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Summary

With the proliferation of technologies such as wireless sensor networks (WSNs) and

the Internet of things (IoT), we are moving towards the era of automation without any

human intervention. Sensors are the principal components of the WSNs that bring the

idea of IoT into reality. Over the last decade, WSNs are being used in many application

fields such as target coverage, battlefield surveillance, home security, health care moni-

toring, and so on. However, the energy efficiency of the sensor nodes in WSN remains a

challenging issue due to the use of a small battery. Moreover, replacing the batteries of

the sensor nodes deployed in a hostile environment frequently is not a feasible option.

Therefore, intelligent scheduling of the sensor nodes for optimizing its energy-efficient

operation and thereby extending the life-time of WSN has received a lot of research

attention lately. In particular, this article investigates extending the lifetime of the

WSN in the context of target coverage problems. To tackle this problem, we propose

a scheduling technique for WSN based on a novel concept within the theory of learn-

ing automata (LA) called pursuit LA. Each sensor node in the WSN is equipped with an

LA so that it can autonomously select its proper state, that is, either sleep or active,

with an aim to cover all targets with the lowest energy cost possible. Our comprehen-

sive experimental testing of the proposed algorithm not only verifies the efficiency of

our algorithm, but it also demonstrates its ability to yield a near-optimal solution. The

results are promising, given the low computational footprint of the algorithm.
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1 INTRODUCTION

With the explosive development of the Internet of things (IoT) technologies, various applications have surged up such as smart city, smart homes,

smart hospitals, smart transportation, and so on.1,2 We are witnessing the era of complete automation without any human intervention. All these

applications of IoT are possible only because of the use of sensors. Sensors are the principal components that bring the idea of IoT into reality.3

However, these sensors are an integral part of the wireless sensor networks (WSNs). The United States military first developed WSN technology

as a sound surveillance system to detect and track submarines in the 1950s.4 Since then WSN has gone through a vast amount of transitions and
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thus it has become a practical solution for many applications such as target tracking,5 smart factory,6 surveillance,7 target coverage,8 industrial

automation,9 and so on. A WSN network comprises of the vast amount of sensors which brings together the sensed data of various activities of

the physical world to give us meaningful information.10 It should be noted that these sensor nodes in a WSN network operate autonomously with

small batteries, which lasts from a number of months to years. Recharging or replacing the batteries of these sensor nodes is not a feasible option,

especially if it is deployed in a hostile environment such as chemical reactors, underground tunnels, nuclear plants, and so on.11 Therefore, the energy

efficiency of these sensor nodes in WSN is a major concern and has attracted a great deal of attention from academia to industry. In this regard,

the primary intention of this article is to expand the network life-time of the whole WSN system. One of the possible ways through which network

life-time could be enhanced is by effectively covering the target in an energy-efficient way. The network life-time is defined in the context of network

coverage problems as the duration of time elapsed from the network starts functioning with full coverage from its initialization to the time instant

where the coveted coverage criteria is unsatisfied.8

Target coverage is one of the important areas of the WSNs. It has been widely used for monitoring purposes, and it has its main application in

military surveillance.12 This coverage area can be defined as the area within which a sensor node can track the activities of the specified target. The

mobile sensor deployment problem and the target coverage problem in mobile WSNs are NP-Hard.13 The target coverage problem by the sensor

nodes in the WSN includes three families of problems which are defined as follows according to Reference 14:

• Area coverage:

This coverage problem is concerned with the monitoring of the targets in the entire area of the network.

• Target coverage:

This coverage problem is concerned with the monitoring of only certain targets within the specified region of the network.

• Barrier coverage:

The barrier coverage problem aims at minimizing the probability of undetected penetration through the barrier in the network.

The sensor node has a sensing area coverage based on its sensing range. Moreover, the sensor node also has a radio area coverage based on its

communication range.15 Intuitively, the specified monitoring field consists of densely deployed sensor nodes to avoid the formation of the coverage

holes in the network. Particularly for the harsh terrains which are difficult to access, the sensor nodes are deployed in a random manner using an

aircraft. When deployed randomly, usually, the areas covered by these sensor nodes overlap with each other. Due to the dense random deployment

of the sensor nodes, there might be the sensing area that completely overlaps with the sensing area of other redundant sensor nodes. In WSNs, it

is not advised to have multiple redundant sensors to cover the same target or area if it is already covered by other sensor nodes. Covering the same

target or area by the redundant sensors affect the network-lifetime to a greater extent. Therefore, there is a multitude of research addressing the

issue of identifying the redundant sensors and intelligently scheduling them in distinct time slots. Usually scheduling is done in such a way that a

sensor can alternate between “Active” and “Sleep” mode to meet desired coverage requirements.16

2 RELATED WORKS AND CONTRIBUTIONS

A comprehensive survey on energy-efficient coverage protocols in WSNs was carried out in References 15,17. In Reference 12, an energy-efficient

scheduling algorithm called EC2 was proposed to address the problems of energy-efficiency, coverage, and connectivity in military surveillance appli-

cations using the fuzzy graphs. An adaptive energy-efficient target detection based on mobile WSNs was proposed in Reference 18. The authors

proposed a clustering algorithm based on k-means++, and an energy control mechanism was used to reduce the energy consumption of nodes. A

genetic algorithm (GA) approach for k-coverage and m-connected node placement in target based WSNs was proposed in Reference 19. In order to

fulfill both coverage and connectivity requirements, the authors’ scheme found a minimum number of potential positions to place the sensor nodes

for a given set of target points. The detailed working of GA is presented in Reference 20. In Reference 21, node failure and battery-aware coverage

protocol called optimized discharge-curve-based coverage protocol (ODCP) for WSNs was proposed. The authors’ ODCP protocol used battery dis-

charge rate, failure probability, and coverage overlap information to determine optimal sleep schedules for redundant nodes and thereby reducing

the energy consumption of the network.

Furthermore, an energy-efficient distributed algorithm for weak-barrier coverage using event-based clustering and adaptive sensor rotation

was proposed in Reference 22. In Reference 23, a system using the GA to optimize k-coverage criteria in WSNs to ensure continuous monitoring of

targets with limited energy resources for the longest possible time was considered. The authors’ proposed model extends the network lifetime in a

range of 23% to 45.7%. Moreover, through the proposed algorithm, the authors also showed that the running time to form the network structure was

reduced by 12%. A minimum energy target tracking with coverage guarantee in WSNs was proposed in Reference 24. The authors showed that the

residual capacities of the sensors could be preserved and balanced to carry out additional target tracking missions using the same WSN. Some WSN

monitoring applications may require that at least k directional nodes in m-connected WSNs track the targets. Therefore, the authors in Reference 25
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proposed a target tracking system using directional nodes. Network coding is an effective method used to improve network through-

put and, thus, efficiency by combining the packets at the intermediate nodes from multiple sources, thereby reducing the number of

transmissions. Therefore, the authors in Reference 26, proposed a novel approach for target coverage in WSN based on network coding

technique.

While the methods described in the above literature address the problem of target coverage in WSN. But at the same time, these methods

are complex and hence are not scalable. One of the scheduling methods for energy-efficient WSN is through learning automata (LA).14,27 This LA

provides the sensor node with the purpose of learning their state and selecting their correct state, that is, either active or sleep mode, to extend the

lifetime of the WSN’s network.16

In Reference 28, a pDCDS algorithm was proposed to find a minimum number of nodes to monitor p-percent coverage in the deployed network.

The authors investigated connected p-percent problem in WSNs and devised a degree-constrained minimum-weight connected dominating set to

solve the coverage problem. The authors’ pDCDS algorithm used LA to select the best dominator and dominate sensor nodes to cover p-percent

coverage in the networks. Reference 29 proposed a topology control protocol based on LA, which is named as LBLATC. Using distributed LA, the

authors reduced the energy consumption by dynamically optimizing the transmission range while keeping the connectivity. In Reference 30, a new

distributed approach using LA scheme was proposed to maximize the number of barriers and minimize the energy consumption for the border

surveillance in WSNs. The authors proposed a distributed border surveillance (DBS) algorithm aimed to find the minimum possible number of nodes

in each barrier to monitor the network borders. In the DBS approach, a LA was used to find the best nodes to assure barrier coverage at any moment.

In Reference 31, the authors proposed an imperialist competitive algorithm-based method called ICABC to solve the barrier coverage problems

in WSN. ICABC algorithm managed to find the best sensor nodes to cover the network barriers in the deployed network. In Reference 32, the

authors focused on the problem of partial coverage, targeting scenarios in which the continuous monitoring of a limited portion of the area of inter-

est is enough. The authors presented a novel algorithm called partial coverage learning automata that relies on LA to implement sleep scheduling

approaches to minimize the number of active sensors for covering the desired portion of the region of interest, preserving the connectivity among

sensors. Similarly, in Reference 33, the authors proposed a greedy heuristic algorithm to deal with the coverage problem of heterogeneous WSNs in

the case when the complete coverage of the network is not needed. In Reference 16, an energy-efficient scheduling algorithm based on LA for the

target coverage problem was proposed. In this scheme, a sensor node selected its appropriate state (either active or sleep) with the help of LA-based

technique.

A LA-based scheduling algorithm was designed in Reference 34 to find an optimal solution to the problem of target coverage, which can generate

both disjoint and nondisjoint cover sets within the WSNs. In this scheme, one LA is responsible for selecting the sensor nodes that should be enabled

at each point to cover all the targets. This is similar to pursuit learning. They use a dynamic threshold to determine a reward. The reward is granted

whenever the size of the current set of active sensors is reduced. However, this will lead to slow convergence. As time proceeds, it will even be harder

to get better solutions (lower the threshold), and the reward probability will decrease. In Reference 35, the authors extend the previous work in

Reference 34 with an algorithm where they designed a pruning rule to manage critical targets in order to maximize network lifetime. A pruning

rule was specifically designed to avoid the selection of redundant sensors. The authors also demonstrated that selecting the learning rate with a

high accuracy leads to a longer network lifetime. A LA-based algorithm for solving coverage problem in directional sensor networks was proposed

in Reference 36. The authors proposed a fully distributed algorithm based on irregular cellular LA to find a near-optimal solution for selecting the

correct working path for each sensor node. Then, a centralized approximation algorithm based on distributed LA was proposed that can cover all

targets with the minimum number of active sensors. The proposed algorithm is a fully distributed algorithm in which each sensor node chooses

its optimal direction solely based on the directions selected and the targets covered by its adjacent sensor nodes. Different from other works,37

tackled the issue of having maximum network lifetime with adjustable ranges (MNLARs) and proposed a heuristic MNLAR algorithm for directional

sensor networks. In situations where the sensors have several directions and different sensing ranges, the authors suggested two greedy-based

scheduling algorithms aimed at selecting the correct sensor directions and sensing ranges so as to meet the target coverage problem requirement

and, at the same time, optimize the lifetime of the network. Similar to Reference 37, a new LA-based approach equipped with a pruning rule for

maximizing network lifetime in WSNs with adjustable sensing ranges was proposed in Reference 38. Furthermore, a new genetic-based approach for

maximizing network lifetime in directional sensor networks with adjustable sensing ranges was proposed in Reference 39. The authors suggested a

target-oriented GA-based algorithm that could form cover sets consisting of sensors with suitable directions and sensing ranges so that all network

targets could be tracked desirably. In Reference 40, the authors explored the priority-based target coverage issue where the targets have different

requirements for coverage quality, and as a result, they may need to be tracked by more than one direction of sensors. In order to solve this problem,

they suggested an LA-based scheduling algorithm to find a minimum subset of sensor directions to track and satisfy the consistency of coverage

requirements of all targets. The authors proposed an algorithm used a pruning rule to avoid selecting redundant directions and selecting more than

one direction of the same sensor for each cover set. In Reference 41, the authors explored the issue of target coverage where a subset of sensors

should be allowed to track all targets while extending the lifetime of the network. Three centralized algorithms for sensors scheduling were proposed

in which an LA would decide the sensors to be triggered to cover the available targets. In their proposed algorithm, the LA attempts to select the

sensors that cover more targets and manage the critical targets to maximize the lifetime of the network. The list of available solutions and their

proposed method are summarized in Table 1.
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TA B L E 1 List of LA solutions and their proposed method

Article Method

Javadi et al29 Topology control protocol based on LA (LBLATC).

Uses distributed LA to reduced the energy consumption by dynamically optimizing the transmission range while keeping

the connectivity

Mostafaei et al30 Distributed border surveillance algorithm. Distributed approach based LA to maximize the number of barriers and

minimize the energy consumption for the border surveillance in WSNs

Mostafaei et al32 Partial coverage learning automata algorithm to implement sleep scheduling approaches to minimize the number

of active sensors for covering the desired portion of the region of interest

Chand et al16 LA solution using the highest ratio of the remaining energy.

Mohamadi et al35 Designed a pruning rule to manage critical targets in order to maximize network lifetime, a pruning rule was specifically

designed to avoid the selection of redundant sensors

Salleh and Marouf34 Disjoint and nondisjoint cover sets based LA algorithm for scheduling sensors

Mohamadi et al36 Irregular cellular learning automata algorithm to solving coverage problem in directional sensor networks

Mohamadi et al37 Proposed a heuristic called maximum network lifetime with adjustable ranges for directional sensors

networks

Mohamadi et al38 LA-based algorithm that is able to generate cover sets containing sensors with appropriate sensing ranges

Mohamadi et al41 LA attempts to select the sensors that cover more targets and manage the critical targets to maximize the lifetime of the

network

Since LA provides the sensor node with the purpose of learning their state and selecting their correct state, that is, either active or sleep mode,

to extend the lifetime of the WSN’s network. Therefore, this article leverages the simplicity of LA and proposes a novel adaptive pursuit learning

based energy-efficient target coverage in WSNs. Although the theory of LA has been applied before to solve the problem of area coverage, our

solution enjoys some desirable designed properties compared with Reference 14. In fact, we apply LA to each of the sensors to determine each

state: active or sleep. Therefore, we opt to pursue the joint action of the team LA corresponding to the best solution found so far using the concept

of pursuit learning.42-44 Our proposed scheme is different from the work of Reference 14 as the LA update of latter work does not track the best

solution found so far. In Reference 14, the authors implemented a reward and penalty mechanism in the following manner:

• Reward action sleep—if all targets of the sensor are covered. In other words, taking the opposite action, which is active, would not result in any

benefit.

• Reward action activate—if the sensor in question covers at least one target exclusively. In other words, taking the opposite action, which is sleep,

will result in at least one less target that cannot be covered.

In summary, the principal contributions of this article are as follows:

• We leverage the simplicity of LA and propose a novel adaptive pursuit learning based energy-efficient target coverage in WSNs.

• Our proposed solution enjoys some desirable designed properties compared with existing studies. In fact, we apply LA to each of the sensors to

determine each state: active or sleep. Therefore, we opt to pursue the joint action of the team LA corresponding to the best solution found so far

using the concept of pursuit learning.

• In order to fasten the speed of the algorithm and increase its scalability when the number of sensors is large, we propose a clustering algorithm

that divides the main coverage problem into a set of smaller independent subproblems. In this manner, we can solve the subproblems in a parallel

manner.

The remainder of this article is organized as follows. In Section 3, we introduce some background concepts about the theory of LA, which is

an essential component in our solution. In Section 4, we explain our proposed novel adaptive pursuit learning based energy-efficient target cover-

age algorithm in WSN. Theoretical convergence results of the pursuit-LA and discretized learning automata (DLA) is also explained in Section 4.

Further the clustering technique employed in this article is also explained in this section. Performance evaluation is carried out in Section 5. Finally,

conclusions and future works are drawn in Section 6.
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3 BACKGROUND

In this section, we shall review some basic concepts about the theory of LA, which is fundamental for the understanding of our article.

3.1 Learning automata

In the field of automata theory, an automaton45-49 is characterized as a quintuple made out of a set of states, a set of outputs or actions, an input,

a function that maps the present state and the input to the following state, and a function that maps a present state (and input) into the current

output. The following definitions are widely used in the field of LA.50,51

Definition 1. A LA is defined by a quintuple ⟨A,B,Q,F(.,.),G(.)⟩, where:

1. A = {𝛼1, 𝛼2, … , 𝛼r} is the set of outputs or actions that the LA must choose from. 𝛼(t) is the action picked by the automaton at any moment or

instant t.

2. B = {𝛽1, 𝛽2, … , 𝛽m} is the set of inputs or feedback to the automaton. 𝛽(t) is the feedback at any moment t corresponding to the chosen

action. The set B can be limited or unbounded. The most widely recognized LA input information is B= {0,1}, where 𝛽 = 0 represents reward or

equivalently a positive feedback, and 𝛽 = 1 represents penalty or equivalently a negative feedback.

3. Q= {q1, q2, … , qs} is the set of finite states, where Q(t) signifies the condition of the automaton at any moment t.

4. F(.,.):Q×B →Q is a mapping as far as the state and input at the moment t, with the end goal that, q(t + 1) = F[q(t), 𝛽(t)]. It is known as a tran-

sition function, that is, a function that decides the condition of the automaton at any resulting time instant t+1. This mapping can either be

deterministic or stochastic.

5. G(.): is a mapping G:Q →A, and is known as the output function. G decides the action taken by the automaton in the event that it is in a given state

as: 𝛼(t) = G[q(t)].

If the sets Q, B, and A are all finite, the automaton is said to be finite.

The environment, E, ordinarily, alludes to the medium where the automaton functions. The Environment has all the outer variables that influence

the activities of the automaton. Mathematically, an environment can be preoccupied with a triple ⟨A,C,B⟩. A, C, and B are characterized as follows:

1. A = {𝛼1, 𝛼2, … , 𝛼r} is the set of actions.

2. B = {𝛽1, 𝛽2, … , 𝛽m} is the output set of the environment. Once more, we consider the situation when m=2, that is, with 𝛽 = 0 representing a

“Reward,” and 𝛽 = 1 representing a “Penalty.”

3. C = {c1,c2, … , cr} is a set of punishment or penalty probabilities, where component ci ∈C relates to an input activity 𝛼i.

The way toward learning depends on a learning loop, including the two entities: the random environment (RE), and the LA, as

depicted in Figure 1. In the learning procedure, the LA persistently communicates with the environment to process reactions to its

different activities (ie, its decisions). Finally, through adequate communications, the LA endeavors to gain proficiency with the ideal

action offered by the RE. The real procedure of learning is represented as a set of associations or interactions between the RE

and the LA.

The automaton is offered a set of actions, and it is obliged to picking one of them. At the point when an action is chosen among the pool of

actions, the environment gives out a response 𝛽(t) at a time “t.” The automaton is either penalized or rewarded with an obscure likelihood ci or 1− ci,

F I G U R E 1 Feedback loop of LA. LA, learning automata
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separately. Based on the response 𝛽(t), the state of the automaton 𝜑(t) is updated and another new action is picked at (t+1). The penalty probability

ci satisfies:

ci = Pr [𝛽(t) = 1|𝛼(t) = 𝛼i] (i = 1,2, … , r). (1)

We now present a few of the significant definitions utilized in the field. P(t) is alluded to as the action probability vector, where, P(t)= [p1(t),

p2(t), … , pr(t)]T , in which every component of the vector:

pi(t) = Pr [𝛼(t) = 𝛼i], i = 1, … , r, such that
r∑

i=1

pi(t) = 1 ∀t. (2)

Given an action probability vector, P(t) at time t, the average penalty is:

M(t) = E[𝛽(t)|P(t)] = Pr [𝛽(t) = 1|P(t)]
=

r∑
i=1

Pr [𝛽(t) = 1|𝛼(t) = 𝛼i] Pr[𝛼(t) = 𝛼i]

=
r∑

i=1

cipi(t). (3)

The average penalty for the “pure-chance” automaton is given by:

M0 = 1
r

r∑
i=1

ci. (4)

As t →∞, if the average penalty M(t) < M0, in any event asymptotically, the automaton is commonly viewed as superior to the pure-chance

automaton. E[M(t)] is given by:

E[M(t)] = E{E[𝛽(t)|P(t)]} = E[𝛽(t)]. (5)

A LA that performs better than by pure-chance is said to be expedient.

Definition 2. A LA is considered expedient if:

lim
t →∞

E[M(t)] < M0.

Definition 3. A LA is said to be absolutely expedient if E[M(t+1) |P(t)] < M(t), implying that E[M(t+1)] < E[M(t)].

Definition 4. A LA is considered optimal if limt →∞E[M(t)]= cl, where cl =mini{ci}.

It ought to be noticed that no ideal LA exists. Marginally suboptimal performance, also termed above as 𝜖-optimal execution, is what that LA

researchers endeavor to accomplish.

Definition 5. A LA is considered 𝜖-optimal if:

lim
n →∞

E[M(t)] < cl + 𝜖, (6)

where 𝜖 > 0, and can be arbitrarily small, by a reasonable choice of some parameter of the LA.

4 PROPOSED NOVEL ADAPTIVE PURSUIT LEARNING ALGORITHM FOR TARGET COVERAGE
IN WSN

4.1 Problem formulation

Let us consider that there are a set of M targets denoted by T = {T1,T2, … .TM} which are being monitored by a set of N sensor nodes S denoted

by S= {S1,S2, … .SN}. These two sets are deployed in a X ×X area. All sensor nodes have a fixed sensing range “R.” In addition, we assume that the
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F I G U R E 2 A, Sensors coverage with
their targets and B, bipartite graph of
sensors and targets

number of sensor nodes exceeds the number of targets. In order to increase the lifetime of the network, a scheduling algorithm has been proposed

in this article. A target point Tj within the range 1≤ j≤M, is said to be covered by a sensor node if it falls inside this range of one of the sensor nodes

1≤ i≤N.14

Figure 2 shows the Venn diagram of the sensors and the targets with their bipartite graph. There are four sensors S1, S2, S3,

and S4 with their respective targets T1, T2, T3, and T4. The circle with different colors represents the coverage of each of the sen-

sor nodes. The bipartite graph shows the relationship between the sensors and the number of covered targets by them. We can

observe that by only activating two sensors: S2 and S3, we can cover all the targets. The complexity of the problem increases

exponentially as we increase the number of sensors since the number of possible configurations of N sensors in active and sleep

modes is 2N.

4.2 Adaptive learning algorithm

We have used the LA algorithm for scheduling the sensor nodes. We shall now delineate the details of our algorithm, which helps in finding the best

active set of sensors that are monitoring the maximum number of targets at any given instant. As in Reference 14, the actual flow of the algorithm is

divided into three phases, which include an initial phase, a learning phase, and the target monitoring phase. We shall now focus on the initial phase

and the learning phase. The monitoring phase is identical to the one presented in Reference 14, and therefore, it is omitted here for the sake of

brevity.

4.2.1 Initial phase

In this phase, each sensor node in the network is provided with LA, which helps the sensor node to select its state either to be active or sleep.

In the initial stage, both states are equally probable, that is, the probability of selecting either of the active or sleep state is initialized to be 0.5.

Here, sensor nodes are endowed with a certain level of autonomy permitting to establish communication, transfer messages, including their ID,

position, and list of covered targets with their neighbor node autonomously. This phase is followed by the learning phase and the target monitoring

phase.

4.2.2 Learning phase

In the learning phase, each of the sensor nodes is equipped with LA. At first, the node is selected randomly. Using LA, each node selects its state.

Then it broadcasts the message packet, including its all information to the rest of the sensor nodes.
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Algorithm 1. Learning Phase

Best coverage set= ∅
For each LA action set initial probability = 0.5

for Every sensor node in the network do

Choose random action for sensor node

end for

while (iteration< max iterations) and (Convergence=False) do

for Every sensor node in the network do

Node= choose an action according to LA

Update Current LA actions

if Node state = Active then

Current coverage set= Current coverage
⋃

node

end if

end for

if (|Current coverage set| <| Best Coverage set|) and (All targets are covered) then

Best coverage set=Current coverage set

Best LA actions=Current LA actions

end if

for Every node in the network do

if Best LA action of node is sleep then

Decrease the probability to be active

else

Increase the probability of the node to be active

end if

end for

iteration=iteration+1

if All LA action probabilities are either ≥ 1 − 𝜖 or ≤ 𝜖 then

Convergence=True

end if

end while

We attach to each of the N sensors a LA. For instance, let us consider the senor Si. The automaton’s state probability vector at the node i at time

t is Pi(t)= [p(i,1)(t), p(i,2)(t)].

Thus, p(i,j)(t) is the probability at time instant t to select an action j. In our settings, we have two actions: sleep or active. For the sake of notation,

let us denote 0 as the action sleep, and 1 denote the action active.

The feedback function is a binary function which yields a reward whenever the coverage has been improved. This is denoted by |Current cov-

erage set|< |Best coverage set| in Algorithm 1. In more simple terms, if the aggregate state of the sensors chosen by the team of N LA yields an

improvement in the coverage, which means ensuring full coverage with less number of sensors, the joint action of the LA that yielded that solution

is rewarded by increasing the probability of the actions which formed that particular solution.

Let J= {j1(t), j2(t), … , jN(t)} denote the action taken by the team of LA. Let J∗ = {j∗
1
(t), j∗

2
(t), … , j∗

N
(t)} be the best aggregate action of the team of

LA so far yielding the highest coverage.

Thus, the idea of pursuit here is to reward the LA whose aggregate action is the highest possible so far, that is, till the time instant t.

4.2.3 Update mechanism of the continuous learning automata

We consider the LA update equations at node i. The update is given by:

p(i,j)(t + 1) = (1 − 𝜆)𝛿(i,j) + 𝜆p(i,j)(t), (7)
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𝛿(i,j) =
⎧⎪⎨⎪⎩

1 if j = j∗
i
(t)

0 else
, (8)

𝜆 is the update parameter which is also called learning parameter and is time-independent. We shall also give some theoretical results for

the case where 𝜆 is time-dependent. However, generally within the theory of LA, the most used schemes possess a learning parameter that is

time-independent.

The informed reader would observe that the above update scheme corresponds to the linear reward-inaction LA update.27 This pursuit

paradigm is an adaptation of the PolyLA-Pursuit scheme52 recently proposed by Goodwin and Yazidi in the context of machine learning classifica-

tion problems. The pursuit LA used in this article is more suitable for solving deterministic optimization problem than classical LA used commonly

in the literature to solve coverage problems that work better for stochastic optimization problems. Classical LA suppose that the environment

response are stochastic, which translates in our context to a “stochastic” coverage results for a deterministic configuration. As this is not the case in

our problem assumptions, meaning that the result of a configuration is deterministic in terms of coverage, it is more suitable to use our method pur-

suit LA. The pursuit-LA biases the search probability vector towards the optimal solution found so far. Furthermore, pursuit LA is faster and more

accurate as it is by design suitable for solving deterministic optimization problems.

If j ≠ j∗
i
(t) then p(i,j)(t+1) is reduced by multiplying by 𝜆, which is less than 1.

p(i,j)(t + 1) = 𝜆p(i,j)(t). (9)

However, if j = j∗
i
(t), then p(i,j)(t+1) is increased by:

p(i,j)(t + 1) − p(i,j)(t) = [(1 − 𝜆) + 𝜆p(i,j)(t)] − p(i,j)(t) (10)

= (1 − 𝜆) + p(i,j)(t)(𝜆 − 1) (11)

= (1 − 𝜆)(1 − p(i,j)(t)) ≥ 0. (12)

In the rest of this article, we shall call the above update scheme as continuous learning automata (CLA) to differentiate it from the DLA which

will be presented in Section 4.4.

The update scheme is called pursuit-LA52 and has rules that obey the rules of the so-called linear reward-inaction LA. The idea is to always

reward the transition probabilities along with the best solution obtained so far.

4.3 Theoretical convergence results of the Pursuit-LA

We will now state some theoretical results that catalogue the properties of the Pursuit-LA for both the time varying update parameter and the fixed

update parameter. The proofs of theorems can be found in the Appendix.

Theorem 1. The optimal solution is generated with probability 1 only if the update parameter 𝜆t obeys the following condition:

∞∑
t=1

t−1∏
k=1

𝜆k = ∞. (13)

In Theorem 1, we give the convergence result of the Pursuit-LA for the case of fixed parameter 𝜆 that is time-dependent.

Proof. The proof of Theorem 1 is given in Appendix. ▪

Theorem 2. The optimal solution is generated with probability 1 only if the update parameter 𝜆 → 1.

Proof. The proof of Theorem 2 is given in Appendix. ▪

In Theorem 2, we give the convergence result of the Pursuit-LA for fixed step-size parameter 𝜆.
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4.4 Introducing a new variant: DLA

Within the theory of LA, there are two main families of schemes, CLA and DLA.27 In this regard, we present here a counterpart version of the CLA

introduced in Section 4.2.

p(i,j)(t + 1) = ΠH(p(i,j)(t) + 𝜆𝛿(i,j)), (14)

where 𝛿(i,j) is given by Equation (8)

and where ΠH denote the following projection

ΠH(p) =

⎧⎪⎪⎨⎪⎪⎩
p, if 1 < p < 0,

1, if p ≥ 1,

0, if p ≤ 0.

The discretized pursuit LA possesses the principles of the Pursuit-LA and is merely a discretized version of it that operates on a discrete probability

space where the probability can take only a finite number of values, given that the increase and decrease has a fixed step. If j ≠ j∗
i
(t) then p(i,j)(t+1)

is reduced by 𝜆:

p(i,j)(t + 1) = Max(p(i,j)(t) − 𝜆,0). (15)

However, if j = j∗
i
(t), then p(i,j)(t+1) is increased by 𝜆:

p(i,j)(t + 1) = Min(p(i,j)(t) − 𝜆,1). (16)

The informed reader would observe that in classical DLA scheme we rather use a resolution parameter that describes in loose terms the number

of discrete values that the LA probability can take. In our case, it is easy to note that the number of discrete values is in the order of ⌈ 1

𝜆
⌉ + 1.

The convergence proofs of the DLA are similar to those of the CLA found in the appendix and therefore are omitted for the sake of brevity.

4.5 Clustering for reducing problem complexity

The number of possible configurations of N sensors in active and sleep modes is 2N and this makes it practically impossible to find exact solutions

for target coverage problems with more than few dozens of sensors as the computational time grows exponentially as a function of the number

of sensors. However, in many cases it is possible to simplify the problem by splitting the sensors and their targets into smaller sets of independent

clusters. For instance, if a target is covered by just a single sensor, these two objects may be separated from the rest and identified as a single clus-

ter because the solution to the target coverage problem of this small cluster can be solved independently of the other targets and sensors. In this

simplest possible case the only solution is that the sensor must be in active mode. In Figure 3, one such cluster can be seen colored in blue where

the sensor S5 covers the target T5. Another slightly more complex cluster is the yellow one where the sensors S3 and S7 cover target T3. Again the

solution of the coverage problem can be separated from the rest, only one of these two sensors needs to be active. When a single sensor covers

two or more targets, all other sensors covering one or more of these targets must also be part of the same cluster, since a solution to the coverage

problem of these targets must involve all these sensors. Such a case can be seen in Figure 3 where the sensors S1 and S4 cover the targets T1 and T4.

As sensor S10 also covers target T4, this sensor must also be part of this pink cluster as its state is crucial in order to determine the optimal sensor

configuration in order to cover the targets T1 and T4. In this way, it is in general possible to split a complex configuration of sensors and targets into

independent clusters and thereby reduce the coverage problem into subproblems which can be solved in parallel by virtue of the clustering mech-

anism. In the case presented in Figure 3, a target coverage problem with a solution space of 210 solutions has been reduced to 5 coverage problems

with a solution space of 1, 2, 2, 2, and 8, respectively, for the five clusters. This enables us to find exact solutions for much larger problems than

without clustering and obviously also improves the capabilities of the other algorithms when first reducing the complexity of the coverage problem

at hand.

We present Algorithm 2 which finds all independent clusters for a given set of targets and sensors. Targets may in some cases be linked together

in long chains leading to large clusters and it is essential that the algorithm loops through all possible targets which might be a candidate member

for a cluster. As shown in the pseudo code of Algorithm 2, the while loop of the clustering algorithm keeps on including new targets until there are

no more sensors which cover targets that have not yet been assigned members of the cluster under construction. Algorithm 3 is the pseudo code of
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F I G U R E 3 Five clusters of sensors and targets

function convert_into_cluster which is called from Algorithm 2. From just a visual inspection of a graph like Figure 3, it is not obvious how to split the

original set into clusters before the algorithm has performed the job and given each cluster an individual color.

Algorithm 2. Clustering of sensors and targets

Define global lists visited_sensors and visited_targets = ∅
Define global list cluster = ∅
for every target node do

Define local lists cluster_sensors and cluster_targets = ∅ ⊳ to store targets and sensors of each cluster

if target not already visited then

visited_targets = visited_targets
⋃

target

cluster_targets = cluster_targets
⋃

target

check_target_coverage = target

while True do

Define local list found_new = ∅
for every target in check_target_coverage do

new sensors, new targets = call function convert_into_cluster(sensors_list_covering_target) ⊳ Algorithm 3

cluster_sensor = cluster_sensor
⋃

new sensors

cluster_target = cluster_target
⋃

new targets

found_new = found_new
⋃

new targets

end for

if size of found_new is greater than 0 then

check_target_coverage = found_new

else

Break while loop

end if

end while

end if

if cluster_targets size is greater than 0 then

Add cluster_sensors, cluster_targets to cluster

end if

end for
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Algorithm 3. Function convert_into_cluster

Define function convert_into_cluster(list_of_sensors)

Define variable new sensors and new targets = ∅
for each sensor in list of sensors that are covering current target do

if sensor is not already visited then

visited_sensors = visited_sensors
⋃

sensor

new sensors = new sensors
⋃

sensor

for every target covering new sensor list do

if target is not already visited then

visited_targets = visited_targets
⋃

target

new targets = new targets
⋃

target

end if

end for

end if

end for

return the list of new sensors and targets associated with this cluster

In general the solution space of the target coverage problems discussed in this article is too large to allow exact solutions. For small sets of

sensors and targets, the proposed algorithms can be precisely evaluated by comparing to brute force (BF) algorithms computing the optimal exact

solution. A major advantage of the clustering method is that it is possible to compute exact solutions to problems consisting of a large number

of sensors and targets by generating subsets and finding exact solutions for each of them. Then other nonexact algorithms may be evaluated by

addressing the initial large set problem and comparing their results to the optimal solution known because of the clustering. Without the clustering

method these approximate algorithms could just be compared with each others, without knowing how far from the exact their results were.

4.5.1 Distribution of the cluster sizes

The clustering operation is a novel feature in the proposed solution that can speed up any sensor coverage algorithm. In this subsection, we would

like to characterize the distribution of the cluster sizes, which gives us an idea about how much gain we could achieve by using clustering.

Figure 4 depicts the distribution of the number of clusters obtained for 1000 random configurations using a fixed number of targets and sensors,

that is, 100 and 50, respectively, for a sensor range of 50. The sensors were deployed in a 600 by 600 grid. As seen in Figure 4, the most common

case is that approximately 20 clusters are generated when applying the clustering algorithm. This means that the huge target covering problem of

50 targets and 100 sensors is typically reduced to 20 small problems containing just a handful of targets and sensors. Of course, if the sensor range

is larger, the number of clusters will be smaller and the method will not be as efficient.

F I G U R E 4 The distribution of the number of clusters generated
for 1000 random deployments of 100 sensors and 50 targets
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F I G U R E 5 Cluster size distribution of all clusters created for
1000 random deployments of 100 sensors and 50 targets

F I G U R E 6 Dependence of cluster size on the sensor range. For
each sensor range 1000 deployments of 100 sensors and 50 targets

has been carried out. The error bars indicate the standard deviation of
the distribution of cluster sizes

Figure 5 shows the distribution of cluster sizes for all the clusters generated in the same 1000 experiments of random deployment of 100 sensors

and 50 targets. Most of the clusters are seen to be quite small; almost all of them are less than 20. The largest cluster contains 32 sensors and is a

bit beyond the size, which can be solved using a BF algorithm. However, in most cases, the size is less than 20, making it possible to reduce the large

coverage problem to many smaller problems that can be solved easily.

The size of the clusters generated when applying the clustering algorithm to deployment of sensors and targets, strongly depends on the sensor

range. If the range is large, a single sensor will cover many targets, and this will lead to more entanglement and larger clusters. In Figure 6, the

dependence on sensor range when generating the clusters is shown. For each of the sensor ranges shown in the figure, a thousand deployments of

sensors were carried out, and clustering applied. As the sensor range is increased, the average number of clusters generated is reduced from almost

50 to close to 1. When the sensor range reaches 100, all sensors and targets are entangled, and this leads to a single cluster, meaning that it is not

possible to reduce the complexity of the coverage problem. When solving a large coverage problem that has been reduced to many small problems

in the form of clusters, the size of the largest of the clusters determines how hard it is to solve the entire problem. When the size of the largest

cluster is 20 or less, the coverage problem can be solved using BF, computing all possible combinations of sensor activation. The green line shows

how the size of the largest cluster depends on the sensor range. For a sensor range of 50, the average size of the largest cluster is 20. In the case of a

cluster of 20 sensors, a BF solution is possible, and this will also be the case for smaller sensor ranges. As the sensor range increases, the error bars

show that the standard deviation of the size of the largest cluster becomes quite large, and the same is the case for the average cluster size of the

1000 experiments. This makes sense as for small sensor ranges; clustering will systematically lead to many small clusters. For a very large sensor

range, the result will mostly be just a single cluster and less variance. In between, the clustering will lead to both small and large clusters and a large

variance in the cluster size.

Doing similar clustering experiments, one can establish which coverage problems can be addressed for a given number of sensors and targets

and to what extent the coverage problems can be reduced to smaller and tractable problems.



14 of 25 UPRETI ET AL.

F I G U R E 7 Average execution time of the brute force algorithm
for 50 experiments

Abbreviation Definition

BF Brute force

-BF Cluster based brute force

CLA Continuous learning automata

DLA Discretized learning automata

-CLA Cluster based continuous learning automata

TA B L E 2 List of abbreviations used for algorithms

4.5.2 BF algorithm

The BF algorithm is the process of finding the best solution by trying every possibility and selecting the one which gives the best result. It is a

straightforward method to find the optimal result. For example, suppose we have four sensor nodes and five targets that need to be covered.

Our goal is to find the minimum number of sensors that covers all five targets. In the case of the BF algorithm, the total number of possible solu-

tions is given by 2n where n represents the input size. In our example, we have four sensors, which means n=4. This implies that we have 24, that

is, 16 solutions ranging from 0000, 0001, 0010 … to 1111. Here, 0 represents that the sensor is in off state, and 1 represents that the sen-

sor is active. By trying every solution, the BF algorithm finds the best solution that gives the minimum number of active sensors to cover all the

targets.

From this example, we see that the total number of possible solutions is dependent on the input size. Since the number of possible

solutions grows exponentially as a function of the input size, it cannot be used to solve a complex problem involving a large number of

sensors as the number of alternatives gets too large for any computer to handle. To see the execution time of the BF algorithm, we have con-

ducted 50 experiments for a number of sensors between 5 and 30, recorded the time to find the optimal solution, and the average results

are presented in Figure 7. The shadowed area of the graph corresponds to a 95% confidence interval. Figure 7 shows that the BF execu-

tion time is very short for a small number of sensors. For instance, for five sensors, it takes only 10−4 seconds to find the optimal result.

For 18 sensors the algorithm spends 1 second, while for 30 sensors it takes slightly less than 104 seconds, which is almost 108 times larger

than for five sensors. Most importantly, from Figure 7, we observe that the execution time of the BF algorithm has an exponential relation-

ship with the number of sensors, as the logarithm of the execution time can be seen to be close to linear as a function of the number of

sensors.

5 EXPERIMENTS

In this section, we present our experimental results that demonstrate the effectiveness of our approach. The simulations were performed using a cus-

tomized simulation environment implemented in Python. For the sake of clarity, we summarize all the abbreviations in Table 2. In all the experiments,

we use a grid size of 600×600.
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5.1 Accuracy of the algorithm

In this section, we compare the accuracy of the cluster-based-CLA algorithm with its counterpart solution CLA (which does not involve clustering)

and with the optimal solution obtained with the brute force algorithm (-BF). We report two major experiments, a small scale experiment with a

maximum of 100 sensors and a large-scale experiment with a maximum of 300 sensors.

5.1.1 Small scale experiments

In these experiments, the learning parameters are set to 𝜆= 0.9999 and 𝜖 = 0.01 while the sensor range is set to 50. We vary the number of sensors

by a step size of 10 from 10 sensors to 100 sensors and choose the number of targets to be half the number of sensors. To obtain reliable results, we

test 30 different configurations at random for each step size of sensor pools.

Our proposed -CLA algorithm yields an optimal number of active sensors even as the size of the sensor pool increases to 100, as seen in

Figure 8. The results of the-CLA algorithm are shown as a red line and are for all experiments the results equal the exact optimal results of the-BF

algorithm. Therefore, blue -BF line is covered by the red -CLA line. The performance of CLA, however, decreases as we increase the number of

sensors. In this context, the CLA’s accuracy declines by producing more active sensors than the optimal number of sensors depicted by the red line

starting from 40 sensors. The error steadily increases beyond 40 sensors. While Figure 8 shows the performance of our algorithms using the average

number of active sensors as a metric, Figure 9 emphasizes the accuracy of the algorithms compared with the exact results of the -BF algorithm. A

100% accuracy describes the case where the number of active sensors coincides with the optimal solution. The accuracy is calculated as

Accuracy = 1 − Error = 1 − Number of active sensors − Optimal number of active sensors
Optimal number of active sensors

. (17)

The difference of accuracy between-CLA and CLA is seen in Figure 9 to increase from zero for 30 sensors to a maximum of 10% at 100 sensors.

For this number of sensors, the accuracy of the CLA algorithm is around 90% while the accuracy of-CLA is a 100%, the performance gap being 10%.

5.1.2 Large-scale experiments

Although the -CLA algorithm achieves optimal performance in the previous experiment when the maximum number of sensors is 100, we cannot

claim that it is an optimal heuristic. In this experiment, by resorting to a number of sensors beyond 100 sensors, we increase the scale of the experi-

ment and measure its performance. Using 100, 200, and 300 sensors with respective ranges 50, 40, and 30, we compare the -CLA, CLA, and -BF

algorithms as shown in Figure 10. For these relatively small sensor ranges it is still possible to find exact solutions using the -BF algorithm. For each

setup, the experiments were done 100 times. To gain a better insight into the CLA’s performance, we report both the CLA’s average performance

as well as the best-achieved result characterized by MIN-CLA, that is, the minimum number of sensors among the 100 runs obtained. Interestingly,

the -CLA algorithm remains ideal and have an accuracy that is identical to that of the -BF. The performance of the -BF algorithm corresponding

to a blue line is identical to the performance of -CLA presented by a purple color line and hence covered by the latter line. CLA performance tends

to decline, however, and even MIN-CLA’s best-case scenario for CLA is far from optimal. For instance, when the number of sensors is 300, the CLA

F I G U R E 8 Average number of active sensors. The red -CLA line
covers the blue -BF line as the results are identical. -BF, cluster
based brute force; -CLA, cluster based continuous learning automata
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F I G U R E 9 Performance accuracy of the -CLA and CLA
algorithms. -CLA, cluster based continuous learning automata; CLA,
continuous learning automata

F I G U R E 10 Average number of active sensors in large-scale
systems. The purple -CLA line covers the blue -BF line as the results

are identical. -BF, cluster based brute force; -CLA, cluster based
continuous learning automata

provides a number of active sensors, which is twice the optimal number, that is, around 136, while the optimal result is 73. Even CLA’s best-case

scenario, MIN-CLA, gives around 119 active sensors and is far from the exact result.

5.2 Effect of the 𝜆 parameter on the performance in terms of accuracy and execution time

In these experiments, we test the effect of the learning parameter 𝜆 on the convergence time and accuracy of our LA algorithms. We use different

values of 𝜆 in this experiment ranging from 𝜆 = 0.9, 𝜆 = 0.99, 𝜆 = 0.999, to 𝜆 = 0.9999. The sensor pool size is varied by a step size of 10 from 10

to 100 sensors. The range of the sensors is kept constant at 50, and the target numbers are chosen to be half the number of sensors. For each

configuration, 100 experiments are performed. Figure 11 shows the average number of active sensors for different values of 𝜆 for the -BF, CLA,

and -CLA algorithms. Please note that the average number of active sensors obtained from 1000 experiments is each number in the graphs1.

As seen in Figure 11, the -BF algorithm offers an average number of active sensors as the optimal solution for all targets, whereas for 𝜆=0.99,

our proposed-CLA provides 18.8 as an average number of active sensors which is only 1% higher than the optimal solution, whereas CLA achieves

25.6 which is about 37.6% higher than the optimal solution. However, for both 𝜆 = 0.999 and 𝜆 = 0.9999, -CLA offers an average of 18.6 sensors,

which is the optimal performance, while CLA gives 21.2 and 19.4, respectively. Based on this, we can conclude that for the -CLA algorithm, 𝜆 =
0.999 is a small enough value to achieve 100% accuracy.

Figure 12 provides a closer view of the effect of varying the 𝜆 value on CLA and -CLA performance for different sensor pool sizes. The CLA

algorithm efficiency is highly sensitive to changes in the value of the parameter 𝜆, as can be seen in Figure 12. All of the three 𝜆 values provide an

1 The number of experiments corresponds to 1000 since we use 10 different sizes of sensor pools and 100 experiments for every single size
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F I G U R E 11 The performance of the CLA and -CLA algorithms
as function of 𝜆. -CLA, cluster based continuous learning automata;
CLA, continuous learning automata

F I G U R E 12 Effect of the 𝜆 value on
CLA and -CLA. -CLA, cluster based
continuous learning automata; CLA,
continuous learning automata

optimal solution for sensor pool sizes of 10 and 20. When starting from a sensor pool size larger than 20 sensors, the performance of 𝜆 = 0.99 is

increasingly inferior compared with the exact-BF results. Likewise, in the case of CLA,𝜆=0.999 and𝜆=0.9999 are also far from the optimal results

for more than 40 sensors. On the other hand, the proposed-CLA algorithm keeps up with the optimal solution obtained by-BF for all three values

of 𝜆 up to around 70 sensor nodes. Beyond 70 sensors, the -CLA performance begins to decline for only 𝜆 = 0.99, with results slightly deviating

from the optimal ones. The other 𝜆 values, 𝜆= 0.999 and 𝜆= 0.9999, continue to deliver optimal results. We further compare the efficiency of both

algorithms, measured in seconds in terms of execution time. Figure 13 displays the execution time taken by the algorithms CLA and -CLA for the

specific values of 𝜆.

According to Figure 13, the execution time spent by the CLA algorithm is higher than the proposed -CLA algorithm for different values of

𝜆 by order of magnitude. CLA takes about 860 seconds for 100 sensors and 𝜆 = 0.9999 while -CLA takes about 64 seconds. But if we com-

pare the average time taken for the first time to find the optimal solution, the proposed -CLA takes only about 6 seconds, the rest of the time

is spent on reaching the termination condition. Since we use a small learning parameter 𝜆 = 0.999, it is easy to conclude that the execution

time of the -CLA will be considerably lower, since all components of the probability vector need to reach 1 − 𝜖 or 𝜖 starting from the initial

probability 0.5.
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F I G U R E 13 Execution time of CLA
and -CLA. -CLA, cluster based
continuous learning automata; CLA,
continuous learning automata

𝜆= 0.99 𝜆= 0.999 𝜆= 0.9999

CLA-I -CLA-I CLA-I -CLA-I CLA-I -CLA-I

450.06 271.06 4131.2 2617.66 39 208.4 26 087.06

635.38 314.56 4739.6 3130.90 41 592.4 31 298.02

762.21 323.85 5781.0 3204.96 50 639.4 32 012.05

856.99 339.00 6877.6 3358.17 59 500.6 33 537.82

930.02 345.13 7529.8 3368.54 66 752.4 33 545.47

1111.54 357.11 7918.2 3486.75 72 719.4 34 779.911

1290.10 365.95 9241.0 3497.26 75 564.4 34 825.77

1461.53 369.62 9112.2 3548.75 83 617.0 35 047.63

2093.42 343.13 10 676.8 3318.76 85 768.0 32 602.57

2476.00 368.57 11 126.4 3453.47 85 699.8 33 201.11

Abbreviation: -CLA, cluster based continuous learning automata.

TA B L E 3 Number of Iteration taken by CLA
and -CLA over 𝜆= 0.99, 𝜆= 0.999, and 𝜆=
0.9999

Let t0 be the minimum number of iterations to reach 𝜖 from 0.5; then it is easy to note from the proof of Theorem 2 that t0 can be solved by

solving the following equation.

0.5𝜆t0 = 𝜖.

Similarly, Let t1 be the minimum number of iteration to reach 1 − 𝜖 from 0.5, which can be found by solving the following equation.

0.5 + 1 − 𝜆t1

1 − 𝜆
= 1𝜖

Table 3 shows how many iterations the proposed -CLA and CLA algorithms require to converge the probability to 1 or 0. We note the -CLA takes

less iteration than CLA. The CLA takes 2476, 11 126.4, and 85 699.8 iterations over 𝜆 = 0.99, 𝜆 = 0.999, and 𝜆 = 0.999, while -CLA only takes

368.57, 3453.47, and 33 201.11, respectively.
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5.3 Network life-time

Network life-time is always considered as one of the most important parameters in WSN applications because of use of small batteries. Recharg-

ing or replacing batteries is not always feasible in a hostile environment or network with a large number of nodes, and so on.11,53 We define

each sensor to have a battery capacity of 1 time unit and the network life-time to be the number of time units over which the sensor network

can cover all of its targets.54 Prolonging the network life-time in this case reduces to maximizing the number of disjunctive groups of sensors,

meaning with no common element, that each covers all the targets.14 In this article, we adopt a “peeling-off” procedure to find those disjunc-

tive groups and consequently compute the life-time. In simple terms, we use our pursuit-LA solution to find a group of sensors to be active for

1 time unit, then those sensors are removed and the network life-time is increased by one. Afterward, the procedure continues by “peeling-off”

the group for which the battery was exhausted, and proceeding further to the next group. The procedure continues until we reach a point that

we cannot ensure full coverage with the remaining sensors that are left. Therefore, to check the efficiency of our proposed -CLA algorithm in

terms of network life-time, we conducted an experiment where we varied the number of sensors starting from 100 with step size 50 up to 500.

In each case 50 experiments were performed and the sensor range and the number of targest were set to 50 as fixed parameters throughout the

experiments.

Figure 14 clearly shows that when the number of sensors is 100, the difference between the average network life-time of the two

algorithms is quite small, but as the number of sensors increases, the gap between the two network life-times also becomes larger. For

500 sensors, the network life-time computed by our proposed -CLA algorithm is almost 10, whereas for the CLA algorithm the result

is nearly 6. This means that our proposed -CLA algorithm on average adds four more units of a life-time to the network. Another

difference to observe from the experiments is the variation of the computed life-times. The shadowed area in Figure 14 represents a

95% confidence interval and the variation of the results of our proposed -CLA algorithm is smaller than for the results of the CLA

algorithm.

5.4 Comparison of CLA and DLA approach

In this section, we compare both -CLA and its counter-part -DLA where -DLA stands for Cluster-based DLA. In order to allow a fair comparison

of both algorithms, we follow the same experimental approach for comparing learning algorithms as in Reference 55 and determine the respective

tuning parameter for -CLA and -DLA that yields 99% of the time an optimal solution over a set of 100 experiments. Then we report the number

of iterations to achieve this result. As we see in Section 5.2, the value of 𝜆 plays an important role in finding optimal results, so we have created an

automated system that increases or decreases the value of 𝜆 to find out the accuracy of 99% using experimental procedure.55 Table 4 represents the

results of the CLA and DLA experiments.

From Table 4, we note that CLA and DLA do not have a clear winner. DLA takes fewer iterations in the first two experiments to converge to

99% solution precision while CLA is the winner in the next three tests. After seeing results, we find out that the number of CLA and DLA iterations

depends not only on the value of 𝜆 but also on random sensor selection.

F I G U R E 14 Network lifetime of CLA and -CLA. -CLA, cluster

based continuous learning automata; CLA, continuous learning
automata
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CLA Iterations 𝜆 Value DLA Iterations 𝜆 Value

8599 0.00055 7963 0.0001

9347 0.00055 9033 0.0001

618 0.01 1812 0.00055

421 0.015625 1064 0.001

5101 0.001 8656 0.0001

9190 0.00055 8848 0.0001

Abbreviations: CLA, continuous learning automata; DLA, discretized

learning automata.

TA B L E 4 Results obtained for 20 sensors and 10 targets with fix
sensor sensing range 50 m

F I G U R E 15 Execution time of
MM-LA and -CLA at 𝜆= 0.9 and 𝜆=
0.945. -CLA, cluster based continuous
learning automata; LA, learning automata

5.5 Comparison of the proposed -CLA algorithm with MM-LA

In this section, we compare our work to the approach presented by Mostafaei and Meybodi.14 We call the latter algorithm MM-LA, where the

acronym MM stands for Mostafaei and Meybodi. We resort to a number of sensors ranging from 10 to 50 (with steps of 10) for this experiment, and

we let the number of targets be half the corresponding sensor pool size. Ten different random deployment of sensors and targets are used to obtain

statistically reliable results. See Figures 15 and 16 for the average results.

According to Figure 15, the execution time of the proposed -CLA algorithm is always lower than MM-LA for 𝜆 = 0.9 and 𝜆 = 0.945 using

different pool sizes of sensors. Likewise, Figure 16 illustrates the number of iterations taken to converge the probability of sensors to 1 or 0. Inter-

estingly our proposed algorithms are also much better than MM-LA in this experiment. We note that MM-LA requires about 640 and 13 300

iterations for 𝜆 = 0.9 and 𝜆 = 0.945, respectively, for a sensor pool size of 50, whereas -CLA only needs about 85 and 135 iterations per cluster,

respectively.

Furthermore, in Figure 17, the left figure shows the comparison in terms of finding the average number of active sensors, and the right figure

shows the comparison of the network life-time. In both cases, we can observe that the -CLA algorithm performs better. It should be noted that

for the MM algorithm, there are redundant sensors covering the already covered targets. Here, MM-LA-R represents the MM algorithm result

with redundancy, that is, redundant sensors covering the same covered targets. The MM algorithm uses redundancy checking and removes this

redundancy in the final result. Interestingly, after removing redundancy (as indicated by MM-LA in Figure 17) our proposed -CLA algorithm still

has slightly better performance.
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F I G U R E 16 Number of Iterations of
MM-LA and -CLA for 𝜆= 0.9 and 𝜆=
0.945. -CLA, cluster based continuous
learning automata; LA, learning automata

F I G U R E 17 Comparison of the two algorithms in terms of average active sensors and network life time

6 CONCLUSION AND FUTURE WORKS

In this article, we focused on solving the problem of target coverage in WSNs in a better way and proposed the -CLA algorithm, a novel-solution

based on a cluster of sensors and targets using LA to help the sensor determine whether to be active or to sleep autonomously using the LA pursuit

concept. Not only does our proposed algorithm find the optimal solution for covering all targets, it also takes minimal execution time compared with

existing solutions.

The proposed -CLA algorithm can provide 100% accuracy, based on the result presented in Section 5. Similarly, in different situations, the

proposed -CLA algorithm is very fast in terms of execution time including small to high sensor pool size and different lambda values. Interest-

ingly, -CLA needs a fewer number of iterations and spends less time to determine the optimal results compared with other existing14 approaches.
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Through our experimental testing, it is evident that our proposed adaptive learning algorithm is a feasible and viable approach for the sensor nodes

to select their appropriate “sleep” and “active” state autonomously for energy-efficient target coverage in the WSNs.

For future work, it would be interesting to apply our approach for the sensors connectivity problem with mobile targets. In addition, the

application of game theory to the existing approach would be an interesting research direction.
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APPENDIX

Proof of Theorem 1. The proof follows similar arguments as in Reference 57. Using recurrence, we can obtain a lower bound on p(i,j)(t):

p(i,j)(t) ≥
t−1∏
k=1

𝜆kp(i,j)(0). (A1)

Let pmin(0) > 0 a lower bound on p(i,j)(0).

Let At = {C(t)≠C*} the event that at iteration t, the candidate solution does not contain the optimal solution C*.

Let BT the event that optimal solution is not found up to instant T.

P(BT) =
T∏

t=1

P(At), (A2)
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P(BT) ≤
T∏

t=1

(1 −
t−1∏
k=1

(𝜆kpmin (0))m). (A3)

▪

By resorting to (1− u)≤ exp(− u) we obtain

P(B∞) ≤
∞∏

t=1

exp(−
t−1∏
k=1

(𝜆kpmin (0))m) (A4)

= exp

(
−

∞∑
t=1

t−1∏
k=1

𝜆m
k pmin (0)m

)
. (A5)

However, from our assumption

∞∑
t=1

t−1∏
k=1

𝜆k = ∞

Since we have

P(B∞) ≤ 0 (A6)

then

P(B∞) = P(C∗never obtained) = 0. (A7)

Examples of smoothing sequences which eventually generate the optimal solution with probability 1 (ie, which satisfy the sufficient condition

of Theorem 1) includes

𝜆t = 1 − 1∕(t + 1)𝛽 for 𝛽 > 1.

and

𝜆t = 1 − 1
(t + 1)log(t + 1)𝛽

for 𝛽 > 1.

Let t* the first time instant when the optimal solution is found, the optimal components are always reinforced. For t*+ r , for j such that j∉C*,

using recurrence, we can verify:

p(i,j)(t∗ + r) =
t∗+r−1∏

k=t∗
𝜆kp(i,j)(t). (A8)

Easy to see from the assumption that
∏∞

k=0 𝜆k = 0, by considering the log of the expression described in assumption on 𝜆k .

lim
r→∞

p(i,j)(t∗ + r) = 0. (A9)

Therefore, for j* belonging to the optimal solution.

lim
r→∞

p(i∗ ,j∗)(t∗ + r) = 1. (A10)

Proof of Theorem 2. Using recurrence, we know that:

p(i,j)(t) > 𝜆t−1p(i,j)(0). (A11)
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Thus,

P(At) ≤ 1 − (𝜆t−1pmin (0))m. (A12)

Therefore,

P(BT) ≤
T∏

t=1

(1 − (𝜆t−1pmin (0))m). (A13)

Thus,

P(C∗never obtained) = Prob(B∞) ≤
∞∏

t=1

exp(−𝜆(t−1)mpmin (0)m), (A14)

≤ exp

(
−pmin (0)m

∞∑
t=1

𝜆(t−1)m

)
, (A15)

= exp

(
−pmin (0)m

∞∑
t=0

𝜆tm

)
. (A16)

Let us define h(𝛼) =
∑∞

t=0 𝜆
tm.

h(𝛼) =
∞∑

t=0

𝜆tm (A17)

= 1∕(1 − 𝜆m), (A18)

lim
T→∞

P(BT) = P(C∗ never obtained) (A19)

≤ exp(−pmin (0)mh(𝜆)). (A20)

Since we know that lim𝜆→1h(𝜆) = ∞, then limT→∞P(BT) can be made arbitrarily close to zero, if 𝜆 approaches 1.

Hence the theorem is proven. Now, let us characterize the LA probabilities at convergence.

Let t* the first time instant when the optimal solution is found, the optimal arcs are always reinforced. For t*+ r , for j*∈C*, we have:

Using recurrence , we can obtain verify

p(i,j∗)(t + r) = 𝜆rp(i,j∗)(t) + (1 − 𝜆)
r−1∑
i=0

𝜆r−i−1. (A21)

We remark

lim
r→∞

r−1∑
i=0

𝜆r−i−1 = 1∕(1 − 𝜆). (A22)

Therefore,

lim
r→∞

p(i,j∗)(t + r) = (1 − 𝜆) × 1∕(1 − 𝜆) = 1. (A23)

▪


