ = X (�x)S(t ). Integrat-
ing Eq. (7) over the domain and using the divergence theorem
then immediately gives

Ṡ(t ) = −λ(t )S(t ), (8)

λ(t ) =
∫

∂�a

d�(n̂ · �V )X (�x) � 0, (9)

where n̂ is the outward normal vector for the domain. This
shows that rather generally we expect the escaping Vicsek par-
ticles to behave like a nonstationary Poisson process, allowing
us to make phenomenological connections to other growth or
decay processes like those in population ecology.

In the absence of interactions when the nonlinear collision
term is not present, one can attempt a solution in terms of
a fully separated set of variables. Writing the phase-space
density as 	 = X (�x)�(θ )S(t ), we easily see that the velocity
field equation (6) reduces to

�V =
∫

dθ �v(θ )�(θ ),

which is time independent. In this case Eq. (9) becomes a
constant, and we expect a stationary Poisson process to be
a valid description of the escape process. That the noninter-
acting system behaves like a stationary Poisson process can
also understood from the memorylessness property [28]. This
property states that if one waits some time t1 and no escape
events has taken place, the probability of having to wait a
further time t2 is simply the probability of having to wait
a time t2 in the first place. This type of lack of memory,
regarding how much time has passed, can be written in terms
of the survival probability simply as S(t1 + t2) = S(t1)S(t2)
which is only satisfied by an exponential function. We expect
the correlations between the particles in the interacting case
to break this memoryless property through the fact that the
system now depends on its history: flocks of particles may
form and escape the system collectively, and the potential size
of the clusters is limited by how many particles have already
left the system. We therefore expect the escape rate to be a
function of the particle number λ(t ) = λ[n(t )].

Such processes where rates are dependent on density or
number of particles are ubiquitous in nature. In epidemiology,
for example, both death and infection rates may have non-
trivial density or population size dependencies, which may be
traced back to some sort of competition of resources or the
simple fact that a higher-density population will have more
contacts which act as possible disease transmission routes
[29,30]. These ideas are found in several mathematical models
in population ecology, and are sometimes associated with the
Allee effect [31]. Roughly speaking, this is the effect where
there is a correlation between the general well-being or chance

FIG. 4. Escape rates plotted as a function of S(t ) = n(t )/n(0)
showing a power-law behavior. Although the range is insufficient
for a highly reliable extraction of the power-law exponent (number
attached to each solid black line), the numerical values can be used
as initial guesses in a nonlinear regression to fit S(t ) as a function of
time.

of survival for an individual in a population and that popula-
tion’s size or density.

Trying to solve the full mean field equations for the Vicsek
model with the appropriate boundary conditions is outside the
scope of this paper as it is a numerical study, and we therefore
proceed with an empirical model. While we do not make
connections to the microscopic parameters that control the
Vicsek particles, this approach allows us to quantify how far
from exponential the decay process is. Generally the process
∂t S(t ) = −λ[S(t )]S(t ) has stationary states given either by
S = 0 or by the roots of λ[S]. Since there is no reason to ex-
pect anything but a decaying particle number until no particles
remain, the only zero of λ[S] should be S = 0. It should also
be a monotonically increasing function of the number of parti-
cles, since a large number of particles implies more, or larger,
collective escapes. This already constrains the functional form
of the rate somewhat, and, to numerically extract the density
dependence from the simulation data, we consider Eq. (8) in
the form λ[S] = −Ṡ/S, where we used S = n(t )/n(0) to write
the rate in terms of the survival probability. Figure 4 shows
these data, displaying a power-law behavior. This motivates
the use of the simple ansatz λ[n(t )] = λ0Sζ (t ). This is easily
shown to have the solution

S(t ) = [1 + λ0ζ t]−1/ζ . (10)

Here the parameter λ0 is an escape rate, while the shape
parameter ζ deforms the decaying function S(t ) away from
the exponential behavior, which is regained in the limit ζ = 0.
For short times we have an exponential-type behavior S(t ) =
1 − λ0t + · · · which is independent of the shape parameter.
For ζ > 0, the solution in Eq. (10) represents a subexponential
growth at intermediate and late times, while for negative shape
parameters the decay reaches zero at some finite time.

IV. RESULTS

We are interested in the effect of collective order in a
low-density system where we are far away from the jamming
or glassy transitions at high densities. We consider two cases,
with n(0) = 29 and n(0) = 2000 particles, with volume filling
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FIG. 5. Behavior of the survival probability for self-propelled
noninteracting particles. Simulations use n(0) = 29 particles in a
system with volume fraction 5%. (a) Survival probability in semilog
plot for some different values of noise strength showing exponen-
tial behavior. (b) FHT distribution also consistent with exponential
decay.

fractions of around 5% and 10% respectively. This is well
within the range of filling fractions where ordered collective
states have been previously observed but also far from the
jamming or glassy states [32].

FIG. 6. Behavior of the survival probability for self-propelled
interacting particles. Simulations use n(0) = 29 particles in a system
with volume fraction 5%. (a) Survival probability for some different
values of noise strength showing nonexponential behavior together
with best fit of Eq. (10) in solid black lines. The exponent ζ is
taken from Fig. 4. (b) FHT distribution also consistent with the same
parameters.

FIG. 7. Survival probability for n(0) = 2000 particles in a sys-
tem with volume fraction of 10%, together with fits from the
phenomenological model. Quantitatively, a larger system and a larger
initial filling fraction do not alter the escape process.

Recall from our earlier discussions that the noninteracting
case is expected to be described by a memoryless Poisson
process, just like Brownian motion. The noninteracting limit is
only formally equivalent to Brownian particles when the self-
propulsion velocity is set to zero and the noise is maximal, or
equivalently the timescale of rotational diffusion approaches
zero. Simulation results from noninteracting active point par-
ticles are shown in Fig. 5, together with best fit exponential
lines. We see that both the survival probability and the FHT
distribution are exponential at late times as expected, with a
rate that decays rapidly as a function of angular noise strength.
Note that in the noninteracting case we use point particles
without spatial extent, to probe only the effect of activity and
noise.

Results from fully interacting simulations are shown in
Fig. 6 for the 5% volume fraction case and in Fig. 7 for
the 10% volume fraction case, both together with best fits
from the phenomenological model showing good agreement.
Figure 8 shows the interacting and noninteracting survival
probability together for some chosen values of the noise for
the 5% case. We clearly see that while the interacting particles
are leaving the system more rapidly at short timescales, they
are less efficient at emptying the system at late times. Note
that the limit of high noise produces equivalent curves for

FIG. 8. Plot showing the interacting and noninteracting survival
probabilities for the 5% volume fraction case as a function of time
for the same system parameters. The interactions make the number
of escapes be higher at early times, while the behavior is clearly
subexponential at late times.
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interacting and noninteracting particles, since in this limit we
expect a disordered phase.

V. CONCLUSION

We have studied the effect of collective motion on the
escape process for self-propelled active particles. In the
interacting case, the numerical results agree well with a phe-
nomenological model where the escape rate is a power-law in
the population fraction, leading to an early time exponential
behavior followed by a subexponential decay in time. In the
flocking phase, the collective alignment effects make the es-
cape process slower than the noninteracting case in the long
run, and faster on short time scales. In the disordered phase,

fluctuations will dominate over the alignment mechanism and
the interacting and noninteracting cases are more or less iden-
tical and characterized by an exponential decay.

ACKNOWLEDGMENTS

The authors thank Gaute Linga, Bjarke Frost Nielsen and
Vidar Skogvoll for insightful input and discussions during this
work. This work was supported by the Research Council of
Norway through the Center of Excellence funding scheme,
Project No. 262644 (PoreLab). L.A. acknowledges support
in part by the National Science Foundation under Grant No.
NSF PHY-1748958 through the Kavli Institute for Theoretical
Physics.

[1] M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao, and R. A. Simha, Hydrodynamics of soft active
matter, Rev. Mod. Phys. 85, 1143 (2013).

[2] M. Bär, R. Großmann, S. Heidenreich, and F. Peruani, Self-
propelled rods: Insights and perspectives for active matter,
Annu. Rev. Condens. Matter Phys. 11, 441 (2020).

[3] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein,
and J. O. Kessler, Self-Concentration and Large-Scale Co-
herence in Bacterial Dynamics, Phys. Rev. Lett. 93, 098103
(2004).

[4] I. H. Riedel, K. Kruse, and J. Howard, A self-organized vortex
array of hydrodynamically entrained sperm cells, Science 309,
300 (2005).

[5] A. Walther and A. H. Müller, Janus particles, Soft Matter 4, 663
(2008).

[6] H.-R. Jiang, N. Yoshinaga, and M. Sano, Active Motion of
a Janus Particle by Self-Thermophoresis in a Defocused laser
beam, Phys. Rev. Lett. 105, 268302 (2010).

[7] T. Bickel, G. Zecua, and A. Würger, Polarization of active Janus
particles, Phys. Rev. E 89, 050303(R) (2014).

[8] N. Kumar, H. Soni, S. Ramaswamy, and A. Sood, Flocking
at a distance in active granular matter, Nat. Commun. 5, 4688
(2014).

[9] A. Kudrolli, G. Lumay, D. Volfson, and L. S. Tsimring, Swarm-
ing and Swirling in Self-Propelled Polar Granular Rods, Phys.
Rev. Lett. 100, 058001 (2008).

[10] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G.
Volpe, and G. Volpe, Active particles in complex and crowded
environments, Rev. Mod. Phys. 88, 045006 (2016).

[11] G. Volpe, S. Gigan, and G. Volpe, Simulation of the active
Brownian motion of a microswimmer, Am. J. Phys. 82, 659
(2014).

[12] X. Yang, M. L. Manning, and M. C. Marchetti, Aggregation and
segregation of confined active particles, Soft Matter 10, 6477
(2014).

[13] M. Mijalkov and G. Volpe, Sorting of chiral microswimmers,
Soft Matter 9, 6376 (2013).

[14] N. Kumar, R. K. Gupta, H. Soni, S. Ramaswamy, and A. K.
Sood, Trapping and sorting active particles: Motility-induced
condensation and smectic defects, Phys. Rev. E 99, 032605
(2019).

[15] S. Palagi and P. Fischer, Bioinspired microrobots, Nat. Rev.
Mater. 3, 113 (2018).

[16] G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F.
Peruani, H. Löwen, R. Golestanian, U. B. Kaupp, L. Alvarez
et al., The 2020 motile active matter roadmap, J. Phys.:
Condens. Matter 32, 193001 (2020).

[17] Z. Schuss, A. Singer, and D. Holcman, The narrow escape prob-
lem for diffusion in cellular microdomains, Proc. Natl. Acad.
Sci. USA 104, 16098 (2007).

[18] A. Singer, Z. Schuss, and D. Holcman, Narrow escape and
leakage of Brownian particles, Phys. Rev. E 78, 051111
(2008).

[19] W. Bauer and G. F. Bertsch, Decay of Ordered and Chaotic
Systems, Phys. Rev. Lett. 65, 2213 (1990).

[20] M. Paoluzzi, L. Angelani, and A. Puglisi, Narrow-escape time
and sorting of active particles in circular domains, Phys. Rev. E
102, 042617 (2020).

[21] L. Caprini, F. Cecconi, and U. Marini Bettolo Marconi, Trans-
port of active particles in an open-wedge channel, J. Chem.
Phys. 150, 144903 (2019).

[22] F. Mori, P. Le Doussal, S. N. Majumdar, and G. Schehr,
Universal Survival Probability for a d-Dimensional
Run-and-Tumble Particle, Phys. Rev. Lett. 124, 090603
(2020).

[23] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
Novel type of phase transition in a system of self-driven parti-
cles, Phys. Rev. Lett. 75, 1226 (1995).

[24] F. Ginelli, The physics of the Vicsek model, Eur. Phys. J.: Spec.
Top. 225, 2099 (2016).

[25] H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud,
Modeling collective motion: Variations on the Vicsek model,
Eur. Phys. J. B 64, 451 (2008).

[26] M. Aldana, H. Larralde, and B. Vázquez, On the emergence of
collective order in swarming systems: A recent debate, Int. J.
Mod. Phys. B 23, 3661 (2009).

[27] F. Peruani, A. Deutsch, and M. Bär, A mean-field theory for
self-propelled particles interacting by velocity alignment mech-
anisms, Eur. Phys. J.: Spec. Top. 157, 111 (2008).

[28] B. Ramachandran, On the “strong memorylessness property”
of the exponential and geometric probability laws, Sankhyā:
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