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Abstract Background and aims: Diet may alter gene expression in immune cells involved in
atherosclerotic cardiovascular disease susceptibility. However, we still lack a robust understand-
ing of the association between diet and immune cell-related gene expression in humans. There-
fore, we examined associations between dietary patterns (DPs) and gene expression profiles in
peripheral blood mononuclear cells (PBMCs) in a population of healthy, Norwegian adults
(n Z 130 women and 105 men).
Methods and results: We used factor analysis to define a posteriori DPs from food frequency
questionnaire-based dietary assessment data. In addition, we derived interpretable features from
microarray-based gene expression data (13 967 transcripts) using two algorithms: CIBERSORT for
estimation of cell subtype proportions, and weighted gene co-expression network analysis
(WGCNA) for cluster discovery. Finally, we associated DPs with either CIBERSORT-predicted
PBMC leukocyte distribution or WGCNA gene clusters using linear regression models. We de-
tected three DPs that broadly reflected Western, Vegetarian, and Low carbohydrate diets.
CIBERSORT-predicted percentage of monocytes associated negatively with the Vegetarian DP.
For women, the Vegetarian DP associated with a large gene cluster consisting of 600 genes mainly
involved in regulation of DNA transcription, whereas for men, the Western DP inversely associ-
ated with a smaller cluster of 36 genes mainly involved in regulation of metabolic and inflamma-
tory processes. A subsequent proteineprotein interaction network analysis suggested that genes
within these clusters might physically interact in biological networks.
Conclusions: Although the present findings are exploratory, our analysis pipeline serves as a use-
ful framework for studying the association between diet and gene expression.
ª 2020 The Italian Diabetes Society, the Italian Society for the Study of Atherosclerosis, the Ital-
ian Society of Human Nutrition and the Department of Clinical Medicine and Surgery, Federico II
University. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
MC, peripheral blood mononuclear cell; WGCNA, weighted gene co-expression network analysis;
ein interaction.
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Table 1 Study sample: clinical characteristics.

Women Men

Median
(IQR)

Min-max Median
(IQR)

Min-max

Age, years 58 (13) 24e70 50 (15) 24e69
BMI, kg/m2 23.7 (4.2) 17.9e36.1 26.4 (4.1) 19.5e36.4
Fat mass, kg 34.2 (7.9) 17.7e45.8 23.4 (9.2) 3.8e44.7
Fat free mass,

kg
65.8 (7.9) 54.2e82.3 76.7 (9.2) 55.3e96.2

Creatinine,
mmol/L

69 (12) 49e96 85.5 (13) 65e117

ASAT, U/L 20 (9) 4e61 22 (11) 12e80
ALAT, U/L 22 (8) 8e82 28 (13) 13e179
TG, mmol/L 0.9 (0.6) 0.4e3.1 1.2 (0.9) 0.1e4.7
TC, mmol/L 6.6 (1.2) 3.9e8.6 6.2 (1.4) 3.9e8.6
HDL-C,

mmol/L
1.8 (0.6) 1e3 1.4 (0.4) 0.8e2.3

LDL-C,
mmol/L

3.9 (1) 1.8e5.8 3.9 (1.1) 1.8e5.8

ALAT, alanine aminotransferase; ASAT, aspartate aminotransferase;
BMI, body mass index; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG,
triglycerides.
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Introduction

Atherosclerotic cardiovascular disease (ASCVD) is one of
the main causes of death worldwide [1]. It is mainly
caused by life-long exposure to classical risk factors such
as obesity, hypertension, dyslipidemia and dysglycemia
[2]. Diet affects these risk factors and thereby contributes
to the rate of disease progression [3]. Diet can also influ-
ence gene expression in immune cells directly and thus
potentially affect ASCVD susceptibility [4e6]. However, we
still lack a thorough understanding of the association be-
tween diet and immune cell-related gene expression.

Free-living humans consume a variety of foods in
combination. To capture this variation meaningfully, we
often define so-called dietary patterns (DPs). A posteriori
DPs are data-driven; they are defined based on the co-
consumption of foods in the population under study [7].
Naturally, a posteriori DPs reflect local food culture and
have high internal validity. As such, a posteriori DPs may
constitute robust measures of global diet exposure, and
could be used to strengthen the reliability of associations
between diet and biomarkers within a population. This
may be especially relevant in order to examine high-
variance biomarkers such as gene expression profiles.

Peripheral blood mononuclear cells (PBMCs) are
directly involved in the underlying pathophysiology of
ASCVD [8]. They represent a mixture of cells that are
transiently part of a specialized niche in the circulation, of
which some move to sites of inflammation. Affected by a
number of input signals, PBMCs adapt to their environ-
ment; dietary metabolites, interleukins and chemokines,
classical risk factors, and a host of other factors all influ-
ence the PBMC transcriptome [9].

Many previous studies in humans that have associated
diet with PBMC gene expression have used a classical gene
expression-wide association (gxWA) strategy [10,11]. The
underlying correlation structure of the transcriptome,
however, provides an opportunity to improve upon gxWA
methods. Biologically relevant dimensionality reduction
algorithms, such as CIBERSORT and weighted gene co-
expression network analysis (WGCNA), simplify whole-
genome gene expression matrices into interpretable fea-
tures [12,13]. These methods also increase the signal-to-
noise ratio and thereby robustness of the features, while
simultaneously reducing the multiple testing burden [14].

The objective of the present study was to examine the
associations between a posteriori-defined DPs and derived
gene expression features in PBMCs in a population of
healthy, Norwegian adults. We hypothesized that DPs
would associate with PBMC gene expression, and that the
associations would point to specific biological mechanisms
that potentially mediate the effects of diet on ASCVD.

Methods

Study design and participants

The present study is based on cross-sectional data from
the screening visit of a randomized controlled dietary
intervention trial, presented in detail elsewhere [15]. In
short, subjects were interviewed by phone, and those
considered eligible were subsequently invited to a
screening visit for clinical and dietary assessment, and
blood sampling (Supplementary Fig. 1). All those meeting
for the screening visit were included in the present study
independent of whether they met the inclusion and
exclusion criteria for the intervention trial. Briefly, inclu-
sion criteria for the intervention trial were healthy women
and men aged 25e70 years with moderate hypercholes-
terolemia (age-specific range for total cholesterol, and LDL
cholesterol � 3.5 mmol/L), fasting
triglycerides � 2.6 mmol/L, and BMI between 20 and
35 kg/m2. Key exclusion criteria were use of lipid-lowering
and certain other drugs, or blood biomarkers indicating
liver, kidney or endocrine disease [15]. The study was
conducted according to the Declaration of Helsinki
guidelines. All subjects gave their written informed con-
sent, and the Regional Ethics Committee for Medical
Research in South East Norway approved the study. The
study was registered at ClinicalTrials.gov (ClinicalTrials.gov
Identifier: NCT 01679496).

We included all participants from whom we had both
dietary assessment data and PBMC gene expression data,
in addition to standard clinical and biochemical mea-
surements, collected at the screening visit. After
excluding four participants with self-reported energy
intake above 25 MJ/d, we included 235 participants in the
analyses (nZ 130 women, nZ 105 men) (Supplementary
Fig. 1).

The subject characteristics are presented in Table 1.
Briefly, the menwere younger than the women, but had an
unhealthier body composition and subsequent clinical
sequelae. Both genders had moderate
hypercholesterolemia.



Table 2 Groupings of food items used as input in the dietary pattern analysis.

Food group Food items

Butter Butter, butter-based margarines, Melange margarine
Margarine Standard and low-fat margarine, standard and low-fat Vita, standard and low-fat Soft Flora
Cheese, high-fat Regular Norwegian brown cheese, regular hard cheese, regular cheese spread, regular cream cheese
Cheese, low-fat Low-fat Norwegian brown cheese, low-fat hard cheese, low-fat cheese spread, low-fat cream cheese
Dairy, high-fat High-fat milk, flavoured milk, sour cream, ice cream, whipped cream, high-fat yogurt
Dairy, low-fat Skimmed and semi-skimmed milk, cultured/probiotic low-fat milk, low-fat yogurt drink, low-fat yogurt
Dairy, semi low-fat Cultura, light milk, natural yoghurt, fruit yoghurt, Go Morgen yoghurt, Biola, chocolate milk
Coffee Boiled coffee, espresso, filter coffee, instant coffee
Tea Black tea, green tea, herb tea
Sweet beverages Artificially sweetened soft drinks, artificially sweetened ice tea, fruit juices with added sugar,

squash with sugar, sugar-sweetened soft drinks, iced tea with sugar, orange juice, apple juice, Mana juice
Beer Non-alcoholic beer, light beer, regular beer, alcopops
Wine Wine, red wine, white wine
Chocolate and sweets Chocolate, dark chocolate, extra dark chocolate, sweets/jelly sweets, sweet pastilles/candy
Desserts and snacks Cookies, wheat bun, pastry, pastry bun, waffles, chocolate cake, cream cake, muffins, pudding, potatoe chips
Sweet spreads Regular and low-sugar jam, honey, chocolate/nut spread, other sweet spreads
Processed meat Meat balls, minced meat sauce, taco, kebab, lasagne, grilled/wiener sausage, minced meat sausage,

bacon, pork chops, regular and low-fat liver paste, regular and low-fat saveloy, salami
Red meat Roast of lamb/beef/pork, beef
Poultry Chicken
Eggs Eggs in dishes, whole eggs
Fish and shellfish Salmon, herring, mackerel, mackerel in tomatoe (spread), achovy, caviar, cod, fish balls, fish cakes, tuna, shellfish
Legumes Legumes
Vegetables Carrot, cabbage, swede, cauliflower, broccoli, Brussels sprout, onion, spinach, sweet pepper, avocado,

tomato, maize, frozen vegetables, mixed salad (with lettuce, cucumber, tomato and sweet pepper),
vegetables as spread

Fruits and berries Apple, pear, banana, orange, clementine, peach/nectarine, kiwi, grapes, melon, pomegranate,
fruit as spreads, fresh fruit salad, prune, raisins, other dried fruits, blackberry, blueberry, raspberry,
strawberry, cherry, cloudberry, rose hips, redcurrant, blackcurrant, cowberry

Rice Rice
Potatoes Potatoes, potato powder
Pasta Spaghetti, nudles
Whole grains Semi- and whole-grain bread, crisp bread (whole meal), oatmeal porridge and cereal,

unsweetened muesli/breakfast cereal
Nuts and seeds Almonds, hazelnuts, walnuts, peanuts, peanut butter, pine nuts, linseeds, sunflower seeds, nut mix, cashew nuts
Oil and oil products Vegetable oils, oil-based dressings, dressing mix, mayonnaise-based salads, pesto
Mixed meals Pizza, various mixed meals, including wraps and spring rolls
Potatoes, fat-rich Pommes frites
Refined grains White bread, crisp bread (wheat flour), hot dog bun, sweet muesli/breakfast cereal, pancake, rice porridge,

waffle, sweet bun
Supplements, fish oil Fish oil supplements, Tran
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Assessment of dietary intake

See Supplemental Methods for detailed description of
assessment of dietary intake. Briefly, we used a food-
frequency questionnaire (FFQ) to assess habitual food
intake from the preceding year [16]. We then grouped the
282 food items into 33 food groups based on food category
and nutrient content (Table 2). Self-reported intake of
foods and nutrients are presented in Supplementary Table
1, Supplementary Table 2, and Supplementary Table 3.

PBMC gene expression analysis pipeline

See Supplemental Methods for detailed description of
PBMC isolation, RNA extraction, microarray analysis and
gene expression pre-processing steps. Briefly, we collected
PBMCs and extracted RNA according to standardized pro-
tocols [6]. The subsequent microarray gene expression
analyses were performed using HumanHT-12 Expression
BeadChips (Illumina Inc., CA, USA), and followed standard
Illumina protocol (Illumina Inc., CA, USA). Finally, the gene
expression probe level intensity values were subjected to
pre-processing in R (version 3.6.0) using standard bio-
informatic tools [17].
Statistical and bioinformatics analyses

In the following, we describe in detail the statistical
and bioinformatic analyses related to DPs, gene
expression clusters, and statistical modeling. All ana-
lyses were performed in R version 3.6.2 [17]. We refer
to R packages and functions where appropriate, and
using the following notation: package::function.
Important deviations from default function setting are
written in parentheses.

The flow of the analysis pipeline is outlined in Fig. 1.
Women and men were analyzed separately, as preliminary
analyses suggested a strong gender-related signal in both
the DPs and gene expression dataset.
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Dietary patterns
We used a combination of principal component analysis
(PCA) and factor analysis to determine DPs. Factor analysis
is a dimensionality reduction method similar to PCA, but it
results in more interpretable features. However, because
factor analysis is informed by the same covariance matrix
as PCA, we used PCA-derived component variances
(stats::prcomp) to determine a meaningful number of
factors to retain; the results are presented in
Supplementary Fig. 2. For both genders, the eigenvalue-
one criterion suggested around 12 principal components
(PCs), but there was little change between components
from component 3e5 and outwards; the scree test sug-
gested around 3e5 components; the per-component
variance explained suggested that about 7e17% of the
variance could be explained until about three components,
and then stabilized at 4e5% at 4e6 components, with little
change thereafter [18]. We decided to extract three com-
ponents using factor analysis (stats::factanal).

Gene expression features
Two main mechanisms are central in studies of diet-
related associations with ASCVD mechanisms in PBMCs:
dietary effects on leukocyte subset distributions, and bio-
logical modulation independent of leukocyte subset dis-
tribution. As a result, we performed analyses to examine
each of these aspects, as outlined in the upper right corner
of Fig. 1.
Leukocyte subsets We used CIBERSORT to perform in silico
flow cytometry [13]. This method uses support vector
regression to conduct robust deconvolution of a
heterogenous cell population, and returns predicted
relative levels of various cell subsets. We used the batch-
corrected, raw, untransformed, whole-genome gene
expression data matrix as input. Although the algorithm
provides 22 leukocyte subsets, we filtered on the
topmost relevant cell types for the PBMC population,
mainly monocyte and lymphocytes subsets, and thereby
retained 12 cell subsets (Supplementary Fig. 3). Note that
although we had standard blood cell differential counts
available, CIBERSORT results in a richer set of cell subsets
unique to the gene expression profile of each sample.
Gene expression clusters We used WGCNA to identify
highly correlated (“co-expressed”) clusters of genes [19].
The WGCNA package (CRAN, Bioconductor) provides a
well-established and popular framework to perform the
WGCNA analysis [12]. The details of the implementation
can be found in Ref. [12]; in the following we briefly
describe the key steps performed for the present work.

To avoid confounding by cell types, we removed the
main effect of monocytes and lymphocytes with the re-
sidual method. In short, we subjected the batch-corrected,
raw gene expression features (p Z 13 967 variables) to
linear regression analyses adjusting for percentage
monocytes and lymphocytes (by standard differential
count) and extracted the residuals. These were then used
as input for WGCNA (Fig. 1).

First, we determined the “soft thresholding power b”
using the WGCNA::pickSoftThreshold function. This
function creates a co-expression matrix and raises this
to the power b to get the adjacency matrix. Balancing
the approximate scale-free network properties and
network connectivity, we chose b Z 3 for both genders.
Next, we used the high-level WGCNA::-

blockwiseModules function to create the gene
expression clusters in blocks of 5000 mRNA using un-
signed networks. Any genes that affiliated with a cluster
with fewer than 20 members were assigned to the so-
called grey cluster. Each cluster was then summarized
using the first principal component (the “cluster eigen-
gene”), and genes with low cluster membership were
reassigned to another cluster. Finally, by default, cluster
eigengenes that strongly correlated (r > 0.85) were
merged to avoid redundancy.

To examine stability and validity of the resulting gene
expression clusters between genders, we calculated mod-
ule preservation statistics [20]. To do this, we used the
WGCNA::modulePreservation function; we used
women's cluster affiliations as reference, and men's as test,
and extracted the median rank preservation and median
rank quality, as well as the corresponding Z scores. In
addition, we extracted the actual cross-tabulation between
women's and men's clusters, and the associated P values.

To highlight a few of the more important genes within
interesting clusters, we performed a driver gene analysis.
First, we calculated cluster membership, which we defined
as the absolute correlation between gene expression and
cluster eigengene; this feature can be interpreted as the
degree to which each gene contributes to that cluster's
overall behavior, and contributes to its variation. Secondly,
we calculated DP significance, which is the absolute cor-
relation between gene expression and DP score; this
feature is similar to a gxWA for all DP and single gene
combinations. A positive correlation between cluster
membership and DP significance indicates that those
genes that drive the variation in the cluster eigengene are
the same that drive the association with the specific DP
(driver genes). Finally, to rank driver genes, driver gene
estimates were calculated as the sum of the cluster
membership and DP significance.

We performed gene ontology (GO) analyses to describe
relevant WGCNA gene expression clusters biologically. The
GO Consortium provides a comprehensive, computational
model of biological systems, and is among the largest re-
sources of gene-specific information [21,22]. We used the
biomaRt::useMart(host Z "http://jan2019.archi-

ve.ensembl.org",

dataset Z "hsapiens_gene_ensembl") function to
set up a connection to Ensembl, and then the bio-

marRt::getBM to retrieve various gene annotation,
including chromosome, start and end, strand, and GO
identifier. We then created a background annotation object
for our specific gene set (p Z 13967 genes), and used this
to compile topGOdata objects using the topGO package.
We did this for all three GO classes: biological process (BP),
cellular compartment (CC) and molecular function (MF).
Finally, we ran enrichment tests on the topGOdata objects
and compiled the results into data tables, using the high-



Figure 1 Analysis pipeline. The analysis pipeline consisted of two arms that converged in the center. The first arm (left-hand side of figure) involved
feature engineering and dimension reduction analyses for the dietary data, particularly the creation of three dietary patterns. The second arm
concerned work related to the gene expression data, and both the creation of 47 and 37 gene expression clusters for women and men, respectively,
and an in silico flow cytometry cell type quantification. We used linear models and pre-specified DAGs (Supplementary Fig. 4) to evaluate the as-
sociations between the dietary and gene expression sides. Abbreviations: FFQ, food frequency questionnaire; gX, gene expression; PC1, principal
component 1; WGCNA, weighted gene correlation network analysis.
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level topGO::runTest(algorithm Z "classic",

statistic Z "fisher") and topGO::genTable

functions.
We performed proteineprotein interaction (PPI)

network analyses using The Protein Interaction Network
Analysis (PINA) 2.0 database to link statistical findings
with existing biological knowledge. We downloaded
manually curated proteineprotein interaction data from
PINA (http://omics.bjcancer.org/pina/), and created
networks based on input of a smaller set of driver genes
defined in upstream analyses. Finally, to rank the
importance of the proteins, we calculated and applied
the betweenness centrality measure of nodes in the
resulting networks, using the tidygraph::

centrality_betweenness function.

Linear models
We associated DPs with the two main outcomes:
CIBERSORT-predicted cell counts, and the eigengenes from
the gene expression clusters, using linear models (Fig. 1).
Supplementary Fig. 4 shows the directed acyclic graphs
(DAGs) that guided model development. We used the
open-access web-resource Dagitty (dagitty.net/dags) to
evaluate these relationships. Minimal sufficient adjust-
ment sets for estimating the total effect of dietary pattern
on gene expression were age and education (three levels:
lower, middle, higher); this is the adjustment level we
report for all associations throughout the present work.
For CIBERSORT-predicted cell counts, we additionally
adjusted for adiposity (total fat mass, measured by
bioelectrical impedance analysis) in sensitivity analyses
(reported in text). Also, in sensitivity analyses for the gene
expression clusters, we estimated the direct effect (see
Supplemental Methods). The results were similar (data not
shown).

Note that for all models, technical covariates (micro-
array chip and plate) were considered in upstream batch
correction, as described in Supplemental Methods (Fig. 1).
Note also that percentage of total leukocyte count of
monocytes and lymphocytes (which make up the pool of
PBMC subsets) were adjusted for in the gene expression
pre-processing pipeline, prior to WGCNA only (Fig. 1).
Finally, to aid interpretation of the results, we normalized
(base::scale) both DP scores and cluster eigengenes to
a standard normal distribution (mean Z 0, SD Z 1) before
modeling.

http://omics.bjcancer.org/pina/
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Miscellaneous
The trial was originally powered to detect a clinically
relevant and significant change in LDL-C [15]; however,
this does not apply to the present work. Because the pre-
sent work is exploratory, we did not evaluate associations
by standard significance level cut-offs. Instead, we evalu-
ated the strength and direction of associations, and their
interrelations. However, to indicate the power of our
analysis, we performed a simple power calculation for the
general linear model, yielding the following result. Given
six degrees of freedom, for an association quantified by an
R2 (explained variance) of 0.10 (which corresponds to our
top findings), to have 80% power, we would have needed a
sample size of approximately 150, 200 and 270 partici-
pants, for P value thresholds of 0.05, 0.01 and 0.001,
respectively.
Results

Construction and description of study features

Dietary patterns
First, we constructed gender-specific DPs from self-
reported FFQ data, yielding three DPs (Fig. 2 and
Supplementary Table 4). We considered the patterns to
reflect typical Western (DP1), Vegetarian (DP2), and Low
carbohydrate (DP3) diets. These three DPs explained 14.1,
8.0 and 6.6%, and 16.6, 9.3 and 7.0% of the variance, for
women and men, respectively. Although there was some
overlap, the Vegetarian and Low carbohydrate DPs were
more unique to each gender compared to the Western DP.
Figure 2 DPs for women and men. The figure shows factor loadings for all f
Table 4 for an overview of factor loading for all foods. DP1, DP2 and DP3 c
hydrate DPs, respectively. Abbreviations: DP, dietary pattern.
This was also supported by the DP loading for various
foods (Supplementary Fig. 5). For both genders, the
Western DP associated with intake of meat and eggs, fast
food, snacks, dairy, and fiber-poor carbohydrate sources.
The Vegetarian DP associated positively with several foods
perceived as healthy, including plant foods, whole grains,
nuts and seeds, and tea. Additionally, the association with
animal products, fast food, dairy, and fiber-poor carbohy-
drate foods was low or negative. For women, the associa-
tion with high-fat dairy and snacks was slightly positive.
The Low carbohydrate DP was generally a mixture of the
two former DPs, reflected in positive associations for both
plants and animal products. The association with fast
foods, snacks and carbohydrate-rich foods, however, was
negative. Wine associated positively, whereas sweet bev-
erages associated negatively with the Low carbohydrate DP
for women and men, respectively.

In addition to the direct link with food intake, the DP
scores correlated with both macronutrient intake
(Supplementary Fig. 6) and clinical variables
(Supplementary Fig. 7). The Western DP correlated with
energy intake and negatively with fiber intake in both
genders. The Vegetarian DP correlated positively with fiber
and negatively with saturated fat intake in men. In women,
the Vegetarian DP correlated weakly, but positively, with
energy, healthy fats, fiber and sugar. The Low carbohydrate
DP was negatively correlated with carbohydrate and sugar
intake in both genders, and with higher protein and fat
intake in men.

For the clinical variables, the negative association be-
tween Western DP and age was most notable, which in-
dicates that the younger part of the study sample adhere
oods with a loading >0.3. See Supplementary Fig. 5 and Supplementary
an be considered to reflect typical Western, Vegetarian, and Low carbo-



Figure 3 DPs associate with CIBERSORT-predicted cell types. The figure
displays heatmaps of linear regression b coefficients between DP scores
(as the exposure variable, shown in rows), and CIBERSORT-predicted
cell types (as the outcome variable, in columns), for both women and
men. Models were adjusted for age and education; in addition, the raw
gene expression data were adjusted for technical variation in upstream
batch correction. Asterix indicate significance level: ))), P < 0.001;
)), P < 0.01; ), P < 0.05. See Fig. 1, Supplementary Fig. 4 and Methods
for a thorough explanation of the flow of analyses and adjustment
levels. DP1, DP2 and DP3 can be considered to reflect typical Western,
Vegetarian, and Low carbohydrate DPs, respectively. Abbreviations: DP,
dietary pattern.
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to a more unhealthy diet. Additionally, The Vegetarian DP
associated negatively with multiple obesity-related
markers, including immune cells and CRP. Again, the Low
carbohydrate DP was a mixture of the two, with positive
correlations for age and lipids.

Leukocyte subsets
We used the CIBERSORT algorithm to computationally
estimate the distribution of 12 leukocyte subsets (13). As
expected, predicted leukocyte cell proportions associated
with multiple clinical variables, although most notably for
the differential count measures and obesity-related mea-
sures (Supplementary Fig. 8).

Gene expression clusters
Using the WGCNA algorithm, we detected 45 and 37
unique gene expression clusters for women and men,
respectively, which by default were named different colors
[12]. Although there were large differences in cluster size
(range Z 67e307 and 85e438 genes for women and men,
respectively), most clusters explained a large proportion of
the variance of the genes they comprised (range Z 32e39
and 33e40% for women and men, respectively)
(Supplementary Fig. 9A and B, and Supplementary Table
5). For men, explained variance inversely associated with
cluster size (Supplementary Fig. 9C). In addition, genes in
all clusters were generally distributed over all chromo-
somes, with certain exceptions, such as chromosome 1 and
19 (Supplementary Fig. 9D). The gene expression clusters
displayed some correlation within each gender, but they
could largely be considered unique features
(Supplementary Fig. 10). Between genders, the module
preservation was acceptable for most medium- and large-
sized clusters, and poor for the smaller clusters
(Supplementary Figs. 11e13).

Numerous gene expression clusters correlated with
clinical phenotypes (Supplementary Fig. 14). Most promi-
nent were the global associations with body composition-
and lipid-related markers.

Associations of derived gene expression features with
dietary patterns

Dietary patterns and leukocyte subsets
Predicted percentage of monocytes associated negatively
with the Vegetarian DP for both women (b Z �0.21,
P Z 0.02) and men (b Z �0.33, P Z 0.0008) (Fig. 3 and
Supplementary Fig. 15), suggesting a link between this
particular cell subset and diet. Interestingly, when
adjusting for adiposity, this association was attenuated
only for women (b Z �0.15, P Z 0.11 for women, and
b Z �0.33, P Z 0.001 for men).

Dietary patterns and gene expression clusters
In general, relatively few associations were evident be-
tween DP scores and gene expression cluster eigengenes
(Fig. 4). For women, the positive association between the
Vegetarian DP and the yellow cluster was strongest. The
yellow cluster contained 600 genes involved in regulation
of transcription (Supplementary Fig. 16). For men, the
Western DP associated with multiple clusters, of which the
association with the darkmagenta cluster was strongest.
This cluster contained 36 genes related to metabolic and
inflammatory processes, including sterol/cholesterol
transport (Supplementary Fig. 16). Similarly, both the pink
and greenyellow clusters associated negatively with the
Western DP, although not as strongly as darkmagenta. The
pink cluster consisted of 475 genes involved in regulation
of viral processes, endosome/vacuolar transport, UDP-
GlcNAc metabolism, and monocyte and lymphocyte stim-
ulation. On the other hand, the greenyellow cluster con-
sisted of 338 genes involved in regulation of protein
synthesis and degradation, and acyl carnitine transport.
The top 20 most enriched GO terms (for all three ontol-
ogies) for the topmost significant cluster for each gender
are listed in Supplementary Table 6.

Identification of driver genes

Next, we examined the most relevant gene expression
clusters more in detail, using a driver gene analysis to
identify genes with both high DP significance and high
cluster membership. Interestingly, DP significance and
cluster membership associated strongly (Fig. 5A and B, and
Supplementary Table 7), which suggests that genes that
associated with DPs were also among the most important
parts of the clusters that associated with that DP.



Figure 4 DPs associate with gene expression clusters. The figure displays heatmaps of linear regression b coefficients between DP scores (as the
exposure variable, shown in rows), and gene expression cluster eigengenes (as the outcome variable, in columns), for both women and men. The
clusters are sorted by size. Models were adjusted for age and education; in addition, the raw gene expression data were first adjusted for technical
variation in upstream batch correction, and subsequently adjusted for relative abundance of monocytes and lymphocytes using linear regression
prior to cluster discovery. Asterisks indicate significance level: ))), P < 0.001; )), P < 0.01; ), P < 0.05. See Fig. 1, Supplementary Fig. 4 and
Methods for a thorough explanation of the flow of analyses and adjustment levels. DP1, DP2 and DP3 can be considered to reflect typical Western,
Vegetarian, and Low carbohydrate DPs, respectively. Abbreviations: DP, dietary pattern.
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The five top driver genes for the association between
the Vegetarian DP and the yellow cluster in women were
GIMAP7 (GTPase, IMAP family member 7), ZNF200 (zinc
finger protein 200), LCMT2 (leucine carboxyl methyl-
transferase 2), GPR18 (G protein-coupled receptor 18),
ASTE1 (asteroid homolog 1) (Fig. 5A). Proteins from these
genes regulate aspects of biosynthetic processes, including
cell signaling, DNA transcription and repair, and protein
synthesis (20,21). For these genes, the correlation co-
efficients with DP2 score were in the range 0.19e0.26
(P Z 0.03e0.003), and with the cluster eigengene in the
range 0.83e0.90 (P < 0.001) (Supplementary Table 7). This
means that women who consumed a Vegetarian DP tended
to have higher expression of these genes in PBMCs.

The five top driver genes for the association between
the Western DP and darkmagenta cluster in men were
DMWD (DM1 locus, WD repeat containing), SYTL3 (syn-
aptotagmin like 3), ABCA2 (ATP binding cassette subfamily
A member 2), TSEN54 (tRNA splicing endonuclease sub-
unit 54) and C9orf142/XLS (XRCC4-like small protein)
(Fig. 5B). Proteins from these genes are involved in lyso-
somal transport, cholesterol homeostasis, mRNA process-
ing and DNA repair (20,21). The correlation coefficients
with DP1 score were in the range �0.29 to �0.22
(P Z 0.03e0.003), and with the cluster eigengene in the
range 0.75e0.83 (P < 0.001) (Supplementary Table 7). This
means that men who consumed a Western DP tended to
have lower expression of these genes in PBMCs.
Identification of hub proteins

Finally, to examine if these driver genes were part of
physically interacting biological networks, we filtered
them through the PINA database (22). For the strongest
associations for each gender, we then created
proteineprotein interaction (PPI) networks (Fig. 5C and D,
and Supplementary Table 8). These proteins can be
considered hub proteins; they likely exert a higher degree
of control over the protein network, as more proteins
physically interact with this hub in order to influence
signaling pathways. For women and men, key hub proteins
included PPARGC1B (PPARG coactivator 1 beta) and UBC
(ubiquitin C), respectively.
Discussion

In the present study of 235 Norwegian adults, we detected
novel associations between DPs and gene expression fea-
tures in PBMCs. Our results suggest that diet may affect a
number of specific cell types and pathways, of which the
most pronounced were predicted proportion of mono-
cytes, regulation of transcription, and regulation of meta-
bolic and inflammatory processes. The findings and
approaches presented herein may be relevant for further
understanding the role of diet on ASCVD and other
lifestyle-related diseases.

We detected three DPs commonly consumed in Norway

Using data-driven analyses, we extracted three DPs
(Fig. 2). These DPs made sense from a dietary
perspective, matching typical patterns representing
Western-type, Vegetarian-type and Low carbohydrate-
type diets; thus, they met the interpretability criterion
[7]. These DPs were neither unexpected nor surprising:
Norwegian adults follow trends, and this includes the
vegetarian and low carbohydrate trends. In previous
studies, similar names have been used to characterize



Figure 5 Identification of driver genes and hub proteins. A) and B) display the unadjusted, univariate association between cluster membership and DP
significance for the strongest DP and gene expression cluster associations, for each gender. Cluster membership is defined as the absolute correlation
between gene expression and cluster eigengene, and can be interpreted as the degree to which each gene belongs in that certain cluster, and
contributes to its variation. DP significance is the absolute correlation between gene expression and DP score. A positive correlation between cluster
membership and DP significance indicates that those genes the drive the variation in the cluster eigengene are the same that associate with the
specific DP (driver genes). Finally, to rank driver genes, driver gene estimates were calculated by the sum of the cluster membership and DP sig-
nificance. The darker the color, the higher the driver gene estimate; the top five genes driving this association are annotated. Note strong positive
correlations for both comparisons, as is also evident from the linear regression line. C) and D) show networks of proteineprotein interactions (PPI)
for the same DP and gene expression cluster associations as above. Each network was created by the top 20 driver genes identified by the driver gene
plot. The figures display hub proteins that are of particular interest to the gene regulatory network. DP1 and DP2 can be considered to reflect typical
Western and Vegetarian DPs, respectively. Abbreviations: DP, dietary pattern (see Supplementary Table 7 and Supplementary Table 8 for all ab-
breviations) (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article).
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detected DPs. In a cohort of Norwegian postmenopausal
women, Markussen and co-workers found four DPs,
including the Western and Vegetarian DPs [18]. In
addition, they found a High-protein pattern that
resembled our Low carbohydrate pattern. Their DPs,
similar to ours, share characteristics and therefore also
names, with DPs throughout Europe and the US. This
emphasizes an important point: although the DPs
retained in factor analyses are never exactly equal (in
contrast to those from a priori methods), our three DPs
share characteristics with many other DPs both in
Norway and elsewhere [7,18,23,24].

The three DPs associated with food items, nutrient
intake and clinical parameters to give a consistent picture:
in general, the Low carbohydrate DP appeared neutral
while the Western-type and Vegetarian-type DPs associ-
ated with a number of unhealthy or healthy behaviors,
respectively.
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Vegetarian DP associated with monocytes

The Vegetarian DP associated with CIBERSORT-predicted
levels of monocytes (Fig. 3), suggesting that gene expres-
sion related to monocyte differentiation and activity may
be affected by diet. These results are corroborated by
previous reports by others and us [25e28]. Craddock and
co-workers recently reviewed the evidence that vegetarian
diets affect inflammatory and immune biomarkers,
concluding that they associate with lower CRP, fibrinogen,
and total leukocyte concentrations [25]. Similarly, Eichel-
mann showed that plant-based diets cause reductions in
obesity-related inflammatory biomarkers such as CRP, IL6
and sICAM [26]. Indeed, our observed association between
diet and monocyte levels might be related to the degree of
obesity in the population; however, we found only a slight
attenuation of the association for women when adjusting
for adiposity. In previous work, we have shown that both
diet and risk factors may affect PBMC leukocyte distribu-
tion [27,28]. We found that plasma omega 6 fatty acid
level, as a marker of dietary intake of omega 6 fatty acids,
was associated with predicted leukocyte distribution [27].
Vegetarian diets tend to have a high amount of vegetable
oils, which may have also affected our present results.
Similarly, we recently showed that children with familial
hypercholesterolemia displayed an altered leukocyte dis-
tribution [28].

Most studies that examine the association between diet
and immune cells use a modest number of established
biomarkers, such as standard differential count or protein
biomarkers. In the current analysis, however, we used
approximately 14 000 mRNA transcripts from PBMCs,
potentially making it a more sensitive test of associations
with immune cell type distribution specifically, and
inflammation in general [13]. Additionally, our finding is
important since it adds to the evidence that cell type
distribution in cell mixtures can influence the association
between diet and gene expression. This must be taken into
account when interpreting PBMC gene expression results.

DPs associated with few gene expression clusters

Few WGCNA-based gene expression clusters were associ-
ated with DPs after correction for variation in monocytes
and lymphocytes number (Fig. 4). This indicates that most
of the co-variation between diet and gene expression in
PBMCs can be attributed to leukocyte cell type distribu-
tion. Nevertheless, in women, the Vegetarian DP associated
most strongly with a cluster of genes involved in regula-
tion of transcription, and in men, the Western DP associ-
ated most strongly with a cluster of genes related to
metabolic and inflammatory processes, including sterol/
cholesterol transport.

In previous reports, dietary intake of a healthy Nordic
diet or omega-3 associated with expression of genes
related to mitochondrial function, cell cycle, endoplasmic
reticulum stress, apoptosis, and inflammatory processes
[29e32]. Regulation of transcription is another such un-
specific term; although highly unspecific, it may relate to
age-related global or pathway-specific DNA methylation
and gene expression [33e35].

Sterol/cholesterol transport, on the other hand, is a
highly specific biological process that is dramatically
affected by diet and that affects disease risk [35,36].
Plasma LDL-C is mainly determined by cellular sterol sta-
tus and the functionality and activity of the LDL receptor;
LDL-C in turn is a key determinant of disease risk [36].
Although cholesterol metabolism in liver and monocytes
are tightly coupled and similarly regulated, our observed
association likely results from molecular events occurring
within the pool of PMBCs as they deal with cholesterol-
related metabolic challenges. Nevertheless, PBMC expres-
sion of genes related to sterol/cholesterol transport could
prove a robust marker of dietary variation [10].

Interestingly, the second and third most significant
clusters that associated with the Western DP in men con-
tained genes related to other metabolic processes, such as
UDP-GlcNAc and acyl carnitine metabolism. While UDP-
GlcNAc is involved in cellular glucose sensing, acyl carni-
tines are involved in fatty acid transport into the mito-
chondria [37,38]. Indeed, in previous work, we found that
plasma levels of acyl carnitines of specific chain lengths
may be directly altered by changes in fatty acid quality of
the diet [6]. Taken together, these processes may be
particularly sensitive to variation in dietary intake; there-
fore, they could potentially be biomarkers of dietary
intake, and also potentially predict future risk [39,40].
However, more prediction research is needed before this
can be realized.

We identified top driver genes and hub proteins

Finally, the WGCNA cluster analysis detected top driver
genes that have been shown to physically interact in PPI
networks (Fig. 5) [41]. This is an important finding, as it
provides further biological meaning to the statistical as-
sociations, and strengthens our belief that the top driver
genes may be more than just spurious associations [39].
The network analysis highlighted a few hub proteins that
may act as central communicators within each cluster,
such as UBC and PPARGC1B. The UBC protein is a key cell
signaling molecule, especially related to ubiquitination,
cytokine signaling, toll-like receptors, and nuclear factor
kappa B (NFkB); in mouse models, knock-down of the
ubiquitin system shows protection from diet-induced
obesity [42]. Furthermore, PPARGC1B is a transcriptional
co-regulator involved in a number of biological processes,
including thermogenesis, bone turnover and regulation of
energy expenditure by fat and glucose oxidation. For
example, Yin and co-workers recently showed that
PPARGC1B affects PPAR alpha to protect against cardio-
myopathy [43].

Strengths and limitations

To the best of our knowledge, nobody has used CIBERSORT
and WGCNA to study molecular associations with DPs. We
believe these dimension reduction algorithms may be well
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suited to examine diet-related effects on PBMC cell type
distribution using sensitive gene expression data. Still, the
present work has important limitations. First, this study
has a cross-sectional, observational design, and we can
therefore neither infer causality nor rule out residual
confounding. Furthermore, although we have taken steps
to minimize the probability of chance findings, we cannot
rule this out. Our study sample is relatively small
compared to, for example, Lin and co-workers [39], which
increases the risk of false positive and negative findings
(see power calculation in Subjects and methods). More-
over, our study sample represents a highly selected part of
the Norwegian population (see inclusion and exclusion
criteria in Subjects and methods), limiting the generaliz-
ability of our results. Also, the PINA analysis is limited to
the last update of the background database, and it does not
cover potentially relevant non-PPIs. Considering these
limitations, our results should not be overinterpreted.

Conclusions

In conclusion, we detected novel associations between DPs
and gene expression features in PBMCs. Our results sug-
gest that DPs may affect monocyte proportions and the
regulation of biological processes related to transcription,
metabolism, and inflammation. Although the present
findings are exploratory, our analysis pipeline serves as a
useful framework for future studies on the association
between diet and gene expression. More research is
needed before our results can be translated into clinically
meaningful biomarkers.

Authorship

Conception and design: LFA, KBH, SMU. Data analysis: JJC,
MT, KW. Data interpretation: JJC, SMU, MT, KBH, KW, LFA.
Wrote paper: JJC, SMU, MT, KW, KBH, LFA. In addition, the
microarray hybridization and gene expression data pre-
processing were performed at the Genomics Core Facility
at NTNU, Trondheim, Norway.

Funding

The work in this study was funded by Oslo University
Hospital and the University of Oslo.
Declaration of Competing Interest

Dr. Christensen has received research grants and/or per-
sonal fees from Mills DA, unrelated to the content of this
manuscript. Dr. Ulven has received research grants from
Mills DA, Tine DA, and Olympic Seafood, none of which are
related to the content of this manuscript. Dr. Holven has
received research grants and/or personal fees from Tine
DA, Mills DA, Olympic Seafood, Amgen, Sanofi, and Pro-
nova, none of which are related to the content of this
manuscript. The other authors declare no conflicts of
interest.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.numecd.2020.06.018.
References

[1] Global Burden of Disease Study 2017 (GBD 2017) Results. Seattle,
United States: Global Burden of Disease Collaborative Network;
2018.

[2] Khera AV, Kathiresan S. Genetics of coronary artery disease: dis-
covery, biology and clinical translation. Nat Rev Genet 2017;18:
331e44. https://doi.org/10.1038/nrg.2016.160.

[3] Müller H, Kirkhus B, Pedersen JI. Serum cholesterol predictive
equations with special emphasis on trans and saturated fatty acids.
an analysis from designed controlled studies. Lipids 2001;36:
783e91. https://doi.org/10.1007/s11745-001-0785-6.

[4] Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and
lipid physiology: opening the X-files. Science 2001;294:1866e70.
https://doi.org/10.1126/science.294.5548.1866.

[5] Øyri LKL, Narverud I, Bogsrud MP, Hansson P, Leder L, Byfuglien MG,
et al. Postprandial changes in gene expression of cholesterol influx
and efflux mediators after intake of SFA compared with n-6 PUFA in
subjects with and without familial hypercholesterolaemia: sec-
ondary outcomes of a randomised controlled trial. J Nutr Sci 2019;8.
https://doi.org/10.1017/jns.2019.25.

[6] Ulven SM, Christensen JJ, Nygård O, Svardal A, Leder L, Ottestad I,
et al. Using metabolic profiling and gene expression analyses to
explore molecular effects of replacing saturated fat with poly-
unsaturated fat-a randomized controlled dietary intervention
study. Am J Clin Nutr 2019;109:1239e50. https:
//doi.org/10.1093/ajcn/nqy356.

[7] Jannasch F, Riordan F, Andersen LF, Schulze MB. Exploratory dietary
patterns: a systematic review of methods applied in pan-European
studies and of validation studies. Br J Nutr 2018;120:601e11. https:
//doi.org/10.1017/S0007114518001800.

[8] Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J,
Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Primers 2019;5:
1e18. https://doi.org/10.1038/s41572-019-0106-z.

[9] Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional
profiling of the human monocyte-to-macrophage differentiation
and polarization: new molecules and patterns of gene expression. J
Immunol 2006;177:7303e11. https:
//doi.org/10.4049/jimmunol.177.10.7303.

[10] de Mello VDF, Kolehmanien M, Schwab U, Pulkkinen L,
Uusitupa M. Gene expression of peripheral blood mononuclear
cells as a tool in dietary intervention studies: what do we know so
far? Mol Nutr Food Res 2012;56:1160e72. https:
//doi.org/10.1002/mnfr.201100685.

[11] Olsen KS, Skeie G, Lund E. Whole-blood gene expression profiles in
large-scale epidemiological studies: what do they tell? Curr Nutr
Rep 2015;4:377e86. https://doi.org/10.1007/s13668-015-0143-5.

[12] Langfelder P, Horvath S. WGCNA: an R package for weighted cor-
relation network analysis. BMC Bioinf 2008;9:559. https:
//doi.org/10.1186/1471-2105-9-559.

[13] Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al.
Robust enumeration of cell subsets from tissue expression profiles.
Nat Methods 2015;12:453e7. https://doi.org/10.1038/nmeth.3337.

[14] Nguyen LH, Holmes S. Ten quick tips for effective dimensionality
reduction. PLoS Comput Biol 2019;15:e1006907. https:
//doi.org/10.1371/journal.pcbi.1006907.

[15] Ulven SM, Leder L, Elind E, Ottestad I, Christensen JJ, Telle-
Hansen VH, et al. Exchanging a few commercial, regularly
consumed food items with improved fat quality reduces total
cholesterol and LDL-cholesterol: a double-blind, randomised
controlled trial. Br J Nutr 2016;116:1383e93. https:
//doi.org/10.1017/S0007114516003445.

[16] Carlsen MH, Lillegaard IT, Karlsen A, Blomhoff R, Drevon CA,
Andersen LF. Evaluation of energy and dietary intake estimates
from a food frequency questionnaire using independent energy
expenditure measurement and weighed food records. Nutr J 2010;
9:37. https://doi.org/10.1186/1475-2891-9-37.

https://doi.org/10.1016/j.numecd.2020.06.018
http://refhub.elsevier.com/S0939-4753(20)30247-7/sref1
http://refhub.elsevier.com/S0939-4753(20)30247-7/sref1
http://refhub.elsevier.com/S0939-4753(20)30247-7/sref1
https://doi.org/10.1038/nrg.2016.160
https://doi.org/10.1007/s11745-001-0785-6
https://doi.org/10.1126/science.294.5548.1866
https://doi.org/10.1017/jns.2019.25
https://doi.org/10.1093/ajcn/nqy356
https://doi.org/10.1093/ajcn/nqy356
https://doi.org/10.1017/S0007114518001800
https://doi.org/10.1017/S0007114518001800
https://doi.org/10.1038/s41572-019-0106-z
https://doi.org/10.4049/jimmunol.177.10.7303
https://doi.org/10.4049/jimmunol.177.10.7303
https://doi.org/10.1002/mnfr.201100685
https://doi.org/10.1002/mnfr.201100685
https://doi.org/10.1007/s13668-015-0143-5
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1017/S0007114516003445
https://doi.org/10.1017/S0007114516003445
https://doi.org/10.1186/1475-2891-9-37


2122 J.J. Christensen et al.
[17] R Core Team. R. A language and environment for Statistical
computing. 2019. Vienna, Austria.

[18] Markussen MS, Veierød MB, Sakhi AK, Ellingjord-Dale M,
Blomhoff R, Ursin G, et al. Evaluation of dietary patterns among
Norwegian postmenopausal women using plasma carotenoids as
biomarkers. Br J Nutr 2015;113:672e82. https:
//doi.org/10.1017/S0007114514004103.

[19] Zhang B, Horvath S. A general framework for weighted gene co-
expression network analysis. Stat Appl Genet Mol Biol 2005;4.
https://doi.org/10.2202/1544-6115.1128. Article 17.

[20] Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R,
et al. Integrating genetic and network analysis to characterize
genes related to mouse weight. PLoS Genet 2006;2:e130. https:
//doi.org/10.1371/journal.pgen.0020130.

[21] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
et al. Gene Ontology: tool for the unification of biology. Nat Genet
2000;25:25e9. https://doi.org/10.1038/75556.

[22] The Gene Ontology Resource. 20 years and still GOing strong.
Nucleic Acids Res 2019;47:D330e8. https:
//doi.org/10.1093/nar/gky1055.

[23] Chocano-Bedoya PO, O'Reilly EJ, Lucas M, Mirzaei F, Okereke OI,
Fung TT, et al. Prospective study on long-term dietary patterns and
incident depression in middle-aged and older women. Am J Clin
Nutr 2013;98:813e20. https://doi.org/10.3945/ajcn.112.052761.

[24] Weismayer C, Anderson JG, Wolk A. Changes in the stability of
dietary patterns in a study of middle-aged Swedish women. J Nutr
2006;136:1582e7. https://doi.org/10.1093/jn/136.6.1582.

[25] Craddock JC, Neale EP, Peoples GE, Probst YC. Vegetarian-based
dietary patterns and their relation with inflammatory and im-
mune biomarkers: a systematic review and meta-analysis. Adv
Nutr 2019;10:433e51. https://doi.org/10.1093/advances/nmy103.

[26] Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect
of plant-based diets on obesity-related inflammatory profiles: a
systematic review and meta-analysis of intervention trials. Obes
Rev 2016;17:1067e79. https://doi.org/10.1111/obr.12439.

[27] Christensen JJ, Bakke SS, Ulven SM, Retterstøl K, Henriksen T,
Bollerslev J, et al. Serum omega-6 fatty acids and immunology-
related gene expression in peripheral blood mononuclear cells: a
cross-sectional analysis in healthy children. Mol Nutr Food Res
2019. https://doi.org/10.1002/mnfr.201800990. 1800990.

[28] Christensen JJ, Osnes LT, Halvorsen B, Retterstøl K, Bogsrud MP,
Wium C, et al. Altered leukocyte distribution under hypercholes-
terolemia: a cross-sectional study in children with familial hy-
percholesterolemia. Atherosclerosis 2017;256:67e74. https:
//doi.org/10.1016/j.atherosclerosis.2016.11.031.

[29] Myhrstad MCW, Ulven SM, Günther C-C, Ottestad I, Holden M,
Ryeng E, et al. Fish oil supplementation induces expression of
genes related to cell cycle, endoplasmic reticulum stress and
apoptosis in peripheral blood mononuclear cells: a transcriptomic
approach. J Intern Med 2014;276:498e511. https:
//doi.org/10.1111/joim.12217.

[30] Myhrstad MCW, de Mello VD, Dahlman I, Kolehmainen M,
Paananen J, Rundblad A, et al. Healthy nordic diet modulates the
expression of genes related to mitochondrial function and im-
mune response in peripheral blood mononuclear cells from sub-
jects with metabolic syndromeeA SYSDIET sub-study. Mol Nutr
Food Res 2019;63:1801405. https:
//doi.org/10.1002/mnfr.201801405.
[31] Kolehmainen M, Ulven SM, Paananen J, de Mello V, Schwab U,
Carlberg C, et al. Healthy Nordic diet downregulates the expres-
sion of genes involved in inflammation in subcutaneous adipose
tissue in individuals with features of the metabolic syndrome. Am
J Clin Nutr 2015;101:228e39. https:
//doi.org/10.3945/ajcn.114.092783.

[32] Ulven SM, Holven KB, Rundblad A, Myhrstad MCW, Leder L,
Dahlman I, et al. An isocaloric nordic diet modulates RELA and
TNFRSF1A gene expression in peripheral blood mononuclear cells
in individuals with metabolic syndromeda SYSDIET sub-study.
Nutrients 2019;11:2932. https://doi.org/10.3390/nu11122932.

[33] Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA
methylation clocks in aging: categories, causes, and consequences.
Mol Cell 2018;71:882e95. https:
//doi.org/10.1016/j.molcel.2018.08.008.

[34] Horvath S. DNA methylation age of human tissues and cell types.
Genome Biol 2013;14:3156. https://doi.org/10.1186/gb-2013-14-
10-r115.

[35] Hahn O, Grönke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, et al.
Dietary restriction protects from age-associated DNA methylation
and induces epigenetic reprogramming of lipid metabolism.
Genome Biol 2017;18:56. https://doi.org/10.1186/s13059-017-
1187-1.

[36] Goldstein JL, Brown MS. A century of cholesterol and coronaries:
from plaques to genes to statins. Cell 2015;161:161e72. https:
//doi.org/10.1016/j.cell.2015.01.036.

[37] Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernán-
dez-Fernández C, Mouriño-Bayolo D. Mitochondrial b-oxidation of
saturated fatty acids in humans. Mitochondrion 2019;46:73e90.
https://doi.org/10.1016/j.mito.2018.02.009.

[38] Anthonisen EH, Berven L, Holm S, Nygård M, Nebb HI, Grønning-
Wang LM. Nuclear receptor liver X receptor is O-GlcNAc-modified
in response to glucose. J Biol Chem 2010;285:1607e15. https:
//doi.org/10.1074/jbc.M109.082685.

[39] Lin H, Rogers GT, Lunetta KL, Levy D, Miao X, Troy LM, et al.
Healthy diet is associated with gene expression in blood: the
Framingham Heart Study. Am J Clin Nutr 2019;110:742e9. https:
//doi.org/10.1093/ajcn/nqz060.

[40] Wang X, Cui N, Liu X, Ming L. Identification of a blood-based 12-
gene signature that predicts the severity of coronary artery ste-
nosis: an integrative approach based on gene network construc-
tion, Support Vector Machine algorithm, and multi-cohort
validation. Atherosclerosis 2019;291:34e43. https:
//doi.org/10.1016/j.atherosclerosis.2019.10.001.

[41] Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV,
Grimmond SM, et al. PINA v2.0: mining interactome modules.
Nucleic Acids Res 2012;40:D862e5. https:
//doi.org/10.1093/nar/gkr967.

[42] Setsuie R, Suzuki M, Kabuta T, Fujita H, Miura S, Ichihara N, et al.
Ubiquitin C-terminal hydrolase-L3-knockout mice are resistant to
diet-induced obesity and show increased activation of AMP-
activated protein kinase in skeletal muscle. FASEB J 2009;23:
4148e57. https://doi.org/10.1096/fj.09-132217.

[43] Yin Z, Zhao Y, He M, Li H, Fan J, Nie X, et al. MiR-30c/PGC-1b
protects against diabetic cardiomyopathy via PPARa. Cardiovasc
Diabetol 2019;18:7. https://doi.org/10.1186/s12933-019-0811-7.

http://refhub.elsevier.com/S0939-4753(20)30247-7/sref17
http://refhub.elsevier.com/S0939-4753(20)30247-7/sref17
https://doi.org/10.1017/S0007114514004103
https://doi.org/10.1017/S0007114514004103
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.3945/ajcn.112.052761
https://doi.org/10.1093/jn/136.6.1582
https://doi.org/10.1093/advances/nmy103
https://doi.org/10.1111/obr.12439
https://doi.org/10.1002/mnfr.201800990
https://doi.org/10.1016/j.atherosclerosis.2016.11.031
https://doi.org/10.1016/j.atherosclerosis.2016.11.031
https://doi.org/10.1111/joim.12217
https://doi.org/10.1111/joim.12217
https://doi.org/10.1002/mnfr.201801405
https://doi.org/10.1002/mnfr.201801405
https://doi.org/10.3945/ajcn.114.092783
https://doi.org/10.3945/ajcn.114.092783
https://doi.org/10.3390/nu11122932
https://doi.org/10.1016/j.molcel.2018.08.008
https://doi.org/10.1016/j.molcel.2018.08.008
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/s13059-017-1187-1
https://doi.org/10.1186/s13059-017-1187-1
https://doi.org/10.1016/j.cell.2015.01.036
https://doi.org/10.1016/j.cell.2015.01.036
https://doi.org/10.1016/j.mito.2018.02.009
https://doi.org/10.1074/jbc.M109.082685
https://doi.org/10.1074/jbc.M109.082685
https://doi.org/10.1093/ajcn/nqz060
https://doi.org/10.1093/ajcn/nqz060
https://doi.org/10.1016/j.atherosclerosis.2019.10.001
https://doi.org/10.1016/j.atherosclerosis.2019.10.001
https://doi.org/10.1093/nar/gkr967
https://doi.org/10.1093/nar/gkr967
https://doi.org/10.1096/fj.09-132217
https://doi.org/10.1186/s12933-019-0811-7

	Associations between dietary patterns and gene expression pattern in peripheral blood mononuclear cells: A cross-sectional  ...
	Introduction
	Methods
	Study design and participants
	Assessment of dietary intake
	PBMC gene expression analysis pipeline
	Statistical and bioinformatics analyses
	Dietary patterns
	Gene expression features
	Leukocyte subsets
	Gene expression clusters

	Linear models
	Miscellaneous


	Results
	Construction and description of study features
	Dietary patterns
	Leukocyte subsets
	Gene expression clusters

	Associations of derived gene expression features with dietary patterns
	Dietary patterns and leukocyte subsets
	Dietary patterns and gene expression clusters

	Identification of driver genes
	Identification of hub proteins

	Discussion
	We detected three DPs commonly consumed in Norway
	Vegetarian DP associated with monocytes
	DPs associated with few gene expression clusters
	We identified top driver genes and hub proteins
	Strengths and limitations

	Conclusions
	Authorship
	Funding
	Declaration of Competing Interest
	References


