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Abstract
In spite of a body of research into subscale score reporting at the individual level,
there exists a paucity of research into subscale score estimation in international
large-scale assessment (ILSA). This doctoral thesis aimed at evaluating the
typically available methods for subscale score estimation in order to identify a
model that was suitable for (a) item parameter estimation; (b) population score
estimation; (c) reporting valuable subscale scores. This dissertation further
examined the models in order to identify the better fitting model. Through
investigating the accuracy and bias in estimating the model parameters given
different test conditions (i.e., numbers of subdomains, subdomain lengths, and
subdomain correlations), the key motivation of this dissertation was to provide
practitioners with general guidelines when it comes to estimating subscale
scores under different test specifications.

This thesis was based on two simulation studies and an empirical study.
Simulation studies 1 and 2 were designed to resemble the Southern and
Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) and
Trends in International Mathematics and Science Study’s (TIMSS’) data. The
difference between the two simulation studies was that Study 1 did not employ
matrix sampled test booklets and latent regression methods in score estimation
whilst Study 2 did. Within each of the simulation studies, data analysis were
conducted assuming the data comprised of single- and multiple-groups. The
empirical investigations were based on data from TIMSS 2015’s eighth grade
mathematics test.

Taken together, the findings presented in this doctoral thesis advance
the existing knowledge about subscale score estimation by extending the
conversation to an ILSA context. As subscale scores have become increasingly
relevant for guiding educational policy and practice, this study can inform
test practitioners as to the selection of the most appropriate subscale score
estimation method. This thesis argues that different subscale score estimation
methods may be more optimal under different test conditions (i.e., test length
or subscale correlation) and sample composition (i.e., single or multiple groups).
In addition, this thesis argues that the choice of model may depend on the
practitioner’s primary concern (i.e., item- or score-parameter estimates; subscale
value; or model fit). This study also contributes to informing the choice of
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model when the sample of participants becomes more diverse with regards to
performance.
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Chapter 1

Introduction

1.1 International Large-Scale Assessments

Since their inception, information gathered from ILSAs has been used to
support evidence-based policy discussions within and beyond the participating
countries (Baird et al., 2016; Lindblad et al., 2015). Further, findings from
ILSAs have also been used as a tool to compare and make changes to curricula
and instructional and learning strategies in participating educational systems
(Chmielewski & Dhuey, 2017; Torney-Purta & Amadeo, 2013). Examples of
these studies include the Trends in International Mathematics and Science
Study (TIMSS) and the Programme for International Student Assessment
(PISA). In addition to larger, more international studies, there are also regional
assessments around the world including studies in Africa, South America, and
Asia. One example, which is a focus of this dissertation, is the Southern and
Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ)
study, described in detail in Chapter 2.

The spotlight on ILSAs has been placed on the achievement outcomes
and rankings in broad content domains, which usually include math, science,
and reading. However, the broad domains on these assessments, like
many educational and psychological constructs, may be broken down into
content areas, instructional objectives, or subscale categories (i.e., they are
multidimensional; Liu, 2015). For example, the 8th grade TIMSS 2015
mathematics test framework was composed of four content subscales: Number,
Algebra, Geometry, and Data and Chance; these subscores provide diagnostic
information to differentiate aspects of mathematics achievement at the country
level (Camilli & Dossey, 2019). Figure 1.11 is an illustration of the TIMSS 2015
eighth grade mathematics content subscale score profile for all participating
countries. This figure highlights the variability in score performance across
the four subscales. For example, Egypt scored 420, 338, 393, and 393 on
the algebra, data and chance, geometry, and number subscales, respectively.
Egypt’s score difference between algebra and data and chance was close to one
standard deviation2. The difference between the algebra and data and chance

1Note. The highlighted lines join the scores for Lebanon and Egypt, respectively.
2TIMSS arbitrarily sets an origin and unit size; i.e., mean of 500 and a standard deviation

of 100, as was done originally for TIMSS in 1995 (Martin, Mullis, & Hooper, 2016).
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subscales was also quite high in Lebanon, 466 and 395, respectively. Although
subscale scores are reported for most ILSAs, they are not often reported for
regional assessments such as SACMEQ.

Figure 1.1
TIMSS Empirical Mathematics Content Domain Scores

International assessments (a) often comprise of several hundred questions
that are typically used to test the respective content domains, and (b) are
administered to populations that differ substantially in achievement. As a
result, ILSAs often use special test designs in data collection (these will be
discussed in detail in Chapter 2). The intended level of inferences also means
that population scores are calculated using special achievement estimation
methods.

When scoring subscales, most ILSAs fit a unidimensional-IRT (UIRT)
model to estimate item parameters. The resultant item parameters are
subsequently used to calibrate population and subpopulation achievement
distributions overall and for each subscale. TIMSS fits a multidimensional-
IRT (MIRT) model which specifies two-dimensions, mathematics and science
(Martin, Mullis, & Hooper, 2016). Nevertheless, all the items on these two
dimensions are assumed to measure single (unidimensional) educational or
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psychological constructs (i.e., mathematics which will, in part, be the focus
of this thesis). However, these constructs are explicitly broken down to sub-
constructs (i.e., mathematics content: algebra, data and display, geometry,
number on TIMSS) in test specification. As such, other models may be fit that
take into account the relationship between two or more latent constructs in the
item calibration (amongst others, these include variants of multidimensional-
IRT models; Reckase, 2009). MIRT models include consecutive-IRT (CIRT)
and multidimensional-IRT (MIRT). The difference between CIRT and MIRT
being that MIRT assumes the subdomains on a test are correlated whilst
CIRT assumes that the subdomains are uncorrelated. Assuming a specific IRT
model may have implications on subscale scoring in ILSA (see de la Torre
& Song, 2009; Wang, 2017; Yao & Boughton, 2007). The choice between
CIRT and MIRT may be driven by: (a) model simplicity; (b) time of score
computation over large sample sizes; (c) computer power; and (d) to some
extent, for small testing agencies, technical expertise. Although, MIRT models
most closely adhere to the assumed actual factor structure of some educational
constructs, these models are more complex and computationally cumbersome.
Alternatively, UIRT and CIRT are easier to implement, though doing so has
some consequences with respect to reported subscale scores. For instance, a
study by Yao (2010) showed that MIRT povides less biased item parameter
estimates when correlations between subdomains are low.

To complement the aforementioned IRT methods, subscale scores may be
evaluated to examine whether they provide added value over the total test
score. In other words, it is possible to evaluate subscale scores to determine
whether they may be reported. A subscore is considered to be of added value if
the correlation between the true subscore and the observed subscore is greater
than the correlation between the true subscore and the observed total score
(Sinharay et al., 2007). From a prediction perspective, a subscore is said to have
value if it can predict the true subdomain better than the total score. Interest
in determining if a subscore has value and deriving metrics for quantifying value
has increased over the past decade (e.g., Brennan, 2012; Feinberg & Jurich,
2017; Haberman, 2008b). Haberman’s proportional reduction in mean squared
error (PRMSE) has received a considerable amount of attention in several
studies (e.g., Meijer et al., 2017; Wang, 2017). These authors (ibid.) argue that
the higher the PRMSE reported for an indicator of a score estimate, compared
to other indicators for the score, the more valuable it is (see Section 2.5.1).

Research in subscale score reporting has received much attention in tests
that report individual scores (e.g., de la Torre & Patz, 2005; DeMars, 2006;
Edwards & Vevea, 2006; Haladyna & Kramer, 2004; Kahraman & Kamata,
2004; Wainer et al., 2001; Yao & Boughton, 2007; Yen, 1987). To that effect,

3



research has revealed three psychometric concerns. First, subscores often
possess lower reliability than the overall score because subscores are drawn
from a subset of the total test; consequentially, subscores may not precisely
measure unique abilities (Edwards & Vevea, 2006; Goodman & Hambleton,
2004; Haberman, 2008b; Haberman et al., 2009; Monaghan, 2006; Shin, 2004;
Wainer et al., 2000; Wainer et al., 2001; Yao & Boughton, 2007; Yen, 1987).
Second, the use of biased item parameter estimates in [sub]score estimation can
result in inaccurate person proficiency estimates (de la Torre & Hong, 2010;
Hambleton et al., 1993). Third, we may not draw additional information from
subscale scores over and above an overall score (Haberman, 2005; Haberman
et al., 2009; Monaghan, 2006; Sinharay et al., 2007).

There exists a substantial body of research on subscale scores for individual
reporting (e.g., de la Torre & Hong, 2010; Edwards & Vevea, 2006; Yao
& Boughton, 2007). However, there is much less research on ILSAs and
subscale score estimation (e.g., Camilli & Dossey, 2019; Erdemir & Atar, 2020).
Regardless of the noted potential problems, subscale scores remain a prominent
byproduct of ILSAs. Given the peculiarities of international assessments (the
nature of which will be discussed in detail in Chapter 2), it is reasonable to
investigate subscore estimation methods in this context. To that end, I focus
my dissertation in subscale score estimation methods in the ILSA context.

1.2 Statement of the Problem

In spite of a body of research into subscale score reporting at the individual
level, there is a paucity of research into the degree to which the above noted
psychometric issues are present in an ILSA context. Importantly, there is little
subscale score research in contexts where the emphasis is at the population level,
where there are diverse populations (in terms of score performance), and where
sophisticated booklet designs require specialized achievement methods. Each
of these issues open the possibility of unanticipated impacts on estimated item
parameters and subscale scores. To that end, this study aims at evaluating the
quality of item parameters and subscore person parameters in different ILSA
test designs. Furthermore, this study examines the potential for added subscore
value by comparing the performance of different subscale score estimation
methods under different conditions.

Therefore, the general purpose of this dissertation is to fill the void of
research in subscore estimation methods in the ILSA context by systematically
exploring when subscores have added value (using PRMSE) and by comparing
the performance of different subscoring methods under various conditions.
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1.3 Purpose of the Study

Given the gap in the literature about subscale score estimation in population
models in a context where achievement is highly varied across dozens of
populations and subscale score correlations vary across country, the purpose
of the study is threefold. First, this study intends to evaluate which typically
available methods are best suited for estimating item parameters that are
to be used in subscale score estimation in an ILSA context. Second, the
study intends to investigate which of the methods provide accurate (and/or
meaningful) population and subpopulation subscale scores in the international
context. Third, this study will investigate which model specific subscale scores
provide more valuble subscale scores by examining the differences in PRMSE.

1.4 Research Questions

Given the peculiarities of ILSA, discussed briefly above and in detail
subsequently, my study will address the following research questions:

1. Which of several typically available subscale score estimation models
produce the best item parameters?

2. Which of several typically available subscale score estimation models
produce the psychometrically-best population score estimates?

3. Which subscale score estimation method results in the most valuable
subscale scores?

In this study, I will use the TIMSS and SACMEQ studies to motivate
and inform my simulation studies. That is, the simulated test conditions (i.e.,
number of subscales, subscale length, correlation between subscales) will be
influenced by the empirical structures of these two large-scale assessments.
In addition, each of these research questions is considered from a single-
and multiple-group contests in order to explore the effect of achievement
heterogeneity. I will also test my findings on TIMSS 2015 eighth grade
mathematics.

1.5 Summary

In summary, this study intends to identify which methods are most suitable for
reporting subscale scores. First, this study evaluates item parameter estimates
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to identify which model provides the least biased item parameters. Second,
this study evaluates person parameters in order to observe which subscale
scores are least biased. Third, the study evaluates which of the three IRT
subscore estimation methods produces the most valuable subscores using the
PRMSE index. The study’s significance is in its potential ability to impact the
accuracy and fairness of subscore reporting in ILSA. This issue is specifically
important to international assessments which use subscale scores as a source of
information that may be used to provide deeper understanding into various
broad content domains.

In Chapter 2, I review literature pertinent to subscale score estimation
under the IRT framework. Focus will largely be placed on subscale score
estimation within ILSA. In Chapter 3, I will discuss the methods that I used
in my simulation study. Chapter 4 discusses the methods that were used for
my empirical study. Chapters 5 and 6 provide the results of the simulation-
and empirical-studies, respectively. In Chapter 7, I will provide the discussion
and conclusions.
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Chapter 2

Literature Review

2.1 Overview of the Chapter

This chapter reviews literature on subscale score estimation methods and
processes. The emphasis of this study is placed on subscale score estimation
in the ILSA context. The literature review starts with an overview of item
response theory. This is followed by a definition of subscale scores and a brief
introduction to the notion of subscale score value. Then I proceed to take an
in-depth look at how IRT models are being applied to estimate subscale scores
at the individual student-level and the merits and demerits of each model. This
is followed by a review of the scaling process in ILSA. In this portion of the
literature review I highlight some key differences between ILSAs and other
tests that emphasize individual inferences. Then, what follows is a review of
the TIMSS and SACMEQ scaling procedures. The literature review will focus
on how subscale scores are reported in ILSA and RLSA. This chapter closes
by introducing the proportional reduction in mean squared error (PRMSE)
which is used to quantify subscale score value. This literature review intends
to reveal the issues raised with respect to subscale score estimation methods.
The reviewed literature will also inform the methods that I apply in my study.

2.2 An Overview of the Item Response Theory Scoring
Frameworks

Estimating examinee scores may arguably be one of the most important aspects
of educational measurement (Hambleton et al., 1991). Test scores are a source
of information from which inferences are made. These scores provide evidence
reflecting an examinee’s performance on a test and are used to support decisions
about selection, diagnosis and placement (Kane, 2013; Liu, 2015). Test scores
also serve as a major source of information that is used for educational policy
analysis, program evaluation, research and accountability (Kane, 2013). As
such, test scores are the basis for many population and individual based
decisions in education and beyond.

There are two commonly used frameworks for reporting test scores. These
are classical test theory (CTT) and item response theory (IRT). CTT assumes
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that a test-taker has a true score on some latent variable1 or construct (e.g.,
achievement, attitude, or behaviour), and that the observed score is the result
of the true score measured with some unobservable measurement error (Crocker
& Algina, 1986). Most often, assessments in CTT are scored by summing the
responses to test items. The IRT framework, on the other hand, provides a set
of probabilistic models that describe the relationship between an examinee’s
response to a test item and their underlying latent variable being measured
by a scale (Fayers et al., 2005). (DeAyala, 2013, p. 20) writes that “IRT
models assume that the response data are a manifestation of one or more
person-oriented latent dimensions2 or factors". IRT models locate examinees
and items on the same continuum. This dissertation will focus on IRT scoring
methods.

2.2.1 Unidimensional IRT

Early IRT models were applied to unidimensional assessments which measured
a single educational or psychological construct (Embretson & Reise, 2000, p.
4). An example is the Southern and Eastern Africa Consortium for Monitoring
Educational Quality (SACMEQ) study which, in part, measured sixth grade
mathematics achievement in its four cycles. SACMEQ applied unidimensional
item response models because it was presumed that a single proficiency (i.e.,
mathematics proficiency) was enough to account for examinee performance on
the test. This class of IRT models that assumes a single underlying dimension
can be referred to as unidimensional-IRT (UIRT-class of models) models.

UIRT is a group of statistical models that focus on the item level and are
characterized by item- or person-parameters. These models employ a non-linear
functional form that relates item and person properties to the probability of
a correct answer. Typically, item parameters include: difficulty parameter
(i.e., represents how easy or hard the item is with respect to examinees);
discrimination parameter (i.e., represents how well the item differentiates
examinees); pseudo-guessing parameter (i.e., represents the ‘base probability’
of answering or endorsing an item). Furthermore, these models assume that

1A latent variable is a hypothetical (unobserved) construct (e.g., knowledge) which may
be inferred by an examinee’s performance on manifest variables such as items on a test
(DeAyala, 2013).

2Hypothetical constructs are usually modeled by common groupings or factors known
as dimensions that underly the data (Skrondal & Rabe-Hesketh, 2004). For example,
mathematics may be viewed as one dimension. Whereas, the big-five theory in personality
psychology (e.g., Costa & McCrae, 1992) advocates that there are five dimensions of
personality which have ontological status: extraversion, agreeableness, conscientiousness,
neurotisism, and openness to experience.
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the probability of an examinee endorsing an item is also conditional on that
examinee’s latent proficiency, θ (Lord et al., 1968). Commonly used UIRT
models for dichotomously scored data (e.g., scored correct or incorrect) include
the one-parameter logistic (1PL) model, the two-parameter logistic (2PL), and
three-parameter logistic (3PL) model. The mathematical equation for a 3PL
model is given as:

P (xin = 1|θn, ai, bi, ci) = ci + 1− ci
1 + eai(θn−bi) (2.1)

where xin is the nth examinee’s response to the ith item; θn is the nth examinee’s
unidimensional proficiency; ai is the item discrimination parameter; bi is the
item difficulty parameter; ci is the pseudo-guessing parameter. The 2PL holds
the pseudo guessing parameter constant at ci = 0; whereas, the 1PL model
holds ai equal for all items and ci = 0. The Rasch model may be considered a
special type of 1PL model which holds ai = 1 for all items.

There are other UIRT models that are applied to polytomous response
data. Polytomous IRT models are suitable for items that have more than two
scoring outcomes. Polytomous IRT include the nominal response model (NRM,
Bock, 1972); partial credit model (PCM, Masters, 1982); the generalized partial
credit model (GPCM, Muraki, 1992); the rating scale model (RSM, Andersen,
1997); and the graded response models (GRM, Samejima, 2006). The GPCM
model was used in TIMSS 2015 (Martin, Mullis, & Hooper, 2016). GPCM
is a polytomous-IRT extension of the 2PL model. GPCM stipulates that the
probability of an examinee with proficiency θn on scale n will have, for the ith
item, a response xi that is scored in the lth of mi ordered score categories as
the function:

P (xin = 1|θn, ai, bi, di,1, · · · , di,ki−1) = e[
∑k

v=0
Dai(θn−bi+di,v)]∑mi−1

g=0 e[
∑g

v=0
Dai(θn−bi+di,v)]

(2.2)

where xin is the nth examinee’s response to the ith item; mi is the number of
response categories for item i; θn is the proficiency of a student n on a scale; ai is
the item discrimination parameter; bi is the location parameter, characterizing
the item difficulty parameter; di,k is the category k threshold parameter; and
the scaling parameter, D = 1.7. Indeterminacy in the parameters of the GPCM
model is resolved by setting di,0 = 0 and

∑mi−1
k=1 di,k = 0.

There are three main assumptions underlying UIRT models. These are:
(a) unidimensionality, (b) local independence, and (c) functional form. First,
the unidimensionality assumption affirms that a single construct underlies
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the item responses on a test. Second, local independence states that when
examinee proficiency is held constant, responses to any item are statistically
independent. In other words, after accounting for the latent variable, there
should be no shared residual variance among items. Under this assumption, an
examinee’s responses to test items is assumed to be conditional on an examinee’s
θ. Third, the functional form assumption states that data follow a function
specified by the IRT model. In this case, the probability of endorsing an item
increases monotonically as proficiency increases. However, it is recognized
that the expectation to design a test that measures a single construct might
be unrealistic in practice (e.g., Ackerman, 1994; de la Torre & Patz, 2005;
Kahraman, 2013; McDonald, 2000).

2.2.2 Multidimensional IRT
Multidimensional IRT (MIRT) was developed to describe the relationship
between two or more related latent constructs and the probability of endorsing
an item (Reckase, 2009). As opposed to UIRT, MIRT assumes that an
examinee’s response to an item may be due to their location on more than one
latent variable. In other words, MIRT models specify the location of examinee
n in a multidimensional latent construct space, which then determines examinee
n’s probability of endorsing this item (Reckase, 2009).

MIRT models may be classified into either compensatory- or non-
compensatory-models. To differentiate the two models, I use the following
example: two dimensions may underly an examinee’s response to a mathematics
word problem; these are: (a) maths proficiency, and (b) reading proficiency.
If the two interact to produce observed results, then they are classified as
compensatory models (i.e., reading proficiency might influence a person’s
probability of a correct answer on a mathematics item). In contrast, non-
compensatory MIRT models assume that an examinee’s proficiency on one
latent variable does not compensate for low levels of another latent variable
required for correctly responding to an item. For example, the probability of a
correct response on the math word item is the product of the probabilities for
each construct (i.e., math- and reading-proficiency; Reckase, 2009).

Like UIRT, MIRT comprises a group of statistical models that focus on the
item level and are characterized by item- or person-parameters. Therefore, a
compensatory-MIRT 3PL model for a D-dimensional test may be defined as:

P (xin = 1|θn,ai, di, ci) = ci + 1− ci
1 + e(aiθn+di) (2.3)

where θn is a D-dimensional vector of estimated latent proficiencies correspond-
ing to each subscale, ai is a D-dimensional vector of discrimination parameters
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corresponding to each subscale, and di is the item location parameter that is
related to item difficulty. In contrast, a non-compensatory 3PL MIRT model
may be defined as:

P (xin = 1|θi,ai, bi, ci) = ci + (1− ci)
K∏
k=1

1
1 + e[aid(θid−bid)] (2.4)

where K indicates the total number of dimensions, bn is a k-dimensional vector
of item difficulties on all dimensions, bid indicates the item difficulty on the
d-th dimension of item i. The 2PL MIRT analogy holds ci = 0; whereas the
1PL holds ai equal to some constant and ci = 0. It should be noted that MIRT
models may also be extended to polytomous items.

MIRT models may be conceptualized at the item-level or at the test-level.
Item-level MIRT assumes a single item measures multiple latent traits rather
than just one (i.e., a case of the aforementioned mathematics word problem,
the correct answer also depends on reading proficiency). Test-level MIRT (see
Figure 2.1c) assumes each item is unidimensional but the test is made up of
subtests that measure distinct latent traits. Both types of MIRT models assume
that a test is a combination of latent traits that are often correlated (Ackerman,
1994; Luecht, 2003; Thissen & Edwards, 2005). Operationally, TIMSS fits a
two-factor (mathematics and science) test-level MIRT, or they assume between-
item multidimensionality in item calibration(Adams et al., 1997; Adams & Wu,
2007). The estimated item parameters are then fixed to estimate both the
overall- and subscale-scores (for more details, see Section 2.4.2).

2.3 Methods to Estimate Subscale Scores

This section provides a literature review of the most commonly applied subscale
score estimation methods. Section 2.3 reviews literature on score computation
(i.e., person proficiency estimation techniques). Section 2.5 gives a review of
subscale value with focus on the PRMSE index.

IRT-based subscale score estimation methods may be categorized into two
general models based on the latent factor structure (a) UIRT, and (b) MIRT
models. In practice, these models may be fit in relation to the assumed
actual, possibly multidimensional factor structure of a test. The models
may also be imposed because a stipulated factor structure fits the data
the best. UIRT methods are broken down into two categories; composite-
(CUIRT) and consecutive-UIRT (CIRT). The MIRT methods can be extended
to include higher-order IRT and other more complex models (e.g., bi-factor
model). Figure 2.1 summarises the factor structure of four hypothetical models.
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Furthermore, each model category can be further classified into two groups:
a) conventional methods that do not involve augmentation and b) methods
that enhance subscale score reliability by augmenting a subscale score using
collateral information which correlates with achievement such as demographic
data or previous test scores (Skorupski & Carvajal, 2010). All methods have
particular assumptions, strengths, and limitations. There has been a substantial
amount of literature related to development and utilization of subscale score
estimation methods for scores of individual student proficiency (e.g., de la Torre
& Patz, 2005; DeMars, 2006; Edwards & Vevea, 2006; Haladyna & Kramer,
2004; Kahraman & Kamata, 2004; Wainer et al., 2001; Yao & Boughton, 2007;
Yen, 1987). In the following sections, I will provide a review of each subscale
estimation model within the IRT framework.
Figure 2.1
Selected Subscale Score Estimation Models

(a) Composite UIRT model,
CUIRT

(b) Consecutive-UIRT model,
CIRT

(c) Multidimensional IRT model,
MIRT

(d) Higher-Order IRT model,
HO-IRT

2.3.1 Unidimensional IRT Models

Two classifications of UIRT models are typically used for subscale score
computation (Luecht, 2003). The first approach, referred to as composite-UIRT
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(CUIRT), uses unidimensional item calibration to estimate item parameters for
all items on the test. In CUIRT all items j = 1, 2, . . . , J are assumed to measure
one latent variable. However, in CUIRT (Figure 2.1a), subsets of the total
test item parameters are then used to score each subdomain. For example, the
item parameter estimates for the item parameter estimates for the items in the
grey blocks in Figure 2.1a are used to seperately score those items. The second
approach —consecutive-IRT (CIRT)— uses unidimensional item calibration to
estimate item parameters for items corresponding to each subdomain which
are used to estimate subscale scores. In the case of CIRT, each scale has
an underlying unidimensional latent structure (CIRT, Figure 2.1b). In other
words, each item j measures one, and only one, of the D subscales. The main
difference between the two is that, like MIRT models (to be discussed in Section
2.3.2), CIRT models assume distinct factors (Figure 2.1b) whereas CUIRT
(Figure 2.1a) does not. In other words, CUIRT does not assume distinct factors
across subdomains.

There are a few problems and issues with CUIRT when used on a test
that is multidimensional in nature. First, in developing a test with multiple
dimensions, we violate the unidimensionality assumption of UIRT. Second, in
a comparison of CUIRT and CIRT, it was found that both CUIRT and CIRT
lose some unique variance associated with subdomains and induces an upward
correlation bias between subscale scores (Luecht, 2003). Further, correlations
between latent traits cannot be directly estimated with both UIRT models.
It is possible to estimate correlations in a two-step procedure that involves
estimation of correlations that are then adjusted for attenuation caused by
unreliability; such estimation of the correlation matrix has been found to be
biased (Longabach, 2015). Third, de la Torre and Song (2009) found that,
depending on the extent to which the unidimensional assumption is violated,
overall proficiency estimates in UIRT may not be valid and the model provides
unreliable subscale score estimates, especially when the number of items in
each subdomain is small. Unreliable subscale scores may enhance error of
measurement and foster unfairness of a test and its interpretation (ibid). de
la Torre and Patz (2005) propose that UIRT scores may be reported at the
subdomain level (e.g., CUIRT, CIRT), however they should be complemented by
multidimensional scores which may be used to inform a finer grained reporting.
In other words, UIRT may be used to report scale scores and their associated
norm-referenced and or criterion-referenced scores, and MIRT could be used to
inform skills profiles and objective level scores where subscores are estimated
from multiple short subdomains that are highly correlated.
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2.3.2 Multidimensional IRT Models

MIRT models may be more appealing for subscale score estimation as the
subdomains are explicitly specified and modified. A key difference between
CIRT and MIRT is that for CIRT, the factors are assumed to have no
covariance3. Notice that the MIRT model of Figure 2.1c was conceptualized to
estimate an examinee’s proficiency on two or more correlated factors. However,
the model does not directly estimate an overall score. As one possible solution,
overall scores may be obtained from MIRT models by using a two-step procedure.
After estimating subscale scores, they may be averaged in order to obtain a
composite score (Sheng & Wikle, 2007; van der Linden, 1999). For example,
the overall TIMSS mathematics score can be calculated by computing the
average of the number, geometric shapes and measures, and data display
subscale scores4. However, a two-step averaging method may produce biased
estimates and ignores the relationship between latent traits (Sheng & Wikle,
2007, p. 414). This method also ignores the fact that: (a) the subdomains have
different maximum score points; (b) subscores are related, and (c) at different
score points, the relationship between composite scores and subscores may be
different (Yao, 2012). Finally, two-step approaches treat observed scores as
true scores, ignoring the inherent measurement error.

The Higher-Order IRT (HO-IRT) model may be considered as one such
extension of the MIRT model. In HO-IRT (Figure 2.1d), items within a
subdomain are assumed to measure a single latent variable. However, these
latent variables are analogous to a second order latent variable. That is, HO-
IRT extends the MIRT model by simultaneously estimating an overall score by
assuming that subscores are a linear function for the total score and that the
subdimensions are regressed onto the higher-order latent variable (Yao, 2010).
One advantage of HO-IRT is its ability to obtain overall and subscores from a
single model (de la Torre & Song, 2009). Note that subdomain proficiencies
are independent to each other and conditional on the overall proficiency (de la
Torre & Song, 2009). In other words, a second order factor accounts for the
correlations among first order factors (Rijmen et al., 2014). There are several
IRT models that may be considered extensions of the MIRT model. Although I
include or mention some of the models in my literature review for completeness,
my focus is on CUIRT, CIRT and MIRT because they are those methods that
are used in practice.

3CIRT specifies a MIRT model, but then the factor covariances are fixed to 0.
4This is not done in practice. TIMSS 2015 fit a multidimensional model that

specified the two broad content domains: mathematics and science. They did not assume
multidimensionality within each of these (Martin et al., 2016).
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Although a multidimensional structure is often a better representation
of complex constructs like math and reading, there are a few problems and
issues with MIRT subscale estimation methods. In addition to the previously
noted problem around estimating an overall score in a standard MIRT, the
complexity of MIRT makes subscale estimation computationally cumbersome.
As a result, Tao (2009) argues that MIRT subscore estimation methods may be
less feasible in the context of some assessments (e.g., state assessments which
require fast reporting of scores). Luecht (2003) and Skorupski (2008) also argue
that the complexity of MIRT models means that their application requires
higher technical expertise to deal with issues such as: (a) choosing estimators,
(b) performing confirmatory factor analysis to identify the number of factors,
(c) sorting rotational indeterminacies, and (d) dealing with non-convergence
of an estimation solution (the last of which Haberman and Sinharay (2010)
argue may not be an average task for a typical psychometrician working for
a testing organisation). We note, however, that in the case of TIMSS (as we
discuss subsequently), MIRT models are used to a limited degree for the main
domains (math and science).

2.3.3 Augmented Scores

It is often the case that even though the total test has adequate reliability,
individual subscales might suffer from poor reliability (Sha & McCoy, 2014).
For instance, an algebra score may be obtained from a relatively short 12 item
sub-test on an 80-item mathematics test (from which an overall mathematics
score is reported). Because of being estimated from a subset of the entire test,
subscales will generally possess less reliability than the overall test. However,
it is possible to increase subscale reliability by incorporating information from
other observed data in a procedure known as augmentation. In other words,
subscale reliability may be improved by exploiting collateral- or ancillary-
information in the subscale score estimation process. Collateral information
may be viewed as collected data that correlates with the examinee’s proficiency
in order to reduce error (Mislevy & Sheehan, 1989). Wang et al. (2004)
classify collateral information as: (a) item information such as format, content,
or cognitive processes or, (b) examinee information such as educational
background, demographic information, or item response information and/or
overall performance on other tests. For this reason, the methods applied in
ILSA, discussed in Section 2.4.1.2, population modeling or latent regression,
are essentially augmented methods.

Wainer et al. (2001) describe subscale score augmentation for IRT-based
scores as a multi-stage procedure for subdomain proficiency estimation. In the

15



first stage, CUIRT examinee proficiency estimates are obtained using maximum
likelihood estimation (MLE), maximum a posteriori probability (MAP), or
expected a posteriori (EAP) methods. In the second stage, CUIRT reliability
estimates in conjunction with the observed covariance matrix among IRT
proficiency are computed. In the third, and final stage, the IRT subscale
score estimates are regressed on all subscores and weighted using the IRT-
based reliability estimate. Therefore, mathematically, the MLE subscale score
estimation may be represented as:

MLE(θ̂) = MLE(θ) + B(MLE(θ)−MLE(θ)) (2.5)

where MLE(θ̂) is an estimate of the true subscale score, MLE(θ) is a mean
vector of each MLE subscale score, MLE(θ) is a vector of an examinee’s
observed subscale scores, and B is “a matrix that is the multivariate analog for
the estimated reliability" (see Wainer et al., 2001). MAP and EAP subscale
score estimates may be obtained in the same way. Note that the reliability
value (B) is not a CTT based-reliability index; rather, it is a marginal reliability
of θ (for computation, see Green et al., 1984).

Several studies have pointed out that the purpose of the reported scores
should guide the type of auxiliary information that may be used in the
augmentation process (de la Torre et al., 2011; Skorupski, 2008; Stone et
al., 2009; Wang, 2017). For instance, de la Torre and Patz (2005) argue that
using auxiliary information pertaining to school or student characteristics may
be suitable for reporting scores at population or subpopulation level since the
observed examinee scores will all be closer to the overall group score. On
the other hand, using auxiliary information that is directly obtained from an
examinee’s test information (e.g., performance in other subscales) may be more
appropriate when it comes to reporting subscale scores at student-level (de la
Torre & Patz, 2005). As opposed to using other test information, ILSAs, such
as TIMSS, use the plethora of information collected in the student background
questionnaire and other demographic information to augment their scores in
what is known as the conditioning model (see Section 2.4.1.2).

2.3.4 A Comparison of Subscale Score Estimation Models

Several simulation and real-data studies have compared the different subscale
score estimation methods. Studies have been conducted to compare IRT
and MIRT methods, as well as augmented and non-augmented methods of
reporting subscale scores. Most of the studies compared different combinations
of subscore estimation methods by using varying statistical methods as a basis
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for comparisons. Table 2.1 and 2.2 present a summary of simulation and
empirical studies, respectively, that compared the performance of IRT-based
subscale score estimation models. Table 2.1 summarizes the (a) data generation
model (DGM); (b) test characteristics (i.e., number of domains, items per
domain, subdomain correlation); (c) item parameters used in the studies, (d)
sample sizes; (e) subscore methods studied; and (f) the number of replications.
Table 2.2 outlines the (a) test characteristics (i.e., number of domains, items
per domain); (b) sample sizes; and (e) subscore methods studied. The studies
presented in the tables describe some of the research that has been conducted
in subscale score estimation. In what follows, I will compare the UIRT (CUIRT
and CIRT) and MIRT models (Section 2.3.4.1). This section will be finalized by
a comparision of the augmented and non-augmented methods (Section 2.3.4.2).
All of the studies reviewed in Section 2.3.4.1 and 2.3.4.2 were studies whose
inferences were aimed at individual inferences.
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According to Table 2.1, the most commonly manipulated factors in these
model comparison studies were related to test characteristics (e.g., number
of examinees, number of subdomains, subdomain correlation, subdomain
length,item discrimination patterns). Other conditions for comparison included
normality and non-normality of subdomain ability distribution. Some of
the simulation studies were conducted to evaluate a single condition or a
combination of several. However, all of the studies presented in Table 2.1
were conducted to provide inferences relating to tests that measured individual
proficiency. These simulation studies did not consider situations where complex
test design methods (i.e., the booklet designs) and associated population
modeling techniques were used.

2.3.4.1 UIRT vs. MIRT

From the studies presented in Table 2.1 and 2.2, I compared the performance
of UIRT and MIRT. Several studies showed that MIRT –and variants thereof–
generally have an advantage in precision over UIRT methods of subscore
reporting across manipulated testing conditions (Reckase, 2009; Wang et al.,
2004; Yao, 2010). In essence, there is often a non-zero correlation between
subscales, which may mean that, in theory, Figure 2.1c is more appropriate
for subscale score estimation and will result in less biased item- and person-
parameter estimates because it takes into account subscale correlations (Wang
et al., 2004). It is only if there is no subscale correlation that UIRT and MIRT
are expected to produce similar estimates. Studies have confirmed that as
subscale correlation increased, MIRT significantly outperformed CUIRT at
improving subscale proficiency estimation and classification (Wang et al., 2004;
Yao & Boughton, 2007).

Evaluations of different test characteristics and conditions have also shown
that MIRT-methods have the advantage of producing better item- and person-
parameter estimates for assessments that reports subscale scores. For example,
a study by Yao and Boughton (2007) found that MIRT estimates using the
Markov chain Monte Carlo (MCMC) method produced significantly better
item- and person-parameter estimates than UIRT when subscale correlation
was high. In their work, Yao and Boughton (2007) added that UIRT- and
MIRT-based methods perform similarly when subscale correlation was low (Yao
& Boughton, 2007). That is to say that, on tests where inferences are made at
the individual level, item- and person-parameter estimates were found to be
fundamentally similar when there was little to no subscale correlation.

de la Torre and Song (2009) showed that total score estimates calculated
from CIRT and MIRT were particularly similar when subscales were highly
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correlated. The same study also found that the two methods produced similar
item parameter estimates when there were fewer subscales (i.e., a two subscale
test compared to a four subscale test). It was also observed that MIRT item
parameter estimates were more precise when the number of subscales increased.
Improvements in the precision of item parameter estimates in MIRT-based
methods were larger in shorter tests. Research conducted by Yao (2010) pointed
out that in situations of high subscale correlation (i.e., at subscale correlation
greater than .8), most IRT methods perform similarly. Wang (2017) wrote
that subscale correlation did not affect the performance of UIRT; in other
words, though MIRT seemed to perform well across all conditions, UIRT’s
performance was relatively the same (no gains nor losses in precision). This
makes sense since the different subscales are assumed to be different parts of
the test. As such, the subscales are modeled separately, and the relationship
between subscales may not matter much for the results.

This subsection shows that most literature highlights the advantages of
using MIRT-based methods for subscale score estimation over UIRT-based
methods. The advantages of MIRT stem from these models’ inherent property
that they often incorporate information from other subscales (i.e., subscale
correlation) in subscale score estimation. However, UIRT and MIRT methods
perform the same when subscale correlation is low. Several studies have also
shown that though MIRT-based methods (e.g., MIRT, HO-IRT) may generally
perform the same; a simple MIRT that implies correlated factors is significantly
better than the other MIRT-based methods like HO-IRT (i.e., de la Torre &
Song, 2009; Yao & Boughton, 2007). de la Torre and Song (2009) showed that
UIRT-based models perform similar to HO-IRT when there are fewer subscales
being assessed (i.e., two instead of 5). Nonetheless, the inferences that were
drawn from all of these cited studies were not aimed towards ILSA but rather
for tests aimed at providing individual learners achievement scores. Taken
together, these studies provide evidence that under some conditions, MIRT
(and its variants thereof) has an advantage over the UIRT based methods and
that the models perform the same in other situations.

2.3.4.2 Augmented vs. Non-augmented

Ostensibly, the methods that are applied in ILSA are essentially augmented in
that population level estimates are obtained from a model that incorporates
background variables to students test responses (ILSA score estimation is
discussed in-depth in Section 2.4.1.2). With further reference to Table 2.1 and
2.2, I compared the augmented and non-augmented methods in studies whose
inferences were for the individual student. Several studies conducted on tests
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that are for individual inference have shown that augmentation dramatically
increased subscale reliability across all simulated conditions (Longabach, 2015;
Skorupski, 2008; Wang et al., 2004). In addition to augmentation improving
reliability, Skorupski’s (2008) study revealed that augmentation resulted in
a relatively stable decrease in subscale score variability and an increase in
subscale correlation. As such, studies have shown that augmented subscale
scores are estimated with more precision over non-augmented subscale scores
(de la Torre et al., 2011; Edwards & Vevea, 2006; Kahraman & Kamata, 2004).

Research conducted by Edwards and Vevea (2006) revealed that subscale
scores obtained using an empirical Bayes IRT augmentation procedure provided
overall improvement in subscale score estimation over non-augmented IRT
scores. The empirical Bayes IRT procedure increased the reliability of subscores.
However, the magnitude of the gains observed via augmentation were found to
be a function of the manipulated test characteristics. For example, augmented
IRT-summed scale scores showed the greatest improvement in situations of
high subscale correlation, low numbers of items in each subscale and high
reliability in the subscale providing ancillary information (Edwards & Vevea,
2006). For tests that used within-test information as auxilliary information,
de la Torre et al. (2011) added that correlation based subscore estimation
methods – MIRT, augmented scoring, and HO-IRT – provide sufficiently better
subscore estimates than non-augmented subscale scores in tests comprised
of short subtests and highly correlated abilities. In addition, Wang (2017)
observed that the advantage of the two augmentation subscoring methods
(MIRT and Wainer’s augmentation method) over UIRT was more prominent
when the (a) subscale correlation was higher, (b) subscale being estimated was
shorter, and (c) length of the other subscales in the tests was longer.

Though Skorupski’s (2008) study showed that augmentation improved
reliability, it was observed that there was a relatively stable decrease in
variability of the subscales and an increase in subscale correlation. Longabach
(2015) showed that observed subscale scores may become less distinctive to the
overall group’s pattern of subscores or to the examinee’s other subscale scores
as a result of the decrease in subscale variability and increased correlation. To
that effect, Skorupski (2008) argued that the observed high inter-correlation of
subscales resulting from augmentation may be an indicator that the resulting
subscale scores are not useful in providing individual diagnostic information
since the scores will be too similar.

In conclusion, literature indicates that augmented methods have some
advantages over non-augmented methods. This literature has found that
augmented subscale scores are more reliable and precise than non-augmented
subscale scores. Nonetheless, though augmented methods were found to be
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advantageous, it is worthy to note that their improvements were greater over
some specific test conditions (i.e., high subscale correlation, short subscales,
subscale length). However, it has also been shown that choice of auxilliary
information greatly impacts on the utility of subscale scores for different
situations; that is to say, out of test information (e.g., demographic data) may
not be suitable for individual based scoring whereas within-test information
(e.g., other subscale performance) may enhance student level scores (see
Section 2.3.3).

2.4 Subscale Score Reporting in ILSA

This section takes the reader from the widely researched area of subscale score
estimation models for tests of individual inferences to those tests that emphasize
population and subpopulation level scores. To do so, this section will inform the
reader that though there are a lot of borrowed elements in score estimation, the
tests are designed, administered, scored and reported differently. Additionally,
this section will take the reader through the TIMSS overall and subscale score
estimation methods, which are grounded in the IRT framework. The little
information that is available for SACMEQ methods will also be discussed.

2.4.1 From the Individual to the Population

As established in the introduction, literature on subscale score estimation for
tests of individual inferences is well developed. However, there are several
fairly significant differences between tests that report achievement estimates
for individuals (e.g., the Norwegian national exams) and assessments that have
been designed to provide population-level achievement estimates (e.g., ILSAs).
These tests sometimes differ in the nature of their administration and overall
methods applied. For example, individual-level scores in a Norwegian national
mathematics test are obtained by (a) administering a single test to all the
candidates sitting for the exams that year, and then (b) using conventional
IRT methods to estimate examinee scores. In contrast, ILSA’s population-level
scores may be estimated from assessments that: (a) employ complex booklet
designs, and (b) whose scores are estimated through population modeling
techniques. Section 2.4.1.1 and 2.4.1.2 describe some prominent features of
ILSAs that make them different from tests that are intended to report individual
student scores. These methods —or variants thereof— are applied in TIMSS,
PISA, PIRLS and many other ILSAs.
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2.4.1.1 Multiple matrix sampling

ILSAs often assess broad content domains (e.g, mathematics and science in
TIMSS; and reading, mathematics, and science in PISA), their main aim is
to collect as much information as necessary on a construct to warrant the
reporting of population level estimates. As a result, large scale educational
assessments often contain a large number of items that assess broad content and
cognitive domains. For example, the TIMSS 2015 fourth grade assessment of
student achievement included a total of 169 mathematics and 176 science items,
respectively. All these items were intended to provide enough information that
would warrant the reporting of 14 scales5. In total, TIMSS prepared over 10
hours of test material.

As a response to the increased demand of content coverage without
increasing the testing time, most ILSA’s have adopted complex test designs
that rely on experimental designs (Carstens & Hastedt, 2010). These sampling
designs are also known as multiple–matrix sampling or rotated booklet designs
(Gonzalez & Rutkowski, 2010). The items on the test are distributed into
non-overlapping blocks according to the test specification. In other words,
these sampling designs assign items into blocks which are then systematically
placed into booklets; each examinee responds to a single booklet ((Gonzalez &
Rutkowski, 2010). Items on the instrument are administered to some portion
of the sample, and each examinee sees some proportion of the total test. For
instance, fourth grade TIMSS 2015 distributed all mathematics and science
items into a total of 28 non-overlapping blocks; that is, 14 mathematics blocks
(M01-M14) and 14 science blocks (S01-S14) (see Table 2.3, copied from Martin,
Mullis, & Foy, 2016).

Each block was composed of approximately 10 to 14 items. These items
were distributed to each block to reflect the content and cognitive distribution
of the total test item pool. The blocks were then distributed into 14 student
booklets (refer to Table 2.3 for block distribution). Each sampled student
responded to a single booklet that contained two mathematics blocks and two
science blocks; in other words, each participant responded to items from both
assessed content domains.

Literature outlines many other booklet designs that may be used in ILSAs
(Frey et al., 2009; Gonzalez & Rutkowski, 2010). Some examples include:

5According to Martin, Mullis, and Hooper (2016), TIMSS 2015 grade four reported seven
mathematics scales (i.e., three-content, three cognitive and an overall scale score) and seven
science scales (i.e., three-content, three cognitive and an overall scale score). The mathematics
content domains were: number, algebra, geometry, and data and chance. Science domains
included: life science, physical science, and earth science. Both the mathematics- and
science-domains each reported three cognitive domains: knowing, applying, and reasoning.
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Table 2.3
TIMSS 2015 Student Achievement Booklet Design — Fourth and Eighth
Grades

Student
Achievement

Booklet Part 1 Part 2
Booklet 1 M01 M02 S01 S02
Booklet 2 S02 S03 M02 M03
Booklet 3 M03 M04 S03 S04
Booklet 4 S04 S05 M04 M05
Booklet 5 M05 M06 S05 S06
Booklet 6 S06 S07 M06 M07
Booklet 7 M07 M08 S07 S08
Booklet 8 S08 S09 M08 M09
Booklet 9 M09 M10 S09 S10
Booklet 10 S10 S11 M10 M11
Booklet 11 M11 M12 S11 S12
Booklet 12 S12 S13 M12 M02
Booklet 13 M13 M14 S13 S14
Booklet 14 S14 S01 M14 M01

Note. Note. “M” = Mathematics; and “S” =
Science. Adapted from TIMSS 2015 Assessment
Design (p. 91), by M. Martin, I. Mullis, & P.
Foy, 2016, Boston, TIMSS. Copyright 2016 by
TIMSS.

complete permutation designs, Youden squares designs and others. For a
thorough descriptions of each of these booklet designs see, for example, Frey
et al. (2009); and Gonzalez and Rutkowski (2010). Note that methods for
TIMSS 2015 that were previously described may be classified as a partially
balanced incomplete block design.

Booklet designs have several advantages and disadvantages. Multiple-matrix
sampling allows assessments to measure broad content domains in relatively
reasonable time for examinees (Rutkowski et al., 2014). Booklet designs
may also be a solution to cluster position- and item carryover-effects, whilst
supporting increased item security and facilitating linking (see Frey et al., 2009,
for a full description). However, Mislevy (1991) acknowledges that booklet
designs result in two psychometric challenges for item calibration and estimating
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of individual examinee proficiency. First, only a few examinees respond to a
given item. Second, each examinee is exposed to a subset of the entire test. One
consequence is that these challenges may affect the accuracy of item parameter
estimates that may be used for scoring the individual examinee (Gonzalez &
Rutkowski, 2010; Mislevy, 1991). However, booklet designs facilitate reporting
population or sub-population scores (Frey et al., 2009; Gonzalez & Rutkowski,
2010; Mislevy, 1991).

To address issues and complexities relating to multiple-matrix sampling
designs, TIMSS 2015 employed latent regression methodology. These methods
will be described in Section 2.4.1.2.

2.4.1.2 Population modeling using latent regression

In addition to responding to achievement tests, examinees respond to
a background questionnaire that collects information about the students’
demographic data, academic and non-academic information, as well as attitudes
and motivation. Some ILSAs, like TIMSS, PISA and PIRLS, fit a statistical
model that incorporates a variety of information about the examinee to obtain
achievement estimates6. These background variables serve as covariates of
students’ achievement that are used in the scoring model.

ILSAs often use a single administered test to assess multiple domains. For
example, TIMSS assesses examinees in mathematics and science and PISA
assesses mathematics, reading and science. For these tests, examinee proficiency,
θn, on the entire assessment may be represented by a k-dimensional vector
θn = θn1, . . . , θnk, where k is the total number of assessed domains in each
ILSA. It is assumed that these subscales are assessed by different items for
each scale and that xn = (xn11, . . . , xnI11), . . . , (xn1k, . . . , xnIkk) represents k
sets of I1 to Ik responses. Therefore, xn may be a vector of responses for
examinee n from the k-dimensions; in practice, a vector of responses includes
169 and 172 mathematics and science items for TIMSS 2015 fourth grade.
But because both TIMSS and PISA use rotated booklet designs, xn is not a
complete vector since each student will be exposed to a subset of the items. For
example, TIMSS uses a multidimensional IRT model for overall mathematics
and science. This multidimensional-IRT model assumes test-level or between-
item multidimensionality (Adams et al., 1997; Adams & Wu, 2007).

Since IRT-models are latent variable models it is reasonable to think of θ
as a missing value and to approximate a statistic involving θ (e.g., population
mean, a percentile point, or a sample regression coefficient) by its expectation

6These techniques are similar to the augmented methods described in Section 2.3.3.
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given a matrix of item responses, xn, and a matrix of all examinees responses
to the administered background variables, y (Mislevy, Johnson, et al., 1992).
Mislevy considered θ as missing data, an approximate of t(θ, y) (i.e., sample
mean or sample percentile point) by its expectation given (x, y). That is to
say:

t̂(x,y) = E[t(θ,y)|x,y]

=
∫
t(θ,y)P (θ|x,y)dθ

(2.6)

where t̂(x,y) is an estimate of the statistic t(θ,y) (i.e., mean or sample
percentile point to estimate a corresponding population quantity T ) by its
expectation given (x,y). Since closed-form solutions are not forthcoming in
IRT models, the integration in Equation (2.6) uses random draws from the
conditional distributions (P (θi|xi,yi)) for each examinee, i where, i = 1, . . . , n
(Mislevy, Johnson, et al., 1992). Most often, these values are drawn multiple
times, and the values are known as plausible values in ILSA or multiple
imputations in missing data analysis (Rubin, 1987).

The conditional distribution of θ may be derived in the following way.
Using Bayes’ theorem and then the IRT assumption of local independence (i.e.,
P (xn|θ,yn) = P (xn|θ)),

P (θ|xn,yn) ∝ P (xn|θ,yn)P (θ|yn)
= P (xn|θ)P (θ|xn)

(2.7)

where P (xn|θ) is the likelihood function for θ induced by observing xn and
P (θ|yn) is the distribution of θ for the observed background variables, yn.
Equation (2.7) stipulates that the posterior distribution of a student with
observed responses, xn, vector of background variables, yn is proportional to
the product of the likelihood of θ induced by xn through the response model
and the population density (Mislevy, Beaton, et al., 1992).

The distribution of θ is assumed multivariate normal with a mean given by
a linear model (also called the conditioning model):

θ = Γ′y + ε (2.8)

where y is a vector of background- or conditioning-variables; ε ∼ N(0,Σ); Γ is
a matrix each of whose columns is the effects for each conditioning variable; and
Σ is a residual covariance matrix for θ7, θ. As a means to estimating proficiency

7The method for estimating Γ and Σ with the Expectation and Maximization (EM) has
been thoroughly described in Mislevy (1985)
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using plausible values, all student background questionaire variables and some
student demographic information are considered as conditional variables to
form y. Operationally, all student background variables in TIMSS are subject
to a principal component analysis in order to reduce the number of variables
used in the model used to estimate Γ. It is common practice that only those
components accounting for 90% of the variance in the data are selected (see
Martin, Mullis, & Hooper, 2016, p. 13.16). The resulting principal components
are used as the predictors, y, of the conditioning model.

2.4.2 Scaling for TIMSS and SACMEQ

The following section describes an overview of the TIMSS and SACMEQ scaling
methodology. This section will provide an overview on the IRT-models that
are used to obtain overall and subscale scores.

2.4.2.1 TIMSS

Three distinct IRT models, depending on item type and scoring procedure,
were used in the analysis of the TIMSS 2015 assessment data (Martin,
Mullis, & Hooper, 2016). These latent variable models were used to describe
the probability of a student’s pattern of responses given their proficiency,
unobserved latent trait, and various characteristics of the item (Martin, Mullis,
& Hooper, 2016). TIMSS 2015 fit a two-dimensional model of mathematics
and science. A 3PL model (see Equation (2.1)) was used in the calibration of
multiple-choice items (scored correct or incorrect). TIMSS 2015 also employed a
2PL model (i.e., similar to Equation (2.1) with ci = 0) for constructed response
items that were scored correct or incorrect. A GPCM (Equation (2.2)) was
used for the polytomous constructed items. The constructed response items
for which the GPCM model was fit had three possible score levels: 0, 1, and 2.

The overall procedure for obtaining population-level scores may be
summarized into a three-step process (von Davier & Sinharay, 2010). First,
item parameters are estimated from the multidimensional-IRT (where the two
dimensions are math and science). Second, the estimated item parameters are
fixed and used to get estimates of Γ and Σ. Third, using estimates of Γ and
Σ, plausible values are drawn. Though TIMSS fits a multidimensional model
of mathematics and science, these constructs are treated as unidimensional
even though subscale scores are reported. In other words, after obtaining item
parameters for the overall scale, subscale scores are estimated assuming an
augmented UIRT model which considers the conditioning variables. Yamamoto
and Kulick (2000) argue that one major disadvantage to this calibration
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approach is that the differences in content domains are often attenuated as the
scores tend to be regressed towards the mean. The researchers further argued
that “each content area, mathematics or science, is treated separately when
estimating item parameters, differential profiles of content area proficiency
can be examined, both across countries and across subpopulations within a
country” (p. 265). In other words, TIMSS fixes the item parameters from the
mathematics domain in Figure 2.2 (a). These models do not assume further
dimensionality in the mathematics construct and specific subscale correlation in
item calibration. In TIMSS 2015 eighth-grade mathematics, a four-dimensional
MIRT model which fixes the unidimensional mathematics item parameters is
fit to estimate subscale scores (see (b) in Figure 2.2).

Figure 2.2
Example TIMSS Scaling Process

Educational Testing Service’s MGROUP program (Sheehan, 1985; Thomas,
1993) was used to generate the IRT proficiency scores. One advantage of
MGROUP is that it can be used to perform multidimensional scaling using
the responses on the test. In other words, the multidimensional scaling feature
makes it possible to estimate content and cognitive domain proficiency scores.
However, in practice, TIMSS fits a two-dimensional model of mathematics
and science that does not assume any multidimensionality within each broad
content domain wherefrom subscale scores may be estimated (see Figure 2.2).
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2.4.2.2 SACMEQ

Students and teachers scores on SACMEQ’s achievement domains are reported
as a mean achievement score that is scaled using the Rasch model in IRT
(Sandefur, 2018; Spaull, 2011). All of the items on SACMEQ’s achievement
domains are dichotomously scored. After item calibration has produced item
parameter estimates using all items, b̂ = (b̂1, · · · , b̂n), those item parameters
are used to estimate an overall score. For every cycle, the Rasch-scaled scores
on reading, mathematics and HIV/AIDS knowledge test (HAKT) test are
transformed to a Grade 6 pupil average of 500 and standard deviation of 100
(Spaull, 2011).

However, some key components of SACMEQ’s scaling process are not
publicly available (i.e., SACMEQ did not release the list of item parameters
that were used for scoring in any of its cycles). Beyond test construction
information and sampling, among other pieces of relevant information, not
much information about the actual scoring process (i.e., what estimator they
use) is disclosed. A review of the technical documentation simply provides
a listing of the IRT-model used to generate scores (the Rasch model in this
case); a specification of the linear transformation of the scores; and a thorough
definition of the proficiency levels.

2.5 Subscale Score Value

Because subscale scores are: (a) estimated from less information relative to the
total score, and (b) correlated with the total score, it may be the case that the
subscore does not provide unique information about the subdomain than can
be garnered from the total score. This issue is often characterized in terms
of value (Haberman, 2008a, 2008b; Puhan et al., 2010). A subscale score is
considered to be of added value if the correlation between the true subscale
score and the observed subscale score is greater than the correlation between
the true subscore and the observed total score (Sinharay et al., 2007). From
a prediction perspective, a subscore is said to have value if it can predict the
true subdomain better than the total score (or any other score). Interest in
determining if a subscore has value and deriving metrics for quantifying value
has increased over the past decade (e.g., Brennan, 2012; Feinberg & Jurich,
2017; Haberman, 2008b; Tate, 2004). Of particular interest to the study, I will
discuss the proportional reduction in mean squared error (PRMSE)
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2.5.1 Haberman’s PRMSE

Haberman (2008b) proposed the proportional reduction in mean squared error
(PRMSE) index that could be used to evaluate the value of a subscale score.
The original PRMSE was developed based on Kelley’s regressed-score estimates
(Kelley, 1947), which are rooted in CTT. The general idea was to compare
PRMSEs of several indicators of a true subscale score based on multiple scores.
These were: the subscale score itself, the total score estimate of the subscale
score, and the augmented subscale score (a linear combination of the subscale
score and the total test score).

Haberman and Sinharay (2010) also proposed a MIRT-based PRMSE
(PRMSE(θd|Md))8 and its CUIRT equivalent (PRMSE(θd|Ud))9. The IRT-
based PRMSEs measure “how much the mean squared error in estimating the
score is reduced by any observed score (relative to using the mean)” (Thissen,
2013, p. 30). Mathematically, the model implied PRMSE of a subdomain, d,
may be presented as:

PRMSEdθ = 1− τ̂2
dθ

τ̂2
d0θ

(2.9)

where τ̂2
dθ is the error variance associated with the observed IRT score’s

approximation of the true subscale score, and τ̂2
d0θ is the variance of the

true IRT subscale score. By definition, PRMSE is analogous to the reliability
of a model-specific subscale score serving as an estimate of a true score (see
Green et al., 1984; Rosa et al., 2001). Therefore, PRMSE is equivalent to:

ρdθ = σθd
2 − σed

2

σed
2 (2.10)

where ρdθ is the subdomain reliability, σθd
2 is the variance of the observed

subdomain proficiency, and σed
2 is the average subdomain score error variance.

It should be noted that the larger the PRMSE, the smaller the mean squared
error to estimate the true mean squared error (Meijer et al., 2017).

Studies have illustrated how the PRMSE may be used to quantify the added
value of subscale scores (Haberman, 2008b; Haberman & Sinharay, 2010).
Operationally, the PRMSE may reveal which subscale score from several com-
peting models contains more information and may be more useful in providing
diagnostic information (Wedman & Lyrén, 2015). Therefore, the PRMSEs

8PRMSE(θd|Md) is the PRMSE using the EAP estimate for θ for subscale d computed
from a multidimensional IRT model fitted to subscale d as an estimate of θd.

9PRMSE(θd|Ud) is the PRMSE using the EAP estimate for θ for subscale d computed
from a unidimensional-IRT model fitted to subscale d as an estimate of θd.
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obtained from CUIRT (PRMSE(θd|CUIRT )), CIRT (PRMSE(θd|CIRT ))10,
and MIRT(PRMSE(θd|MIRT )) subscale scores will be compared in order to
evaluate which subscale scores contain the most information, and thus reveal
which subscale score would be better to report. Extending Haberman’s example,
it should be seen that if:

1. PRMSE(θd|CUIRT ) > PRMSE(θd|CIRT ) and PRMSE(θd|MIRT ),
then subscale score θd|CUIRT has value over θd|CIRT and θd|MIRT .

2. PRMSE(θd|CIRT ) > PRMSE(θd|CUIRT ) and PRMSE(θd|MIRT ),
then subscale score θd|CIRT has value over θd|CUIRT and θd|MIRT .

3. PRMSE(θd|MIRT ) > PRMSE(θd|CUIRT ) and PRMSE(θd|CIRT ),
then subscale score θd|MIRT has value over θd|CUIRT and θd|CIRT .

2.6 Summary

This literature review discussed subscale score estimation within the IRT
framework for tests that are designed to report individual- and population-level
scores. Major emphasis was placed on UIRT- and some MIRT-based models
(i.e., MIRT and HO-IRT), as well as augmented and non-augmented scoring
procedures. Much of the literature that was reviewed comprised of application
and comparison studies of these IRT-models that were conducted on tests
that were designed to report individual-level scores. It was widely suggested
through literature that MIRT-models perform better than UIRT; though in
some conditions they performed the same. Despite the model’s common use
for subscale score estimation in tests that report individual scores, little has
been done to compare how well they would perform when applied to tests that
are designed for reporting population-level scores.

The literature review also provided a brief review of the ILSA scaling process
with emphasis on TIMSS and SACMEQ. As much as TIMSS, PISA, and PIRLS
—to name but a few— employ similar methods, they are different from those
applied in the SACMEQ scaling process. For instance, TIMSS, PISA and
PIRLS employ complex booklet designs, and use population modeling and
latent regression to estimate population parameters. In contrast, SACMEQ
does not use these complex sampling designs and it is not stated in any of
their technical documentation that they draw on the use of plausible value
methodology.

10PRMSE(θd|CIRT ) is the PRMSE using the EAP estimate for θ for subscale d computed
from a CIRT model fitted to subscale d as an estimate of θd.
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ILSAs generally tend to apply a UIRT model to estimate population-level
subscale scores. TIMSS uses a multidimensional model to obtain item parameter
estimates for mathematics and science. However, the item parameters for each
of these domains are used to score each subdomain. Yet, UIRT models, of
which CUIRT and CIRT are classified, tend to ignore that each domain being
tested is comprised of several content-based subdomains whose scores are also
reported.

One observation from the literature review is that ILSA score estimation
methods are a departure from the methods developed for scoring tests geared
towards reporting scores of individual proficiencies. For example, IRT model
specification which specifies the factor structure of the test. The assumed
model is used to obtain item parameter estimates. As another example, ILSAs
employ the conditioning model to obtain scores. This may be viewed as a form
of augmentation which is geared towards improving the quality of reported
scores. However, research into how issues present in subscale score estimation
for individual inference may manifest in ILSA is limited.

Literature also pointed out conditions that may result in more valuable
subscale scores. Ideally, subscale scores are estimated from less information,
and the more correlated subscale scores are with the overall score, the less likely
the subscale score would be valuable. From a model perspective, the nature
and structure of the CUIRT model may result in lower PRMSE (an index of
subscale value) compared to CIRT and MIRT. Conceptually, CUIRT does not
model subscales. Since CUIRT assumes that a test is unidimensional, reported
subscale scores may not result in larger PRMSE values because the subscales
may inherently be highly correlated with one another and the overall score. A
subscore is considered to be of added value if the correlation between the true
subscore and the observed subscore is greater than the correlation between the
true subscore and the observed total score (Sinharay et al., 2007). Therefore
if the subscores are highly correlated among themselves, as well as with the
overall score, then the likelihood of estimating valuable subscales would be low
from CUIRT than the models that assume multidimensionality.

Based on the literature review, Chapters 3 and 4 describe the simulations-
and empirical-methods. The two chapters will describe how I intend to evaluate
the performance of several subscale score estimation methods: CUIRT (and it’s
extension, CUIRT-Op), CIRT, MIRT. Though there exist many subscale score
estimation models, the three studied models are commonly used in practice.
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Chapter 3

Simulation Methods

3.1 Introduction

In an effort to answer the research questions in Section 1.4, several simulation
studies were conducted. This study used the TIMSS and SACMEQ studies
to motivate and inform my simulation studies. That is, the simulated test
conditions (i.e., number of subscales, subscale length, correlation between
subscales) were influenced by the empirical structures of these two large-scale
assessments. The first simulation (Study 1) was designed to resemble the
SACMEQ III’s HAKT test, and the second (Study 2), the TIMSS 8th grade
mathematics test (for descriptions of their test specifications, see Chapter 2).
The difference between the two simulation studies is that Study 1 does not
employ matrix sampling or booklet designs whilst Study 2 does.

Each of the simulation studies were conducted separately assuming single-
and multiple-groups samples (see Table 3.1). Since ILSAs are cross-cutural
studies, considering these two samples made it possible to understand how
competing IRT subscale score estimation models perform when you move from
single- to multiple-populations. For the single group case, I chose one middle
performing country whilst the multiple groups case sampled nine populations.
Section 3.2.2 and 3.3.2 describe how the samples were selected. In what follows,
I describe methods for implementing these two simulations.

Table 3.1
Simulation Studies

Sample
Study A B
Study 1 Single group Multiple groups
Study 2 Single group Multiple groups

Sections 3.2 and 3.3 describe the (a) study conditions; (b) sample sizes;
(c) data generation processes (DGP); and (d) scoring techniques for each
simulation study. To simulate data, the following steps were repeated for each
studied condition; generate: (a) item parameters, (b) subscale specific person
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proficiency parameters, and (c) item response patterns. To ensure stability,
these steps were repeated across 100 replications. This chapter concludes
by outlining simulation study analysis. Section 3.4 discusses the criteria for
evaluation of the accuracy of parameter estimation from the CUIRT, CIRT,
and MIRT models. To evaluate model performance, I examined: bias, absolute
bias, root mean squared error of the parameter estimates, PRMSE, and model
fit.

3.2 Simulation Study 1

Study 1 simulates data to reflect the SACMEQ III’s HAKT test design.
In its current design, the HAKT test assesses five subdomains. These are:
(a) definitions and terminology, (b) transmission mechanisms, (c) avoidance
behaviors, (d) diagnosis and treatment, and (e) myths and misconceptions
(Maughan-Brown & Spaull, 2014). The test was comprised of 86 multiple
choice (MC) items which were not equally distributed across the domains
(i.e., a distribution of 10-28-24-16-8). The items on the HAKT test are all
dichotomously scored.

3.2.1 Study Conditions

In this section, I will describe the conditions that were studied in my simulations.
To conduct the study, tests were simulated to mimic empirical conditions
observed in an ILSA setting. The conditions studied in this simulation study
manipulated three factors that are directly related to general test characteristics.
These are: number of subscales, the correlation between subscales, and the
number of items in each subscale. For each choice, both empirical and theoretical
justification will be provided.

3.2.1.1 Number of Subscales

A study by Sinharay (2010) provided a summary of the test characteristics
of 25 empirical tests that report subscale scores for person inferences. The
summary outlined the number of subscales in each test, average subscale length,
subscale correlation and reliabilities. A total of 20 of the 25 tests had between
two and four subdomains. Most of the scales in ILSA (e.g., TIMSS, PISA, and
SACMEQ) are comprised of between three and five content subscales (Martin,
Mullis, & Hooper, 2016; Moloi & Chetty, 2014; OECD, 2017). SACMEQ’s
HAKT test had 5 content subscales. With that in consideration, in simulation
Study 1, I evaluated tests of three and five subscales.
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3.2.1.2 Subscale Correlation

Previous research has shown that subscale scores have better psychometric
properties (i.e., added value) when there are lower correlations between subscales
(Haberman, 2008b; Sinharay, 2010). In other studies, upper bounds of the
correlations have been specified at .9 (e.g., de la Torre & Patz, 2005; Wang,
2017; Yao, 2010) and anything higher than that makes the test essentially
unidimensional, thus making the scores less distinctive from one another. In
contrast, low subscale correlation may render the subscales more distinct.
Sinharay’s (2010) summary revealed that correlations between subscales may
range from .41 to .77. However, some ILSAs exhibit large correlations between
subscales within the same content scale (i.e., .90 and above). Appendix A
shows the correlations of each subscale on the TIMSS 2015 assessment by
country. These correlations were calculated using IDB Analyzer (IEA, 2020).
The IDB Analyzer is a windows-based tool that appropriately treats the ILSA
study designs and creates SAS code or SPSS syntax to perform analysis.
Tables A.1 and A.2 show each country’s correlation between the mathematics
and science domains, respectively. Table A.3 to A.6 show the correlations
between each of the mathematics subdomains and the science subdomains.
Based on Appendix A, it is evident that the subscale score correlations may
differ between countries. For example, the correlation between the algebra and
geometry subscales were .94 and .74 in the BSJG districts in China, and Saudi
Arabia, respectively. The lowest observed subscale correlation was .45 between
geometry and earth sciences for Morocco. To summarise, Appendix A shows
that subscale correlations may be moderate between subscales from different
content domains (i.e., .45 and above) and higher between subscales from the
same content scales (i.e., between .71 and .95).

Therefore, to explore the subscale score estimation process in ILSA, I
consider several between-subdomain correlations that represent a realistic,
empirically observed range: ρ, where ρ = .45, .75, .951. Note that ρ = 0 was
not specified in the study because it is highly unlikely that such correlations
would occur in a practical testing situation (Wang, 2017). The corresponding

1The magnitude of the correlations is larger between .45 and .75 than it is between .75
and .95.

37



correlation matrix, Σ, for a d = 1, 2, 3, . . . , D domain test may be expressed as:

Σ =



θ1 θ2 θ3 . . . θD

θ1 1
θ2 ρ 1
θ3 ρ ρ 1
...

...
... . . . . . .

θD ρ ρ ρ
. . . 1


As a limitation, subscale correlations in all simulated conditions were fixed

equal (i.e., I did not consider different correlations between subdomains).
However, because I consider several bivariate correlations, it is possible to
examine how different correlations can impact the subscale score estimation
process in ILSA. That is, what are the expected results when subscale correlation
is low-, moderate, or high?

3.2.1.3 Number of Items per Subdomain

One important consideration when developing a test is the test length.
Researchers have shown that test length may impact on the accuracy of IRT
item- and person-parameter estimates (de la Torre et al., 2011; Kahraman &
Kamata, 2004; Shin, 2007). Test length may be defined in terms of the number
of items and the number of score points. Sinharay’s (2010) summary showed
that most of the tests possess an average of 10 to 30 items in each subscale,
which were distributed into tests whose total length ranged from 40 to 204
items.

SACMEQ’s HAKT test comprised of between 8 and 28 items per subdomain.
As a result, Study 1 (no booklet designs) specifies 5, 10, and 15 (short, moderate
and long, respectively) item subtests. That is, Study 1 evaluated several tests
of equal subdomain length: (1) 5-5-5, (2) 10-10-10, (3) 15-15-15, (4) 5-5-5-5-5,
(5) 10-10-10-10-10, and (6) 15-15-15-15-15. As a result, the total test lengths
were between 15 and 75 items2. Simulated examinees were administered all of
the items (i.e., each sampled student responded to all of the items on the test).
These simulations were conducted over single- and multiple-group samples, the
details of which are described next.

2Since I only considered subscales of equal length (i.e., 5-, 10- and 15-items per domain),
I did not get to a test condition that had 28 items-per-subdomain because it would have
resulted in an unrealistically long test. The three and five-subdomain tests would have
resulted in tests of 84 and 140 items. Such test lengths are uncharacteristic of the SACMEQ
assessment and may need more time allocated to test administration compared to the actual
time allocated for assessing each content area.

38



3.2.2 Sample

Edwards and Vevea (2006) argued that a sample size of 2,000 was large enough
to produce stable item parameter estimates whilst being small enough to
converge relatively fast for UIRT models. Yao and Boughton (2007), on the
other hand, showed that a sample size of 3,000 was sufficient enough for
estimating item parameter models in MIRT models that consider factor level
multidimensionality. Sample size sufficiency is typically not an issue in ILSA
since these studies are usually conducted in multiple countries, resulting in large
sample sizes. For example, a total of 61,396 students participated in SACMEQ
III. It was from this representation that 9 populations in each study were
drawn: three top-, middle- and low-performing countries. For the single group
case, I chose one middle performing country whilst the multiple groups case I
sampled nine populations. The reasons for selecting nine countries out of all
the participants on the surveys were twofold. First, this combination of groups
captured the spread of the populations across the two assessments. Second,
limiting the study to nine groups would keep the simulation manageable. As a
result, the empirically observed sample sizes came up to 34,847 in SACMEQ
III.

To facilitate an examination of how different subscale score estimation
methods perform over diverse populations, all the simulations were conducted
over two different types of samples that resulted in the pre-specified total
sample sizes. The first component of each study assumed that the tests were
administered to a single group of simulated examinees. In other words, the entire
sample was generated from a sample that had the same mean (µ) and standard
deviation (σ), respectively. For the single group case in Study 1, I simulated
a sample of 6,000 examinees, which is typical, if large for individual country
sample sizes. The second sample assumed that the tests were administered to
diverse populations. A simulated total sample size of 30,000 for Study 1 was
comparable to empirically observed sample sizes. Each of the group sizes were
drawn similar to the empirically observed country samples on SACMEQ III.
Table 3.2 shows the sample distribution for the multiple group’s simulation
that was drawn from the countries that participated in SACMEQ III. The table
also shows the each group’s proficiency distribution and standard deviation that
were used in the data generation process. It should be noted that Study 1’s
domain proficiencies and standard deviation were equal across all subdomains
(see Section 3.2.3.2). Since Study 1 was based on SACMEQ III’s HAKT test
and I was not able to obtain empirical subdomain scores3, I used the overall

3I was not granted item-level information by SACMEQ because of concerns related to
test-security and validity.
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Table 3.2
Sampling- and Proficiency-Distribution Used in the Data Generation Process
for Simulation Study 1: Multiple Groups

G N θD sdD

1 3656 1.76 .82
2 3491 1.12 .85
3 2242 .44 .97
4 5859 .07 .75
5 2253 .04 .88
6 3329 -.04 .88
7 2482 -.83 .80
8 3701 -1.27 .87
9 2987 -1.71 .86

Note. N = Sample size; G =
group; θD = True population
subdomain proficiency; sdD =
Subdomain proficiency standard
deviation.

score for each country to generate each subscale proficiency4.
Table 3.2 shows the distributions for each population. The population

means and standard deviations were different for each group and these were
drawn from the empirical data sets.

3.2.3 Data Generation Process

In this section, I will describe the data generation process (DGP) for Study 1.
Data were generated for a single group and multiple groups assuming sample
sizes of 6,000 and 30,000, respectively.

3.2.3.1 Item Parameter Generation

The unique item set that was used in Study 1 comprised of multiple choice
(MC) items that were generated using the Rasch model (see the description
of the model in Chapter 2). Rasch was specifically chosen because that
is the model that SACMEQ uses (Sandefur, 2018; Spaull, 2011). The
difficulty parameters were randomly generated from a uniform distribution:

4The overall scores are publicly reported in the technical reports and executive summaries.
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bdi ∼ U(−2.35, 2.35). Researchers have argued that the distribution of difficulty
parameters, (−2.35, 2.35), helps to ensure that low and high proficiency levels
are modeled (Kim & Lee, 2006; Wolf, 2014). The generated item parameters
were then randomly assigned to each subscale. These generated item parameters
were fixed for all 100 replications on each test condition. An example of
the distribution of difficulty parameters for a three-subdomain, 5 items per
subdomain test are illustrated in Table 3.3.
Table 3.3
An Example of Item Parameters for a Three-Subscale Test.

Subdomain Item b1i b2i b3i

1 1 -.34
1 2 .52
1 3 -.07
1 4 1.58
1 5 -1.7
2 6 -1.54
2 7 .87
2 8 1.01
2 9 -.99
2 10 1.51
3 11 -1.62
3 12 .13
3 13 1.59
3 14 -1.32
3 15 1.22

Table 3.4 shows some descriptive statistics for all of Study 1’s generating
difficulty parameters. The average item difficulties are around 0 for all
simulated test conditions. Subsequent standard deviations ranged between
between .858 and 1.491. The median of the item parameters, across all of the
simulated conditions, were all between −.610 and .430. The table also shows
the minimum and maximum values of the generating item difficulty parameters.
Table 3.4 also presents the subsequent ranges of the item parameters (i.e., the
difference between the maximum and minimum item difficulty by condition).
For example, Domain 1 on the simulated test with 3 subdomains, 5 items per
domain had a mean item difficulty of −.002, standard deviation (SD) of 1.202,
median of −.070. The respective minimum and maximum values of −1.700 and
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Table 3.4
Descriptive Statistics for Study 1’s Generating Difficulty Parameters

I J D Mean SD Median Min Max Range
3 5 1 -.002 1.202 -.070 -1.700 1.580 3.280

2 -.002 1.249 .280 -1.540 1.510 3.050
3 .000 1.449 .130 -1.620 1.590 3.210

10 1 .001 1.129 .295 -1.760 1.630 3.390
2 -.001 1.171 .095 -1.820 1.550 3.370
3 -.001 1.491 .405 -2.330 1.570 3.900

15 1 .000 1.245 -.600 -1.650 1.910 3.560
2 .001 1.291 -.230 -1.880 1.820 3.700
3 -.001 1.172 .390 -1.640 1.580 3.220

5 5 1 -.002 .780 .390 -1.250 .690 1.940
2 .000 1.370 -.380 -1.250 1.810 3.060
3 .000 1.415 -.610 -1.250 2.320 3.570
4 .000 .858 -.280 -.870 1.140 2.010
5 .002 1.475 -.420 -1.230 2.310 3.540

10 1 -.001 1.326 -.050 -1.530 2.160 3.690
2 .000 1.484 .065 -2.270 1.620 3.890
3 .001 1.110 .310 -1.510 1.580 3.090
4 -.001 1.202 -.165 -1.510 1.950 3.460
5 .000 1.373 -.105 -1.930 1.600 3.530

15 1 .000 1.340 .430 -2.210 1.350 3.560
2 .001 1.246 .280 -1.950 1.860 3.810
3 .000 1.075 .010 -2.010 1.600 3.610
4 .000 1.201 -.480 -1.270 2.350 3.620
5 -.001 1.232 .150 -1.920 1.650 3.570

Note. I = number of domains; J = items per domain; D = Domain;
SD = standard deviation; Min = minimum; Max = maximum.
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1.580 resulted in a range of 3.280. It should be noted the the generating item
parameters were the same for the single and the multiple-groups simulations.

3.2.3.2 Person parameter generation

The person parameters used in Study 1 were resampled across conditions, and
across replications. Subscale proficiency was estimated from a multivariate
normal (MVN) distribution for both the single and multiple group’s simulations.
To obtain subscale proficiency estimates for the single group’s simulations, a
vector of each examinee’s true subscale scores, θj , were simulated from a
distribution, θj ∼ ND(µ,Σ), where µ is a 1 × D vector of sample means,
and Σ is a D × D correlation matrix of the true subscale scores (refer to
Section 3.2.1.2 for details). Based on the subscale correlation matrix (Σ) with
1s on the diagonal and correlations of .45, .75 and .95; respective domain means
were set to 0.

The d = 1, 2, . . . , D subscale proficiency scores for the p = 1, 2, . . . , P
multiple groups were drawn from a MVN distribution: θpj ∼ NDp

(µpd,Σ)
where θpj and µpd are the country specific subscale proficiency estimates
and subscale mean vector’s. Therefore, subscale proficiency estimates were
simulated from P ×D country mean and standard deviation matrices, Σ. The
estimated means and variances of nine countries on SACMEQ III’s HAKT test
were used as the generating subscale proficiency values for the populations
that comprised the multiple group’s sample. Each reported country score was
converted to a Z−score (assuming the SACMEQ mean and standard deviation
of 500 and 100, respecively) and that was used as the true mean. In this
study, µpd =

[
µp1, µp2, . . . , µpD

]
and σpd =

[
σp1, σp2, . . . , σP D

]
.

However, each group’s subscale score was set to be equal on all subscales, and
these values were drawn from SACMEQ III’s population means (i.e., µp1 =
µp2 = . . . = µP D). Based on the means and correlations between subscales
(Σ), mean and standard deviation matrices for the multiple group simulations
were as follows: µP D = 1.76, 1.12, .44, .07, .04,−.04,−.83,−1.27,−1.71 and
σP D = .82, .85, .97, .75, .88, .88, .80, .87, .86. µP D and σP D were the same over
all domains for the multiple populations.

3.2.3.3 Response Pattern Generation

Test responses were generated from a test-level multidimensional Rasch model
(the components of the Rasch model were explained in Section 2.2.1 in
Chapter 2). The simulation assumes the underlying factor structure is a
multidimensional one where the number of subdomains set according to the
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simulation condition, and that the total score is a linear composite of possibly
correlated sub-domains. R package lsasim (Matta et al., 2018) was used to
generate item responses from a multidimensional item response model of the
form,

P (xdij = 1|θdj , bdi) = 1
1 + exp (−(θdj − bdi))

, (3.1)

where bdi is the item difficulty parameter associated with item i = 1, 2, . . . , Id
and sub-domain d = 1, 2, . . . , D, and θdj is the proficiency for sub-domain
d of examinee j = 1, 2, . . . , J . Test responses were generated seperately for
6,000 and 30,000 examinees used in the single- and multiple-groups studies,
respectively.

3.2.4 Item Calibration and Scoring

Based on the generated item responses from all simulations, the next step was
to estimate population proficiency distributions. SACMEQ administers all the
items to every sampled examinee; each student is exposed to all the items on
the entire test. SACMEQ estimates item parameters using the Rasch model.
The estimated item parameters are then fixed and used to estimate proficiency
scores.

Scores in Studies 1 were estimated from three IRT models (based on assumed
factor structure). These models were: composite-UIRT (CUIRT), consecutive-
UIRT (CIRT), and multidimensional (MIRT)5. First, the items were calibrated
assuming each specified model. Second, estimated and assumed fixed item
parameters were used for proficiency estimation.

Scores in Study 1 were estimated using EAP estimation. Since SACMEQ
does not report all the details about proficiency estimation, Study 1 estimated
individual examinee’s proficiency using Expected-a-posteriori method (EAP,
Bock & Mislevy, 1982). The choice of the EAP method was strengthened by
findings from a series of simulation studies that have been conducted (e.g., Kim
& Nicewander, 1993; Lu et al., 2005; von Davier et al., 2009). The researchers
showed that, though scores tend to regress towards the mean, EAP provide
better group-level estimates than marginal maximum likelihood (MML) or
Warm’s mean weighted likelihood estimates (WLE). von Davier et al. (2009)
also argued that mean EAP estimates obtained on ILSAs were not biased.

To complement the proficiency estimates, I also estimated the PRMSE,
and obtained model fit indices. The PRMSE was used to compare which
IRT subscale score estimation method resulted in the most valuable subscale

5All of the models have been thoroughly described in the literature review.
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scores. This index was estimated and reported for each subscale score that was
calculated based on an IRT method. PRMSE was estimated for each simulated
condition. As previously discussed, the PRMSE was estimated equivalent to
the subdomain marginal reliability (Haberman, 2008b). In addition, the model
fit indices were used to compare model fit. The fit indices I used in my study
were: -2 log likelihood, AIC and BIC indices. These model fit indices will be
discussed in Section 3.4.3.

3.2.5 Summary of Simulation Study 1
Table 3.5 provides a summary of Study 1’s simulation conditions. The three
simulation conditions (number of subscales, number of items per subscale and
subscale correlation) yielded 18 conditions in total. One hundred replications
were carried out under each condition. All analysis were conducted for the the
single and multiple groups studies.
Table 3.5
Summary of Study 1 Simulation Conditions

Groups N D J ρ

Single 6,000 3 5 .45 .75 .95
10 .45 .75 .95
15 .45 .75 .95

5 5 .45 .75 .95
10 .45 .75 .95
15 .45 .75 .95

Multiple 30,000 3 5 .45 .75 .95
10 .45 .75 .95
15 .45 .75 .95

5 5 .45 .75 .95
10 .45 .75 .95
15 .45 .75 .95

Note. N = Sample size; D = Number of subscales;
J = Subscale length; ρ = Subscale correlation.

3.3 Simulation Study 2

Study 2 simulated data to reflect an assessment that employs multiple matrix
sampling and latent regression techniques to estimate population proficiency
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(a clear description is provided in the literature review). To achieve this, data
were simulated to mimic the TIMSS 2015 eighth grade mathematics test design.
The assessment was composed of 209 dichotomous and polytomous scored MC
and constructed response (CR) items, which were drawn from four content
subdomains.

3.3.1 Study Conditions

In this section, I will describe the conditions that were studied in simulation
study 2. To conduct the study, tests were simulated to mimic empirical
conditions observed in an ILSA setting. The conditions studied in this
simulation manipulated three factors that are directly related to general test
characteristics. These are: number of subscales, the correlation between
subscales, and the number of items in each subscale. The details and the
rationale behind their choice was empirically and theoretically justified.

3.3.1.1 Number of Subscales

Most of the scales in ILSA (e.g., TIMSS, PISA, and SACMEQ) are comprised
of between three and five content subscales (Martin, Mullis, & Hooper, 2016;
Moloi & Chetty, 2014; OECD, 2017). More specifically, TIMSS 2015 had 3
and 4 subscales in its fourth and eighth mathematics assessment, respectively
(Martin, Mullis, & Hooper, 2016). With that in consideration, simulation Study
2 specifies 3 and 4 subscale tests since the study resembles TIMSS 2015.

3.3.1.2 Subscale Correlation

To explore the subscale score estimation process in Study 2, I consider several
between-subdomain correlations that represent a realistic, empirically observed
range: ρ, where ρ = .45, .75, .95. The decisions for selecting these examined
item parameter estimates and how I used them was specified in Section 3.2.1.2.
Note that, since I consider several bivariate correlations, it is possible to examine
how different correlations can impact the subscale score estimation process in
ILSA.

3.3.1.3 Number of Items per Subdomain

Beyond stable item- and person-parameters, an important consideration in
test development includes test taking time, where considerations of classroom
periods, fatigue, and other factors are important. As ILSAs often employ
complex booklet designs to minimize test length while optimizing parameters
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of interest, the total number of items can be substantially higher than on a test
that does not use such designs. For example, TIMSS eighth grade mathematics
subscale lengths ranged between 41 and 64 items per domain (making the total
test 209 items long).

In its current design, items on the mathematics test were distributed across
14 booklets using balanced incomplete booklet designs. Each of these booklets
was composed of four blocks: 2 science and 2 mathematics with approximately
12-18 items in each block at eighth grade. In total, the assessment had a total
of 28 blocks: 14 containing mathematics items and 14 containing science items.

In this study, the number of items for each subdomain was 40 and 60,
representing short and long subdomains. The numbers were similar to the
minimum and maximum number of items on the TIMSS subscales (Mullis, et
al., 2016). These resulted in tests of different total length: 120, 160, 180, and
240 items. Table 3.6 describes how the items were distributed into the different
booklets.
Table 3.6
Study 2 Booklet Design

Booklet Block 1 Block 2
1 M01 M02
2 M02 M03
3 M03 M04
4 M04 M05
5 M05 M06
6 M06 M07
7 M07 M08
8 M08 M09
9 M09 M10
10 M10 M11
11 M11 M12
12 M12 M13
13 M13 M14
14 M14 M01

3.3.2 Sample

The use of booklet designs, in Study 2, reduces the number of examinees
responding to some items on the test. Typically, countries participating in
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TIMSS aim for sample sizes of about 4,500 students in order to ensure population
coverage and that there are enough students responding to each item6 (Martin
& Mullis, 2019). On TIMSS 2015 fourth grade, the item calibration samples
for each country ranged between 2,397 (Kuwait) and 21,177 (United Arab
Emirates). The item calibration sample at eighth grade were between 2,933
(Lithuania) and 18,012 (United Arab Emirates).

To draw a total sample size for my simulation studies, the groups of
participating countries in TIMSS were arranged according to performance. It
was from this representation that 9 populations in each study were drawn:
three top-, middle- and low-performing countries in mathematics7. For the
single group case, I chose a sample of 6,000 examinees. This sample was
deemed sufficient to ensure adequate exposure of the items in the single-groups
conditions. The multiple groups case included nine sampled populations from
the TIMSS 2015 dataset for reasons similar to those presented in Table 3.7.

Table 3.7
Sampling- and Proficiency-Distribution Used in the Data Generation Process
for Simulation Study 2

G N θ1 sd1 θ2 sd2 θ3 sd3 θ4 sd4

1 3656 1.40 .88 1.23 .95 1.33 .88 1.53 .84
2 3491 1.19 .94 1.17 .86 1.35 .83 1.16 .87
3 2242 1.09 1.04 .89 .99 1.07 1.00 .90 1.00
4 5859 -.23 .82 -.04 .93 .05 .83 -.08 .73
5 2253 -.24 .74 .16 .77 -.24 .92 .17 .77
6 3329 -.27 .92 .09 .99 -.14 .86 .00 .98
7 2482 -1.36 .94 -1.86 .79 -1.17 .77 -1.42 .83
8 3701 -1.30 .82 -1.61 .89 -1.68 .81 -1.53 .86
9 2987 -1.31 .83 -1.57 .88 -1.64 .96 -1.63 .91

Note. N = Sample size; G = group; DGP = data generation process; θD =
Study 1 true population subdomain proficiency; sdD = Study 1 subdomain
proficiency standard deviation; θ1 - θ4 = Study 2 true population subdomain
proficiency; sd1 - sd4 = Study 2 subdomain proficiency standard deviation.

To facilitate an examination of how different subscale score estimation
methods perform over diverse populations, all the simulations were conducted
over two different types of samples that resulted in the pre-specified total

6The first three cycles of PISA used a random sample of 500 examinees from each OECD
member country as the item calibration sample (OECD, 2002, 2005, 2009).

7As a result, the empirically observed sample size came up to 62,884 for TIMSS 2015.
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sample sizes. The first component of each study assumed that the tests were
administered to a single group of simulated examinees. In other words, the entire
sample was generated from a sample that had the same mean (µd) and standard
deviation (σd), respectively. Recall that for the single group case in both Study
2, I simulated a sample of 6,000 examinees. Table 3.7 shows the distribution
of the samples considered in simulation study 2. Country 48 provided the
proficiency and standard deviation of each domain for the single groups study.
That is: µpd = [−.23,−.04, .05,−.08] and σpd = [.82, .93, .83, .73]. The second
sample assumed that the tests were administered to diverse populations. Study
2’s sample size was 30,0009. The table also shows the each group’s proficiency
distribution and standard deviation that were used in the data generation
process.

3.3.3 Data Generation Process

In this section, I will describe the DGP for Study 2. There are some significant
differences with Study 1. Similar to Study 1, data were generated for a single
group and multiple groups with sample sizes of 6,000 and 30,000, respectively.

3.3.3.1 Item Parameter Generation/Specification

Study 2 simulated several tests of different subdomain length: 40 and 60 irems
per domain. These resulted in tests of different total length: 120, 160, 180, and
240 items. The item parameters that were used to simulate data in the study
were empirically drawn. These parameters were obtained from the TIMSS 2015
international report (Martin, Mullis, & Hooper, 2016). An item parameter
bank was compiled containing item parameters that were used for proficiency
estimation in TIMSS 2015 eighth grade mathematics. The unique item set
comprised of 209 MC and CR items that were estimated using 2PL-, 3PL-, and
GPCM-models. For illustrative purposes, in this study I only assumed that
the items were 2PL and GPCM. To do so, I collapsed the 3PL items to 2PL
by dropping the pseudo-guessing parameter. Each subdomain had a separate
set of item parameters.

Based on the 209 empirically observed items that were used to scale the
TIMSS 2015 mathematics test, only 12 were estimated using the GPCM. In
other words, about 6% of the total test items were polytomously scored. I took

8Country 4 was the middle performing country on TIMSS 2015’s overall mathematics
achievement test at eighth grade.

9I did not simulate the data to the empirical sample sizes in order to save computation
time.
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that into account when selecting the items in my simulation. Table 3.8 shows
the distribution of 2PL and GPCM items on the simulated tests. Table 3.8, I
illustrate how many of each were in the single and multiple groups simulations.
For each, I specified the total number of (a) subscales, (b) subscale length
(total number of items in each subscale); (c) 2PL and GPCM items in each
domain; (d) 2PL and GPCM items on the test; and (e) the total number of
items on each simulated test. For each simulated domain, I assumed that the
number of GPCM (polytomously scored) items were the same proportion as
the total test. As a result the 40 and 60 subdomain lengths were comprised
of two and four GPCM. However, the total number of GPCM items in the
tests depended on the total number of domains. According to Table 3.8, the
tests comprised of 6, 12, 8, and 16 GPCM items on all of the conditions for
the single- and multiple-groups simulations.
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To conduct my experiment, item parameters were randomly drawn from
the pool of 209 item parameters to equal the total number of items on the test.
For example, 40 item parameters were randomly selected, with replacement,
for the 40-item per subdomain test. Item parameters were selected in the same
way for the 60 items per subdomain tests. This was done because one of the
simulated test designs had a total of 240 items (4 domains × 60 items per
domain). That presented a 31-item disparity from the 209 item parameters in
the item bank. As a result, I resampled the items to make up for the difference.
The selected item parameters were fixed across all conditions with the same
subscale length, and 100 replications.

Tables 3.9 to 3.11 present summaries of the descriptive statistics for the
generating item parameters. These descriptive statistics are reported across all
of the studied conditions in Study 2. It should be noted that each condition has
a different range of item parameters. For example, Table 3.9 shows that though
the mean difficulties, β, are all over .5, the ranges of the item parameters are
different. The values ranged from as low as 1.543 for domain 1 in the three
subdomain, 40 item per subdomain test to as high as 2.996 in the second
domain of the same test. It should be noted that the second domain has items
which have the highest generating item difficulties, 2.163. Tables 3.10 and 3.11
show the descriptive statistics of the location parameters for the GPCM items;
d1 and d2, respectively. The values of the threshold parameters ranged from
1.435 to 1.435 for domain 1 in the three subdomain, 60 item per subdomain
test. However, some of the ranges were lower (see Tables 3.10 and 3.11).
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Table 3.10
Descriptive Statistics of the Generating Threshold Parameters: d1
D j d Mean SD Median Min Max Range
3 40 1 -.300 .000 -.300 -.300 -.300 .000

2 .297 .000 .297 .297 .297 .000
3 .645 .000 .645 .645 .645 .000

60 1 -1.435 .000 -1.435 -1.435 -1.435 .000
2 .297 .000 .297 .297 .297 .000
3 .372 .473 .645 -.174 .645 .820

4 40 1 -.867 .802 -.867 -1.435 -.300 1.134
2 .297 .000 .297 .297 .297 .000
3 -.508 .472 -.508 -.842 -.174 .668
4 -.268 .091 -.268 -.332 -.203 .129

60 1 -1.056 .655 -1.435 -1.435 -.300 1.134
2 .297 .000 .297 .297 .297 .000
3 -.500 .000 -.500 -.500 -.500 .000
4 -.667 .353 -.633 -1.036 -.332 .704

Note. D = number of subdomains; j = subscale length; d = specific
subdomain; SD = Standard Deviation; “Min” = Minimum; “Max”
= Maximum.

3.3.3.2 Person Parameter Generation

The person parameters used in Study 2 were resampled across conditions, and
across replications. Subscale proficiency was estimated from a multivariate
normal (MVN) distribution for both the single and multiple group’s simulations.
To obtain subscale proficiency estimates for the single groups simulations, a
vector of each examinee’s true subscale scores were simulated from a distribution,
θj ∼ ND(µ,Σ), where µ is a 1 × D vector of sample means, and Σ is a
D ×D correlation matrix of the true subscale scores. In Study 2, D for each
population was drawn from empirically observed subscale score means. The
d = 1, 2, . . . , D subscale proficiency scores for the p = 1, 2, . . . , P multiple
groups were drawn from a MVN distribution: θpj ∼ NDp

(µpd,Σ) where θpj
and µpd are the respective country specific subscale proficiency estimates
and subscale mean vector’s. Based on the correlations between subscales,
Σ, mean- and standard deviation-vectors for the three- and four-subdomain
single group simulations were drawn from one middle performing country. The
d = 1, 2, . . . , D subscale proficiency scores for the p = 1, 2, . . . , P multiple
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Table 3.11
Descriptive Statistics of the Generating Threshold Parameters: d2
D j d Mean SD Median Min Max Range
3 40 1 .300 .000 .300 .300 .300 .000

2 -.297 .000 -.297 -.297 -.297 .000
3 -.645 .000 -.645 -.645 -.645 .000

60 1 1.435 .000 1.435 1.435 1.435 .000
2 -.297 .000 -.297 -.297 -.297 .000
3 -.372 .473 -.645 -.645 .174 .820

4 40 1 .867 .802 .867 .300 1.435 1.134
2 -.297 .000 -.297 -.297 -.297 .000
3 .508 .472 .508 .174 .842 .668
4 .268 .091 .268 .203 .332 .129

60 1 1.056 .655 1.435 .300 1.435 1.134
2 -.297 .000 -.297 -.297 -.297 .000
3 .500 .000 .500 .500 .500 .000
4 .667 .353 .633 .332 1.036 .704

Note. D = number of subdomains; j = subscale length; d
= specific subdomain; SD = Standard Deviation; “Min” =
Minimum; “Max” = Maximum.

groups were drawn from a MVN distribution: θpj ∼ NDp(µpd,Σ) where θpj
and µpd are the respective country specific subscale proficiency estimates
and subscale mean vector’s. As such, subscale proficiency estimates were
estimated from P × D country mean (µpd) and standard deviation (σpd)
matrices, and Σ. To simulate the multiple groups’ data, nine observed subscale
scores were obtained from the reported country subscale scores on TIMSS 8th
grade mathematics. Each score was then converted to a z-score (assuming
the TIMSS mean and standard deviation of 500 and 100, respectively). In
this study, µpd =

[
µp1, µp2, . . . , µpd

]
, σpd =

[
σp1, σp2, . . . , σpd

]
,

µp1 6= µp2 6= . . . 6= µpd, and σp1 = σp2 = . . . = σpd. Based on the
correlations between subscales, Σ; a mean- and standard deviation-matrix for
the multiple group simulations was specified as follows10:

10Since one of the simulation conditions assumed a three subscale test, one subscale mean
and deviation column was dropped from µpd and σpd in Study 2’s multiple groups case.
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µpd =



θp1 θp2 θp3 θp4
p1 1.29 1.23 1.17 1.76
p2 1.01 1.12 1.12 1.00
p3 .90 1.13 1.07 .88
p4 −.06 −.09 .04 −.04
p5 .01 −.08 −.16 −.13
p6 .00 −.25 −.12 .09
p7 −1.18 −1.28 −.90 −1.47
p8 −1.32 −1.06 −1.36 −1.43
p9 −1.48 −1.09 −1.58 −1.39


, and σpd =



θp1 θp2 θp3 θp4
p1 .82 .82 . . . .82
p2 .85 .85 . . . .85
p3 .97 .97 . . . .97
p4 .75 .75 . . . .75
p5 .88 .88 . . . .88
p6 .88 .88 . . . .88
p7 .80 .80 . . . .80
p8 .87 .87 . . . .87
p9 .86 .86 . . . .86


.

Because Study 2 emphasizes complex booklet designs and latent regression
achievement estimates, I also simulated background data with specified
correlations with each sub-dimension of theta. These background variables
served as covariates in the latent regression. However, my model was not exactly
the same as the TIMSS model. First, TIMSS uses all student background
variables which number in the hundreds. To keep the simulation manageable, I
only selected 10 background variables for each country’s conditioning model.
Second, to summarize the largest number of student background variables,
TIMSS uses principal components in their model. I did not use principal
components in my simulation.

Each domain specific proficiency, θd, took into account the influence
background variables have on them. From a statistical perspective, the linear
relationship was modeled as:

θd = βQTY + ε (3.2)

where Y is the vector of Q background variables; β = {β1, . . . , βQ} are the
regression coefficients that relate the vector of QT predictor variables to the
latent response; ε ∼ N(0,σ) and β and σ are estimated from the empirical
data set. However, since such data is generated from a known true covariance
matrix ΣQ, sample-generated regression coefficients can also be calculated
(Liaw & Netto, 2019 in Rutkowski & Rutkowski, 2019).

First, for each country, I selected 10-categorical background variables
from the TIMSS 2015 8th grade dataset. Table 3.12 provides a brief
description of the questionnaire items that were extracted from the students
questionnaire. The selected variables: (a) were of the nominal and ordinal
scales of measurement, (b) had 2, 5, 4, and 8 response options, and (c) were
amongst those variables that were used in TIMSS 2015 scaling. Second, I
summarized the empirical response proportions on Y = 1, 2, . . . , Y for P .
Third, I then estimated the empirical correlations between Y (a) amongst
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Table 3.12
Selected TIMSS 2015 8th Grade Background Questionnaire Items

Variable code Scale Labels Description
BSBG01 Nominal 2 Sex of student
BSBG04 Ordinal 5 Amount of books in your home
BSBG05 Ordinal 5 Digital information devices
BSBG06E Nominal 2 Home possession (internet connection)
BSBG06H Nominal 2 Home possession (country specific)
BSBG06I Nominal 2 Home possession (country specific)
BSBG06J Nominal 2 Home possession (country specific)
BSBG07A Ordinal 8 Highest level of education of mother
BSBG07B Ordinal 8 Highest level of education of father
BSBG10B Ordinal 4 Age came to country
BSBG15A Ordinal 4 Being in school
BSBG16D Ordinal 4 Stole something from me
BSBM17A Ordinal 4 Enjoy learning mathematics
BSBM17B Ordinal 4 Wish may not have to study math
BSBM20B Ordinal 4 Need math to learn other things
BSBM20D Ordinal 4 Need math to get the job I want

themselves, and (b) θpd as observed on the TIMSS 2015 dataset which were
calculated using the IDB Analyzer (IEA, 2020) and transformed back to the
IRT scale of N(0, 1). Table B.1 to B.9 in Appendix B show each country’s
empirical correlations. Some of the variables selected for Korea and Saudi
Arabia were different from those selected for the other seven countries (see
Table B.3 and B.6 in Appendix B) because there was some multicollinearity11.
Upon estimating these response proportions and relationships, each of the 10
selected variables were consistent across the domains. In other words, Y for all
group’s θd = θ1 +θ2 + · · ·+θD in Equation (3.2) comprised of the same (country
specific) variables that had unique relationships described in Appendix B.

3.3.3.3 Response Pattern Generation

Test responses were generated from a test-level multidimensional IRT model.
The components of each model were explained in Chapter 2. The simulation

11Two or more explanatory variables in the latent regression model were highly linearly
related.
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assumes the underlying factor structure is a multidimensional one where the
number of subdomains are set according to the simulation condition and that
the total score is a linear composite of correlated sub-domains. Based on the
generating item- and person-parameters, R package lsasim (Matta et al., 2018)
was used to generate item responses from a multidimensional item response
model (see Chapter 2 for a description of all the model components). Separate
test responses were generated for the single and multiple groups simulations.
In other words, I simulated separate datasets with 6,000 and 30,000 examinee
responses in both Studies 1 and 2 representing the single and-multiple groups.
The multiple groups’ simulation took into account each groups subdomain
proficiency (and latent regression for the the multiple groups simulation in
Study 2).

3.3.4 Item Calibration and Scoring

Based on the generated item responses from all simulations, the next step was
to estimate population proficiency distributions. In Study 2, I applied both
the 2PL- and GPCM-models. Scores in Study 2 were estimated from three
IRT models (based on assumed factor structure). These models were: CUIRT,
CIRT, and MIRT12. I also estimated scores assuming one extra model that
resembled the one operationalized on TIMSS 201513. In this case, depending
on the number of domains, item parameters estimated from CUIRT were fixed
to a three- or four-dimensional MIRT model to obtain subdomain scores. For
purposes of simplicity, I will refer to the operationalized model as CUIRT-Op
which serves as an operational baseline model for which I compare the other
model results. As a reminder, CUIRT-Op differs from MIRT in that CUIRT-Op
fixes CUIRT item parameters to the MIRT model when scoring.

In order to estimate scores, I followed two general steps. First, the items were
calibrated assuming the CUIRT, CIRT, and MIRT models. Second, estimated
and assumed fixed item parameters were used for proficiency estimation. The
specified models corresponded with the underlying factor structure that was
used in calibration. However, since it may not be possible to directly estimate
scores from CUIRT, I fit a (a) CIRT and (b) MIRT model to estimate the
subscale scores. Fixing the CUIRT item parameter estimates to a MIRT model
to score the test is what I refer to as CUIRT-op. Scores in Study 2 were
estimated assuming latent regression, respectively.

For Study 2, proficiency estimates were obtained using a population model
to obtain five plausible values which were aggregated to obtain overall country

12All of the models have been thoroughly described in the literature review.
13For a description of the TIMSS scoring methods, see Section 2.4.2 in Chapter 2.
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scores. For more details see Chapter 2. In Study 2, the conditional model was
given by Equation (3.2). Population parameter estimates were obtained by
averaging the plausible values using Rubin’s (1987) methodology. Proficiency
estimation was conducted using R package mirt (Chalmers, 2012). To
complement the proficiency estimates, I also estimated the PRMSE. The
PRMSE was used to compare which IRT subscale score estimation method
resulted in the most valuable subscale scores. This index was estimated and
reported for each subscale score that was calculated based on an IRT method.
PRMSE was estimated for each simulated condition. As previously discussed,
the PRMSE was estimated equivalent to the subdomain marginal reliability
(Haberman, 2008b).

3.3.5 Summary of Simulation Study 2

Table 3.13 provides a summary of Study 2’s simulation conditions. The three
factors considered in this study (number of subscales, number of items per
subscale and subscale correlation14) yielded 12 conditions in total. One hundred
replications were carried out under each condition.

Table 3.13
Summary of Study 2 Simulation Conditions

Groups N D J ρ

Single 6,000 3 40 .45 .75 .95
60 .45 .75 .95

4 40 .45 .75 .95
60 .45 .75 .95

Multiple 30,000 3 40 .45 .75 .95
60 .45 .75 .95

4 40 .45 .75 .95
60 .45 .75 .95

Note. N = Sample size; D = Number of subscales;
J = Subscale length; ρ = Subscale correlation.

14I did not include a subscale correlation ρ = 0, because it would not make sense to have
mathematics items on the assessment that are uncorrelated.
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3.4 Analysis

The primary concern of the simulation studies was to evaluate the performance
of three IRT models in estimating item parameters, subscale proficiency
distribution, and subscale value for studies that resemble ILSA, which comprise
of single- and multiple-groups samples. In Study 1, the DGP assumed item
parameters from a uniform distribution because I did not have access to the
SACMEQ III’s item parameters. The Study 2 DGP was slightly different in
that I: (a) used empirically observed item parameters, (b) generated person
proficiency and background questionnaire items, (c) generated item responses
based on the item and person parameters (a) and (b). Proficiency was estimated
assuming the data fell into four IRT factor structures: CUIRT, CUIRT-Op15,
CIRT, and MIRT. All the aforementioned steps were conducted over 100
replications.

Kolen and Brennan (2014) state that parameter estimates that result from
IRT parameter estimation procedures are on different IRT scales. To overcome
this, when the IRT model holds, the IRT parameter estimates from different
computer runs are linearly related θ scales. In other words, a linear equation
can be used to transform IRT parameter estimates to the same scale. For
example, Scale J and Scale I as the generating and estimated IRT scales,
respectively, that differ by a linear transformation. Then the θ values for the
two scales are related as follows:

θJi = AθIi +B (3.3)

where A and B are constants in the linear equation, θJi and θIi are values of
θ for the individual item- and population-parameter i on Scale G and Scale
E. As a result, before conducting the analysis of my simulation studies, I
transformed the estimated item- and person-parameters to the scales of their
respective generating parameters. To do so, I used the Mean/Mean scaling
method (Loyd & Hoover, 1980). This scaling method uses the means of the
a-parameter estimates of the parameter estimates in Equation (3.3). According
to the Mean/Mean method:

A = µ(aI)
µ(aJ) , or (3.4)

= σ(θJ)
σ(θI)

(3.5)

15CUIRT-Op was included only in Study 2 because it resembled the method TIMSS
employs when estimating subscale scores
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B = µ(bJ)−Aµ(bI), or (3.6)
= µ(θJ)−Aµ(θI) (3.7)

where aI and aj are the item descrimination parameters for Scale I and Scale
J ; bI and bj are the item difficulty parameters for Scale I and Scale J ; and θI
and θj are the item descrimination parameters for Scale I and Scale J .

The analyses that were done are presented in the section that follows.
Section 3.4.1 discusses how the models were evaluated for precision in item-
and person-parameter estimation. In the section, I discuss three statistical
indices that were used to evaluate parameter recovery.

3.4.1 Evaluation Criteria

The simulation studies were conducted in order to examine which IRT model
resulted in the least biased item parameters and population scores. These
simulations also aimed to examine which of the models produces the most
valuable subscale scores. The studies were conducted over several conditions
that represented different ILSA test specifications. As such, I outline how I
evaluated my simulation studies. The indices that were used in the evaluation
were ideal to examine the accuracy of item parameters and subscale scores
over the 100 replications for each condition. In other words, I intended to
identify which model (under specific condition) resulted in the psychometrically
best (least biased in this study) item- and population-score-parameters. I also
intended to identify which of the methods produces the most valuable subscale
scores.

This subsection discusses the indices that were used to evaluate item- and
population-parameter recoveries from each condition (i.e., compare item- and
person-parameter recovery). Three statistics were calculated to examine the
performance of the score estimation models in estimating item parameters and
country proficiency scores: bias, absolute bias (AB), root mean squared error
(RMSE). Researchers have shown that these indices may be used to quantify
the accuracy of estimated item- and person-parameters across replications (de
la Torre et al., 2011; Dwyer et al., 2006, April; Shin, 2007; Stone et al., 2009;
Yao & Boughton, 2007).

Bias, AB, and RMSE can be used examine the difference between estimated
(θest) and true (θtrue) item- and person-parameter estimates (θtrue are those
values specified in the DGP; Debanne, 2000; Kotz & Johnson, 1982; West, 1999).
Specifically, (a) bias reveals whether θest under- or over-estimates θtrue; (b)
ABS (also known as the error in estimation) highlights the numerical difference
between θest and θtrue; and (c) RMSE quantifies the spread of θest and θtrue.
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In my studies, bias, AB, and RMSE for each item- or person-parameter
were averaged across 100 replications within each condition by the following
formulae:

Biasθ = 1
r

R∑
r=1

(θest − θtrue)

ABθ = |Biasθ| =
1
r

R∑
r=1
|θest − θtrue|

RMSEθ = 1
r

√√√√ R∑
r=1

(θest − θtrue)2

3.4.2 Proportional Reduction in Mean Square Error

For each studied condition, I compared the PRMSEs of several indicators of a
true subscale score; subscale scores estimated using CUIRT, CIRT and MIRT
(as well as CUIRT-op for Simulation study 2). In other words, the PRMSEs
obtained from CUIRT (PRMSE(θd|CUd)), CUIRT-op (PRMSE(θd|CU −
opd)), CIRT (PRMSE(θd|Cd)), and MIRT( PRMSE(θd|Md)) subscale scores
were compared in order to evaluate which subscale scores contain the most
information, and thus reveal which subscale score would be better to report.
Extending Haberman’s example, it should be seen that if:

1. PRMSE(θd|CUIRT ) > PRMSE(θd|CIRT ) and PRMSE(θd|MIRT ),
then subscale score θd|CUIRT has value over θd|CIRT and θd|MIRT .

2. PRMSE(θd|CIRT ) > PRMSE(θd|CUIRT ) and θd|MIRT , then
subscale score θd|CIRT has value over θd|CUIRT and θd|MIRT .

3. PRMSE(θd|MIRT ) > PRMSE(θd|CUIRT ) and PRMSE(θd|CIRT ),
then subscale score θd|MIRT has value over θd|CUIRT and θd|CIRT .

Values of the PRMSE often lie between 0 and 1. However, Sinharay (2010)
noted that the PRMSE can exceed 1 when the disattenuated correlations among
the subscores exceed 1. A subscale score estimate with the highest PRMSE
provides a more valuable subscale score. I provided a table which allows for
the values to be compared.
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3.4.3 Model Fit

In both simulation Study 1 and 2, I compared IRT model fit estimates across
the studied models using three indices. These were: (a) -2logLikelihood (−2ll);
(b) Akaike’s Information Criterion (AIC, Akaike, 1974); and (c) the Bayesian
Information Criterion (BIC, Schwarz, 1978). AIC is defined as:

AIC = −2ll + 2k + 2k(k + 1)/(n− k − 1) (3.8)

where k is the number of estimated parameters in the model and n is the
number of observations used in the models. BIC is defined as:

BIC = −2ll + kln(n) (3.9)

where k is the number of estimated parameters in the model and n is the number
of observations used in the models. Both the AIC and BIC are information-
based criteria that are based on −2ll. The AIC and BIC indices differ in that
the BIC penalizes model complexity (i.e., having a large number of parameters)
more than AIC with a term that depends on the sample size (Oliveri & von
Davier, 2011). Smaller values of AIC and BIC (or the negative log-likelihood)
indicate better relative model fit (Singer & Willett, 2003).

AIC and BIC appealed to the studies because they may be used to compare
fit for non-nested models as long as the models are fit to the same dataset
(Singer & Willett, 2003). In addition, I did not use the likelihood ratio tests
for the same reason that the models were not nested.

3.5 Summary

This chapter reviewed research methods that were used in the simulation
studies, including a description of the DGP and how subscale proficiency was
estimated, and how IRT subscale score estimation models were compared. The
results of these comparisons helped me answer the research questions posed in
Section 1.4.
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Chapter 4

Empirical Methods

4.1 Introduction

The simulation studies described in Chapter 3 examined the estimation of item
parameters, population scores and subscale score value in various ILSA test
designs. This chapter continues by describing methods to provide an illustration
of how these IRT models perform using an empirical dataset: the TIMSS eighth
grade mathematics test. The TIMSS 2015 dataset was used to demonstrate
how the models perform in estimating population and subpopulation subscale
score achievement where items were sampled using the matrix sampling booklet
designs. This empirical study was conducted in order to validate the findings
from the simulation studies. That is, are the simulation findings consistent in
the empirical setting. To achieve this, I emulated all TIMSS score estimation
methods to the best of my ability with some amendments that I describe
subsequently. I did not conduct empirical analysis on the SACMEQ III dataset
because item level data and scoring keys are not publicly available. I was also
not able to identify specific items that belonged to the HAKT domains on the
test, similarly, the test specification is not publicly available.

This chapter provides a description of how the research was carried out.
The chapter starts by describing the data that was used in the study. This is
followed by a description of the measures that were used. The chapter also
specifies the data analysis plan that highlights the steps taken to estimate
scores. The chapter finally outlines how the estimated subscale scores were
evaluated.

4.2 Data

The study was conducted using achievement data collected by TIMSS 2015.
TIMSS ambitiously assessed students in two broad achievement domains:
mathematics and science. Altogether, the assessment comprised a total of 494
items (225 and 269 mathematics and science items respectively) that were
distributed using rotated booklet designs to make up an examinee’s test. The
items from both the mathematics- and science-domains were sampled into 28
blocks (14-mathematics and 14-science blocks), with each block containing
12-18 items. These blocks were then distributed into 14 student achievement
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booklets (see Table 2.3 in Chapter 2). Each sampled student completed one
booklet that was composed of two mathematics- and science-blocks.

To examine model performance in estimating overall- and subscale-scores,
I purposefully sampled nine countries whose performance was spread across
the proficiency scale. To build the sample, overall country performance in
mathematics was used as a determinant of high, medium, and low performing
countries. The distribution to which these countries were selected was three of
each: high, medium, and low performing countries. This decision was made to
keep the analysis manageable.

The specific sample sizes and overall mathematics achievement scale scores
of the sampled countries are listed in Table 4.1. All the examinees from the
nine sampled countries were included in the empirical example. The resulting
total sample size was 64,112 examinees; a sample that adequately resembles
(or exceeds) the total sample size of some ILSAs (e.g., SACMEQ, TERCE).
This sample size was more than sufficient to conduct most IRT analysis (de la
Torre & Hong, 2010).

Table 4.1
Empirical Sample from TIMSS 2015

Country N Overall Mathematics Scale Score
Australia 10280 505 (3.1)
Chinese Taipei 5711 599 (2.4)
Italy 4481 494 (2.5)
Korea, Republic of 5309 606 (2.6)
Jordan 7863 386 (2.3)
New Zealand 8142 493 (3.4)
Saudi Arabia 3759 368 (4.6)
Singapore 6116 621 (3.2)
South Africa 12514 372 (4.5)

Note. N = Sample size; Standard errors appear in parentheses

4.3 Measures

The main instrument that was used in the current study was the TIMSS 2015
eighth grade mathematics test. The test specification of the assessment outlined
four content domains (algebra, data and chance, geometry, and number) of
unequal subscale length. Table 4.2 illustrates the number of domains, total
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number of items, and item types for the items that comprised the test. Of the
209 items on the test, 111 were multiple-choice (MC) and 98 were constructed
response (CR) items. The MC items on the test were scored correct-incorrect
(1, 0 respectively), and the CR items were worth one to two points to allow for
partial as well as full credit1 (Martin, Mullis, & Hooper, 2016). These items
were scored using three IRT models: 2PL, 3PL, and GPCM (for full details of
the models, please see Chapter 2).

Table 4.2
Assessment Structure: Number of Items and Possible Item Type for Each
Domain

Item type
Domain MC CR Total number of items

Algebra 34 27 61
Data and Chance 27 14 41
Geometry 22 21 43
Number 28 36 64
Total 111 98 209

Note. MC = multiple choice; CR = Constructed response.

The student background questionnaire used in this study comprises a
plethora of information. On it, TIMSS collected demographic data as well as
information about students’ home environment and school climate for learning.
The background questionnaire also collects auxiliary information regarding the
contexts of teaching and learning. In addition, TIMSS collects data pertaining
to students’ self-perception and attitudes towards learning mathematics and
science. Due to the abundance of information, TIMSS uses principal components
as a means of variable reduction (see Chapter 2 for details).

The conditioning variables that were used were taken from the student
background data, and were dummy coded. Students who participated in TIMSS
2015 were administered a context questionnaire with questions related to their
home background, school experiences, and attitudes towards mathematics
and science (Foy, 2017; p. 59). In this dissertation, I only selected students
responses on the general contextual items as well as those directly associated

1On TIMSS 2015, the 1-point CR items were scored as correct (1 point) or incorrect (0
points); the 2-point CR items were scored fully correct (2 points), partially correct (1 point)
and incorrect (0 points) (Martin, Mullis, & Hooper, 2016). This shows that not all CR items
allowed for partial credit.
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with mathematics. In other words, I did not include questionnaire responses
pertaining to students attitudes towards science and its different subdomains.
As a result, a total of 84 conditioning variables were used for each country.
These variables were used in the latent regression model in order to optimize
the precision of overall achievement and subpopulation differences. The
student responses to the background questionnaire that were omitted or not
administered were given all zeros on the dummy codes. All of the variables
for use were dummy coded using the dummy_cols function in the R package
fastDummies (Kaplan, 2019). After dummy coding the variables, I then used
the function prcomp in R (R Core Team, 2013) to obtain a dataset of principal
components. Since the analyses were conducted separately for each country,
the number of conditioning variables were not equal for all the populations2.
In the end, after dummy coding, at least 279 variables were used3. Table 4.3
provides information about the number of primary conditioning variables used
for each country as well as the number of other principal components used, and
the percentage of variance explained by each country’s model. Notable primary
conditioning variables, similar to TIMSS 2015, included: gender, language of
the test and an optional ’country specific variable’.

Table 4.3
Conditioning Models for Proficiency Estimation

Country # of PC %age var.
Australia 340 .62
Chinese Taipei 320 .60
Italy 301 .53
Jordan 353 .54
Korea, Republic of 300 .62
New Zealand 320 .58
Saudi Arabia 279 .47
Singapore 323 .56
South Africa 308 .77

Note. %age var. = Number of principal compo-
nents; CR = Percentage of variance explained.

2On TIMSS 2015, different numbers of principle components were required to account
for the recommended percentage of common variance in each country (Martin, Mullis, &
Hooper, 2016).

3Some response options on several items were not selected in some countries. This
resulted in fewer variables after dummy coding.
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4.4 Analysis/Models

To estimate population and subpopulation scores, I analyzed my data using
the following steps. First, I specified an IRT model; either CUIRT, CIRT,
or MIRT. These models outlined the dimensional factor structure of the test
(see Chapter 2). Models were specified in R using the mirt.model function
within mirt: A Multidimensional Item Response Theory Package for the R
Environment (Chalmers, 2012). Second, I proceeded on to calibrating the
items assuming the factor structure specified in the first step. This was done
three times in order to obtain model-specific item parameters that could be
used for scoring. Like TIMSS, in this step, non-reached items were treated
as not administered. Item parameters were estimated for the entire dataset
using the mirt function on the mirt package. This function made it possible
to fit a variety of IRT models, specify covariates, and specify an implied latent
regression. I also used the Metropolis-Hastings Robbins-Monro (MH-RM)
estimation algorithm for speed (Cai, 2010a, 2010b). Third, after fixing the
estimated item parameters, I proceed to estimate five model-specific4 plausible
values for each country using the fscores function in mirt. Consistent with
the operational procedures in TIMSS, non-reached items were treated as
incorrect. Fourth, using latent regression, I obtained five plausible values for
each subscale. Rubin’s (1987) multiple imputation average in mirt was used
to obtain the population scores. The plausible values on the θ metric were
linearly transformed to the reporting metric assuming the linear relationship
specified by TIMSS 2015. According to Martin, Mullis, and Hooper, 2016, the
linear transformation for student i and draw p was:

PVip = Ap +Bp × θip. (4.1)

Similar to TIMSS 2015 (Martin, Mullis, & Hooper, 2016), a different set of
transformation constants was used for each of the five plausible values (see
Table 4.4). The transformation was implemented in order to place the results
from this study on the same scale as the results from the previous TIMSS
assessments.

The data that were used in the study were analyzed following steps similar
to those undertaken in TIMSS 2015. However, there were several differences
with the broader TIMSS study that may result in slightly different estimates.

4Two models were fit to obtain scores after calibrating the test using CUIRT. These were
CIRT and CUIRT-op. On one hand, CUIRT item parameters were fixed to a CIRT model
that had three- or four-uncorrelated dimensions when scoring. On the other hand, CUIRT
item parameters were fixed to a three- or four-dimensional MIRT model, CUIRT-op. For
CIRT and MIRT, the calibration model was also used to score the test.
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Table 4.4
Linear Transformation Constants for the TIMSS 2015 Eighth-Grade
Mathematics Assessment

Draw (p) Ap Bp

1 507.00 103.10
2 506.97 103.63
3 507.29 102.32
4 506.76 103.14
5 506.56 103.20

Source: Martin et. al (2016).

First, I sampled countries from the entire TIMSS dataset and used that as my
overall study sample. Second, I was unable to perfectly mimic the development
of conditioning variables, as detailed methods from TIMSS are not publicly
available. Third, I did not include all background variables into my conditioning
model because I wanted to keep the analysis manageable. This resulted in
lower percentage of variance explained by the specified latent regression model.
Fourth, I used different software for analysis of my data that may have applied
different underlying algorithms to TIMSS’ estimation techniques.

4.5 Evaluation Criteria

The empirical study was conducted to examine how the empirical results
compare to the simulation findings. To do so, the study was conducted in order
to examine how each of the studied models performed in the subscale score
estimation. The empirical study also aimed to examine which of the models
produces the most valuable subscale scores. Since simulation Study 2 best
resembles the empirical study, I compared the results. That is, I examined
whether the psychometrically best performing models at (a) score estimation,
(b) subscale value, and (c) model fit were the same between the two studies.

This subsection discusses the evaluation criteria that were used to to compare
the models. I proceed by describing how I compared the resulting population
and subpopulation scores. Then, I describe how I evaluated the estimated
subscale score value. Lastly, I describe how I compared IRT model fit estimates
across the studied models.
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4.5.1 Comparison of Score Estimation Methods

4.5.1.1 Achievement by Population and Subpopulation

Achievement results, overall- and subscale-scores for the content domains,
for each population and subpopulation were estimated using IRT scaling
techniques similar to those of TIMSS 2015. Scores were estimated from the four
subscale score models under comparison—CUIRT, CUIRT-op, CIRT, MIRT.
The average scale score for each content domain was examined, together with
the difference between overall mathematics achievement and achievement in
each subscale. These analyses were done for every population (i.e., country)
as well as subpopulation (boys vs girls, number of books at home). These
analyses were only done for the empirical study and were intended to give a
picture of whether we would expect to empirically observe any differences in
score magnitude.

4.5.1.2 Analysis of Variance (ANOVA)

To explore whether there were differences in the model specific subpopulation
score standard errors, I conducted analysis of variance (ANOVA) analyses.
Standard error (SE) was treated as a dependent variable (DV) and the model as
the independent variable (IV). In a their study that compared the performance
of three IRT models, Erdemir and Atar (2020) conducted an ANOVA on
repeated-measures data to examine whether there was a significant difference
among the mean errors calculated by the estimation models. Post-hoc tests
using the Bonferroni correction were then conducted in order to make pairwise
comparisons. Since the SE’s were also specific to a domain and gender, I run
a cluster robust ANOVA using the anova_test function in the R package
rstatix (Kassambara, 2020).

Statistically, the SE’s (from the empirical study) and the biases/ABS/RMSE
(from simulation Study 2) may provide different information. That is, SE is
a measure of precision or efficiency of the estimator that does not require
knowledge of the true value θ (Morris et al., 2019). In this study, a model
that produced scores with smaller SEs was considered better than models with
larger SE. Bias/ABS/RMSE5 may be considered to be measures that quantify
whether reported estimates target θ. I then observed whether the same methods
that showed the least Bias/ABS/RMSE in the simulation studies resulted in
lower SE’s on the empirical study6.

5For the equations used in the computation of Bias, ABS or RMSE, see Section 3.4.1 in
Chapter 3.

6Recall that the SE’s were not estimated from the simulation Studies.
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4.5.2 Subscale Score Value

The PRMSE was used to evaluate the performance of the subscale scores
estimated from each model. Values of the PRMSE often lie between 0 and
1. However, Sinharay, 2010 noted that the PRMSE can exceed 1 when the
disattenuated correlations among the subscores exceed 1. A subscale score
estimate with the highest PRMSE provides a more valuable subscale score. I
provided a table that allowed for the values to be compared. In this study, a
subscale score estimate with the highest PRMSE provides valuable subscale
score (see Section Section 3.4.2 in Chapter 3 for comparisons). In Chapter 7,
I concluded by observing whether the same model produced more valuable
subscale scores in simulation Study 2 and the empirical study. This enabled
me to determine whether the model performs consistently.

4.5.3 Model Fit

In the empirical study, I evaluated IRT model fit using the three indices. These
were: (a) −2ll; (b) Akaike’s Information Criterion (AIC, Akaike, 1974); and
(c) the Bayesian Information Criterion (BIC, Schwarz, 1978). Both the AIC
and BIC are information-based criteria that are based on −2ll. Smaller values
of AIC and BIC (or the negative log-likelihood) indicate better relative model
fit (Singer & Willett, 2003).

AIC and BIC appealed to the studies because they may be used to compare
fit for non-nested models as long as the models are fit to the same dataset
(Singer & Willett, 2003). In addition, I did not use the likelihood ratio tests for
the same reason that the models were not nested. In Chapter 7, I conclude by
observing whether the same model fits the data better than the other studied
models in simulation Study 2 and the empirical study. This enabled me to
determine whether the models performed consistently.

4.6 Summary

This empirical study was conducted in order to examine how well the three IRT
models performed in estimating item parameters, population score estimates,
and ultimately produced valuable subscale scores. As such, the chapter reviewed
the empirical research methods that were used in this study. This chapter
included a description of the participants and the instruments that were used in
the study. Furthermore, Chapter 4 outlined the procedures that were taken in
data analysis and how scores were compared. The results of these comparisons
helped me answer the research question regarding how the three IRT methods
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of subscale score estimation compare in providing score estimates given an
evaluation of their precision (as shown in the simulation study).
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Chapter 5

Simulation Results

5.1 Introduction

Two simulation studies were designed to answer research questions presented
in Section 1.4. Simulation studies 1 and 2 were designed to resemble SACMEQ
and TIMSS data, respectively. The difference between the two simulation
studies is that Study 1 does not employ matrix sampled test booklets whilst
Study 2 does. Three design characteristics (i.e., number of subscales, correlation
between subscales, subscale length) were manipulated to create conditions of
various characteristics. Results were observed over 100 replications.

In this chapter, results from the two simulation studies are presented. For
both Study 1 and Study 2, the results presented in Section 5.2 answer the first
research question presented in Chapter 1 of this dissertation. Section 5.2 reports
which item parameter estimation method produces the psychometrically best
item parameter estimates. Furthermore, Section 5.3 focuses on score recovery
that answers the second research question. In other words, I report which of the
typically available IRT methods provides the psychometrically-best population
subscale scores. Section 5.4 responds to the third research question. I use the
section to identify which of the subscale score estimation methods produce
the most valuable subscale scores. Finally, Section 5.5 presents the model fit
statistics to itentify the model that fit the data the best.

5.2 Item Parameter Recovery

Tables 3.5 and 3.13 show the simulation conditions for Studies 1 and 2. The
conditions that I studied were: (a) number of subdomains; (b) number of items
per factor; and (c) subscale correlation. The performance of three subscale
score estimation models were compared across the simulated test conditions. In
what follows, I will describe the item parameter recovery for all the simulation
studies. To investigate all the studied methods’ subscale score recovery (RQ1),
I computed bias, ABS, and RMSE. Sections 5.2.1 and 5.2.2 present Study
1’s single- and multiple-groups’ results, respectively. Sections 5.2.3 and 5.2.4
present Study 2’s single- and multiple-groups’ results, respectively.

To illustrate the patterns of results, I present separate plots that show the
different evaluation criteria. In other words, I present the bias, ABS and RMSE
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of the item parameters that were estimated in all of the studied conditions.
Each plot presents the results by (a) subdomain length and (b) number of
items per subdomain. The plots are arranged in such a way that the each panel
in one row shows the results from the three separate models that were studied
(i.e., CUIRT, CIRT, MIRT). Each of the three rows in the plots represents a
different correlation (i.e., .45, .75, .95).

The x-axis on each panel shows the number of items, whereas the y-axis
shows the evaluation criteria (e.g., bias, ABS or RMSE). The points in each
panel represent a specific item. The points also include error bars that show
the standard deviation of each estimated parameter across replications. Ideally,
the best estimates are those with estimates that are closest to 0 on all figures.

The results for the average bias, ABS and RMSE of the item difficulty
parameter are presented in Tables 5.1 and 5.2 for all of Study 1’s conditions
described in Table 3.5. The tables summarise the evaluation criteria for both,
the single- and multiple groups studies, respectively, for the Rasch calibration
model. Tables 5.3 and 5.5 report the the average bias, ABS and RMSE
of the item discrimination for all of Study 2’s single- and multiple-groups
conditions, respectively. Tables 5.4 and 5.6 report the the average bias, ABS
and RMSE of the item difficulty for all of Study 2’s single- and multiple-groups
conditions, respectively. These averages enabled me to quantify each model’s
item parameter recovery by (a) subscale correlation, (b) subscale length, and
(c) number of subscales. The lower the value, the better the model.

5.2.1 Item Parameter Recovery for Study 1: Single Groups

Figures 5.1 and 5.6 plot the bias of the item difficulty, b for all the items on a
test over different subtest length and subscale correlation. Each point in the
figures corresponds to an item. The whiskers on the points are ±1SD over the
replications.

Sections 5.2.1.1 and 5.2.1.2 provide the results of the item parameter recovery
in Study 1’s single group test conditions. Under these sections, I will provide the
results for the single- and multiple-groups simulation conditions. An emphasis
is placed on the simulation design factors. Sections 5.2.1.1 and 5.2.1.2 outline
how each of the studied models perform at different subscale correlations and
lengths, respectively.

5.2.1.1 Subscale Correlation

Three-Subdomain Tests.
Figure 5.1 to 5.3 show that CUIRT produced the most biased item parameters
regardless of test length where correlations were .45 and .75. In contrast,
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Figure 5.1
Item Difficulty Bias for the 3 Domain, 5 Items per Domain Tests: Single
Groups

CIRT produced the least biased results across conditions. Although MIRT
resulted in little bias when correlations were .45 and .75, correlations of .95
produced increased bias. In addition, the figures showed that as subscale
correlation increased to .95, CUIRT produced biases that were comparable
to CIRT. These results were expected since, at high correlations, the test is
close to being unidimensional. The ABS and RMSE reported in Table 5.1
supported these findings. That is, at respective test lengths, (a) CIRT results
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Figure 5.2
Item Difficulty Bias for the 3 Domain, 10 Items per Domain Tests: Single
Groups

were comparable across correlations, (b) CUIRT produced better results when
subscale correlation was .95, and (c) MIRT reported larger ABS and RMSE
where subscale correlation was .95. However, Figure 5.1 to 5.2 show that
CUIRT (at low correlations) and MIRT (at high correlations) are slightly
mirrored. That is, the positive bias on an item when using CUIRT matched
with a negative bias on MIRT, and vice-versa.
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Figure 5.3
Item Difficulty Bias for the 3 Domain, 15 Items per Domain Tests: Single
Groups

Five-Subdomain Tests.
Figure 5.4 to 5.61 show that CUIRT produced the most biased item parameters
regardless of test length where correlations were .45 and .75. In contrast, CIRT
produced the least biased results across conditions. Although MIRT resulted
in little bias when correlations were .45 and .75, correlations of .95 produced

1The results presented by the ABS (see Figure E.1 to E.6), and RMSE (see Figure E.7
to E.12) plots in Appendix E plots supported the results presented by the bias plots.
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increased bias. In addition, the figures showed that as subscale correlation
increased to .95, CUIRT produced biases that were comparable to CIRT. These
results were expected since, at high correlations, the test is close to being
unidimensional.
Figure 5.4
Item Difficulty Bias for the 5 Domain, 5 Items per Domain Tests: Single
Groups
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Figure 5.5
Item Difficulty Bias for the 5 Domain, 10 Items per Domain Tests: Single
Groups

5.2.1.2 Subscale Length

Three-Subdomain Tests.
Figure 5.1 to 5.3 showed that MIRT item bias reduced as the number otems per
subdomain increased from 5 to 15 items. Inspection of Figure 5.1 to 5.3 showed
that the performance of CUIRT and CIRT was comparable as subscale length
increased. Table 5.1 supported these findings. In contrast, Table 5.1 showed
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Figure 5.6
Item Difficulty Bias for the 5 Domain, 15 Items per Domain Tests: Single
Groups

that CUIRT had more bias for respective subscale correlations as the number of
items per subdomain increased. The noted differences were to the third decimal
place. For example, on the three subdomain tests where J = 5, 10, 15 and
subscale correlation was .45, the corresponding biases were .004, .005, and .006.
In this case, an increase in subscale length corresponded to an increase in the
number of biased items. However, Table 5.1 ABS and RMSE for CUIRT were
constant as subscale length increased. MIRT showed a decrease in ABS and
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RMSE on the .95 correlation test conditions as subscale length increased (see
Table 5.1). According to the results presented in Table 5.1, CUIRT generally
showed biases further from 0 regardless of subscale correlation compared to
CIRT and MIRT. However, MIRT had the highest bias and RMSE compared
to CUIRT and CIRT on 5 subdomain item tests where subscale correlation
was .95.

Five-Subdomain Tests.
Inspection of Figure 5.4 to 5.6 showed that the performance of CIRT was
comparable as subscale length increased. Table 5.1 supported these findings
by also showing that CIRT had comparable ABS and RMSE as the number
of items-per-subscale increased. In contrast, Table 5.1 showed that as the
number of items increased, CUIRT and MIRT resulted in higher average bias.
However, when tests had subscale correlations of .95, MIRT bias was the lowest
on the test conditions with 15 items-per-subdomain. In addition, Table 5.1
ABS and RMSE for CIRT were comparable as subscale length increased. MIRT
showed a decrease in ABS and RMSE on the .95 correlation test conditions as
subscale length increased (see Table 5.1). According to the results presented in
Table 5.1, CUIRT generally showed biases further from 0 regardless of subscale
correlation compared to CIRT and MIRT. However, MIRT had the highest
bias and RMSE compared to CUIRT and CIRT on 5 subdomain item tests
where subscale correlation was .95.
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5.2.2 Item Parameter Recovery for Study 1: Multiple Groups

Sections 5.2.2.1 and 5.2.2.2 provide the results of the item parameter recovery
in Study 1’s multiple group test conditions. An emphasis is placed on the
simulation design factors. Under these sections, I will provide the results for the
single- and multiple-groups simulation conditions. Sections 5.2.2.1 and 5.2.2.2
outline how each of the studied models perform at different subscale correlations
and lengths, respectively.

5.2.2.1 Subscale Correlation

Figure 5.7 to 5.12 plot the bias of the item difficulty, b for all the items on a
test over different subtest length and subscale correlation. Each point in the
figures corresponds to an item. The whiskers on the points are ±1SD over the
replications

Figure 5.7 to 5.122 plot the bias of the item difficulty, b for all the items
on a test over different subtest length and subscale correlation. In general,
the patterns observed for the multiple groups example were similar to those
of the single groups case, regardless of the number of subscales. Of the three
models, the figures show that CUIRT produced the most biased item parameters
regardless of test length where correlations were .45 and .75. In contrast, CIRT
produced the least biased results across conditions. Although MIRT resulted
in little bias when correlations were .45 and .75, correlations of .95 produced
increased bias. In addition, the figures showed that as subscale correlation
increased to .95, CUIRT produced biases that were comparable to CIRT.

5.2.2.2 Subscale Length

Three-Subdomain Tests.
Inspection of Figure 5.7 to 5.9 showed that the performance of all of the models
was generally comparable (to the third decimal) as subscale length increased.
However, Table 5.2 showed that MIRT had the lowest average bias on all of
the 5 items-per-subdomain test conditions regardless of subscale correlation
compared to CUIRT and CIRT. As the subdomain length increased to 10- and
15-item subdomain tests, the studied models were generally comparable across
all of the specified correlations. The ABS and RMSE reported in Table 5.2
showed that CUIRT had the highest ABS and RMSE compared to CIRT and
MIRT on the 5-item-per-subdomain tests where subscale correlation was .45.

2The results presented by the ABS (see Figure F.1 to F.6) and RMSE (see Figure F.7 to
F.12) plots in Appendix F confirmed the results presented by the bias plots.

85



Figure 5.7
Item Difficulty Bias for the 3 Domain, 5 Items per Domain Tests: Multiple
Groups

In addition, MIRT had the highest ABS and RMSE compared to CUIRT and
CIRT on the 5-item-per-subdomain tests where subscale correlation was .95.
But then, as subscale length increased (to 10 and 15 items), all of the models
were comparable. The ABS and RMSE reported in Table 5.2 generally showed
that CIRT was not sensitive to an increase in subscale length.
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Figure 5.8
Item Difficulty Bias for the 3 Domain, 10 Items per Domain Tests: Multiple
Groups

Five-Subdomain Tests.
Inspection of Figure 5.7 to 5.9 showed that the performance of all of the
models was generally comparable (to the third decimal) as subscale length
increased. However, Table 5.2 showed that CUIRT generally had the lowest
average bias (to the third decimal) regardless of test length. CIRT and MIRT
showed comparable average biases and these were higher than the values
reported by CUIRT. The ABS and RMSE reported in Table 5.2 showed that
CUIRT had the highest ABS and RMSE compared to CIRT and MIRT where
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Figure 5.9
Item Difficulty Bias for the 3 Domain, 15 Items per Domain Tests: Multiple
Groups

subscale correlation was .45. CUIRT average ABS and RMSE increased as
subscale length increased. In addition, MIRT had the highest ABS and RMSE
compared to CUIRT and CIRT on the 5-item-per-subdomain tests where
subscale correlation was .95. However, as subscale length increased to 15 items,
all of the models were comparable. The ABS and RMSE reported in Table 5.2
generally showed that CIRT was not sensitive to an increase in subscale length.
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Figure 5.10
Item Difficulty Bias for the 5 Domain, 5 Items per Domain Tests: Multiple
Groups
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Figure 5.11
Item Difficulty Bias for the 5 Domain, 10 Items per Domain Tests: Multiple
Groups
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Figure 5.12
Item Difficulty Bias for the 5 Domain, 15 Items per Domain Tests: Multiple
Groups
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5.2.3 Item Parameter Recovery for Study 2: Single groups

Figure 5.13 to 5.19 plot the bias of the item- (a) discrimination, a, and (b)
difficulty, b, parameters for all the items on a test over different subtest length
and subscale correlation. Each point in the figures corresponds to an item. The
whiskers on the points are ±1SD over the replications.

5.2.3.1 Subscale Correlation

Item Discrimination.
Three-Subdomain Tests.
Figures 5.13 and 5.14 plot the biases of each items discrimination parameter,
a, across all of Study 2’s 3-subdomain, single groups conditions. Of the three
models, the figures show that CUIRT produced the most biased item parameters
regardless of test length where correlations were .45. In contrast, CIRT and
MIRT produced the least biased results across conditions. Although CUIRT
resulted in larger bias when correlations were .45, correlations of .95 produced
decreased bias. Based on Figures 5.13 and 5.143, CUIRT showed less bias of
a estimates over 100 replications regardless of test length where correlations
were .75 and .95.

Four-Subdomain Tests.
Figures 5.15 and 5.16 show the biases of each items discrimination parameter,
a, across all of Study 2’s 4-subdomain, single groups conditions. The figures
showed the same pattern of results that was reported on the 3-subdomain
tests4.

Item Difficulty.
Three-Subdomain Tests.
Figures 5.17 and 5.185 show the biases of the item difficulty, b, parameter across
all conditions for Study 2’s single groups simulations. Of the three models,
the figures show that CUIRT produced the most biased item parameters
regardless of test length where correlations were .45. In contrast, CIRT and
MIRT produced the least biased results across conditions. That is, the average

3The ABS and RMSE plots (see Figure G.1 to G.4, and Figure G.17 to G.20 in
Appendix G) generally showed the same inclination as the bias plots.

4The ABS and RMSE plots (see Figures G.3 and G.4, and Figures G.19 and G.20 in
Appendix G) generally showed the same inclination as the bias plots.

5The ABS and RMSE plots (see Figure G.5 to G.6, and Figure G.21 to G.22 in
Appendix G) echo the results displayed by the b-parameter bias plots shown in Figure 5.17
to 5.18.
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Figure 5.13
Bias of a-Parameter for the 3 Domain, 40 Items per Domain Tests: Single
Groups

biases for the items were closer to 0; as opposed to CUIRT whose estimates
exhibited more instances where item biases were further from 0. Similar to the
results presented in Sections 5.2.1 and 5.2.2, CUIRT resulted in less bias when
correlations were .95 than in conditions with weaker correlation. Although
MIRT resulted in less bias when correlations were .45 and .75, correlations of
.95 showed slightly more biased b-parameters. What sticks out in the single
groups is that several items have some outliers. That is, few items seemed to
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Figure 5.14
Bias of a-Parameter for the 3 Domain, 60 Items per Domain Tests: Single
Groups

show larger variability in the item difficulty estimates than the other items. In
the case of these items, it is probable that there were fewer candidates that
were exposed to the items; a problem which may have been compounded if
there was less variation in item responses because the items were too difficult
or easy in some replications.
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Figure 5.15
Bias of a-Parameter for the 4 Domain, 40 Items per Domain Tests: Single
Groups

Four-Subdomain Tests.
Figures 5.17 and 5.206 show the biases of the item difficulty, b, parameter across
all conditions for Study 2’s single groups simulations. The figures showed the
same pattern of results that was reported on the 3-subdomain tests.

6The ABS and RMSE plots (see Figure G.7 to G.8, and Figure G.23 to G.24 in
Appendix G) echo the results displayed by the b-parameter bias plots shown in Figure 5.19
to 5.20.
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Figure 5.16
Bias of a-Parameter for the 4 Domain, 60 Items per Domain Tests: Single
Groups

5.2.3.2 Subscale Length

Item Discrimination and Difficulty.
The results for the item (a) discriminations, and (b) difficulty parameters will
be presented together. This is because the results generally followed the same
patterns and trends.
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Figure 5.17
Bias of b-Parameter for the 3 Domain, 40 Items per Domain Tests: Single
Groups

Three-Subdomain Tests.
The results presented in Figure 5.13 to 5.14 (item discrimination) and
Figure 5.17 to 5.18 (item difficulty) showed that subscale length did not
impact on the performance of the studied models. However, the average
bias/ABS/RMSE of the item discrimination and difficulty parameters presented
in Tables 5.3 and 5.4 suggested some trends. That is, the average biases for
all of the studied models decreased as subscale length increased. In addition,
Tables 5.3 and 5.4 showed that the average ABS and RMSE of CUIRT and
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Figure 5.18
Bias of b-Parameter for the 3 Domain, 60 Items per Domain Tests: Single
Groups

CIRT reduced as subscale length increased. MIRT reported average ABS’ that
were not sensitive to an increase in subscale length (see Tables 5.3 and 5.4).
In contrast, MIRT RMSE’s were lower on the 60-item subscale tests than the
tests that had 40-item subscales. CIRT generally reported the lowest bias and
ABS.
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Figure 5.19
Bias of b-Parameter for the 4 Domain, 40 Items per Domain Tests: Single
Groups

Four-Subdomain Tests.
Figures 5.15 and 5.16, and Figure 5.19 to 5.20 did not show differences with
respect to the sensitivity of the models to test length. However, the trends that
were reported on Tables 5.3 and 5.4 for the 4 subdomain tests were similar to
those presented for the 3 subdomain tests. One key difference was that the
4-subdomain test conditions reported lower bias, ABS, and RMSE compared
to the 3-subdomain test condition results.
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Figure 5.20
Bias of b-Parameter for the 4 Domain, 60 Items per Domain Tests: Single
Groups
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5.2.4 Item Parameter Recovery for Study 2: Multiple Groups

Figure 5.21 to 5.27 plot the bias of the item- (a) discrimination, a, and (b)
difficulty, b, parameters for all the items on a test over different subtest length
and subscale correlation. Each point in the figures corresponds to an item. The
whiskers on the points are ±1SD over the replications.

5.2.4.1 Subscale Correlation

Item Discrimination.
Three-Subdomain Tests.
Figures 5.21 and 5.227 show the biases of each item’s discrimination parameter,
a, across all of Study 2’s multiple groups conditions. The panels in Figures 5.21
and 5.22 showed the same trends as the results presented in the single groups
simulation study (presented in Section 5.2.3.1). Of the three models, the
figures show that CUIRT produced the most biased item parameters regardless
of test length where correlations were .45. In contrast, CIRT and MIRT
produced the least biased results across conditions. Although CUIRT resulted
in larger bias when correlations were .45, correlations of .95 produced lower bias.
Based on Figures 5.13 and 5.14, CUIRT showed less bias of a estimates over
100 replications regardless of test length where correlations were .75 and .95.
However, Figure 5.21 to 5.22 show that of the three models, CIRT produced
more biased item discrimination parameters regardless of test length where
correlations were .95.

Four-Subdomain Tests.
Figures 5.23 and 5.248 show the biases of each items discrimination parameter,
a, across all of Study 2’s 4-subdomain, single groups conditions. The figures
showed the same pattern of results that was reported on the 3-subdomain
tests9.

Item Difficulty.
Three-Subdomain Tests.
Figure 5.25 to 5.2610 show the biases of each items difficulty parameter,
b, across all of Study 2’s multiple groups conditions. The results show

7The ABS and RMSE plots (see Figures H.1 and H.2, and Figures H.17 and H.18 in
Appendix H) also showed the same patterns.

8The ABS and RMSE plots (see Figures H.3 and H.4, and Figures H.19 and H.20 in
Appendix H) also showed the same patterns.

9The ABS and RMSE plots (see Figures H.3 and H.4, and Figures H.19 and H.20 in
Appendix H) generally showed the same inclination as the bias plots.

10The ABS and RMSE plots (see Figures H.5 and H.6, and Figures H.21 and H.22 in
Appendix H) generally showed the same inclination as the bias plots.
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Figure 5.21
Bias of a-Parameter for the 3 Domain, 40 Items per Domain Tests: Multiple
Groups

that CUIRT produced more biased item parameter estimates regardless of
test length where subscale score correlations were .45 and .75. In contrast
CIRT produced less biased item parameter estimates regardless of test
length and subscale correlation. In addition, the bias of the MIRT item
difficulty parameter estimates were generally comparable across the studied
test conditions. However, MIRT resulted in slightly higher bias regardless of
test length where subscale correlation was .95.
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Figure 5.22
Bias of a-Parameter for the 3 Domain, 60 Items per Domain Tests: Multiple
Groups

Four-Subdomain Tests.
Figures 5.27 and 5.2811 show the biases of each items discrimination parameter,
a, across all of Study 2’s 4-subdomain, multiple groups conditions. The figures
showed the same pattern of results that was reported on the 3-subdomain tests.

11The ABS and RMSE plots (see Figures H.7 and H.8, and Figures H.23 and H.24 in
Appendix H) generally showed the same inclination as the bias plots.
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Figure 5.23
Bias of a-Parameter for the 4 Domain, 40 Items per Domain Tests: Multiple
Groups

5.2.4.2 Subscale Length

Item Discrimination and Difficulty.
The results for the item (a) discriminations, and (b) difficulty parameters will
be presented together. This is because the results generally followed the same
patterns and trends.
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Figure 5.24
Bias of a-Parameter for the 4 Domain, 60 Items per Domain Tests: Multiple
Groups

Three-Subdomain Tests.
The results presented in Figures 5.21 and 5.22 (item discrimination), and
Figure 5.25 to 5.26 (item difficulty) showed that subscale length did not
impact on the performance of the studied models. However, the average
bias/ABS/RMSE presented in Tables 5.5 and 5.6 reported some trends. That
is, the average biases for all of the studied models decreased as subscale length
increased. In addition, Tables 5.5 and 5.6 showed that the average ABS and
RMSE of CUIRT and CIRT reduced as subscale length increased. MIRT
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Figure 5.25
Bias of b for the 3 Domain, 40 Items per Domain Tests: Multiple Groups

reported average ABS’ that were not sensitive to an increase in subscale length
(see Tables 5.5 and 5.6). In contrast, MIRT RMSE’s were lower on the 60-
item subscale tests than the tests that had 40-item subscales. CIRT generally
reported the lowest bias and ABS.

Four-Subdomain Tests.
Figures 5.23 and 5.24, and Figure 5.27 to 5.28 did not show differences with
respect to the sensitivity of the models to test length. However, the trends that
were reported on Tables 5.5 and 5.6 for the 4 subdomain tests were similar to
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Figure 5.26
Bias of b for the 3 Domain, 60 Items per Domain Tests: Multiple Groups

those presented for the 3 subdomain tests. One key difference was that the
4-subdomain test conditions reported lower bias, ABS, and RMSE compared
to the 3-subdomain test condition results.

110



Figure 5.27
Bias of b-Parameter for the 4 Domain, 40 Items per Domain Tests: Multiple
Groups
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Figure 5.28
Bias of b-Parameter for the 4 Domain, 60 Items per Domain Tests: Multiple
Groups
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5.2.5 Synthesis of Item Parameter Recovery

The results presented in Section 5.2 suggested that the studied subscale score
estimation models were sensitive to subscale correlation regardless of the number
of subscales. That is, some models were likely to report better item parameter
estimates than others under certain subscale correlations. For example, MIRT
and CIRT performed better when subscale correlations were low and moderate.
In contrast, CUIRT reported better item parameter estimates when subscale
correlation was high. In general, the models performed comparatively at
different subscale lengths regardless of the number of subscales.

It would have been expected that since MIRT was the generating model, the
model would have resulted in better item parameter estimates over all simulated
test conditions. However, the results presented in Section 5.2 showed that this
was not always the case. That is, MIRT was not the best performing model
across all simulated test conditions. For example, CUIRT and CIRT performed
better than MIRT where subscale correlation was .95. One likely reason that
this was the case is that the underlying “true" data generating mechanism
of the chosen data where subscale correlations were high represented a more
unidimensional model. That is, since the subscales were highly correlated,
they may inherently be measuring the same construct thus rendering the data
unidimensional. Indeed, at such high correlations, the data that were generated
in the DGP may have essentially been unidimensional as opposed to being
multidimensional.

5.2.5.1 Study 1

Of the three subscale score estimation models, CIRT was least sensitive to
the studied conditions (number of subscales, subscale length and subscale
correlation). In other words, CIRT performed consistently better than CUIRT
and MIRT. Additionally, the performance of CUIRT was better when subscale
correlation was high (.95). Given the structure of the model, it was not
surprising that CUIRT performed better when subscale correlation was high.
However, when ρ = .95, MIRT had larger bias, ABS and RMSE.

The results presented in Sections 5.2.1 and 5.2.2 showed that CIRT and
MIRT had a structural positive bias in the multiple groups simulations.
Tables 5.1 and 5.2 further showed that the single groups simulations showed
less average bias. These results suggest that as the number of groups increase,
from single- to multiple-groups, there may be an added complexity that results
in more biased item parameters.
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5.2.5.2 Study 2

Figure 5.25 to 5.2812 showed that multiple items exhibited larger biases. The
magnitudes of the reported biases suggested that some replications reported
under- or over-estimates of the item difficulty. The under- or over-estimation
was observed where the tests had fewer subdomains. Some under- or over-
estimation was also reported by CUIRT regardless of test length where subscale
correlation was ρ = .45. CIRT and MIRT suggested some under- and over-
estimated on the test that had three-subdomains, each subdomain had 40
items, and were subscale correlation was ρ = .95. The item discrimination
parameters reported in Figure 5.25 to 5.24 also showed that though subscale
correlations were irrelevant in CIRT, the item parameters showed a positive
bias when subscale correlation was .95. Conceptually, it would be argued that
at high correlations, the subscales are highly correlated to an overall proficiency
(ideally unidimensional), and each other as a result. Therefore, CIRT would
present a misspecification. However, these findings were mostly observed for
the discrimination parameters in Study 2.

A closer review of Table 5.3 to 5.6 showed that CUIRT item discrimination
had larger RMSE than CIRT and MIRT in the single groups simulations.
These results were in line with findings from other studies. For example, Yao
and Boughton (2007) pointed out that CUIRT produce worse item parameter
estimates than MIRT. However, results presented in Table 5.3 to 5.6 also
showed lower RMSE’s on the CUIRT-based item discrimination parameter in
the multiple groups simulations. In providing some rough guidelines as to the
required calibration size, DeAyala (2013) stated that practitioners may need
to consider several factors including: (a) the variability and distribution of
respondents, and (b) the amount of missing data on the test. As such, the
reduction in RMSE between the single- and multiple-groups studies may in part
be attributed to the increase in sample sizes (i.e., from 3,000 to 6,000). The
increase in sample sizes translated into an increased exposure to each of the
items on the test translating into more information about a specific item being
collected. As a result, better item parameter estimates would be expected.
The benefits of an increase in sample size would be prevalent in Study 2 where
multiple matrix sampling introduces missing data on the test.

In general, CUIRT, CIRT and MIRT resulted in comparable item location
bias for the polytomous items. That is, the results were similar for d1 and d2.

12An examination of the ABS (see Figure H.5 to H.8), and RMSE plots (see Figure H.21
to H.24) presented in Appendix H show that for some items, the difference between the
estimated and the true item difficulty parameters was indeed quite large in some replications.
This occurred mostly on the three-subdomain tests (see Figures H.5, H.6 and H.21).
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When the models were compared in a condition, the observed magnitude of
bias were similar. It was also observed that all of the three studied models
showed larger bias in the last three GPCM items (see Figures D.4 and D.8 in
Appendix D) regardless of subscale correlations on tests which comprised of
240 items.

5.3 Score Recovery

To investigate all the methods’ subscale score recovery (RQ2), I report bias,
ABS, and RMSE of the estimated population scores. I used the three evaluation
criteria to compare different methods across various simulation conditions. In
the sections that follow, I present the results for Study 1 (Sections 5.3.1
and 5.3.2), and Study 2 (Sections 5.3.3 and 5.3.4). Each of the sections present
the single- and multiple-groups´ results for the respective studies.

Three and five population-domain-proficiency estimates from CUIRT, CIRT,
and MIRT were compared with true values. All of the figures presented in the
results for Study 1 follow the same outline. The rows represent the 5, 10, and
15 subdomain test conditions, whereas each plot in a row represents a specific
domain. Each plot shows the average bias by each estimated correlation.

5.3.1 Score Recovery for Study 1: Single Groups

Figures 5.29 and 5.30 show the bias plots for all of the 3- and 5-subdomain
conditions, respectively. The findings are presented by number of domains.

5.3.1.1 Subscale Correlation

Three-Subdomain Tests.
The first plot in the grid presented in Figure 5.29 shows that the bias of the
scores on the three domain tests over all correlations (i.e., .45, .75, .95) were
close to 013. This pattern was observed over a majority of the conditions.
CUIRT consistently showed more bias, ABS and RMSE in domain 1 on the
3 domain, 15 item tests (across all correlations; see Figures I.1 and I.3 in
Appendix I). CUIRT also showed higher ABS in domains 3 and 2 on the (a)
D = 3, J = 10, ρ = .45 and (b) D = 3, J = 15, ρ = .95 conditions, respectively.

13Figures I.1 and I.3 in Appendix I also reveal that ABS and RMSE, respectively, on the
three subdomain tests were also close to 0.
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Figure 5.29
Subscale Score Bias for the Three-Subomain Tests: Single Groups

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3.

Five-Subdomain Tests.
Figure 5.30 shows that bias were similar on some of the 5 subdomain test
conditions. Though this was the case, CUIRT showed higher bias, ABS and
RMSE in domain 4 across all test lengths and specified correlations (see
Figures I.2 and I.4 in Appendix I). CIRT and MIRT showed the same bias
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Figure 5.30
Subscale Score Bias for the Five-Subomain Tests: Single Groups

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

across a majority of the conditions except in the fifth subdomain on the tests
with five subdomains that comprised of 5 items per domain tests where CIRT
had the lowest bias. Though this was the case in that condition, CUIRT had
the highest ABS and RMSE. CIRT and MIRT consistently showed slightly
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higher bias, ABS and RMSE in domain 1. CUIRT ABS and RMSE were also
lowest in domain 3 on the 10 and 15 subdomain tests whilst being higher for
correlations of .45 and .75 on the same domain in the 5 subdomain test.

5.3.1.2 Subscale Length

Three-Subdomain Tests.
The trends that were reported on Figure 5.29 do not show a consistent trend
across subdomains. The results showed that models performed differently
depending on the subdomain. This was probably because the item parameters
that were used in scoring each domain were different and had different
distributions (see the item parameters specified in data generation, Table 3.4).
However, CUIRT bias on domain 1 was largest on the 15-items-per-subscale
test compared to the test conditions with subscale lengths of 5 and 10. CUIRT
also showed larger biases compared to CIRT and MIRT on domains 2 and 3
where subscale correlation was .95.

Five-Subdomain Tests.
Similar to the 3-subdomain results, the trends that were reported in the 5-
subdomain rest conditions did not show a consistent trends, and the models
performed differently depending on the subdomain. Figure 5.30 showed that all
of the models reported larger bias on domains 1 and 2 on the longer subscales
where subscale correlation was .95. CUIRT bias on domain 4 was grew larger
as the subscale length increased from 5- to 15-items-per-subdomain.

5.3.2 Score Recovery for Study 1: Multiple Groups

Figure 5.31 to 5.48 show the bias plots for all of the 3- and 5-subdomain
conditions, respectively. For illustrative purposes, each figure shows a different
test condition. The findings are presented by number of domains. As an
example, Figure 5.31 shows the bias of a test where D = 3, J = 5, and ρ = .45).
Within the figure, each row represents a different domain and each column
presents a different model (i.e., CUIRT, CIRT, MIRT). To save space, ABS and
RMSE plots are presented in Appendix J. Each plot within the grids presents
either bias, ABS, or RMSE of the estimated scores from a specific subscale
score estimation method for each subdomain on a reported test. For example,
in Figure 5.31, the top left plot shows the bias of CUIRT population scores on
a test where D = 3, J = 5, and ρ = .45.
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Figure 5.31
Subscale Score Bias for the 3-Domain, 5-Item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure 5.32
Subscale Score Bias for the 3-Domain, 5-Item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

5.3.2.1 Subscale Correlation

Three-Subdomain Tests.
According to the plots shown in Figure 5.31 to 5.39 the estimated scores did
not show much sensitivity to the specified model. That is, the estimated scores
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Figure 5.33
Subscale Score Bias for the 3-Domain, 5-Item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

that came from CUIRT, CIRT, and MIRT were very similar. However, there
were a few findings that were observed. The biases across all three-subdomain
test conditions ranged between -.06 and .05. In general, middle performing
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Figure 5.34
Subscale Score Bias for the 3-Domain, 10-Item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

countries consistently showed biases closest to 0 (i.e., between 0 and ±.01). The
plots showed the largest biases were prevalent for the low and high performing
populations. Countries 1, 2, 7, and 9 consistently showed some large bias with
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Figure 5.35
Subscale Score Bias for the 3-Domain, 10-Item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

the values being the largest for countries 2 and 7.
The ABS (see Figure J.1 to J.9), and RMSE plots (see Figure J.19 to

J.27) in Appendix J showed the same patterns. The ABS was particularly
high for countries 2, 7 and 9. Nevertheless, the RMSE slightly reduced across
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Figure 5.36
Subscale Score Bias for the 3-Domain, 10-Item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

all countries (were closer to 0) as the studied number of items per domain
increased from J = 5 to J = 15. Though each model performed better as
the number of items per subdomain increased, ABS was particularly high for
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Figure 5.37
Subscale Score Bias for the 3-Domain, 15-Item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

countries 7 and 9. This result contradicted the results that were reported in
Figure 5.29 which showed slight increases in bias as the number of items in each
subdomain increased from 5 to 15. In addition, the RMSEs (see Figure J.19 to
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Figure 5.38
Subscale Score Bias for the 3-Domain, 15-Item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

J.27 in Appendix J) seemed to be equal across country.
Despite the middle-performers, and Country 8 showing average biases closest

to 0 across all simulated conditions, thorough investigation revealed that all
models reported larger average absolute biases on Subdomains 1 for the other
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Figure 5.39
Subscale Score Bias for the 3-Domain, 15-Item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

countries. On this domain, the reported average ABS for countries 2, 7, and
9 that were .04 or larger, regardless of subscale correlation, test length, and
subscale score estimation model. For example, inspection showed that all of
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the studied models reported an average absolute bias of .06 for Country 7 on
the first subdomain for all five-items-per-subdomain conditions. Upon digging
into the results, Table 5.7 showed that, though average item difficulties were
close to 0, low standard deviations were reported on all of the test conditions
that comprised of tests with 5- and 10-items-per-subdomain. This meant that
the spread of the item difficulties were smaller, and closer to 0, than those
observed on the other two subdomains. However, this was not the case on the
three subdomain tests that had 15 items-per-subdomain, regardless of subscale
correlation; in this case subdomain 3 reported the lowest SD.

It should also be noted that all of the models showed the least bias, RMSE
and ABS on subdomain 3 across all 3-subdomain test conditions, regardless
of subscale correlations, for tests whose subscale lengths were five- and 10-
items (Figure 5.31 to 5.36, respectively). The average absolute biases did
not exceed .05 on the 10- and 15-items-per-subdomain test conditions. In
contrast, Figure 5.37 to 5.39 show that the 15 subdomain item tests did
not show much difference in bias, ABS and RMSE. Further scrutiny of the
average item-difficulty for Study 1’s multiple groups simulation conditions
(see Table 5.7) showed that lower bias, RMSE and ABS were observed where
the standard deviation of the difficulty parameters were higher. For example,
Table 5.7 reported larger standard deviations where subscale lengths were 5
and 10 on domains two and three which also coincided with lower average
absolute biases. In contrast, the item difficulty of the first subdomain in the
five- and 10-item-per-subdomain test conditions had lower standard deviations
and showed the largest bias for countries 2, 7, and 9, in particular. In addition,
the reported biases where J = 15 were lower across all subdomains, and the
standard deviations of the item difficulty parameters on these conditions were
larger (than those reported in subdomain 1 on the 5 and 10 item per subdomain
conditions). These findings suggest that a larger spread of the item-difficulties
makes it possible to collect more information from the entire score distribution
(DeAyala, 2013; Embretson & Reise, 2000).

Five-Subdomain Tests.
Similar patterns were observed on the 5 subdomain tests (see Figure 5.40 to
5.4814). However, it was observed that Country 1 had
the highest bias and ABS in subdomain 1 across all estimation models where
subscale lengths were 10- and 15-items-per-subdomain. The observed biases,
ABS and RMSE in country 1 were over .15 on these specific 5-subdomain test
conditions. The corresponding ABS’ for country 1 also exceeded .15. Country

14The corresponding ABS and RMSE plots are presented in Appendix J.
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Table 5.7
Study 1 Average Item Difficulty of 3-Subdomain Tests
: Multiple Groups

Domain
J ρ Model 1 2 3
5 .45 UIRT .01 (1.02) .01 (1.06) .01 (1.23)

CIRT .01 (1.08) .01 (1.12) .01 (1.30)
MIRT .01 (1.08) .01 (1.12) .01 (1.30)

.75 UIRT .01 (1.05) .01 (1.09) .01 (1.27)
CIRT .01 (1.08) .01 (1.12) .01 (1.30)
MIRT .01 (1.09) .01 (1.13) .01 (1.31)

.95 UIRT .01 (1.07) .01 (1.11) .01 (1.29)
CIRT .01 (1.08) .01 (1.12) .01 (1.30)
MIRT .01 (1.10) .01 (1.14) .01 (1.32)

10 .45 UIRT .02 (1.02) .01 (1.06) .01 (1.35)
CIRT .02 (1.07) .01 (1.11) .01 (1.42)
MIRT .02 (1.07) .01 (1.11) .01 (1.42)

.75 UIRT .01 (1.05) .01 (1.09) .01 (1.38)
CIRT .01 (1.07) .01 (1.11) .01 (1.41)
MIRT .01 (1.07) .01 (1.11) .01 (1.42)

.95 UIRT .01 (1.07) .01 (1.11) .01 (1.41)
CIRT .01 (1.07) .01 (1.11) .01 (1.41)
MIRT .01 (1.08) .01 (1.12) .01 (1.43)

15 .45 UIRT .02 (1.15) .01 (1.19) .01 (1.08)
CIRT .02 (1.20) .01 (1.25) .01 (1.13)
MIRT .02 (1.20) .01 (1.25) .01 (1.13)

.75 UIRT .01 (1.18) .01 (1.22) .01 (1.11)
CIRT .01 (1.20) .01 (1.25) .01 (1.13)
MIRT .01 (1.20) .01 (1.25) .01 (1.13)

.95 UIRT .01 (1.20) .01 (1.24) .01 (1.13)
CIRT .01 (1.20) .01 (1.25) .01 (1.13)
MIRT .01 (1.21) .01 (1.25) .01 (1.14)

Note. J = subscale length; ρ = subscale correlation; the
values in parentheses represent the standard deviations across
replications.
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Figure 5.40
Subscale Score Bias for the 5-Domain, 5-Item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

1 also showed slightly higher ABS compared to other countries in subdomain
3 (across all conditions) despite the reported ABS’ being less variable in that
domain.

Nonetheless, most of the countries showed biases and ABS closer to 0 on
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Figure 5.41
Subscale Score Bias for the 5-Domain, 5-Item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

all other subdomains; with the lowest ABS across all countries being observed
in domain 2. The results also suggested that the low performing countries had
higher bias and ABS on domains 2 and 4 where J = 5 and J = 15. Over all
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Figure 5.42
Subscale Score Bias for the 5-Domain, 5-Item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

conditions, RMSEs slightly increased as the number of items per subdomain
increased. However, it would be expected that longer tests have lower RMSE
because with more items comes more information. As such, better population
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Figure 5.43
Subscale Score Bias for the 5-Domain, 10-Item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

means would be recovered. But then, these high RMSEs may be confounded
to specific conditions. That is, since different item parameters were used for
the different subscale lengths, these results may be specific to condition.

All of the models reported the least biased score estimates on subdomains
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Figure 5.44
Subscale Score Bias for the 5-Domain, 10-Item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

3 and 5 across the 5-subdomain test conditions for tests where subscale lengths
were five- and 10-items per domain (see Figure 5.40 to 5.45). Further scrutiny of
the average item-difficulty for Study 1’s multiple groups simulation conditions
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Figure 5.45
Subscale Score Bias for the 5-Domain, 10-Item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

(see Table 5.8) showed that though all of the 5-subdomain test conditions had
an average difficulty of around .01, the standard deviations were larger for the
five- and 10-item subdomain tests. This suggests that the item-difficulties were
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Figure 5.46
Subscale Score Bias for the 5-Domain, 15-Item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

more spread.
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Table 5.8
Study 1 Average Item Difficulty of 5-Subdomain Tests: Multiple Groups

Domain
J ρ Model 1 2 3 4 5
5 .45 UIRT .01 (.66) .02 (1.15) .01 (1.19) .01 (.72) .02 (1.24)

CIRT .01 (.70) .02 (1.23) .02 (1.27) .01 (.77) .02 (1.32)
MIRT .01 (.70) .02 (1.23) .01 (1.27) .01 (.77) .02 (1.33)

.75 UIRT .01 (.68) .01 (1.19) .02 (1.23) .01 (.75) .02 (1.28)
CIRT .01 (.70) .02 (1.23) .02 (1.27) .01 (.77) .02 (1.32)
MIRT .02 (.71) .02 (1.25) .02 (1.29) .02 (.78) .02 (1.34)

.95 UIRT .01 (.69) .01 (1.22) .01 (1.26) .01 (.76) .02 (1.31)
CIRT .01 (.70) .02 (1.22) .01 (1.27) .01 (.77) .02 (1.32)
MIRT .02 (.72) .02 (1.26) .02 (1.31) .01 (.79) .02 (1.36)

10 .45 UIRT .01 (1.19) .01 (1.33) .01 (.99) .01 (1.08) .01 (1.23)
CIRT .01 (1.26) .02 (1.41) .01 (1.05) .01 (1.14) .01 (1.30)
MIRT .02 (1.26) .02 (1.41) .02 (1.05) .01 (1.14) .01 (1.30)

.75 UIRT .01 (1.23) .01 (1.37) .01 (1.03) .01 (1.11) .01 (1.27)
CIRT .01 (1.26) .02 (1.41) .02 (1.05) .02 (1.14) .01 (1.30)
MIRT .01 (1.27) .02 (1.42) .02 (1.06) .02 (1.15) .01 (1.31)

.95 UIRT .01 (1.25) .01 (1.40) .01 (1.05) .01 (1.13) .01 (1.30)
CIRT .01 (1.26) .02 (1.41) .01 (1.05) .01 (1.14) .01 (1.30)
MIRT .01 (1.28) .01 (1.43) .02 (1.07) .01 (1.16) .01 (1.32)

15 .45 UIRT .01 (1.22) .01 (1.14) .01 (.98) .01 (1.10) .01 (1.12)
CIRT .01 (1.29) .02 (1.20) .01 (1.04) .02 (1.16) .01 (1.19)
MIRT .01 (1.29) .02 (1.20) .01 (1.04) .01 (1.16) .01 (1.19)

.75 UIRT .01 (1.26) .01 (1.17) .01 (1.01) .01 (1.13) .01 (1.16)
CIRT .01 (1.29) .02 (1.20) .01 (1.04) .02 (1.16) .01 (1.19)
MIRT .01 (1.30) .02 (1.21) .02 (1.04) .01 (1.16) .01 (1.19)

.95 UIRT .01 (1.29) .01 (1.20) .01 (1.03) .01 (1.15) .01 (1.18)
CIRT .01 (1.29) .02 (1.20) .01 (1.04) .02 (1.16) .01 (1.19)
MIRT .01 (1.31) .01 (1.21) .01 (1.05) .01 (1.17) .01 (1.20)

Note. J = subscale length; ρ = subscale correlation; the values in parentheses represent
the standard deviations across replications.
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Figure 5.47
Subscale Score Bias for the 5-Domain, 15-Item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

5.3.2.2 Subscale Length

In all the simulated conditions, bias and ABS were closer to 0 as the number of
items per subdomain increased. In other words, there was less of a discrepancy
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Figure 5.48
Subscale Score Bias for the 5-Domain, 15-Item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.

between the estimated and true population scores. Also, the results seemed to
indicate that bias and ABS suggested similar results (see Figure J.1 to J.16
in Appendix J). In this case, ABS was higher where bias was furthest from 0.
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Bias, ABS and RMSE were also lower where the spread of the item-difficulty
parameters was large.

5.3.3 Score Recovery for Study 2: Single Groups

In addition to the three models studied in Study 1 (i.e., CUIRT, CIRT, MIRT),
Study 2 included the CUIRT-Op model which resembled how scores were
estimated on TIMSS 2015 (see Section 3.3.4 in Chapter 3 for details). To
estimate subscale scores, CUIRT-Op fixes item parameters estimated from
CUIRT, and fits a MIRT model that estimates subscale correlations. Three and
four domain-proficiency estimates from CUIRT, CUIRT-Op, CIRT, and MIRT
were compared with true values, the generating population score estimates.
Sections 5.3.3.1 and 5.3.3.2 present the results from the specified subscale
correlations and lengths, respectively.

5.3.3.1 Subscale Correlation

Three-Subdomain Tests.
Figure 5.49 plots the biases for all of the estimated subscale scores by domain.
Figure K.1 and K.3 in Appendix K show plots of the corresponding ABS and
RMSE, respectively. Figure 5.49 shows that CUIRT and CUIRT-Op bias were
closest to 0 compared to CIRT and MIRT across all studied correlations in
domain 2. Figure 5.49 shows that CUIRT and CUIRT-Op biases15 were all
closer to 0 on where subscale score correlation was high (i.e., .95). This was
particularly evident on domains 1 and 2 for both the 40 and 60 subdomain
tests. Whilst the CUIRT group of models showed improvements in domains 1
and 2 as subscale correlation increased, MIRT showed higher bias, ABS and
RMSE scores as subdomain correlation increased (ρ = .95). Across all of the
tested correlations, the evaluation criteria showed that CIRT was least sensitive
to changes in subdomain correlation. The figures showed that the bias, ABS
and RMSE observed from the CIRT model did not show sharp increases or
decreases as subdomain correlation increased. CIRT had the lowest bias, ABS,
and RMSE in domain in domain 3 where the subdomain correlations were low
(ρ = .45).

Four-Subdomain Tests.
Figure 5.50 plots the biases for all of the estimated subscale scores by domain.
Figures K.2 and K.4 in Appendix K show plots of the corresponding ABS
and RMSE, respectively. The observed trends were similar to those observed

15The ABS and RMSE plots showed the same pattern. See Figures K.1 and K.3 in
Appendix K.
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Figure 5.49
Subscale Score Bias for the 3 Domain Subtests Tests: Single Groups

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3.

on the three domain tests. That is, CUIRT, CUIRT-Op, and MIRT reported
subscale scores with the smallest bias.
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Figure 5.50
Subscale Score Bias for the 4 Domain Subtests Tests: Single Groups

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3; D4 = domain 4.

5.3.3.2 Subscale Length

The results presented in Figures 5.49 and 5.50 did not report any trends
that were consistent for all subdomains as subscale length increased. For
instance, in the 3- and 4-subdomain test condition, both 40- and 60-subscale
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Table 5.9
Study 2 Average Item Discrimination of 3-Subdomain Tests by
Subdomain: Single Groups

Domain
J ρ Model 1 2 3 4
40 .45 UIRT .65 (.20) .55 (.18) .79 (.21) .66 (.19)

CIRT .96 (.32) .83 (.32) 1.09 (.31) .93 (.28)
MIRT .84 (.27) .87 (.33) 1.15 (.33) 1.00 (.30)

.75 UIRT .82 (.24) .70 (.23) .94 (.25) .80 (.21)
CIRT .97 (.32) .83 (.31) 1.09 (.32) .93 (.28)
MIRT .79 (.25) .83 (.30) 1.22 (.35) 1.14 (.34)

.95 UIRT .93 (.27) .80 (.27) 1.05 (.28) .90 (.24)
CIRT .97 (.33) .83 (.32) 1.09 (.32) .94 (.28)
MIRT .79 (.25) .80 (.29) 1.24 (.35) 1.33 (.39)

60 .45 UIRT .89 (.24) .74 (.26) .97 (.31) .80 (.21)
CIRT 1.05 (.30) .87 (.33) 1.13 (.41) .94 (.26)
MIRT .80 (.23) .80 (.30) 1.27 (.45) 1.21 (.34)

.75 UIRT .89 (.24) .74 (.26) .97 (.31) .80 (.21)
CIRT 1.05 (.30) .87 (.33) 1.13 (.41) .94 (.26)
MIRT .80 (.23) .80 (.30) 1.27 (.45) 1.21 (.34)

.95 UIRT 1.00 (.27) .85 (.30) 1.09 (.36) .90 (.24)
CIRT 1.05 (.31) .88 (.33) 1.14 (.41) .94 (.27)
MIRT .78 (.22) .79 (.29) 1.23 (.43) 1.37 (.38)

Note. J = subscale length; ρ = subscale correlation; the values in
parentheses represent the standard deviations across replications.

test conditions did not consistently show improvement of the score estimates due
to an increase or decrease in subscale length. The figures showed that CUIRT
reported the best score estimates on all domains in the test conditions except
in domain 4 on all 4 subdomain test conditions with a subscale correlation of
.95, where MIRT performed better than CUIRT and CIRT. The average item
discrimination parameters presented in Table 5.9 show that MIRT produced
large item discriminations on domain 4 of the 4-subdomain test conditions
where subscale correlation was .95. In this condition MIRT’s performance also
improved as subscale length increased.

145



5.3.4 Score Recovery for Study 2: Multiple Groups

Figure 5.51 to 5.62 plot the biases of each country’s model specific subdomain
score. The ABS and RMSE results are presented in Appendix L. Like all
other plots outlining the three evaluation criteria, each row (a) represents a
specific domain; three and five depending on number of subdomains; (b) has
four subplots that show the results from the four studied models: CUIRT,
CUIRT-Op, CIRT and MIRT.

5.3.4.1 Subscale Correlation

Three-Subdomain Tests.
The studied models did not show alarming differences with respect to the
observed patterns. The results showed that the middle performing country
scores had larger bias than the high- and low-performers. The scores for the
middle performing countries were consistently underestimated whereas those
of the high- and low-performing countries were shown to be overestimated. On
the first and second subdomains, the middle performing countries showed high
biases, between -.11 and -.19, depending on test condition. On the second
subdomain, the biases were between -.06 and -.08. Scores for the middle
performers also showed the largest ABS across all studied conditions.

On Subdomain 2 of all 3 subdomain tests, MIRT scores showed the
least deviation from the true values regardless of test length where subscale
correlation was .45. For example, the MIRT biases ranged from -.06 to .06 in
subdomain 2 on the 40-item-per-subdomain-tests as opposed to values between
-.08 to .07 for CUIRT, -.08 to .08 for CUIRT-Op, and -.08 to .07 for CIRT.
MIRT also produced a shorter range of biases on subdomain 3 regardless of
test length, where subscale correlation was .45. In contrast, the CIRT had
the shortest range of biases (i.e., between -.10 and -.08) on the 60-item-per-
subdomain-tests. CIRT also produced lower biases on subdomain 1 under the
same subscale correlation.

On the 40-item-per-subdomain tests, all of the studied models reported
comparable biases on subscale 2 regardless of test length where subscale
correlations were .75 and .95. The same results were observed on subdomain
3 where subscale correlation was .75. In contrast, CUIRT and CUIRT-Op
produced ranges of bias closest to 0 where subscale score correlation was .75.
CUIRT also showed a lower range of bias where subscale correlation was .95.
CUIRT, CUIRT-Op, and CIRT all resulted in comparable, smaller range, biases
where subscale correlation was .95.

On the 60-item-per-subdomain tests, all of the studied models reported
comparable biases on subscale 3, regardless of test length, where subscale
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Figure 5.51
Subscale Score Bias for the 3-Domain, 40-item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.

correlations were .75. CIRT had the lowest range of bias on subdomain 1 where
subscale correlations were .75 and .95. CIRT also had biases closest to 0 (based
on the range across all countries) on subdomain 2 where subscale correlation
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Figure 5.52
Subscale Score Bias for the 3-Domain, 40-item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.

was .75. CUIRT and CIRT all resulted in comparable, smaller range, biases
where subscale correlation was .95.

To gain a deeper understanding as to why subdomain 2 showed the lowest
biases for all countries, I examined the item parameters. First, subdomain
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Figure 5.53
Subscale Score Bias for the 3-Domain, 40-item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.

2 reported the large average item discrimination; ranges between [1.33, 1.62]
and [1.50, 1.81] on the 40- and 60-items-per-subdomain tests, respectively
(see Table 5.10). According to DeAyala (2013, p. 101), “good” values of
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Figure 5.54
Subscale Score Bias for the 3-Domain, 60-item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.

discrimination parameters range from approximately .8 to 2.5. Second, it was
observed that the average item difficulties were the lowest on subdomain 2 for
all four-subdomain conditions. The average item difficulties for each of the
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Figure 5.55
Subscale Score Bias for the 3-Domain, 60-item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.

conditions ranged between [.82, .90] and [1.02, 1.14] on the 40- and 60-items-per-
subdomain tests, respectively (see Table 5.11). In contrast, the average item
difficulties for all other subdomains were greater than 1.14. This suggests that
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Figure 5.56
Subscale Score Bias for the 3-Domain, 60-item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.

subdomains 1 and 3 were more difficult than subdomain 2 which was easier.
As such, more information may have been collected from subdomain 2 because
the items were accessible to all the candidates on the proficiency continuum.
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Table 5.10
Study 2 Average Item Discrimination of 3-Subdomain
Tests by Subdomain: Multiple Groups

Domain
J ρ Model 1 2 3
40 .45 UIRT 1.71 (.45) 1.33 (.41) 1.52 (.45)

CIRT 2.03 (.57) 1.62 (.59) 1.82 (.63)
MIRT 1.54 (.43) 1.60 (.58) 2.33 (.81)

.75 UIRT 1.84 (.49) 1.45 (.47) 1.65 (.52)
CIRT 2.03 (.57) 1.62 (.59) 1.82 (.62)
MIRT 1.50 (.42) 1.57 (.57) 2.42 (.83)

.95 UIRT 1.93 (.52) 1.53 (.52) 1.75 (.58)
CIRT 2.04 (.57) 1.62 (.59) 1.82 (.62)
MIRT 1.48 (.41) 1.55 (.57) 2.47 (.86)

60 .45 UIRT 1.56 (.38) 1.50 (.49) 1.46 (.37)
CIRT 1.87 (.51) 1.81 (.67) 1.72 (.48)
MIRT 1.38 (.37) 1.72 (.63) 2.22 (.62)

.75 UIRT 1.68 (.43) 1.62 (.55) 1.57 (.41)
CIRT 1.88 (.51) 1.81 (.67) 1.72 (.48)
MIRT 1.34 (.36) 1.66 (.60) 2.30 (.64)

.95 UIRT 1.78 (.47) 1.71 (.61) 1.65 (.45)
CIRT 1.88 (.51) 1.80 (.67) 1.72 (.48)
MIRT 1.31 (.35) 1.62 (.59) 2.35 (.65)

Note. J = subscale length; ρ = subscale correlation; the
values in parentheses represent the standard deviations across
replications.
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Table 5.11
Study 2 Average Item Difficulty of 3-Subdomain Tests
by Subdomain: Multiple Groups

Domain
J ρ Model 1 2 3
40 .45 UIRT 1.40 (.65) .82 (.58) 1.24 (.76)

CIRT 1.52 (.72) .90 (.65) 1.38 (.90)
MIRT 1.53 (.71) .90 (.66) 1.38 (.92)

.75 UIRT 1.45 (.68) .85 (.61) 1.30 (.81)
CIRT 1.52 (.72) .90 (.66) 1.37 (.89)
MIRT 1.53 (.71) .90 (.67) 1.37 (.92)

.95 UIRT 1.48 (.70) .87 (.63) 1.34 (.87)
CIRT 1.52 (.72) .90 (.65) 1.38 (.90)
MIRT 1.53 (.71) .90 (.67) 1.38 (.93)

60 .45 UIRT 1.35 (.63) 1.02 (.63) 1.14 (.70)
CIRT 1.46 (.71) 1.14 (.73) 1.24 (.79)
MIRT 1.47 (.70) 1.12 (.72) 1.22 (.80)

.75 UIRT 1.40 (.67) 1.06 (.66) 1.18 (.74)
CIRT 1.46 (.71) 1.14 (.73) 1.24 (.80)
MIRT 1.48 (.70) 1.12 (.72) 1.22 (.81)

.95 UIRT 1.44 (.69) 1.09 (.69) 1.21 (.78)
CIRT 1.46 (.71) 1.14 (.73) 1.24 (.79)
MIRT 1.48 (.70) 1.12 (.72) 1.22 (.80)

Note. J = subscale length; ρ = subscale correlation; the
values in parentheses represent the standard deviations across
replications.
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Four-Subdomain Tests.
The studied models showed patterns and trends similar to those observed
in the 3 subdomain tests. That is, the middle performing country scores
showed more bias than the high- and low-performers. The scores for the middle
performing countries were consistently underestimated whereas those of the
high- and low-performing countries were shown to be overestimated. However,
all countries showed the least bias and ABS (closest to 0) in subdomains 4 on
the 4-subdomain test conditions. On subdomain 4, MIRT showed the least
bias, ABS and RMSE. The range of biases was smaller and closer to 0 on
MIRT, than they were on CUIRT, CUIRT-Op, and CIRT. In other words,
MIRT performed better on these subdomains regardless of subscale length and
subscale correlation.

Though the biases were larger on the other subdomains, CIRT performed
better on the first and second subdomains. In other words, the biases of all of
the country scores reported from the CIRT model had a smaller range and were
closer to 0, regardless of test length and subscale correlation. In contrast, MIRT
performed better on subdomain 3 in all of the 4-subdomain test conditions.
The results from the four subdomain tests also suggested that bias, ABS and
RMSE improved as (a) subscale score correlation increased, and (b) tests with
more items per subdomain showed evaluation criteria closer to 0.

To gain a deeper understanding as to why subdomain 4 showed the lowest
biases for all countries, I examined the item parameters. First, subdomain 4
reported the largest average item discrimination; ranges between [1.55, 2.83]
and [1.66, 2.82] on the 40- and 60-items-per-subdomain tests, respectively (see
Table 5.12). DeAyala (2013) and Hambleton and Swaminathan (2013) noted
that the larger the item discrimination, the greater the the information. More
information translates in better estimation of proficiency scores (i.e., subscale
score estimates with lower bias). Second, it was observed that the average item
difficulties were the lowest on subdomain 4 for all four-subdomain conditions.
The average item difficulties for each of the conditions ranged between [.86, .94]
and [.83, .87] on the 40- and 60-items-per-subdomain tests, respectively (see
Table 5.13). In contrast, the average item difficulties for all other subdomains
were greater than .96. This suggests that subdomains 1 to 3 were more difficult
than subdomain 4. As a result, less information may have been collected from
subdomains 1 and 3 since items may have been too difficult for the populations.

5.3.4.2 Subscale Length

Figure 5.51 to 5.62 did not report any trends that were consistent for all
subdomains as subscale length increased. That is, all of the subscale score
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Figure 5.57
Subscale Score Bias for the 4-Domain, 40-item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.

estimation models were not sensitive to the change in subscale length (from 40-
to 60-item subscales).
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Figure 5.58
Subscale Score Bias for the 4-Domain, 40-item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.

5.3.5 Synthesis of Score Recovery

The results presented in Section 5.3 suggested that the studied subscale score
estimation models were sensitive to subscale correlation regardless of the
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Figure 5.59
Subscale Score Bias for the 4-Domain, 40-item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.

number of subscales. That is, some models were likely to report better score
estimates than others under certain scubscale correlations. In general, the
models performed comparatively at different subscale lengths regardless of the
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Figure 5.60
Subscale Score Bias for the 4-Domain, 60-item, .45 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.

number of subscales.
It would have been expected that since MIRT was the generating model, the

model would have resulted in better item parameter estimates over all simulated
test conditions. However, the results presented in Section 5.2 showed that this
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Figure 5.61
Subscale Score Bias for the 4-Domain, 60-item, .75 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.

was not always the case. That is, MIRT was not the best performing model
across all simulated yest conditions. For example, CUIRT and CIRT performed
better than MIRT where subscale correlation was .95. One likely reason that
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Figure 5.62
Subscale Score Bias for the 4-Domain, 60-item, .95 Correlation Subdomain
Tests: Multiple Groups

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.

this was the case is that the underlying “true" data generating mechanism
of the chosen data where subscale correlations were high represented a more
unidimensional model. That is, since the subscales were highly correlated,
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Table 5.12
Study 2 Average Item Discrimination of 4-Subdomain Tests by Sub-
domain: Multiple Groups

Domain
J ρ Model 1 2 3 4
40 .45 CUIRT 1.58 (.41) 1.41 (.39) 1.49 (.34) 1.55 (.37)

CIRT 1.98 (.57) 1.73 (.57) 1.84 (.48) 1.89 (.50)
MIRT 1.41 (.40) 1.48 (.48) 1.95 (.50) 2.60 (.69)

.75 CUIRT 1.74 (.46) 1.54 (.46) 1.63 (.38) 1.69 (.41)
CIRT 1.99 (.58) 1.73 (.57) 1.85 (.48) 1.89 (.50)
MIRT 1.37 (.39) 1.44 (.48) 1.91 (.49) 2.75 (.72)

.95 CUIRT 1.84 (.51) 1.63 (.51) 1.72 (.42) 1.79 (.45)
CIRT 2.00 (.58) 1.73 (.57) 1.86 (.49) 1.89 (.50)
MIRT 1.35 (.39) 1.42 (.48) 1.88 (.48) 2.83 (.75)

60 .45 CUIRT 1.80 (.45) 1.58 (.57) 1.55 (.49) 1.66 (.39)
CIRT 2.08 (.56) 1.79 (.71) 1.79 (.63) 1.86 (.48)
MIRT 1.35 (.36) 1.42 (.56) 1.77 (.60) 2.73 (.70)

.75 CUIRT 1.80 (.45) 1.58 (.57) 1.55 (.49) 1.66 (.39)
CIRT 2.08 (.56) 1.79 (.71) 1.79 (.63) 1.86 (.48)
MIRT 1.35 (.36) 1.42 (.56) 1.77 (.60) 2.73 (.70)

.95 CUIRT 1.91 (.50) 1.68 (.64) 1.64 (.55) 1.76 (.43)
CIRT 2.10 (.57) 1.78 (.71) 1.81 (.64) 1.85 (.47)
MIRT 1.32 (.35) 1.38 (.55) 1.73 (.59) 2.82 (.72)

Note. J = subscale length; ρ = subscale correlation; the values in parentheses
represent the standard deviations across replications.

they may inherently be measuring the same construct thus rendering the data
unidimensional. Indeed, at such high correlations, the data that were generated
in the DGP may have essentially been unidimensional (UIRT) as opposed to
being multidimensional (MIRT).

5.3.5.1 Study 1

The results presented in Study 1 were not consistent across subdomains. For
example, the results presented in Figure 5.30 showed that some domains had a
positive bias (domain 4) and some exhibited negative bias (domain 1). One
other observation from Study 1’s single groups, 5-subdomain test conditions,
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Table 5.13
Study 2 Average Item Difficulty of 4-Subdomain Tests by Subdo-
main: Multiple Groups

Domain
J ρ Model 1 2 3 4
40 .45 CUIRT 1.38 (.68) .98 (.61) 1.14 (.68) .86 (.57)

CIRT 1.53 (.81) 1.08 (.70) 1.25 (.78) .94 (.65)
MIRT 1.55 (.80) 1.07 (.70) 1.24 (.79) .94 (.67)

.75 CUIRT 1.44 (.73) 1.01 (.64) 1.18 (.72) .89 (.61)
CIRT 1.53 (.81) 1.08 (.70) 1.24 (.78) .94 (.65)
MIRT 1.56 (.80) 1.08 (.71) 1.24 (.79) .93 (.67)

.95 CUIRT 1.49 (.77) 1.04 (.67) 1.22 (.76) .92 (.63)
CIRT 1.53 (.81) 1.08 (.70) 1.24 (.79) .94 (.65)
MIRT 1.56 (.80) 1.08 (.71) 1.25 (.80) .94 (.67)

60 .45 CUIRT 1.57 (.84) .96 (.67) 1.19 (.74) .83 (.58)
CIRT 1.65 (.91) 1.04 (.74) 1.25 (.82) .86 (.61)
MIRT 1.67 (.89) 1.02 (.73) 1.25 (.81) .84 (.61)

.75 CUIRT 1.57 (.84) .96 (.67) 1.19 (.74) .83 (.58)
CIRT 1.65 (.91) 1.04 (.74) 1.25 (.82) .86 (.61)
MIRT 1.67 (.89) 1.02 (.73) 1.25 (.81) .84 (.61)

.95 CUIRT 1.62 (.88) .99 (.70) 1.23 (.78) .85 (.60)
CIRT 1.64 (.92) 1.05 (.74) 1.24 (.83) .87 (.62)
MIRT 1.68 (.89) 1.02 (.74) 1.25 (.82) .84 (.62)

Note. J = subscale length; ρ = subscale correlation; the values in parentheses
represent the standard deviations across replications.

was that on some domains (i.e., domain 1), the 5 subscale item tests reported
less bias than the 15 subdomain item test. One likely reason was that the
generating item parameters for corresponding test lengths (and subdomains)
were different.

5.3.5.2 Study 2

Similar to Study 1, Study 2’s results were also not generalizable across
subdomains because the data generating item parameters were different for
each. The results for the single groups analyses pointed out five key results.
First, CUIRT and CUIRT-Op bias, ABS and RMSE decreased as subscale
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correlation increased from .45 to .95. Second, CUIRT and CUIRT-Op subscale
scores showed the least bias, ABS and RMSE at ρ = .95 in domains 1, 2, and 3
compared to domain 4. The CUIRT group of model results observed on domain
3 showed that bias, ABS and RMSE was the closest to 0 compared to the
MIRT models across all correlations. Third, MIRT scores showed bias, ABS
and RMSE’s closer to 0 where ρ = .95 in subdomain 4. Fourth, CIRT bias,
ABS and RMSE were the least sensitive to subscale correlation. Fifth, MIRT
consistently showed bias, ABS and RMSE closest to 0 across all subdomains in
subdomain 1 where D = 4, J = 60.

In summary of the the multiple groups analyses, countries that were in
the the middle ranges showed bias, ABS, and RMSE that were nearly equal
regardless of the estimation model. However, these middle performing countries
systematically showed biases and ABS furthest from 0. The negative biases
for these middle performers meant that their simulated country scores were
consistently underestimated. The high and low performing countries showed
the lowest ABS in both the three- and four-subdomain test conditions. Overall,
countries 3 and 4 showed score biases, and ABS closest to 0. The pattern of
results that were observed in the multiple groups analyses may have been a
result of the overestimated item discrimination estimates that were presented in
Section 5.2.4. The results also showed that bias, ABS and RMSE were closest
to 0 when subscale correlation increased within specified test condition (i.e.,
from ρ = .45 to ρ = .75). Slight improvements were also observed as number
of items per subdomain increased (i.e., from J = 40 to J = 60).

5.4 Subsale Score Value

In order to examine which of the three subscale score methods (i.e., CUIRT,
CIRT, MIRT) produced the most valuable subscale scores, I examined their
PRMSE’s. That is, for each studied condition, I compared the PRMSEs of
several indicators of a true subscale score; subscale scores estimated from the
studied models. Values of the PRMSE lie between 0 and 1. Conceptually, a
subscale score estimate with the highest PRMSE provides a more valuable
subscale score (Haberman, 2008). Ideally, CUIRT may not result in large
PRMSE since it does not model subscales. Nonetheless, I was consistent in my
calculation of the PRMSE for all of the models. In what follows, I summarize
Tables 5.14 and 5.17 which allows for the average PRMSE values across all 100
replications to be compared.
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5.4.1 PRMSE for Study 1

5.4.1.1 Single Groups

Table 5.14 shows the values of PRMSE for all the studied conditions in Study
1’s single groups example. The reported PRMSE’s for all of the models in
the single group’s simulation were generally comparable regardless of subscale
correlation. In most of the conditions, CIRT and MIRT had larger and equal
estimates of subscale score value regardless of the number of subdomains,
subscale length and subscale correlation. The estimated PRMSE’s for MIRT
based subscale scores were larger in some domains in conditions where D = 5
and subdomain correlations were moderate and high (i.e., ρ = .75 and ρ = .95,
respectively). All three models provided equally valuable subscale scores when
D = 3, J = 15, ρ = .95. Also, when D = 5, J = 15, ρ = .95 the three models
resulted in similar PRMSE’s on multiple domains. Table 5.14 showed that
the studied models reported larger PRMSEs on longer subscale tests for all
simulated conditions regardless of test length and subscale correlation.
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5.4.1.2 Multiple Groups

Table 5.15 shows the values of PRMSE for all the studied conditions in Study
1’s multiple groups (MG) example. In this example, the reported model
specific PRMSEs were comparable (to the third decimal) regardless of subscale
correlation. On the three subdomain tests, MIRT scores had the largest
PRMSEs. The five subdomain tests told a different story. When subscale
correlations were low (i.e., ρ = .45), CIRT showed larger PRMSEs on four of
the five subdomains where D = 10 and J = 15. Higher PRMSEs were also
reported on multiple domains for the D = 5, J = 15, ρ = .75 condition. In no
case were all PRMSEs equal beyond the third decimal. Table 5.15 showed that
the studied models reported larger PRMSEs on longer subscale tests for all
simulated conditions regardless of test length and subscale correlation.
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5.4.2 PRMSE for Study 2

5.4.2.1 Single Groups

Table 5.16 shows the values of PRMSE for all the studied conditions in Study
2’s single groups (SG) example. The reported MIRT score PRMSE values were
larger than those reported for CUIRT, CUIRT-Op and CIRT on all domains
in the simulated four subdomain test conditions regardless of test length and
subscale correlation. However, CUIRT-Op produced larger PRMSE values in
subdomain one on several test conditions. For example, CUIRT-Op produced
a score with the largest PRMSE in subdomain one on the three subdomain
test that had 40 items-per-subdomain and a correlation of .95. CUIRT-Op
also produced scores with the largest PRMSE in subdomain one on the three
subdomain test that had 60 items-per-subdomain and correlations of .75 and
.95, respectively. Table 5.16 showed that the studied models reported larger
PRMSEs on longer subscale tests for all simulated conditions regardless of test
length and subscale correlation.

5.4.2.2 Multiple Groups

Table 5.17 shows the values of PRMSE for all the studied conditions in Study 2’s
multiple groups (MG) example. The MIRT-based PRMSE’s were the largest for
most domains on the simulated conditions where D = 3, regardless of subscale
correlation and subscale length. However, CUIRT-Op produced the highest
PRMSE in subdomain 1 on all three subdomain test conditions that comprised
of multiple groups and regardless of subscale correlation and length. Wang
et al. (2019) argued that the proportion of valuable subscale scores on a test is
related to the item parameters on a test. That is, item parameter distributions
may be related to the prevalence of subscale score value on a test. As such,
review of the item parameters showed that the average item discriminations, in
situations where CUIRT-Op outperformed MIRT, were larger and more variable
than those reported for MIRT (see Table 5.12). The item difficulties were on
average lower than those reported by MIRT (see Table 5.13). hlThis may have
translated into more information pertaining to the simulated examinees being
collected and more subscale value.

Further inspection of Table 5.17 showed that MIRT and CIRT based
PRMSE’s were largest on two of the four dimensions, each, for a majority of
the conditions; where (a) D = 4, J = 40 (on all studied correlations) and (b)
D = 4, J = 40 ρ = .45. In the multiple group’s simulation, the CIRT model
reported larger PRMSE on three-subdomains on tests that had five-subdomains,
so items per subdomain and subscale correlation was .75 and .95. Table 5.12
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Table 5.16
Study 2: Single Groups’ Simulation Average PRMSE

Three Domains Four Domains
J ρ d CUIRT CIRT MIRT CUIRT CIRT MIRT
40 .45 1 .41 .49 .52 .37 .47 .52

2 .34 .45 .49 .36 .48 .51
3 .47 .53 .55 .47 .54 .57
4 — — — .44 .53 .57

.75 1 .46 .49 .56 .43 .47 .56
2 .41 .46 .51 .43 .48 .59
3 .50 .53 .57 .51 .54 .61
4 — — — .49 .53 .62

.95 1 .48 .49 .58 .46 .47 .57
2 .44 .46 .55 .46 .48 .63
3 .52 .53 .60 .53 .54 .69
4 — — — .52 .53 .68

60 .45 1 .47 .56 .58 .52 .59 .63
2 .51 .59 .62 .50 .59 .63
3 .57 .62 .64 .56 .62 .65
4 — — — .55 .63 .66

.75 1 .53 .56 .62 .57 .60 .65
2 .56 .59 .66 .56 .59 .69
3 .60 .62 .69 .60 .63 .72
4 — — — .59 .63 .72

.95 1 .55 .56 .64 .59 .60 .66
2 .59 .59 .69 .59 .60 .72
3 .61 .62 .71 .62 .63 .77
4 — — — .62 .63 .76

Note. J = subscale length; ρ = subscale correlation; d = subdomain

also showed that the CIRT item parameters exhibited the highest average item
discriminations where the model out performed all others. Table 5.17 showed
that the studied models reported larger PRMSEs on longer subscale tests for
all simulated conditions regardless of test length and subscale correlation.
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Table 5.17
Study 2 Multiple Groups’ Simulation Average PRMSE

Three Domains Four Domains
J ρ d CUIRT CIRT MIRT CUIRT CIRT MIRT
40 .45 1 .66 .68 .71 .65 .67 .64

2 .64 .67 .74 .65 .68 .66
3 .64 .66 .73 .65 .67 .68
4 — — — .68 .70 .72

.75 1 .67 .68 .72 .66 .67 .63
2 .65 .67 .75 .66 .68 .66
3 .65 .66 .74 .66 .67 .68
4 — — — .69 .70 .72

.95 1 .67 .68 .72 .66 .67 .63
2 .66 .67 .76 .67 .68 .65
3 .66 .66 .75 .66 .67 .67
4 — — — .69 .70 .72

60 .45 1 .72 .74 .76 .72 .74 .72
2 .73 .75 .80 .73 .75 .74
3 .72 .74 .79 .71 .73 .73
4 — — — .76 .77 .78

.75 1 .73 .74 .77 .73 .74 .71
2 .74 .75 .81 .74 .75 .73
3 .73 .74 .79 .72 .73 .73
4 — — — .77 .77 .78

.95 1 .73 .74 .77 .73 .74 .71
2 .74 .75 .82 .75 .75 .73
3 .73 .74 .80 .72 .73 .72
4 — — — .77 .77 .78

Note. J = subscale length; ρ = subscale correlation; d = subdomain
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5.5 Model Fit

In this section, I compared CUIRT, CIRT and MIRT model fit within each
condition. I evaluated three criteria: −2ll, AIC, and BIC. These comparisons
were possible since the models were fit to the same set of responses within each
studied condition (Singer & Willett, 2003). Smaller values of −2ll, AIC, and
BIC indicate better relative model fit. In what follows, I compared CUIRT,
CIRT and MIRT model fit within each condition since the models were fit to
the same set of responses.

5.5.1 Model Fit for Study 1

5.5.1.1 Single Groups

As a reminder, smaller values of −2ll, AIC, and BIC indicate better model fit.
Results presented in Table 5.18 indicate that for many simulated conditions
in Study 1’s single groups analysis, MIRT showed better fit (compared to
CUIRT and CIRT) regardless of test length in the single groups simulations
where subscale correlation was .45 and .75. However, all of the fit measures
generally suggested better fit for CUIRT on test conditions where subscale
correlation was .95. All of the fit indices suggested better fit for MIRT on
one high correlation test condition that had 3 subdomains and 15 items in
each subdomain. On several other high correlation conditions, the different fit
indices reported different conclusions. For example, on the 3- and 5 subdomain
test conditions that had 10- and 15-items per subdomain, respectively. AIC
and BIC showed that CUIRT fit the data better on the 3 subdomain test that
had a subscale length of 10, and a subscale correlation of .95. −2ll showed
that MIRT fit the data better. BIC and −2ll showed that MIRT fit the data
better on the 5 subdomain test that had a subscale length of 15, and a subscale
correlation of .95. AIC showed that CUIRT fit the data better. One likely
reason that the three fit indices reached different conclusions is that some
indices penalized the number of parameters more than others. In all of Study
1’s single groups conditions, CIRT showed some poor fit.
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5.5.1.2 Multiple Groups

With respect to, −2ll, AIC and BIC, MIRT generally showed better fit,
regardless of test length, on all test conditions where subscale correlation
was .45 and .75. In contrast, CUIRT showed better fit compared to the other
studied models in conditions where subscale correlation was .95. Put differently,
in situations where MIRT did not show better fit, the CUIRT model showed
better fit. Overall, CIRT did not fit the data in each condition best in the
multiple groups conditions.
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Table 5.20
Simulation Study 2 Model Fit (−2ll): Single Groups

−2ll
D J ρ CUIRT CUIRT-Op CIRT MIRT
3 40 .45 122801 136105 122591 122183

.75 120904 135424 122627 121705

.95 119414 135106 122605 120883
60 .45 183365 196241 182446 181617

.75 179988 195180 182389 180029

.95 177536 194896 182412 178910
4 40 .45 167719 184912 167603 166775

.75 164397 184398 167602 165187

.95 161902 181829 167640 163437
60 .45 248242 264825 246818 245237

.75 242393 262272 246881 242443

.95 238043 264322 246896 240282

Note. D = number of subscales; J = subscale length; ρ =
subscale correlation

5.5.2 Model Fit for Study 2

5.5.2.1 Single Groups

Results in Table 5.20 to 5.22 (−2ll, AIC, and BIC, respectively), for Study
2, showed results that contradicted those presented in Table 5.18 (results for
simulation Study 1). With respect to −2ll, AIC and BIC, CUIRT showed
better fit, regardless of test length, in the single groups simulations where
subscale correlation was .75 and .95. However, all of the fit measures suggested
better fit for MIRT on test conditions where subscale correlation was .45. In
all of Study 2’s single groups conditions, CUIRT-Op showed some poor fit.

5.5.2.2 Multiple Groups

With respect to, −2ll, AIC and BIC (see Tables 5.20 to 5.22), CUIRT generally
showed better fit, regardless of test length, on the multiple groups analyses
where subscale correlation was .75 and .95. In addition, all of the fit measures
suggested that CUIRT had better model fit on the four subdomain tests
that comprised of 40 items-per-subdomain where subscale correlation was .45.
Only the BIC fit measure showed that CUIRT fit the data best on the three
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Table 5.21
Simulation Study 2 Model Fit (AIC): Single Groups

AIC
D J ρ CUIRT CUIRT-Op CIRT MIRT
3 40 .45 123293 136279.2 123083 122681

.75 121396 135597.5 123119 122203

.95 119906 135280.4 123097 121381
60 .45 184103 196415.2 183184 182361

.75 180726 195354.4 183127 180773

.95 178274 195070.4 183150 179654
4 40 .45 168375 185148.4 168259 167443

.75 165053 184633.6 168258 165855

.95 162558 182053 168296 164105
60 .45 249226 265060.7 247802 246233

.75 243377 262496.2 247865 243439

.95 239027 264558.3 247880 241278

Note. D = number of subscales; J = subscale length; ρ =
subscale correlation

Table 5.22
Simulation Study 2 Model Fit (BIC): Single Groups

BIC
D J ρ CUIRT CUIRT-Op CIRT MIRT
3 40 .45 124941 136862.1 124731 124349

.75 123044 136180.4 124767 123872

.95 121554 135863.3 124745 123049
60 .45 186575 196998 185656 184853

.75 183198 195937.3 185599 183265

.95 180747 195653.3 185622 182146
4 40 .45 170573 185939 170457 169681

.75 167250 185424.2 170455 168093

.95 164756 182803.9 170493 166343
60 .45 252523 265851.3 251098 249569

.75 246673 263246.5 251162 246776

.95 242323 265349.3 251176 244614

Note. D = number of subscales; J = subscale length; ρ =
subscale correlation
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Table 5.23
Simulation Study 2 Model Fit (−2ll): Multiple Groups

−2ll
D J ρ CUIRT CUIRT-Op CIRT MIRT
3 40 .45 545407 549449.4 565911.2 545395

.75 533349.5 544635.3 566056.6 540852.1

.95 524519.7 541385.9 565936.2 537360.7
60 .45 796740.7 797500.8 817551.4 791936.2

.75 777879.7 793981.1 817511.1 785602.1

.95 764409 784364.6 817605.1 781010.1
4 40 .45 720898.6 728609.3 757352.9 721262.4

.75 701492.7 720436.1 757449.2 713104.7

.95 687539.7 722602.8 757437.6 707139.5
60 .45 1059779 1063232 1096848 1052904

.75 1030045 1048669 1097094 1042286

.95 1008747 1046043 1097138 1034321

Note. D = number of subscales; J = subscale length; ρ =
subscale correlation

subdomain tests that comprised of 40 items-per-subdomain where subscale
correlation was .45; on the contrary, −2ll and AIC suggested that MIRT fit
the data best when compared to the other models. However, all of the fit
measures suggested that MIRT had better model fit regardless of the number of
subdomains on the tests conditions that comprised of 60 items-per-subdomain
and subscale correlation was .45. In all of Study 2’s multiple groups conditions,
CIRT showed some poor fit. This results were confirmed by all of the fit
measures.

5.6 Summary

This chapter presented the results of all the simulation studies that were
designed to resemble SACMEQ and TIMSS data, respectively. The difference
between the two simulation studies is that Study 1 does not employ matrix
sampled test booklets whilst Study 2 does. All of the results were intended to
show how well competing IRT methods perform in subscale score estimation
under different test specifications. The results are summarized in Figures 5.63
and 5.64. These two figures show all of the simulated conditions. The
figures show which of the competing models performed best in either item- or
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Table 5.24
Simulation Study 2 Model Fit (AIC): Multiple Groups

AIC
D J ρ CUIRT CUIRT-Op CIRT MIRT
3 40 .45 545899 549449.4 566403.2 545893

.75 533841.5 544635.3 566548.6 541350.1

.95 525011.7 541385.9 566428.2 537858.7
60 .45 797478.7 797500.8 818289.4 792680.2

.75 778617.7 793981.1 818249.1 786346.1

.95 765147 785108.6 818343.1 781754.1
4 40 .45 721554.6 728609.3 758008.9 721930.4

.75 702148.7 720436.1 758105.2 713772.7

.95 688195.7 722602.8 758093.6 707807.5
60 .45 1060763 1063232 1097832 1053900

.75 1031029 1049665 1098078 1043282

.95 1009731 1046043 1098122 1035317

Note. D = number of subscales; J = subscale length; ρ =
subscale correlation

Table 5.25
Simulation Study 2 Model Fit (BIC): Multiple Groups

BIC
D J ρ CUIRT CUIRT-Op CIRT MIRT
3 40 .45 547943 549449.4 568447.2 547961.9

.75 535885.5 544635.3 568592.6 543419

.95 527055.7 541385.9 568472.2 539927.6
60 .45 800544.7 797500.8 821355.4 795771.1

.75 781683.7 793981.1 821315.1 789437

.95 768213 788199.6 821409.2 784845
4 40 .45 724280 728609.3 760734.2 724705.6

.75 704874.1 720436.1 760830.6 716547.9

.95 690921.1 722602.8 760818.9 710582.7
60 .45 1064851 1063232 1101920 1058038

.75 1035117 1053803 1102166 1047420

.95 1013819 1046043 1102210 1039455

Note. D = number of subscales; J = subscale length; ρ =
subscale correlation
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score-recovery and PRMSE. These were presented by comprising sample and
subdomain where necessary.
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Figure 5.63 summarises the key findings of simulation Study 1. The numbers
in each figure represent the best performing model at (a) item parameter
recovery, (b) score recovery, and (c) PRMSE. In other words, the numbers
correspond to a specific model, or a combination of models that result in
comparable performance, that perform best. In Figure 5.63: 1 = CUIRT; 2 =
CIRT; 3 = MIRT; 4 = CUIRT and CIRT; 5 = CUIRT and MIRT; 6 = CIRT
and MIRT; 7 = All models. The results are presented over all of Study 1’s
simulated test conditions, single- or multiple-groups.

When comparing item parameter recovery, the results showed that CIRT
generally performed better than all other models on both the single- and
multiple-groups studies. The performance of CUIRT was consistently related
to subscale correlation in that results showed better item parameter recovery
where subscale correlation was .95 as compared to correlations of .45 and .75.
As a result, CUIRT produced similar results as CIRT on the three-subdomain
tests where subscale correlation was .95.

Studies 1 and 2 did not present generalizable score recovery patterns across
subdomains across the different subdomains. This was largely because the
generating item parameters were different for all of the subdomains on a test
condition. As a result, the subdomains had different items which translated
manifested into subscales with different test properties. Study 1’s score recovery
seemed to suggest that CIRT and MIRT resulted in better subscale score
estimates on subdomain 1 on the single groups simulation, on tests that had
three-items-per-subdomain. The single groups simulations showed that CUIRT
improved in some other conditions (i.e., there was notable improvement in
score estimation where subscale score correlation was .95). Study 1’s score
recovery results for the multiple groups simulations were generally comparable
regardless of test specification and subscale score estimation model.

The results from Study 1 further showed that MIRT had higher PRMSE
compared to CUIRT. In other words, MIRT produced more valuable subscale
scores. CIRT consistently produced comparable PRMSE’s to MIRT in the
single groups simulations where subscale score correlation was .45 and .75.
MIRT, generally resulted in the more valuable subscale scores in the multiple
groups simulation. MIRT also showed better model fit whereas CIRT did not
fit the data in each condition best.

Figure 5.64 summarises the key findings of simulation Study 2. The numbers
in each figure represent the best performing model at (a) item parameter
recovery, (b) score recovery, and (c) PRMSE. In other words, the numbers
correspond to a specific model, or a combination of models that result in
comparable performance, that perform best. In Figure 5.64: 1 = CUIRT;
2 = CUIRT-Op; 3 = CIRT; 4 = MIRT; 5 = CUIRT and CUIRT-Op; 6 =
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CUIRT and CIRT; 7 = CUIRT and MIRT; 8 = CIRT and CUIRT; 9 =
CIRT and MIRT; 10 = CUIRT-Op and MIRT; 11 = CIRT and MIRT. The
results are presented over all off Study 2’s simulated test conditions, single- or
multiple-groups.

When comparing item parameter recovery, the results showed that CIRT
and MIRT generally produced better difficulty and discrimination parameters
than CIRT, on both the single- and multiple-groups studies, where subscale
correlation was .45 and .75. In contrast, CUIRT showed better discrimination
and difficulty recovery where subscale correlation was .95. In addition, the
models resulted in similar item location parameters for the GPCM items (see
Appendix D for the bias plots for d1 and d2).
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Score recovery seemed to suggest that CUIRT and CUIRT-Op resulted
in better subscale score estimates on all subdomains on the single groups
simulation. Where these two models did not do well, MIRT recovered the
scores better. In contrast, the multiple groups simulations suggested that CIRT
produced better subscale score estimates on the first and second subdomain.
MIRT resulted in better subscale score estimates on subdomains 3 and 4.

The MIRT model also resulted in better PRMSE over a majority of the
conditions on Study 2’s single groups study. CUIRT-Op produced more valuable
scores on subdomain 1 of the three subdomain test conditions where subscale
correlations were .75 and .95. All of the 4 subdomain test conditions of
simulation study 2’s single groups study showed that MIRT produced more
valuable subscores. The results from simulation Study 2’s multiple groups
test conditions showed a slightly different trend. First, CUIRT-Op reported
the highest PRMSEs on subdomain 1 of all three subdomain test conditions.
Second, CIRT produced more valuable subscale scores in subdomain 1 and 2
on the 4-items-per-subdomain, multiple-groups simulation regardless of test
length. Third, CIRT also produced higher PRMSE in the third subdomain
of the 60-item-per-subdomain test conditions. Fourth, where CUIRT-Op and
CIRT did not perform well, MIRT scores were reported as being more valuable.
Fifth, CUIRT generally reported the lowest PRMSE’s; a result that was to be
expected because of the models inherent properties. Sixth, as the number of
subdomains increased, t

One common result from Studies 1 and 2 was that the studied models
showed larger PRMSEs on longer subscale tests for all simulated conditions.
In other words, longer subscales had larger PRMSE. This result was expected
since PRMSE is analogous to the marginal reliability of a subscale, and the
reliability of a test increases as the number of items increases.

The results from simulation Study 1 suggested that MIRT fit the data best
where subscale correlation was .45 and .75. These findings were expected since
MIRT was the assumed data generation model. In contrast, CUIRT generally
showed better model fit where subscale correlation was .95. The results form
Study 2 contradicted expected results that the generating model, MIRT, would
result in better fit across all of the conditions. CUIRT generally showed better
in Study 2 model fit where subscale correlation was .75 and .95. In addition,
the results from simulation Study 2’s single groups conditions suggested that
MIRT fit the data best where subscale correlation was .45. This trend was not
consistent in Study 2’s multiple groups analyses. There were some contradicting
results in the three subdomain tests that comprised of 40 items-per-subscale
and subscale correlation was .45. In this condition, −2ll and AIC suggested
that MIRT fit the data better than the other models, and BIC suggested that
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CUIRT fit the data better. Also, all of the fit criteria suggested that CUIRT
fit the data better in the four subdomain tests that comprised of 40 items-per-
subscale and subscale correlation was .45. However, one would have expected
MIRT to fit all of the data best since MIRT was the assumed generating model.
But then, depending on the study, the results suggest that this was not the case
at the medium to high correlations. One likely reason that this was the case is
that the underlying “true" data generating mechanism of the chosen data where
subscale correlations were high (and in some cases moderate) represented a more
unidimensional model. In both studies 1 and 2, CIRT showed poor fit when
all three models (CUIRT, CIRT, MIRT) were compared. The findings from
simulation study 2 further suggested that CUIRT-Op and CIRT fit the data
poorly depending on the sample composition. That is, CUIRT-Op and CIRT
fit the data poorly in the single- and multiple-groups conditions, respectively.
In the next chapter, I present the results of the empirical study.
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Chapter 6

Empirical Results

6.1 Introduction

Chapter 5 presented the results of two simulation studies. One of the simulation
studies, Study 2, was designed to resemble TIMSS 2015’s mathematics test. As
such, to demonstrate how the studied models (i.e, CUIRT, CUIRT-OP, CIRT,
and MIRT) may be used in practice, I conducted an empirical study using
TIMSS 2015 data from 9 countries. The empirical study was conducted in
order to validate the findings from the simulation studies. That is, the study
was conducted to respond to research questions 2 and 3 presented in Section 1.4
in Chapter 1.

This chapter presents results obtained from the data analysis that was
carried out in the empirical study that was described in Chapter 4. The data
for the analysis were drawn from TIMSS 2015 eighth grade mathematics. In
total, the test had 209 items. Each item on the test belonged to one of four
subdomains that were defined in the test blueprint. These were: algebra, data
and chance, geometry, and numbers.

6.2 Achievement

Items parameter estimates that were used in the study were obtained from the
CUIRT, CIRT, and MIRT models. The estimated item parameters were then
fixed and used in the scoring process. Scores were estimated assuming four
subscale score models: CUIRT, CUIRT-Op, CIRT, and MIRT as described
in Section 4.4 of Chapter 4. As a reminder, CUIRT-Op is the model that is
closest to what was used operationally on TIMSS 2015.

6.2.1 Achievement by Population

In this section, I report the results from my investigation as to whether there
were differences in reported country scores by model. In this study, I did not
run significance tests to make broader inferences related to these differences.
As such, Figure 6.1 plots the sampled countries observed subscale score. Each
of the four panels, on the figure, corresponds to a different subscale. The points
across the nine spaghetti plots show each country’s average subdomain score
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estimated from a specification of either the CIRT, CUIRT, CUIRT-Op, or
MIRT models. Each country is represented by a different colour. In turn, each
panel in Figure 6.1 represents a different subdomain. The panels in Figure 6.1
will make it possible to visualize the score differences.

Figure 6.1
Estimated Population Scores

The panels in Figure 6.1 show that the reported Algebra, Data and Chance,
Geometry, and Numbers scores followed the same pattern. The panels show
that CUIRT and CUIRT-Op produce higher scores on all subdomains. Put
differently, the observed CUIRT and CUIRT-Op scores were higher than those
reported by MIRT and CIRT. In contrast, the panels in Figure 6.1 also showed
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that CIRT generally produced the lowest scores. Figure 6.1 also showed that
there were larger differences between the reported CUIRT and CIRT scores.
This pattern was observed on the country scores for all countries. However,
these differences were larger in the middle- to low-performing countries as
compared to the top three performers: countries 1, 2, and 3.

In general, the differences between the CIRT subscale scores and those
of the other studied models were large (see Figure 6.1). This was observed
on all subscales. To gain an insight as to why, I inspected the averages
of the item discriminations that were used to estimate subscale scores (see
Table 6.1). The table showed that CIRT item discrimations were on average
lower than those reported for CUIRT and MIRT on all subdomains. DeAyala
(2013) pointed out that as item discrimination increases, the maximum
information for estimating proficiency increases thus resulting in better
proficiency estimates. This may explain why CUIRT, CUIRT-Op, and MIRT
perform similarly, and may not report largely underestimated scores like
those observed from CIRT1. Coincidentally, CIRT reported more biased item
parameters compared to CUIRT and MIRT in simulation Study 2’s multiple
groups test conditions that comprised of 4 subdomains, and subscale correlation
of .95 (see Section 5.2.4). As such, these respective differences and biases may
have resulted in underestimated subscale scores from CIRT.
Table 6.1
Summary of the Item Discrimination Parameters

Domain
1 2 3 4

Mean SD Mean SD Mean SD Mean SD
CUIRT 2.66 (.72) 2.21 (.87) 2.27 (.73) 2.45 (.68)
CIRT 2.39 (.70) 2.14 (1.12) 2.12 (.79) 2.36 (.71)
MIRT 2.55 (.70) 2.28 (.95) 2.30 (.83) 2.37 (.67)

Figure 6.1 only suggested differences in the magnitude of the reported score.
However, it is from the estimated scores that countries are ranked. As such,
the results presented in Figure 6.1 did not show that there were any rank
changes due to the scores reported from the studied models. In other words,
the countries were ranked the same regardless of scoring model.

1The results presented in the next paragraphs show that CIRT also resulted in scores
with larger SEs
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Each panel in Figure 6.2 shows the standard errors (SEs) that correspond
to the model specific subscale scores presented in Figure 6.1. The four lines
in each panel on Figure 6.2 represent each of the studied models: CUIRT,
CUIRT-Op, CIRT, and MIRT; and the points are the specific SE estimates for
each country. From Figure 6.2, it can be seen that CIRT consistently produces
country score estimates with the largest SE on all subdomains. However, MIRT
reported the largest SEs in the few cases where CIRT had smaller SEs (i.e.,
Country 2’s Algebra and Numbers scores).

Figure 6.2
Standard Error of the Population Scores
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6.2.2 Achievement by Subpopulation

Countries that participate in ILSA’s are often interested in subscale scores. To
that effect, I used the empirical dataset to compare how well the three subscale
score estimation models performed. That is, which model provided the better
estimates. In doing so, I wanted to determine whether the results, with regards
to the estimated scores, were similar to those observed at the country-level
as well as the simulation study. This analysis was conducted to respond to
research question 2 presented in Section 1.4.

To that effect, in this section, I report country performance by (a) gender
and (b) number of books at home. These analyses were done in order to examine
each model’s reported country-subpopulation-scores. The gender variable had
two levels: boys and girls. The number of books at home comprised of five
levels: 0–10 books; 11–25 books; 26–100 books; 101–200 books; and more than
200. Table 6.2 summarizes the samples that were included in the analyses
for both subpopulations. The total samples for all subpopulations were lower
than those included in the analyses of the country-level subscale scores (see
Table 4.1). This was likely because several of the participants did not specify
which category they belonged to.

Table 6.2
Subpopulation Sample Sizes

Gender Books at home
Country Girls Boys 0-10 11-25 26-100 101-200 Over 200

1 2976 3132 1136 1662 1854 841 610
2 2604 2704 355 413 1195 1368 1975
3 2795 2912 1150 1317 1556 779 903
4 5201 5072 1188 1798 2478 2041 2133
5 2224 2257 640 1060 1112 738 895
6 4291 3810 1017 1340 2346 1667 1577
7 4278 3585 2238 2691 1739 530 465
8 6424 6082 5135 4709 1654 459 415
9 1997 1760 1342 1118 732 236 259

Upon conducting analyses, it was observed that in some countries, there was
some clustering with respect to the number of books at home. That is, scores
in the latter three levels in Countries 7, 8 and 9 for students that reported
to having 0–10 books and 11–25 books were not too different (i.e., the scores
in the respective categories were similar, almost indistinguishable). However,
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I did not collapse the categories for the number of books since I wanted to
observe the reported scores in a situation where there are more than two levels.

In the two sections that follow, Sections 6.2.2.1 and 6.2.2.2, I examine
whether there are any differences in the reported scores between respective
categories. Without running significance tests, I also examine the difference
between category scores due to model specification. Figures 6.3 and 6.6 show
the differences in performance between boys and girls, and Figures 6.8 and 6.11
show the differences in performance between the number of books at home.
I used these figures to identify if the models reported large subpopulation-
subscale score differences (characterized by the distances between the points).
I then examined each subscale score’s SE to identify the model that performed
better (i.e., reported smaller SEs). The better performing model would be
expected to report scores with the lowest SE. As such, I intend to validate
the findings of simulation study 2 by identifying whether the same model
that performed well in simulation Study 2’s multiple groups study was better
than the other models in the empirical analysis. The analyses conducted in
Sections 6.2.2.1 and 6.2.2.2 respond to research question 2 (see Section 1.4).

6.2.2.1 Scores by Gender

The average subscale scores for boys and girls in each country were estimated
for each subdomain. Figures 6.3 and 6.6 show the differences in performance
between boys and girls. In all of the plots, the y-axis shows the country code.
These range from 1 to 9. The x-axis, on each of the plots, shows the mean
scores. The figures make it possible to observe the score differences between
the two genders.

Figures 6.3 and 6.6 did not show any trends or patterns. Visually, the
figures showed that the observed differences did not follow a specific pattern.
That is to say, no model consistently reported large or small subpopulation
differences. The model-specific differences were the same for some countries on
particular domains and different on others.

Figure 6.7 shows the SEs of all of the subscale scores that were estimated
from each of the studied models by gender. For example, the top-left panel
shows the SEs of each country’s estimated Algebra subscale score for the female
subpopulation. Each of the four lines join the SEs of the subscale score estimates
calculated from the CUIRT, CUIRT-Op, CIRT and MIRT models. The findings
presented in Figure 6.7 show that CIRT generally produces subpopulation
subscale scores with large SEs. However, there are a few exceptions. For
example, the SEs were not the largest for: females in country 2, and males in
countries 2, 4, 5, and 9 on the Numbers subdomain. Figure 6.7 also showed
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Figure 6.3
Estimated Gender Subscale Scores for Algebra

Figure 6.4
Estimated Gender Subscale Scores for Data and Chance

that CIRT scores did not have the largest SE for females in country 6 on the
Geometry subdomain. It was also noted that, in all cases where CIRT reported
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Figure 6.5
Estimated Gender Subscale Scores for Geometry

Figure 6.6
Estimated Gender Subscale Scores for Numbers

lowed SEs, MIRT produced the largest SEs.
Table 6.3 shows the average SEs of each models subdomain score. It
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Figure 6.7
Standard Error of the Sub-Population Scores: Gender

was observed that SEs were the lowest on all models for males. However,
CUIRT-Op produced the lowest SEs across all subdomains and subpopulations.
Note that the MIRT average SEs on the Data and Chance subdomain were
comparable to the CUIRT-Op averages (2.58 and 2.45, for the females and
males, respectively). In contrast, CIRT had the highest average SEs across
all subdomains. The repeated-measures ANOVA results show whether the
observed differences between standard errors were statistically significant. These
results are presented in the paragraph that follows.
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Table 6.3
Average Standard Errors of the Subscale Scores Reported by Gender

Algebra Data and Chance Geometry Numbers
Model Female Male Female Male Female Male Female Male
CUIRT 2.85 2.56 2.61 2.46 2.6 2.48 2.74 2.47
CUIRT-Op 2.81 2.49 2.58 2.45 2.58 2.38 2.72 2.57
CIRT 3.29 2.96 2.86 2.71 2.89 2.81 3.01 2.75
MIRT 2.89 2.56 2.58 2.45 2.62 2.41 2.77 2.62

The repeated-measures ANOVA with a Greenhouse-Geisser correc-
tion determined that mean standard errors differed statistically sig-
nificantly when the estimation method was changed for the domain
ability estimates F(1.17,19.87)Algebra = 37.99, p < .05, partial η2 =
.15; F(1.35,22.89)Data and Chance = 18.343, p < .05, partial η2 = .08;
F(1.3,22.14)Geometry = 25.49, p < .05, partial η2 = .14; and F(1.37,23.22)Number =
15.25, p < .05, partial η2 = .05. Post-hoc tests using the Bonferroni correction
revealed that not all pairwise comparisons were statistically significantly differ-
ent from each other. There were statistically significant differences between
CIRT and all other models: CUIRT, CUIRT-Op, CIRT, and MIRT on all
subdomains. According to the results in Table 6.3, CIRT had the highest SEs
for all subpopulation subdomain proficiency scores. In other words, subdomain
scores from the CIRT model were not as accurate as the other three methods.
There were also statistically significant differences between CUIRT-Op and
MIRT on the Algebra, Geometry and Numbers subdomains. According to
the results in Table 6.3, when compared with MIRT, the CUIRT-Op method
had the lowest standard errors for the subdomain scores reported on the three
domains. Table 6.3 showed that the differences were not statistically significant
on the Numbers subdomain.

Therefore, it can be concluded that CUIRT, CUIRT-Op and MIRT
elicited a statistically significant reduction in standard errors of subdomain
score estimates compared to CIRT. Likewise, CUIRT-Op showed statistically
significant reduction in SEs compared to MIRT on the Algebra, Geometry and
Numbers subdomains. Post hoc tests using the Bonferroni correction revealed
that some pairwise comparisons were significantly different from each other.
The CIRT had the highest mean for standard errors.
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6.2.2.2 Scores by Books at Home

Figure 6.8 to 6.11 show the average subpopulation scores by number of books-
at-home. Each figure plots 4 panels, and each panel plots the subscale scores
estimated for nine countries. The subpopulation subscale scores are color-
coded. These figures were used to inspect whether the magnitudes of the
subpopulations differed conditional on the subscale score estimation model. To
complement these findings, I also inspected whether model choice resulted in
different magnitudes of subpopulation -subscale score differences. As a reminder,
I observed each subscale score’s SE to identify the model that performed better
(i.e., reported smaller SEs).

Figure 6.8
Estimated Algebra Subscale Scores by Books in the Home

Figure 6.8 to 6.11 show that the models produced different subpopulation
scores. Each figure plots 4 panels, and each panel plots the subscale scores
estimated for nine countries. The subpopulation subscale scores are color-coded.

Upon visual inspection of the figures, subpopulation score differences were
noted. The magnitude of these subpopulation differences differed by country.
In other words, the differences did not follow a specific pattern, and the score
differences were not large, except for country 3 in the MIRT model.

I also plotted the standard errors of the reported subscale scores (see
Figure 6.12). The results presented in Figure 6.12 show the SEs of all of the
subscale scores that were estimated from each of the studied models by the
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Figure 6.9
Estimated Data and Chance Subscale Scores by Books in the Home

Figure 6.10
Estimated Geometry Subscale Scores by Books in the Home

number of books at home. The panels on each row in Figure 6.12 correspond

198



Figure 6.11
Estimated Numbers Subscale Scores by Books in the Home

to the four subdomains that were assessed; and each panel in the rows contains
the SE for the five, respective, subpopulations’ scores by model. For example,
the top-left panel shows the SEs of each country’s estimated Algebra subscale
score for students that reported owning 0–10 books at home. Each of the four
lines join the SEs of the subscale score estimates calculated from the CUIRT,
CUIRT-Op, CIRT and MIRT models.

Several patterns related to the SEs of the scores reported for “number of
books at home” subscale scores were observed. First, the findings presented in
Figure 6.12 show that CIRT produces scores with the largest SEs. In contrast,
the other three models show comparable SEs. Second, Countries 1 and 2
showed larger SEs regardless of subdomain where students reported to owning
0-100 books. The SEs for these countries decreased as the reported number
of books at home increased. Third, Countries 8 and 9 reported larger SEs
regardless of subdomain where students reported to owning many books (i.e.,
101-200 books and, more than 200). The SEs for these countries was smallest,
regardless of subdomain, where students owned 0-10 books, and 11-25 books.

Table 6.4 shows the average SEs of each models subdomain score. It should
be seen that SEs were the lowest on all models in Group 3, “26-100 books at
home”. The results presented in the Table 6.4 show that CUIRT-Op mostly
produces the smallest average SEs. In only few circumstances, CUIRT produced
lower average SEs than CUIRT-Op. That is:
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Figure 6.12
Standard Error of the Sub-Population Scores: Books at Home

Note: 1 = “0–10 books”; 2 = “11–25 books”; 3 = “26–100 books”; 4 = “101–200 books”; 5
= “More than 200”

(a) Algebra; 5.

(b) Data and Chance; 2 and 3.

(c) Geometry; 2, 4 and 5.
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(d) Num; 2 and 3.

Similar to the results presented in Section 6.2.2.1, CIRT subscale scores had
the largest average SEs compared to CUIRT, CUIRT-Op and MIRT across
all subdomains and subpopulations (see Table 6.4). The repeated-measures
ANOVA results whether the difference between standard errors are statistically
significant are presented in the paragraph that follows.

Table 6.4
Average Standard Errors of the Subscale Scores Reported by Number of Books
at Home

Algebra
Model 1 2 3 4 5
CUIRT 3.31 3.32 3.06 4.12 4.60
CUIRT-Op 3.41 3.08 3.04 4.08 4.67
CIRT 3.74 3.82 3.45 4.77 5.37
MIRT 3.49 3.17 3.12 4.20 4.80

Data and Chance
CUIRT 3.44 3.25 3.06 4.69 4.49
CUIRT-Op 3.65 3.39 3.18 4.18 4.72
CIRT 3.77 3.56 3.32 5.05 4.86
MIRT 3.66 3.40 3.19 4.18 4.72

Geometry
CUIRT 3.49 3.06 2.99 4.69 4.46
CUIRT-Op 3.58 3.21 2.98 4.85 4.54
CIRT 3.81 3.39 3.30 5.18 4.95
MIRT 3.62 3.26 3.02 4.92 4.60

Numbers
CUIRT 3.51 3.29 2.87 4.40 4.38
CUIRT-Op 3.50 3.37 2.94 4.28 4.31
CIRT 3.89 3.65 3.22 4.76 4.82
MIRT 3.57 3.44 3.00 4.36 4.40

The repeated-measures ANOVA with a Greenhouse-Geisser correc-
tion determined that mean standard errors differed statistically sig-
nificantly when the estimation method was changed for the domain
ability estimates F(1.56,68.77)Algebra = 60.77, p < .05, partial η2 =

201



.02; F(1.15,50.65)Data and Chance = 8.01, p < .05, partial η2 = .01;
F(1.17,51.55)Geometry = 12.19, p < .05, partial η2 = .01; and F(1.64,72.09)Number =
30.84, p < .05, partial η2 = .01. Post-hoc tests using the Bonferroni correction
revealed that not all pairwise comparisons were statistically significantly differ-
ent from each other. There were statistically significant differences between
CIRT and all other models: CUIRT, CUIRT-Op, CIRT, and MIRT on all
subdomains. According to the results in Table 6.4, CIRT had the highest SEs
for all subpopulation subdomain proficiency scores. In other words, subdomain
scores from the CIRT model were not as accurate as the other three methods.
There were also statistically significant differences between CUIRT-Op and
MIRT on the Algebra, Geometry and Numbers subdomains. According to
the results in Table 6.4, when compared with MIRT, the CUIRT-Op method
had the lowest standard errors for the subdomain scores reported on the three
domains. Table 6.4 showed that the differences were not statistically significant
on the Numbers subdomain.

Therefore, it can be concluded that CUIRT, CUIRT-Op and MIRT
elicited a statistically significant reduction in standard errors of subdomain
score estimates compared to CIRT. Likewise, CUIRT-Op showed statistically
significant reduction in SEs compared to MIRT on the Algebra, Geometry and
Numbers subdomains. Post hoc tests using the Bonferroni correction revealed
that some pairwise comparisons were significantly different from each other.
The CIRT had the highest mean for standard errors.

6.2.3 Preliminary Summary

All of the results presented in Sections 6.2.1 and 6.2.2 When compared, CUIRT,
CUIRT-Op and MIRT performed better than CIRT. The analyses showed
that CIRT produced population- and subpopulation-subscale scores with the
largest SE. This was often characterized by CIRT resulting in lower scores than
CUIRT, CUIRT-Op and MIRT.

6.3 Proportional Reduction in Mean Squared Error

Results of the PRMSE based on the entire sample and at country-level are
shown in Figures 6.13 and 6.14, respectively. Each of the nine panels in
Figure 6.14 shows the subscale PRMSEs for each of the participating countries.
Also, the single panel in Figure 6.13, and each panel in Figure 6.14 compares
the PRMSEs for the true subscale score predicted from CUIRT, CUIRT-Op,
CIRT and MIRT models, respectively. Each line graph joins points that present
model-specific PRMSEs.
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Figure 6.13
Subscale PRMSE Based on the Entire Sample.

Figure 6.13 shows that CUIRT and CUIRT-Op generally produced higher
PRMSE in all subdomains over the entire sample2. In contrast, MIRT produced
lower PRMSEs on the Algebra, and Data and Chance subdomains. In addition,
MIRT, alongside CIRT, reported scores with the lowest subscale score value on
these subdomains. However, all of the models reported comparable PRMSEs on
the Numbers subscale. Therefore, based on the results presented in Figure 6.13,
CUIRT and CUIRT-Op produce larger PRMSE values across all domains. That
is, CUIRT and CUIRT-Op produce more valuable subscale scores on this data
set.

In contrast, when the PRMSE’s were calculated for the country level3, all
of the panels in Figure 6.14 show that the CIRT produced the lowest PRMSE
across all subscales. However, the country-specific PRMSE values for CUIRT,

2In this case, I considered the entire dataset, comprising of 9 countries, to calculate the
PRMSE.

3In this case, I considered each country as a standalone sample and calculated their
respective PRMSE’s.
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Figure 6.14
Subscale PRMSE Based on Each Country.

CUIRT-Op, and MIRT were, similar and, higher than those for CIRT. The
results seemed to suggest that the CUIRT, CUIRT-Op, and MIRT subscale
scores were more valuable than CIRT scores. In part, these findings confirmed
the results from simulation Study 2 (i.e., the multiple groups conditions) where
MIRT produced the largest PRMSE in some domains (see Section 5.4.2) but
clashes with the findings that were reported from the entire sample where
MIRT produced the lowest PRMSE’s on two of the four subscales.
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6.4 Model Fit

I also evaluated the data to identify the model that fit the data the best. First,
I compared the relative fit indices to identify the model that fit the entire
sample best. Second, I compared the relative fit indices for each country. A
model with the lowest −2ll, AIC and BIC showed better model fit compared to
the other models that were studied. Table 6.5 show the −2ll, AIC and BIC for
the entire test. Tables 6.6 to 6.8 show the −2ll, AIC and BIC for each country,
respectively.

All of the criteria suggested that the MIRT model fit the entire data-set
better than CUIRT, CUIRT-Op, and CIRT (see Table 6.5). Since empirical
subdomain correlations were between .75 and .95 (see Table A.1 in Appendix A),
these findings contradicted the results from Simulation study 2 that reported
better model fit for CUIRT where subscale correlations are high (i.e., .95; see
Section 5.5.2). Of all the models, −2ll, AIC and BIC suggested that CUIRT-Op
did not fit the entire data-set well compared to CUIRT, CIRT and MIRT. These
results were similar to those presented in simulation study 2’s single groups
test simulations (see Section 5.5.2).

Table 6.5
Model-Fit Based on the Entire Test

Model −2ll AIC BIC
CUIRT 108222723.8 108222723.8 108222723.8
CUIRT-Op 110910760.9 110910760.9 110910760.9
CIRT 100952327.9 100953187.9 100958754.1
MIRT 95030870.3 95031742.3 95037386.1

Tables 6.6 to 6.8 show that all of the fit indices reported that CIRT fit all
the countries better than all other models. These results were not consistent
with the findings of simulation study 2’s multiple group’s test conditions. The
simulation study suggested that CUIRT fit the data better than all other models.
These simulation study results were observed where subscale correlations were
high (i.e., .75 and .95; see Section 5.5.2). Such high correlations are also
observed on the empirical TIMSS 2015 mathematics’ test (see Table A.1 in
Appendix A). However, it should be noted that the contexts presented in the
simulation and empirical studies were different (i.e., different samples).
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Table 6.6
Model-Fit for all Countries: −2ll

Model
Country CUIRT CUIRT-Op CIRT MIRT

1 294950.9 245055.4 222210.8 242128.6
2 204534.8 215271.5 199667.1 212946.1
3 215058.0 238464.3 209451.5 235825.3
4 410665.7 419064.2 392268.8 418108.3
5 184347.2 185315.9 174706.0 184847.8
6 324104.6 330994.8 309857.8 330431.3
7 297175.4 294881.5 270809.5 298251.2
8 449633.7 446086.7 407935.8 452724.2

Table 6.7
Model-Fit for all Countries: AIC

Model
Country CUIRT CUIRT-Op CIRT MIRT

1 294950.9 245055.4 222210.8 242128.6
2 204534.8 215271.5 199667.1 212946.1
3 215058.0 238464.3 209451.5 235825.3
4 410665.7 419064.2 392268.8 418108.3
5 184347.2 185315.9 174706.0 184847.8
6 324104.6 330994.8 309857.8 330431.3
7 297175.4 294881.5 270809.5 298251.2
8 449633.7 446086.7 407935.8 452724.2

206



Table 6.8
Model-Fit for all Countries: BIC

Model
Country CUIRT CUIRT-Op CIRT MIRT

1 306368.7 256385.4 233540.8 253458.6
2 218032.8 228769.5 213165.1 226444.2
3 228490.4 251896.7 222883.9 249257.7
4 423712.2 432110.7 405315.3 431154.8
5 197806.1 198774.8 188164.9 198306.7
6 335529.3 342419.5 321282.5 341855.9
7 310917.3 308623.4 284551.4 311993.2
8 464017.4 460470.4 422319.5 467107.9
9 152178.8 151068.1 139951.0 152924.0

6.5 Summary

The results that were presented were obtained from analyses that were
conducted on a data set that comprised of nine countries that participated on
TIMSS 2015’s mathematics test. In general, the empirical study showed that
the magnitude of each sampled-countries reported subscale score was dependent
on the subscale score estimation model. The findings showed that CUIRT and
CUIRT-Op produced higher score estimates than CIRT and MIRT. It was
also reported that CIRT scores were lowest. The difference between the CIRT
scores and the other models were larger in the low performing countries. In
other words, CIRT underestimated the low performers subdomain scores more
than for the middle- and high-performers. In addition, CIRT reported subscale
sores with the highest SE. As such, CUIRT, CUIRT-Op, and MIRT resulted in
better subscale score estimates than CIRT becaus etheir SEs were lower.

Several other patterns were observed. First, though the reported scores
were different, the rank order of the countries remained unchanged. Second, the
subpopulation scores differed as well and the trend was similar to that which
was observed on the population subscale scores. Third, CIRT also produced
subpopulation-subscale-scores with the largest SE.

Results of the analyzed data set suggested that CUIRT subscale scores
were more valuable on the Algebra, Data and Chance, and Geometry subscale
scores. In contrast, all of the models reported comparable subscale score value
on the numbers subdomain. These results were not consistent with the findings
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from simulation study 2’s results which suggested that CUIRT-Op, CIRT, and
MIRT would report more valuable subscale scores. However, when evaluated
at the country level, CUIRT, CUIRT-Op, and MIRT subscale scores were more
valuable than those reported from CIRT. These results, were consistent with
the findings from simulation Study 2.

The results from the empirical study showed that MIRT fit the entire data
better than CUIRT, CUIRT-Op, and CIRT. It was also reported that the CIRT
model showed the best fit when fit to eight of the nine countries (MIRT fit
country 9 better). It should be noted that CUIRT-Op showed the poorest
model fit. Also recall that CUIRT showed better fit in simulation study 2,
much like TIMSS 2015’s mathematics test, where the subscale correlations
were high.
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Chapter 7

Discussion and Conclusion

7.1 Introduction

This dissertation intended to answer three main research questions through
two simulation studies and an empirical study. Both of the simulation studies
focused on evaluating how well different subscale score estimation models (i.e.,
CUIRT, CUIRT-Op, CIRT, and MIRT) performed item- and score-parameter
estimation in an ILSA setting. The simulation studies also aimed to identify
which model reported the most valuable subscale scores. Simulation studies 1
and 2 were designed to resemble SACMEQ and TIMSS data, respectively. The
difference between the two simulation studies is that Study 1 does not employ
matrix sampled test booklets whilst Study 2 does. Three design characteristics
(i.e., number of subscales, correlation between subscales, subscale length) were
varied to create conditions of various test characteristics. The empirical study
further illustrated how the studied IRT models perform using the TIMSS eighth
grade mathematics dataset. The performance of the subscale scoring methods
was evaluated on three study outcomes: bias, ABS, and RMSE. In order to
examine the added value of subscale scores, I examined the PRMSE of each
model-specific subscale score.

In this dissertation, I also conducted an empirical study that was intended
to show how well the four studied models (i.e., CUIRT, CUIRT-Op, CIRT
and MIRT) performed in subscale score estimation using the TIMSS 2015
mathematics dataset. To evaluate the results, I compared the magnitudes
of the reported population and subpopulation subscale scores under the four
different models. I complemented these analyses by looking at the subscale
score SEs as well as PRMSE and model fit across the four studied models.

In what follows, I provide recommendations for practitioners (Section 7.2).
Then, I discuss the significance and contributions of this dissertation
(Section 7.3). At last, I note the limitations of this dissertation as well as
suggest potential directions of future research (Section 7.4).

7.2 Summary of Recommendations

This section presents some recommendations for practitioners that are based
on the findings of the simulation- and empirical-studies. The simulated test
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design characteristics were motivated and informed by the empirical structures
of TIMSS and SACMEQ. Each of the research questions I responded to
considered a single- and multiple-group context in order to explore the effect
of achievement heterogeneity. I also tested my findings on TIMSS 2015 eighth
grade mathematics data. As such, the findings of this study may be generalized
to tests with similar properties as those presented in this study.

Tables 7.1 and 7.4 provide a summary of the recommendations based on
the results of Studies 1 and 2. Tables 7.1 and 7.2 provide recommendations
for Study 1’s single- and multiple-groups conditions, respectively. Tables 7.3
and 7.4 provide recommendations for Study 2’s single- and multiple-groups
conditions, respectively. Each of the tables provides suggestions pertaining to
the better model to use in (a) item parameter estimation; (b) score estimation;
(c) reporting valuable subscale scores; and (d) model fit. These results are
presented where the comparisons are made among three (i.e., CUIRT, CIRT,
and MIRT) and four models (i.e., CUIRT, CUIRT-Op, CIRT, and MIRT) in
Studies 1 and 2, respectively. The virgule or forward slash between the models
means that one of the models is the best or provides a better value on one
or more subdomains and the other model for the remaining subdomains. For
instance CUIRT/MIRT means that CUIRT is better on subdomain 1 and MIRT
is better on subdomains 2 and 3 on a three subdomain test. As a suggestion,
where two models perform best on separate subdomains at a specific criteria
(i.e., score estimation), practitioner’s decisions could be based on how well the
successful model performs on other criteria (i.e., item parameter estimation,
PRMSE and/or model fit).

7.2.1 Summary of Recommendations from Study 1

7.2.1.1 Single Group Conditions

If item parameter recovery is the primary concern, results presented in Table 7.1
suggest that CIRT is more suitable, regardless of test length and subscale
correlation. However, in the single group conditions, CUIRT may also be a
model of choice where subscale correlation is high. Similar recommendations
were proposed by Yao (2010). In her study, it was noted that models that assume
test is multidimensionality (i.e., CIRT and MIRT) generally outperformed
CUIRT when subscale correlation was low or moderate. Nevertheless, Yao
(2010) also pointed out that CUIRT may be suitable where subscale correlation
is high.

On the basis of the findings of simulation Study 1, it does not matter
which model is used in score estimation. This recommendation was reached
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Table 7.1
Summary of Recommendations for Simulation Study 1’s Single Group
Conditions

Model fit
D J ρ IP Scores PRMSE −2ll AIC BIC
3 5 .45 CIRT CIRT/MIRT/CUIRT CIRT MIRT MIRT MIRT

.75 CIRT CIRT/MIRT/CUIRT MIRT MIRT MIRT MIRT

.95 CIRT/CUIRT CIRT/MIRT/CUIRT MIRT CUIRT CUIRT CUIRT
10 .45 CIRT CIRT/MIRT/CUIRT CIRT MIRT MIRT MIRT

.75 CIRT CIRT/MIRT/CUIRT CIRT/MIRT MIRT MIRT MIRT

.95 CIRT/CUIRT CIRT/MIRT/CUIRT MIRT MIRT CUIRT CUIRT
15 .45 CIRT CIRT/MIRT/CUIRT CIRT MIRT MIRT MIRT

.75 CIRT CIRT/MIRT/CUIRT CIRT MIRT MIRT MIRT

.95 CIRT/CUIRT CIRT/MIRT/CUIRT MIRT MIRT MIRT MIRT

5 5 .45 CIRT CIRT/MIRT/CUIRT CIRT/MIRT MIRT MIRT MIRT
.75 CIRT CIRT/MIRT/CUIRT MIRT MIRT MIRT MIRT
.95 CIRT CIRT/MIRT/CUIRT MIRT CUIRT CUIRT CUIRT

10 .45 CIRT CIRT/MIRT/CUIRT CIRT MIRT MIRT MIRT
.75 CIRT CIRT/MIRT/CUIRT MIRT MIRT MIRT MIRT
.95 CIRT CIRT/MIRT/CUIRT MIRT CUIRT CUIRT CUIRT

15 .45 CIRT CIRT/MIRT/CUIRT CIRT MIRT MIRT MIRT
.75 CIRT CIRT/MIRT/CUIRT CIRT/MIRT MIRT MIRT MIRT
.95 CIRT CIRT/MIRT/CUIRT MIRT MIRT MIRT CUIRT

Note. D = Number of subscales, J = Subscale length; ρ = Subscale correlation, IP = Item parameters.

because the scores did not show large sensitivity to the specified subscale
score estimation model. This conclusion was reached regardless of CUIRT
showing slightly more bias (to the third, fourth decimal, or more) than the
other studied models where subscale correlation was .951. As a result, either
CUIRT, CIRT or MIRT are optimal regardless of number of subscales, test
length and subscale correlation. This recommendation seemed to align well
with the sufficient statistic principle of the Rasch model. Conceptually, the
sufficiency principle in statistics says that if t(x) is a sufficient statistic for
a parameter theta, θ, then t(x) contains all the information that is possible
to use from x to infer θ (Andersen, 1977). In the case of a number of item
scores x1, x2, x3, . . . , xK that follow the Rasch model, the sum score, s(x), of
a K item test s(x) = x1 + x2 + x3 + · · · + xK is a sufficient statistic for the
underlying proficiency parameter, θ. That being the case, we would not expect
any differences in the estimated scores since the models were applied to the

1Recall that CUIRT based item parameters had larger bias compared to those estimated
from CIRT and MIRT where subscale correlation was low to moderate.
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same datasets which had the same underlying sufficient statistic, the total
score.

If subscale value is of primary concern, Table 7.1 shows that either MIRT or
CIRT are the methods of choice. Nonetheless, CIRT will generally provide more
valuable subscale scores, regardless of test length, where subscale correlation
is low. But then, the results presented in Table 7.1 suggest that practitioners
may also use MIRT to obtain more valuable subscale scores on a test with
more subdomains with shorter within-domain scales and low correlations. In
addition, practitioners can use either CIRT or MIRT on tests with longer
subscales and moderate correlation, regardless of subdomains (e.g., 3 compared
to 5).

With regards to model fit, MIRT shows better fit than CUIRT and CIRT on
tests that have short subscale lengths when subscale correlations are low and
moderate. In contrast, CUIRT is the best fitting model compared to all other
studied models on all short subscale test conditions, when subscale correlation
is high. For the longer subscale tests (i.e., J = 15), MIRT is generally the the
best fitting model compared to all other studied models since it is the better
fitting model regardless of subscale correlation. Depending on the model fit
index used to make decisions, practitioners may fit the CUIRT model on five
subdomain tests that comprise of 15 items-per-subdomain since BIC suggests
better fit.

7.2.1.2 Multiple Groups Conditions

If item parameter recovery is the primary concern, results presented in Table 7.2
suggest that CIRT is optimal compared to the other models regardless of test
length and subscale correlation. Similar recommendations were provided by
Yao (2010).

Where score recovery is of primary concern, all of the models provide
comparable results across all test conditions. Therefore, all models would be
deemed optimal. A similar recommendation was given for Study 1’s single
group conditions.

MIRT generally provides more valuable subscale scores, regardless of test
length and subscale correlation. However, CIRT may be used to obtain more
valuable subscale scores in all 10 items-per-subdomain test conditions. Similarly,
practitioners may use CIRT in all tests with more domains with longer subscales,
regardless of subscale correlation to obtain valuable subscale scores.

When subscale correlations are low and moderate, the MIRT model shows
better model fit. On the basis of the study results, this is true regardless of
test length. Where the subscales are highly correlated, CUIRT results in better
model fit regardless of test length.
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Table 7.2
Summary of Recommendations for Simulation Study 1’s Multiple Groups
Conditions

Model fit
D J ρ IP Scores PRMSE −2ll AIC BIC
3 5 .45 CIRT All MIRT MIRT MIRT MIRT

.75 CIRT All MIRT MIRT MIRT MIRT

.95 CIRT All MIRT CUIRT CUIRT CUIRT
10 .45 CIRT All MIRT/CIRT MIRT MIRT MIRT

.75 CIRT All MIRT MIRT MIRT MIRT

.95 CIRT All MIRT CUIRT CUIRT CUIRT
15 .45 CIRT All MIRT MIRT MIRT MIRT

.75 CIRT All MIRT MIRT MIRT MIRT

.95 CIRT All MIRT CUIRT CUIRT CUIRT

5 5 .45 CIRT All MIRT MIRT MIRT MIRT
.75 CIRT All MIRT MIRT MIRT MIRT
.95 CIRT All MIRT CUIRT CUIRT CUIRT

10 .45 CIRT All CIRT/MIRT MIRT MIRT MIRT
.75 CIRT All MIRT MIRT MIRT MIRT
.95 CIRT All MIRT CUIRT CUIRT CUIRT

15 .45 CIRT All CIRT/MIRT MIRT MIRT MIRT
.75 CIRT All CIRT/MIRT MIRT MIRT MIRT
.95 CIRT All CIRT/MIRT CUIRT CUIRT CUIRT

Note. D = Number of subscales, J = Subscale length; ρ = Subscale correlation, IP =
Item parameters.

7.2.2 Summary of Recommendations from Study 2

7.2.2.1 Single Group Conditions

If item parameter recovery is the primary concern, results from Table 7.3
suggest that CIRT and MIRT may be more suitable where subscales have
low to moderate correlations. However, in the single group conditions (see
Table 7.3), CUIRT would be more suitable at item parameter estimation where
subscales are highly correlated.

In addition, if score recovery is of primary concern, either CUIRT or CUIRT-
Op would be more suitable in the three and subdomain tests. Based on the
results of the study, practitioners may also use MIRT to estimate scores on the
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Table 7.3
Summary of Recommendations for Simulation Study 2’s Single Group
Conditions

Model fit
D J ρ IP Scores PRMSE −2ll AIC BIC
3 40 .45 CIRT/MIRT CUIRT/CUIRT-Op MIRT MIRT MIRT MIRT

.75 CIRT/MIRT CUIRT/CUIRT-Op MIRT CUIRT CUIRT CUIRT

.95 CUIRT CUIRT/CUIRT-Op MIRT/CUIRT-Op CUIRT CUIRT CUIRT
60 .45 CIRT/MIRT CUIRT/CUIRT-Op MIRT MIRT MIRT MIRT

.75 CIRT/MIRT CUIRT/CUIRT-Op MIRT/CUIRT-Op CUIRT CUIRT CUIRT

.95 CUIRT CUIRT/CUIRT-Op MIRT/CUIRT-Op CUIRT CUIRT CUIRT

4 40 .45 CIRT/MIRT MIRT/CUIRT/CUIRT-Op MIRT MIRT MIRT MIRT
.75 CIRT/MIRT CUIRT/CUIRT-Op/MIRT MIRT CUIRT CUIRT CUIRT
.95 CUIRT CUIRT/CUIRT-Op MIRT CUIRT CUIRT CUIRT

60 .45 CIRT/MIRT MIRT/CUIRT/CUIRT-Op MIRT MIRT MIRT MIRT
.75 CIRT/MIRT CUIRT/CUIRT-Op/MIRT MIRT CUIRT CUIRT CUIRT
.95 CUIRT CUIRT/CUIRT-Op/MIRT MIRT CUIRT CUIRT CUIRT

Note. D = Number of subscales, J = Subscale length; ρ = Subscale correlation, IP = Item parameters.

four subdomain tests (see Table 7.3). When score recovery is the primary issue,
CIRT may not be optimal. The results presented in Section 5.3.3.1 showed that
CUIRT, CUIRT-Op, and MIRT generally produced subscale score estimates
with the smallest bias whilst CIRT reported subscale scores with larger bias.

In general, MIRT also produces more valuable subscales on all test conditions.
These recommendations echo findings from previous studies by Thissen (2013)
and Wedman and Lyrén (2015). The researchers suggested that MIRT produces
more valuable subscale scores where subscale correlation is high and augmented
methods (i.e., latent regression) are used. However, Table 7.3 shows that
CUIRT-Op may also result in valuable subscale scores on three subdomain
tests where subscales have low and moderate correlations.

Furthermore, if subscale correlation is low, MIRT fits the data better as
compared to the other models. Where subscale correlations are moderate and
high, CUIRT would result in better model fit.

7.2.2.2 Multiple Groups Conditions

If item parameter recovery is the primary concern, results from Table 7.4
suggest that CIRT and MIRT are more suitable, regardless of test length,
where subscale correlation is low or moderate. However, in the single group
conditions (see Table 7.4), CUIRT would be more suitable at item parameter
estimation where subscale correlation is high.
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Table 7.4
Summary of Recommendations from Simulation Study 2’s Multiple Groups
Conditions

Model fit
D J ρ IP Scores PRMSE −2ll AIC BIC
3 40 .45 CIRT/MIRT CIRT/MIRT MIRT/CUIRT-Op MIRT MIRT CUIRT

.75 CIRT/MIRT CIRT/MIRT MIRT/CUIRT-Op CUIRT CUIRT CUIRT

.95 CUIRT CIRT/MIRT MIRT/CUIRT-Op CUIRT CUIRT CUIRT
60 .45 CIRT/MIRT CIRT/MIRT MIRT/CUIRT-Op MIRT MIRT MIRT

.75 CIRT/MIRT CIRT/MIRT MIRT/CUIRT-Op CUIRT CUIRT CUIRT

.95 CUIRT CIRT/MIRT MIRT/CUIRT-Op CUIRT CUIRT CUIRT

4 40 .45 CIRT/MIRT CIRT/MIRT CIRT/MIRT CUIRT CUIRT CUIRT
.75 CIRT/MIRT CIRT/MIRT CIRT/MIRT CUIRT CUIRT CUIRT
.95 CUIRT CIRT/MIRT CIRT/MIRT CUIRT CUIRT CUIRT

60 .45 CIRT/MIRT CIRT/MIRT CIRT/MIRT MIRT MIRT MIRT
.75 CIRT/MIRT CIRT/MIRT CIRT/MIRT CUIRT CUIRT CUIRT
.95 CUIRT CIRT/MIRT CIRT/MIRT CUIRT CUIRT CUIRT

Note. D = Number of subscales, J = Subscale length; ρ = Subscale correlation, IP = Item parameters.

In addition, if score recovery is of primary concern, either CIRT or MIRT is
more suitable in the three subdomain tests regardless of test condition. These
two models that assumed multidimensionality of the test in the entire scoring
process generally outperformed CUIRT and CUIRT-Op. These findings echoed
the results from several studies that were conducted on tests for individual
inference (e.g., de la Torre & Patz, 2005; de la Torre et al., 2011).

In general, MIRT and CUIRT-Op produce more valuable subscales for all
conditions of the three subdomain test conditions. Practitioners may wish
to know that these models assume that the subdomains are correlated when
estimating subscale scores. In addition, a model similar to CUIRT-Op was
operationalized on TIMSS 2015. However, on the basis of the results, MIRT
and CIRT will produce more valuable subscale scores for all four subdomain
test conditions.

Table 7.4 shows that either CUIRT or MIRT result in better model fit when
compared to the other models. That is, when subscale correlation is moderate
or high, CUIRT results in better model fit regardless of test length. In contrast,
MIRT is expected to fit the data best on all low subscale correlation tests
regardless of test length.
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7.2.2.3 Consistency of the Results from the Empirical and Simulation
Studies

The empirical study was conducted in order to validate the findings from the
simulation studies. Though the Study 2 and the empirical study resembled
each other, the contexts were slightly different. First, the sample compositions
were different (64,112 examinees in the empirical study as opposed to 30,000
simulated examinees in Study 2’s multiple-groups test conditions). Second,
the empirical study included principal components in the conditioning model
whilst the empirical study did not. Third, the instruments were different in
that the empirical study included subscales of uneven lengths whilst simulation
Study 2’s subscales were even.

If score estimation is of primary concern, results from the empirical study
and simulation Study 2 contradicted each other. On the basis of the results
from the empirical study, MIRT, CUIRT-Op and CUIRT are the more optimal
methods for population- and subpopulation-subscale score estimation. Results
from the empirical study showed that CIRT may not be suitable for subscale
score estimation because the CIRT scores had high SEs that would make it hard
to distinguish the country achievement on these subdomains. In contrast, the
results from Table 7.4 showed that CIRT would likely result in the best subscale
score estimates. Though CIRT and MIRT results produced comparable score
estimates in simulation Study 2’s multiple groups study, evidence of higher
SEs that were observed in the empirical study seemed to support the reporting
of subdomain scores estimated using other methods. Though CIRT reported
larger SEs for the population and subpopulation scores, practitioners should
not expect any differences in rank ordering of countries on achievement, only
differences in magnitude of the reported score if any of the models were
operationalized.

In circumstances where subscale value is of primary concern, findings from
the empirical study reported that CUIRT-Op, CUIRT and MIRT are more
optimal amongst the compared models. In part, the recommendations from
the empirical study conflicted the results of simulation Study 2’s multiple
groups simulations. Study 2’s results generally showed that MIRT and, to
an extent, CUIRT-Op and CIRT reported more valuable subscale scores thus
contradicting findings from the empirical study. However, the findings from
the empirical study echo findings from previous studies by Thissen (2013) and
Wedman and Lyrén (2015). The researchers suggested that a model likely
produces more valuable subscale scores where subscale correlation is high and
augmented methods (i.e., latent regression) are used. To that effect, it would be
expected that CUIRT would result in higher PRMSEs when latent regression
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is used than when collateral information is not included in the scoring model.
However, improvements in PRMSE were more evident from CUIRT than the
other studied models in this empirical example.

Based on the empirical analyses, CIRT generally showed better fit compared
to the other models. These results partially contradicted the findings of
simulation study 2’s multiple groups simulations which suggested that MIRT
and CUIRT may be more suitable where subscale correlation is low and
moderate/high, respectively. Coincidentally, CUIRT-Op showed the poorest
model fit for countries 2 to 6. These results did not come as a surprise since
CUIRT-Op presents a model mismatch. That is, the item parameters are
estimated from a CUIRT model, but scoring employs a MIRT model. This
result seems to call to question TIMSS’ choice of a model that resembles
CUIRT-Op as their preferred subscale score estimation model. However, based
on the results of the empirical study, the best fitting model at country level
(i.e., CIRT) is likely to produce scores with larger SEs.

7.3 Significance and Contributions

The results of this dissertation contribute to the existing subscale score
estimation literature. Subscore reporting is a relatively novel research area in
educational measurement. Though there is a body of research into subscale
score reporting at the individual level, there is a paucity of research into subscale
score estimation in an ILSA context. Eminently, there is little subscale score
research in contexts where the emphasis is at the population level, and where
sophisticated booklet designs require specialized achievement methods. There
is limited research regarding how well different subscale score estimation models
perform in item- and population-parameter estimation. Furthermore, not many
studies have been conducted to examine the added value of subscale scores.
This dissertation extended some of the studied conditions that were evaluated
in research aimed at subscale score reporting at the individual level to the
ILSA context. That is, the test design factors included: number of subscales,
subscale length, and [balanced] subscale correlations. Hence, this dissertation
begins to fill the void of research and bring methodological contributions to
subscale score reporting in an ILSA contest under different conditions.

The results of the simulation studies also inform test practitioners as to the
selection of the most appropriate subscale score estimation method. Information
about the best model at item- and score-parameter recovery, as well as a
consideration of the PRMSE, and model fit would empower practitioners to
make a good decision about which model would be optimal. Having these results
from a single- or multiple-groups perspective may further empower practitioners
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in their decision making. For example, Tables 7.1 and 7.4 could be used as
reference to make decisions when tests have certain characteristics similar to
those studied in this manuscript. For instance, if a test is administered to
multiple populations, has relatively few subdomains, and a moderate number
of items-per-subdomain (i.e., in Study 2), and the subdomains are moderately
correlated, then Table 7.4 would provide insight as to which subscale score
estimation model is optimal for (a) item parameter estimation, (b) score
estimation, (c) subscore value, and (d) model fit.

In addition, the results may be used to provide headway on the performance
of the subscale score estimation models from tests that collect data using the
booklet designs and use latent regression methods to estimate subscale scores.
The results from simulation Study 2’s multiple groups studies suggested that
CIRT and MIRT were the best, among the studied models, for estimating
subscale scores. These findings contradicted the single-group’s designs which
favoured CUIRT and CUIRT-Op to report better subscale score estimates and
seemed to suggest that specifying multidimensionality of the construct had more
benefits when the sample comprised of several populations. The advantages of
CIRT and MIRT extended to reporting subscale scores that were more valuable.
However, MIRT had an edge over CIRT in that it performed better on the
empirical study. The results suggested that the currently operationalized model,
CUIRT-Op, performed best at subscale score estimation where the sample is
comprised of a single group. This means that there may not be any need to run
two separate item calibration and scoring processes to estimate the overall- and
subscale-scores had one model performed significantly better than the other.
Since subscales on most ILSA are highly correlated, the choice of CUIRT may
be further justified considering that the model performs as good as CIRT and
MIRT.

The advantage of one model over the other seemed to relate with subscale
correlation, item parameter properties and distributions, and model fit.
That is, the advantage was more prominent for the models that specified
multidimensionality when the subscale correlation was lower, and closely
competing models would easily be differentiated based on the distribution
of item parameters. In test conditions where subscale correlation was low,
MIRT showed better fit. In cases when subscale correlations are higher,
the unidimensional family of models showed some improvements. High
correlations coincided with CUIRT showing better model fit. Better fitting
models also corresponded with better subscale score estimates. As a result,
recommendations are made that practitioners should consider how much effort
they would like to put in subscale scoring. However, it was a surprising
result that MIRT was not the best performing model across all the simulated
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test conditions since it was the generating model. The results presented in
Chapter 5 showed that MIRT was not the best performing model where subscale
correlations were high, and some instances where the correlations were moderate.
One likely reason was that the underlying “true" data generating mechanism
of the chosen data, where high subscale correlations were high, represented a
more unidimensional model.

Study 2’s results showed that it may be useful to consider the model choice
when the sample becomes more diverse with regards to performance. The
results from item parameter estimation were comparable, regardless of specified
sample, in that CIRT and MIRT performed best. But from a score estimation
point of view, the unidimensional models were the proposed models for use
when the sample being assessed is homogeneous. Whereas CIRT and MIRT
were preferable when the samples comprised of countries that were placed on
separate positions on the score continuum. However, if practitioners are to
take subscale value into consideration, MIRT showed an edge over CIRT. The
results of the empirical studies also showed that the magnitude of the reported
scores may also be different. The observed score differences were greater for
certain groups than others. For example, the differences between CIRT scores
and those estimated from CUIRT, CUIRT-Op, and MIRT was higher for the
low performing countries. These results suggested that if CIRT were used in
subscale score estimation, the magnitude of the scores would be even lower in
the low-performing countries. But then, these findings may have been particular
to this empirical study. The consequences of such under- or over-estimation,
and bias of scores may have implications over decisions that are made from
the subscale scores. This is true where the over- or under-estimated may be
used to in the evaluation of educational systems with the aim of amending an
educational system’s educational policies.

7.4 Limitations and Future Research

The dissertation has several limitations. First, much like any simulation study,
the general test design choices limit the generalization of the findings. In the
current simulation studies, I looked at test specification factors such as: number
of subscale scores, subscale length, and subscale correlation. However, given
the large number of ILSAs and their various characteristics, it is impossible
to include all various factors in design. For example, this study did not look
at: unbalanced subscale lengths and subscale correlations. Also, simulation
Study 1 looked at the Rasch model, whereas Study 2 employed the 2PL and
GPCM models. It is not uncommon for studies to have widely different test
specifications and use other IRT models. Given these design limitations, future
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research should consider more conditions. For example, future studies could
include unbalanced subscale lengths and subscale correlations.

Second, the generating parameter estimates were not exhaustive of what
may be empirically observed. For instance, the generating item difficulty
parameters used in Study 1 were assumed to be drawn from a uniform
distribution (i.e., βdi ∼ U(−2.35, 2.35)). Empirically, the item parameters
may be distributed differently (i.e., as given in test specification and design).
In addition, each country’s generating subscale score distribution was equal
on each subdomain. These scores were based on the observed overall, HAKT
test score and its subsequent standard deviation. For example, if Country
X had an observed subscale score of .45 and a standard deviation of .83,
then this was the specification for all subdomains. Empirically, participating
countries may not have the same subsale scores on all subdomains. The
reason for this specification was that SACMEQ III did not report subscale
scores; and test-level information was not made public due to test security
reasons. Therefore, future research should consider studying tests with different
generating parameters. For example, simulation studies could include item
parameter distribution as a study condition in order to identify conditions
where benefits exist. As such, future studies may extend Study 1 to include
different population and subpopulation generating subscale score distributions.
These distributions may be theoretical or empirically observed from ILSAs.
Furthermore, in my simulation studies, the generated item parameters were
fixed for all 100 replications on each specific test condition. That is, one single
draw of item parameters was made, and the selected item parameters were kept
for the specified replications. Such a specification makes it a challenge to tease
out the effects of varied conditions, since the item parameters are specific to a
subdomain. As such, the tests at different subscale lengths not only differed
in the simulation design factors (number of subscales, subscale length, and
subscale correlation), but also in the item parameters. This may explain why
the patterns observed in the simulation studies were unclear. To that effect,
strong conclusions as to how the studied models performed in different test
conditions may not be warranted. Future studies could vary item parameters
across replications thus strengthening the generalizability of the findings.

Third, in simulation Study 2’s data generation did not fully resemble TIMSS
2015. For example, though the study managed to capture most of the test
design aspects, the dichotomously scored items were assumed to be 2PL items.
von Davier (2016) argued that the results obtained from the Rasch, 2PL, or
3PL models were highly correlated, close to 1. But then, OECD (2017) and
Mazzeo and von Davier (2008) noted that there are some concerns over the
insufficiencies of the Rasch model to adequately address the complexity of data
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from ILSA such as TIMSS and PISA. In addition, the latent regression in
simulation Study 2 specified 10 background variables, that were not subject
to principle component analysis. As such, the selected variables may not
have explained as much variance in the scores compared to the numerous
principal components that are incorporated in TIMSS’ empirical conditioning
model. To that effect, the conditioning model specified in simulation Study
2 may not have had the same consequences in the estimation of proficiency
compared to TIMSS’ operationalized model. Following which, this selection of
variables may have consequences over how the study results may be generalized
to TIMSS. The selection of fewer variables for the latent regression model
were extended to the empirical study; much unlike the TIMSS study that
uses all available background information. However, unlike simulation Study
2, principal components comprised the empirical study’s conditioning model.
These design and scoring changes, although not strictly in line with operational
procedures, provide insights into expectations around different methods of
subscale score estimation.

Fourth, the data were generated using the MIRT model. The chosen model
assumed that the studied subscales had underlying relationships. In other words,
the simulation studies assumed that the subscales were correlated by specfying
a compensatory MIRT model. This assumption was reasonable considering that
the subscales on ILSA are often correlated. However, other data generation
models may assume different subscale relationships. For example, if a CUIRT
model were adopted, it assumes that the assessment measures one construct. Or,
if a higher-order IRT (HO-IRT) model were used for data generation, it assumes
that an overarching general proficiency above the subscale scores (i.e., a general
mathematics construct above the algebra, data and chance, geometry, and
numbers subscales). Given the numerous IRT models, there is an uncertainty
as to whether MIRT fully captures the subscale relationships or not. Since
MIRT was one of the four compared subscale scoring models, it may be unclear
whether its benefited from being the data generating model. Future research
could examine the performance of the four subscale score estimation models but
adopt different data generation models. This would make it possible to gauge
the performance of MIRT over tests that assume different subscale relations.
For instance, generating data from HO-IRT and comparing the performance of
several models at subscale score estimation. Ideally, HO-IRT would be more
suitable since the model captures the relationship between subscales, as well as
their relationship with the general construct from which an overall score is also
reported. As such, future research could could be extended to simulate data
from HO-IRT, and compare model performance in the simultaneous estimation
of subscale- and overall-scores.
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Fifth, the simulation studies only compared four subscale subscoring
methods. There may exist other subscale score estimation methods such
as bi-factor model, HO-IRT (and extensions thereof). Future studies may
extend the simulation- and empirical-studies by including the bi-factor model
and HO-IRT in the comparison. Since subscales are estimated for cognitive
subdomains, future studies may also be extended to include the cognitive
diagonostic models (CDMs).

Lastly, simulation Study 1 did not consider augmented extensions of the IRT
methods in simulation Study 1. This was because SACMEQ did not specify,
in its documentation, whether latent regression techniques were used in score
estimation. The augmented methods were only fit in Study 2 since it resembled
TIMSS 2015 and scores were estimated from latent regression techniques on
that assessment. According to Tao (2009), collateral information that could
potentially be utilized in subscale score estimation include (a) information from
other subscale scores, (b) information about schools the students attended, and
(c) school-level subscore information on the same test obtained from previous
students in that school. Though the MIRT model specified in Study 1 is
inherently augmented in that it takes subscale correlation into account, the
dissertation only considered non-augmented CUIRT and CIRT models. Since
SACMEQ also collects volumes of contextual data, future studies may be
extended to estimate scores from augmented models that take into account all
sources of information in the estimation of subscale scores. Future studies may
distinguish from the currently operationalized latent regression techniques by
including information from other subscales in the conditioning model.
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Appendix A

Empirical Subscale Correlations

Table A.1
Empirical Correlations: Mathematics Domains by Country

Country mat-sci alg-dat alg-num alg-geo dat-num dat-geo geo-num
Singapore .88 .89 .91 .92 .92 .89 .92
Korea .82 .90 .91 .92 .91 .89 .91
China .89 .91 .94 .94 .93 .90 .92
Sweden .82 .81 .88 .83 .87 .83 .83
Italy .83 .84 .89 .88 .87 .85 .87
New Zealand .88 .92 .93 .91 .95 .91 .92
Morocco .83 .78 .86 .81 .82 .79 .84
South Africa .87 .84 .89 .84 .89 .86 .88
Saudi Arabia .80 .71 .84 .74 .80 .71 .75
Note. “mat” = Mathematics; “alg” = Algebra; “dat” = Data and Chance; “geo” = Geometry;
“num” = Number.
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Table A.2
Empirical Correlations: Science Domains by Country

Country che-ear che-bio che-phy ear-bio ear-phy bio-phy
Singapore .92 .89 .91 .93 .92 .92
Korea .85 .90 .91 .88 .87 .90
China .88 .89 .89 .90 .89 .87
Sweden .86 .89 .89 .85 .89 .89
Italy .88 .88 .86 .86 .88 .86
New Zealand .91 .90 .93 .92 .93 .92
Morocco .78 .83 .83 .80 .81 .87
South Africa .89 .92 .87 .90 .89 .88
Saudi Arabia .83 .87 .85 .84 .80 .83
Note. “che” = Chemistry; “ear” = Earth Science; “bio” = Biology; “phy” =
Physics.

Table A.3
Empirical Correlations: Algebra and Science Domains by Country

Country alg-che alg-ear alg-bio alg-phy
Singapore .81 .77 .78 .78
Korea .63 .59 .62 .66
China .74 .67 .71 .70
Sweden .66 .61 .64 .65
Italy .63 .60 .60 .61
New Zealand .73 .71 .72 .73
Morocco .54 .47 .54 .54
South Africa .64 .65 .67 .66
Saudi Arabia .49 .49 .50 .51
Note. “alg” = Algebra; “che” = Chemistry; “ear” = Earth
Science; “bio” = Biology; “phy” = Physics.
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Table A.4
Empirical Correlations: Data and Chance and Science Domains by Country

Country dat-che dat-ear dat-bio dat-phy
Singapore .77 .75 .76 .77
Korea .60 .59 .61 .64
China .71 .67 .70 .70
Sweden .64 .63 .64 .66
Italy .63 .61 .62 .62
New Zealand .74 .74 .73 .76
Morocco .54 .48 .56 .57
South Africa .70 .69 .71 .70
Saudi Arabia .56 .55 .57 .60
Note. “dat” = Data and Chance; “che” = Chemistry; “ear”
= Earth Science; “bio” = Biology; “phy” = Physics.

Table A.5
Empirical Correlations: Numbers and Science Domains by Country

Country num-che num-ear num-bio num-phy
Singapore .78 .75 .76 .77
Korea .61 .60 .62 .65
China .72 .68 .71 .71
Sweden .66 .65 .66 .68
Italy .62 .60 .60 .61
New Zealand .74 .73 .72 .75
Morocco .54 .49 .56 .55
South Africa .69 .69 .70 .70
Saudi Arabia .53 .52 .51 .53
Note. “num” = Number; “che” = Chemistry; “ear” = Earth
Science; “bio” = Biology; “phy” = Physics.
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Table A.6
Empirical Correlations: Geometry and Science Domains by Country

Country geo-che geo-ear geo-bio geo-phy
Singapore .78 .76 .77 .78
Korea .66 .61 .63 .68
China .72 .67 .70 .70
Sweden .62 .60 .61 .63
Italy .62 .60 .63 .61
New Zealand .74 .73 .72 .74
Morocco .52 .45 .53 .54
South Africa .65 .66 .66 .67
Saudi Arabia .50 .48 .49 .51
Note. “geo” = Geometry; “che” = Chemistry; “ear” = Earth
Science; “bio” = Biology; “phy” = Physics.

238



Appendix B

Relationships between
Background Variables

239



T
ab

le
B
.1

C
hi
ne
se

Ta
ip
ei

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
04

BS
BG

06
E

BS
BG

06
H

BS
BG

06
I

BS
BG

06
J

BS
BG

07
A

BS
BG

07
B

BS
BG

10
B

BS
BM

17
A

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
-.0

9
-.0

6
-.0

7
-.0

5
1.
00

BS
BG

04
.4
0

.4
4

.4
1

.4
2

-.2
9

1.
00

BS
BG

06
E

-.1
1

-.1
9

-.1
4

-.1
8

.0
6

-.0
8

1.
00

BS
BG

06
H

.0
0

-.0
2

-.0
5

.0
2

.2
2

-.2
6

.0
7

1.
00

BS
BG

06
I

-.0
6

-.0
7

-.0
7

-.0
4

-.0
6

-.1
8

-.0
1

.2
7

1.
00

BS
BG

06
J

-.3
7

-.3
1

-.4
1

-.3
9

.1
4

-.4
7

.0
7

.1
5

.2
1

1.
00

BS
BG

07
A

-.1
8

-.1
9

-.1
3

-.2
4

-.1
0

.0
1

.0
4

-.1
2

-.0
8

-.0
1

1.
00

BS
BG

07
B

-.1
8

-.2
2

-.1
6

-.2
1

-.0
7

.0
2

-.0
1

.0
0

-.0
5

-.0
4

.4
4

1.
00

BS
BG

10
B

.4
8

.3
7

.5
1

.4
0

.1
4

.0
8

.0
6

.0
6

-.0
1

-.1
6

.0
9

.0
2

1.
00

BS
BM

17
A

-.3
5

-.3
0

-.3
0

-.3
0

-.1
7

-.0
6

.0
7

.0
8

.0
6

.1
0

.2
1

-.0
2

-.1
7

1.
00

240



T
ab

le
B
.2

It
al
y

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
04

BS
BG

06
E

BS
BG

06
H

BS
BG

06
I

BS
BG

06
J

BS
BG

07
A

BS
BG

07
B

BS
BG

10
B

BS
BM

17
A

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
-.0

8
-.0

2
-.1

2
.0
5

1.
00

BS
BG

04
.2
1

.2
5

.2
7

.2
5

-.0
7

1.
00

BS
BG

06
E

-.1
0

-.0
2

-.0
6

-.1
2

.0
5

-.1
3

1.
00

BS
BG

06
H

-.0
7

-.0
7

-.0
9

-.0
7

-.0
7

-.2
7

.0
1

1.
00

BS
BG

06
I

.2
0

.2
4

.1
9

.2
1

-.0
1

-.1
1

.0
2

.1
5

1.
00

BS
BG

06
J

-.0
2

.0
3

.0
0

-.0
1

-.0
4

-.2
3

-.0
3

.2
5

.1
8

1.
00

BS
BG

07
A

-.1
3

-.0
8

-.1
1

-.0
8

.0
4

.0
8

.0
9

-.0
8

-.1
0

-.2
8

1.
00

BS
BG

07
B

-.1
3

-.0
4

-.1
1

-.0
7

-.0
3

.0
4

.0
6

-.0
9

-.1
0

-.1
2

.5
8

1.
00

BS
BG

10
B

.1
2

.1
1

.2
9

.0
9

-.1
7

.1
8

.0
3

-.1
6

-.0
2

-.0
4

-.0
6

-.1
7

1.
00

BS
BM

17
A

-.3
4

-.2
8

-.2
7

-.3
1

-.1
2

-.0
1

-.1
1

.0
0

-.0
6

.0
6

.0
6

.1
4

.0
0

1.
00

241



T
ab

le
B
.3

K
or
ea
,R

ep
ub
lic

of

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
05

BS
BG

04
BS

BG
06
H

BS
BG

06
I

BS
BG

07
B

BS
BG

15
A

BS
BG

16
D

BS
BM

17
B

BS
BM

20
B

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
-.0

1
.0
3

.0
2

.1
0

1.
00

BS
BG

05
.3
5

.3
2

.3
5

.3
5

-.0
2

1.
00

BS
BG

04
.1
0

.1
3

.1
2

.1
4

.0
0

.1
7

1.
00

BS
BG

06
H

-.0
3

-.0
2

-.0
4

-.0
4

.0
0

-.0
4

-.1
9

1.
00

BS
BG

06
I

-.0
7

-.0
4

-.0
8

-.0
8

-.0
4

-.2
0

-.1
2

.1
1

1.
00

BS
BG

07
B

.0
0

-.0
2

.0
0

.0
0

.0
2

.0
0

.0
0

.0
3

-.0
3

1.
00

BS
BG

15
A

-.1
2

-.0
8

-.1
1

-.1
0

-.0
1

-.0
8

.0
0

.0
0

.0
5

.0
1

1.
00

BS
BG

16
D

.0
1

.0
0

-.0
1

-.0
1

-.0
6

-.0
2

-.0
5

.0
2

.0
2

.0
4

-.0
5

1.
00

BS
BM

17
B

.2
2

.1
4

.1
9

.1
4

.0
3

.0
3

-.0
3

.0
0

.0
0

.0
0

-.1
7

-.0
1

1.
00

BS
BM

20
B

-.2
5

-.2
1

-.2
5

-.1
9

-.0
2

-.0
9

-.0
1

-.0
4

.0
5

.0
2

.2
0

.0
0

-.3
1

1.
00

242



T
ab

le
B
.4

M
or
oc
co

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
04

BS
BG

06
E

BS
BG

06
H

BS
BG

06
I

BS
BG

06
J

BS
BG

07
A

BS
BG

07
B

BS
BG

10
B

BS
BM

17
A

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
.0
5

.1
1

.0
8

.1
3

1.
00

BS
BG

04
.1
3

.1
1

.1
8

.1
5

.2
0

1.
00

BS
BG

06
E

-.2
0

-.1
4

-.2
3

-.2
0

-.1
5

-.2
7

1.
00

BS
BG

06
H

.0
8

.1
2

.1
1

.0
9

-.1
4

-.1
4

.1
2

1.
00

BS
BG

06
I

-.1
2

-.0
4

-.1
1

-.0
7

-.1
3

-.2
0

.2
4

.0
5

1.
00

BS
BG

06
J

.0
5

.1
9

.0
3

.0
8

.1
2

-.2
2

.1
8

.2
2

.1
9

1.
00

BS
BG

07
A

.0
7

.1
1

.1
1

.0
5

.1
5

.2
3

-.0
2

-.1
5

-.1
7

-.1
2

1.
00

BS
BG

07
B

.1
0

.1
6

.0
6

.1
1

.0
2

.0
9

-.0
8

.0
2

-.0
2

-.0
7

.4
3

1.
00

BS
BG

10
B

-.1
2

-.1
6

-.0
9

-.1
2

.0
6

.0
9

.0
4

-.1
9

.0
4

.0
6

.1
1

.1
6

1.
00

BS
BM

17
A

-.3
7

-.1
9

-.2
8

-.2
4

.1
2

-.0
3

-.0
2

-.0
2

.0
4

-.0
4

.1
1

.0
0

.1
1

1.
00

243



T
ab

le
B
.5

N
ew

Ze
al
an

d

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
04

BS
BG

06
E

BS
BG

06
H

BS
BG

06
I

BS
BG

06
J

BS
BG

07
A

BS
BG

07
B

BS
BG

10
B

BS
BM

17
A

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
-.0

4
-.0

4
-.0

1
.0
5

1.
00

BS
BG

04
.3
4

.4
1

.3
9

.3
6

-.0
7

1.
00

BS
BG

06
E

-.1
6

-.2
0

-.1
7

-.2
0

.0
6

-.1
8

1.
00

BS
BG

06
H

-.1
9

-.1
9

-.1
8

-.1
4

.1
7

-.2
5

.0
4

1.
00

BS
BG

06
I

-.0
5

-.0
3

-.0
1

-.0
5

.0
3

-.1
0

.0
5

.0
6

1.
00

BS
BG

06
J

-.1
2

-.1
2

-.1
1

-.1
2

.0
1

-.1
7

.0
6

.0
6

.2
8

1.
00

BS
BG

07
A

.0
3

.0
3

.0
2

.0
3

.0
7

.0
5

.0
2

-.0
7

.0
3

-.0
1

1.
00

BS
BG

07
B

.0
1

-.0
1

-.0
1

.0
0

.0
3

.0
2

.0
4

-.0
2

.0
8

-.0
1

.5
8

1.
00

BS
BG

10
B

.0
3

.0
9

.0
8

.0
4

-.0
2

.1
5

-.0
6

-.0
8

.0
2

-.0
9

.0
3

.0
1

1.
00

BS
BM

17
A

-.2
4

-.1
5

-.1
9

-.1
9

-.1
1

.1
0

-.0
5

-.0
4

-.0
6

-.0
3

-.0
7

-.0
7

.1
6

1.
00

244



T
ab

le
B
.6

Sa
ud

iA
ra
bi
a

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
05

BS
BG

04
BS

BG
06

H
BS

BG
6I

BS
BG

07
B

BS
BG

15
A

BS
BG

16
D

BS
BM

17
B

BS
BM

20
D

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
-.0

7
-.0

8
-.1

0
.0
3

1.
00

BS
BG

05
.1
6

.2
5

.1
6

.2
1

-.0
7

1.
00

BS
BG

04
.0
9

.1
5

.0
8

.1
5

-.0
1

.1
7

1.
00

BS
BG

06
H

-.0
1

-.0
5

.0
1

-.0
5

.0
4

-.1
1

-.1
3

1.
00

BS
BG

06
I

.1
1

.1
0

.0
7

.0
7

-.0
3

-.0
9

-.1
0

.2
7

1.
00

BS
BG

07
B

.1
1

.1
6

.1
1

.1
5

.0
2

.1
1

.1
5

-.0
9

-.0
8

1.
00

BS
BG

15
A

-.0
2

.0
1

-.0
6

-.0
3

.0
5

.1
3

.0
2

-.0
4

-.0
5

.0
2

1.
00

BS
BG

16
D

.0
2

.0
5

.0
1

.0
1

-.1
9

.0
0

-.0
3

.0
4

.0
7

.0
4

-.0
4

1.
00

BS
BM

17
B

.1
5

.2
3

.1
3

.1
8

-.0
1

-.0
1

.0
6

.0
4

.0
0

.0
1

-.1
2

.0
7

1.
00

BS
BM

20
D

-.1
3

-.1
1

-.0
7

-.0
8

.0
5

.0
3

-.0
2

-.0
1

-.0
2

-.0
3

.1
9

.0
0

-.1
0

1.
00

245



T
ab

le
B
.7

Si
ng
ap
or
e

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
04

BS
BG

06
E

BS
BG

06
H

BS
BG

06
I

BS
BG

06
J

BS
BG

07
A

BS
BG

07
B

BS
BG

10
B

BS
BM

17
A

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
-.1

4
-.0

5
-.0

8
-.0

8
1.
00

BS
BG

04
.2
6

.2
9

.3
0

.2
6

.0
1

1.
00

BS
BG

06
E

-.1
3

-.1
5

-.1
1

-.1
3

.0
5

-.0
5

1.
00

BS
BG

06
H

-.1
3

-.1
1

-.1
5

-.0
9

.1
0

-.2
1

.0
6

1.
00

BS
BG

06
I

-.0
8

-.0
8

-.0
9

-.0
5

.0
5

-.1
5

.0
7

.2
5

1.
00

BS
BG

06
J

-.1
7

-.1
6

-.1
6

-.1
4

.0
4

-.1
4

.1
2

.1
6

.1
3

1.
00

BS
BG

07
A

.0
3

.0
3

.0
4

.0
3

.0
3

.1
1

-.0
5

-.0
3

-.0
3

-.1
0

1.
00

BS
BG

07
B

.0
7

.0
6

.0
8

.0
7

.0
3

.1
0

-.0
3

-.0
3

-.0
6

-.0
9

.6
1

1.
00

BS
BG

10
B

-.0
1

.0
7

.0
2

.0
5

-.0
1

.0
8

-.0
3

-.1
2

-.0
2

.0
1

.0
4

.0
7

1.
00

BS
BM

17
A

-.2
4

-.1
5

-.2
1

-.1
8

.0
6

-.0
8

.0
1

.0
7

.0
3

.0
7

.0
3

.0
1

.0
7

1.
00

246



T
ab

le
B
.8

So
ut
h
A
fr
ic
a

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
04

BS
BG

06
E

BS
BG

06
H

BS
BG

06
I

BS
BG

06
J

BS
BG

07
A

BS
BG

07
B

BS
BG

10
B

BS
BM

17
A

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
-.0

7
-.0

5
-.0

5
-.0

1
1.
00

BS
BG

04
.3
6

.3
8

.3
9

.3
7

.0
7

1.
00

BS
BG

06
E

-.2
5

-.3
6

-.3
2

-.3
9

-.1
5

-.2
4

1.
00

BS
BG

06
H

-.3
0

-.3
0

-.2
6

-.3
0

.1
2

-.1
5

.2
2

1.
00

BS
BG

06
I

-.1
1

-.1
3

-.1
2

-.1
5

.1
5

-.1
5

.2
1

.1
3

1.
00

BS
BG

06
J

-.3
3

-.3
0

-.2
9

-.3
3

.0
8

-.1
1

.2
5

.2
2

.2
0

1.
00

BS
BG

07
A

.3
6

.3
7

.3
9

.3
6

-.1
9

.1
4

-.0
9

-.2
4

-.2
1

-.3
1

1.
00

BS
BG

07
B

.3
1

.3
4

.3
4

.3
6

-.1
2

.0
8

-.2
3

-.2
4

-.2
0

-.2
4

.4
8

1.
00

BS
BG

10
B

.1
1

.1
7

.0
6

.1
6

.0
0

.1
8

-.1
0

-.0
2

-.0
5

-.1
2

.0
6

.0
9

1.
00

BS
BM

17
A

-.1
1

.0
2

.0
3

.0
1

.1
0

.0
0

-.0
8

.0
5

-.0
1

.0
5

.0
2

.1
7

.0
5

1.
00

247



T
ab

le
B
.9

Sw
ed
en

Va
ria

bl
e

A
lg
eb

ra
D
at
a

G
eo
m
et
ry

N
um

be
rs

BS
BG

01
BS

BG
04

BS
BG

06
E

BS
BG

06
H

BS
BG

06
I

BS
BG

06
J

BS
BG

07
A

BS
BG

07
B

BS
BG

10
B

BS
BM

17
A

A
lg
eb

ra
1.
00

D
at
a

.9
5

1.
00

G
eo
m
et
ry

.9
5

.9
5

1.
00

N
um

be
rs

.9
5

.9
5

.9
5

1.
00

BS
BG

01
.0
5

.0
7

.0
7

.1
2

1.
00

BS
BG

04
.3
7

.3
8

.3
6

.3
8

-.0
6

1.
00

BS
BG

06
E

-.0
5

-.0
3

-.0
5

-.0
6

.0
2

-.0
8

1.
00

BS
BG

06
H

-.1
6

-.1
4

-.1
4

-.1
3

-.1
2

-.3
1

.0
9

1.
00

BS
BG

06
I

-.0
5

-.0
5

-.0
8

-.0
4

.0
9

-.1
9

.0
9

.2
0

1.
00

BS
BG

06
J

-.2
7

-.2
8

-.2
7

-.2
9

.0
1

-.3
2

.1
0

.2
6

.3
0

1.
00

BS
BG

07
A

-.0
3

-.0
3

.0
0

-.0
3

-.0
3

.0
5

-.1
2

-.0
1

-.2
3

.0
0

1.
00

BS
BG

07
B

-.0
1

-.0
4

-.0
2

-.0
4

.0
0

.0
2

-.0
7

-.0
5

-.1
2

-.0
3

.6
3

1.
00

BS
BG

10
B

.1
0

.1
6

.1
5

.1
3

-.0
5

.2
3

.0
2

-.1
7

-.1
7

-.2
7

.0
3

.1
1

1.
00

BS
BM

17
A

-.2
2

-.0
9

-.1
2

-.1
6

-.1
3

-.0
5

-.0
3

.0
9

-.0
3

-.0
4

.0
9

.0
2

.2
5

1.
00

248



T
ab

le
B
.1
0

Ex
am

pl
e
B
lo
ck

D
es
ig
n
fo
r
Si
m
ul
at
io
n
St
ud

y
2

Bl
oc
ks

b1
b2

b3
b4

b5
b6

b7
b8

b9
b1

0
b1

1
b1

2
b1

3
b1

4

It
em

1
5

9
13

17
21

25
29

33
37

41
45

49
53

2
6

10
14

18
22

26
30

34
38

42
46

50
54

3
7

11
15

19
23

27
31

35
39

43
47

51
55

4
8

12
16

20
24

28
32

36
40

44
48

52
56

57
58

59
60

77
81

85
89

93
97

10
1

10
5

10
9

11
3

61
65

69
73

78
82

86
90

94
98

10
2

10
6

11
0

11
4

62
66

70
74

79
83

87
91

95
99

10
3

10
7

11
1

11
5

63
67

71
75

80
84

88
92

96
10
0

10
4

10
8

11
2

11
6

64
68

72
76

11
7

11
8

11
9

12
0

15
3

15
7

16
1

16
5

16
9

17
3

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
4

15
8

16
2

16
6

17
0

17
4

12
2

12
6

13
0

13
4

13
8

14
2

14
6

15
0

15
5

15
9

16
3

16
7

17
1

17
5

12
3

12
7

13
1

13
5

13
9

14
3

14
7

15
1

15
6

16
0

16
4

16
8

17
2

17
6

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

17
7

17
8

17
9

18
0

22
9

23
3

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

21
7

22
1

22
5

23
0

23
4

18
2

18
6

19
0

19
4

19
8

20
2

20
6

21
0

21
4

21
8

22
2

22
6

23
1

23
5

18
3

18
7

19
1

19
5

19
9

20
3

20
7

21
1

21
5

21
9

22
3

22
7

23
2

23
6

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
7

23
8

23
9

24
0

0
0

0
0

0
0

0
0

0
0

0
0

To
ta
l

18
18

17
17

17
17

17
17

17
17

17
17

17
17

249





Appendix C

Sample Simulation Code

C.1 Sample Code for Study 1’s Single Group Simulation

# Do not run

options(width = 100)
rm(list = ls())

library(mirt)
library(mvtnorm)
library(lsasim)
library(asbio)

# set working directory
setwd("C:/workingDirectory")

#----------------------------------------------------#
## Define the condition
#----------------------------------------------------#
Study <- 1 # study 1a - single group
no_factors <- 3 # 3 or 5 number of factors
items_per_fac <- 5 # 5, 10, or 15 number of items per factor
rr <- cors <- .45 # correlations, e.g., .45, .75, 95
no_reps <- 100 # 100 replications
total_items <- max(items_per_fac) * max(no_factors) # Total number

of items
n_examinees <- 6000 # Single groups sample
# kk = a specific replication
# rr = a specific covariance matrix

#----------------------------------------------------#
# Specify all possible models
#----------------------------------------------------#
# (a) uirt = single factor model,
# (b) cuirt = D uncorrelated factor model,
# (c) mirt = D correlated factor model,
# where D = number of factors

uirt_3_5 <- mirt::mirt.model('F1 = 1 - 15')
cuirt_3_5 <- mirt::mirt.model("

F1 = 1 - 5
F2 = 6 - 10
F3 = 11 - 15
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") # 5 items per domain

mirt_3_5 <- mirt::mirt.model("
F1 = 1 - 5
F2 = 6 - 10
F3 = 11 - 15
COV = F1 * F2, F2 * F3, F1 * F3
") # 5 items per domain

uirt_3_10 <- mirt::mirt.model('F1 = 1 - 30')
cuirt_3_10 <- mirt::mirt.model("

F1 = 1 - 10
F2 = 11 - 20
F3 = 21 - 30
") # 10 items per domain

mirt_3_10 <- mirt::mirt.model("
F1 = 1 - 10
F2 = 11 - 20
F3 = 21 - 30
COV = F1 * F2, F2 * F3, F1 * F3
") # 10 items per domain

uirt_3_15 <- mirt::mirt.model('F1 = 1 - 45')
cuirt_3_15 <- mirt::mirt.model("

F1 = 1 - 15
F2 = 16 - 30
F3 = 31 - 45
") # 15 items per domain

mirt_3_15 <- mirt::mirt.model("
F1 = 1 - 15
F2 = 16 - 30
F3 = 31 - 45
COV = F1 * F2, F2 * F3, F1 * F3
") # 15 items per domain

uirt_5_5 <- mirt::mirt.model('F1 = 1 - 25')
cuirt_5_5 <- mirt::mirt.model("

F1 = 1 - 5
F2 = 6 - 10
F3 = 11 - 15
F4 = 16 - 20
F5 = 21 - 25
") # 5 items per domain

mirt_5_5 <- mirt::mirt.model("
F1 = 1 - 5
F2 = 6 - 10
F3 = 11 - 15
F4 = 16 - 20
F5 = 21 - 25
COV = F1 * F2, F1 * F3, F1 * F4, F1 * F5

, F2 * F3, F2 * F4, F2 * F5, F3 * F4
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, F3 * F5, F4 * F5
") # 5 items per domain

uirt_5_10 <- mirt::mirt.model('F1 = 1 - 50')
cuirt_5_10 <- mirt::mirt.model("'

F1 = 1 - 10
F2 = 11 - 20
F3 = 21 - 30
F4 = 31 - 40
F5 = 41 - 50
") # 10 items per domain

mirt_5_10 <- mirt::mirt.model("
F1 = 1 - 10
F2 = 11 - 20
F3 = 21 - 30
F4 = 31 - 40
F5 = 41 - 50
COV = F1 * F2, F1 * F3, F1 * F4, F1 *

F5, F2 * F3, F2 * F4, F2 * F5, F3 *
F4, F3 * F5, F4 * F5

") # 10 items per domain

uirt_5_15 <- mirt::mirt.model('F1 = 1 - 75')
cuirt_5_15 <- mirt::mirt.model("

F1 = 1 - 15
F2 = 16 - 30
F3 = 31 - 45
F4 = 46 - 60
F5 = 61 - 75
") # 15 items per domain

mirt_5_15 <- mirt::mirt.model("
F1 = 1 - 15
F2 = 16 - 30
F3 = 31 - 45
F4 = 46 - 60
F5 = 61 - 75
COV = F1 * F2, F1 * F3, F1 * F4, F1 *

F5, F2 * F3, F2 * F4, F2 * F5, F3 *
F4, F3 * F5, F4 * F5

") # 15 items per domain

# save all of the models as a list to be used for each condition
mods <- list("uirt_3_5" = uirt_3_5,

"cuirt_3_5" = cuirt_3_5,
"mirt_3_5" = mirt_3_5,
"uirt_3_10" = uirt_3_10,
"cuirt_3_10" = cuirt_3_10,
"mirt_3_10" = mirt_3_10,
"uirt_3_15" = uirt_3_15,
"cuirt_3_15" = cuirt_3_15,
"mirt_3_15" = mirt_3_15,
"uirt_5_5" = uirt_5_5,
"cuirt_5_5" = cuirt_5_5,
"mirt_5_5" = mirt_5_5,

253



"uirt_5_10" = uirt_5_10,
"cuirt_5_10" = cuirt_5_10,
"mirt_5_10" = mirt_5_10,
"uirt_5_15" = uirt_5_15,
"cuirt_5_15" = cuirt_5_15,
"mirt_5_15" = mirt_5_15)

#----------------------------------------------------#
## Generate item parameters
#----------------------------------------------------#
items <- list()
set.seed( round(5653 + Study + no_factors + items_per_fac ) ) # seed

for generated item parameters
for ( zz in 1: no_factors){
items[[zz]] <- lsasim::item_gen(n_1pl = items_per_fac, b_bounds = c

(-2, 2))
} # generate true item difficulty parameters from a uniform

distribution (-2, 2)
# The loop allows me to generate the same distribution for all

domains

#--- combined sub-test items into a single data frame
test_items <- do.call("rbind", items)

#--- re-write items numbers
test_items$item <- 1:nrow(test_items)

#--- asssign items to a domains
test_items$domain <- rep(1:no_factors, each = items_per_fac )

test_items$Study <- Study # specify the study
test_items$no_factors <- no_factors # specify the number of factors
test_items$items_per_fac <- items_per_fac # specify the number of

items per factor
test_items$cors <- rr # specify the correlations

# Save a table of the generating item parameters
save(test_items, file = paste0("test_items_", "ss", Study,
"_zz", no_factors, "_rr", rr, "_cc", items_per_fac, "_trueip.Rdata"))

#----------------------------------------------------#
# Specify the parallelization
#----------------------------------------------------#
#--- determine replications
replications <- vector("list", no_reps) # when running replication

1:100
for (rep in 1:no_reps) {
replications[[rep]] <- rep

} # useful for instances where I conduct my analysis in parallel
coding

# specify my function to be distributed across all of the specified
nodes

# the function includes all of the input
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myFunction <- function(X, Study, no_factors, items, test_items,
items_per_fac, rr, n_examinees, total_items,
mods, verbose = TRUE) {

library(mirt)
library(mvtnorm)
library(lsasim)
library(asbio)

# specify the number of replications
kk <- X # specify the replication

#----------------------------------------------------#
# Generate thetas
#----------------------------------------------------#
#--- generate correlation matrix from factor loadings
p2_vec <- rep(sqrt(rr), no_factors)
p2_X_tp2 <- p2_vec %*% t(p2_vec)
diag_p2_X_tp2_matrix <- diag(diag(p2_X_tp2))
i1_matrix <- diag(no_factors)
u1_matrix <- i1_matrix - diag_p2_X_tp2_matrix
r1 <- p2_X_tp2 + u1_matrix # results in a correlation matrix
# direct deerivation from an inverse Wishart

set.seed((kk + rr) * 100) # set seed for theta, kk changes with
every rep.

# generate true examinee theta based on population mean and the
specified correlation matrix, sigma = r1

theta_df <- data.frame(mvtnorm::rmvnorm(n_examinees, mean = rep(0,
no_factors), sigma = r1))

# specify number of examinees, number of factors and the
correlation matrix (sigma)

colnames(theta_df) <- paste0("theta", 1:no_factors) # rename
columns for saving

true_theta_df <- data.frame(Study = Study, # specify study
no_factors = no_factors, # specify the

number of factors
items_per_fac = items_per_fac, #

specify the number of items per
factor

cors = rr, # specify the correlations
replication = kk, # specify the

replication
theta_df) # prepare the true theta for

saving

save(true_theta_df, file = paste0("True_theta_df_", "ss", Study, "_
zz", no_factors, "_rr", rr,

"_cc", items_per_fac, "_kk", kk,
".RData")) # save the true
theta

#----------------------------------------------------#
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# Generate item responses
#----------------------------------------------------#
# create a container for the responses
resp <- data.frame(matrix(NA, nrow= n_examinees, ncol = total_items

))
colnames(resp) <- paste0("i.", 1:total_items) # rename the items in

each column

# generate response by each domain by specifying a loop that takes
into account the:

# (a) domain specific item parameters
# (b) domain theta from theta_df(true theta)
# (c) booklet and booklet design
for (zz in 1:no_factors) { # zz = factors

# assign items to block
block_bk1 <- lsasim::block_design(n_blocks = 1,

item_parameters = items[[zz]] )
# select items in specific
domain

#assign block to booklet
book_bk1 <- lsasim::booklet_design(item_block_assignment = block_

bk1$block_assignment,
book_design = matrix(1))

#assign booklet to subjects
book_samp <- lsasim::booklet_sample(n_subj = n_examinees,

book_item_design = book_bk1,
book_prob = NULL)

# generate item responses
cog <- lsasim::response_gen(subject = book_samp$subject,

item = book_samp$item,
theta = theta_df[, zz], # use theta

for specific domain
b_par = items[[zz]]$b) # use item

difficulty from specific domain
# fill in subdomain responses
resp[, c((zz-1)*items_per_fac+1):(zz*items_per_fac) ] <- cog[, c

(1:nrow(items[[zz]]) ) ]

}

# save the test responses
save(resp, file = paste0("resp_", "ss", Study, "_zz", no_factors,

"_rr", rr, "_cc", items_per_fac, "_kk", kk, ".RData"))

#----------------------------------------------------#
# Fit model 1 - UIRT
#----------------------------------------------------#
uirt_cc <- mods[[paste0("uirt_", no_factors, "_", items_per_fac)]]

# model from line 55
# specify the UIRT model
uirt_fit <- mirt::mirt(resp, # specify test responses
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model = uirt_cc, # specify the model
itemtype = "Rasch", # specify the IRT model
method = "SEM", # specify the estimation

method
draws = 5000, # the number of draws for

estimation
verbose = FALSE) # not to show the processes

and iterations in the background; run
discreetly

# obtain fit indices
logLik_uirt <- uirt_fit@Fit$logLik # extract the loglikelihood
AIC_uirt <- uirt_fit@Fit$AIC # extract the AIC
BIC_uirt <- uirt_fit@Fit$BIC # extract the BIC
uirt_indices <- data.frame(cbind(logLik_uirt, AIC_uirt, BIC_uirt))

# dataframe of CUIRT model fit

# obtain item parameters and save standard errors
uirt_coef <- coef(uirt_fit, printSE = TRUE) # extract item

parameter coefficients
uirt_ip <- data.frame(do.call("rbind", uirt_coef[paste0("i.", 1:

total_items)])) # place them in a table

# specify which parameters to save and how
uirt_item <- data.frame( id = 1:total_items,

d = uirt_ip$d) # item difficulty, to
be converted in analysis, b = -d

uirt_item$b <- - uirt_item$d # specify the b parameter conversion

#----------------------------------------------------#
# Fit model 2 - CIRT
#----------------------------------------------------#
cirt_cc <- mods[[paste0("cuirt_", no_factors, "_", items_per_fac)]]
# specify the CIRT model
cirt_fit <- mirt::mirt(resp, # specify test responses

model = cirt_cc, # specify the model
itemtype = "Rasch", # specify the IRT model
method = "SEM", # specify the estimation

method
draws = 5000, # the number of draws for

estimation
verbose = FALSE) # not to show the processes

and iterations in the background; run
discreetly

# obtain fit indices
logLik_cirt <- cirt_fit@Fit$logLik # extract the loglikelihood
AIC_cirt <- cirt_fit@Fit$AIC # extract the AIC
BIC_cirt <- cirt_fit@Fit$BIC # extract the BIC
cirt_indices <- data.frame(cbind(logLik_cirt, AIC_cirt, BIC_cirt))

# obtain item parameters and save standard errors
cirt_coef <- coef(cirt_fit, printSE = TRUE)
cirt_ip <- data.frame(do.call("rbind", cirt_coef[paste0("i.", 1:
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total_items)]))

# specify which parameters to save and how
cirt_item <- data.frame( id = 1:total_items,

d = cirt_ip$d) # item difficulty, to be
converted in analysis, b = -d

cirt_item$b <- - cirt_item$d # convert d to b

#----------------------------------------------------#
# Fit model 3 - MIRT
#----------------------------------------------------#
mirt_cc <- mods[[paste0("mirt_", no_factors, "_", items_per_fac)]]
# specify the MIRT model
mirt_fit <- mirt::mirt(resp, # specify test responses

model = mirt_cc, # specify the model
itemtype = "Rasch", # specify the IRT model
method = "SEM", # specify the estimation

method
draws = 5000, # the number of draws for

estimation
verbose = FALSE) # not to show the processes

and iterations in the background; run
discreetly

# obtain fit indices
logLik_mirt <- mirt_fit@Fit$logLik # extract the loglikelihood
AIC_mirt <- mirt_fit@Fit$AIC # extract the AIC
BIC_mirt <- mirt_fit@Fit$BIC # extract the BIC
mirt_indices <- data.frame(cbind(logLik_mirt, AIC_mirt, BIC_mirt))

# obtain item parameters and save standard errors
mirt_coef <- coef(mirt_fit, printSE = TRUE)
mirt_ip <- data.frame(do.call("rbind", mirt_coef[paste0("i.", 1:

total_items)]))

# specify which parameters to save and how
mirt_item <- data.frame( id = 1:total_items,

d = mirt_ip$d) # item difficulty standard
error

mirt_item$b <- - mirt_item$d # convert d to b

#----------------------------------------------------#
# Summarize and save estimated item parameters
#----------------------------------------------------#
est_ip <- data.frame(test_items,

replication = kk,
uirt = uirt_item[,-1], # CUIRT item parameters

; remove item ID
cirt = cirt_item[,-1], # CIRT item parameters;

remove item ID
mirt = mirt_item[,-1] ) # MIRT item parameters

; remove item ID
save(est_ip, file = paste0("est_ip_", "ss", Study, "_zz", no_

factors, "_rr", rr,
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"_cc", items_per_fac, "_kk", kk, ".Rdata
"))

#----------------------------------------------------#
# Summarize and save fit indices
#----------------------------------------------------#
mod_fit <- data.frame(Study = Study,

no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
uirt_indices, # CUIRT fit
cirt_indices, # CIRT fit
mirt_indices) # MIRT fit

save(mod_fit, file = paste0("mod_fit_", "ss", Study, "_zz", no_
factors, "_rr", rr,

"_cc", items_per_fac, "_kk", kk, "_.
Rdata"))

#----------------------------------------------------#
# Scoring
#----------------------------------------------------#
sv_uirt <- mod2values( uirt_fit ) # obtain matrix of parameters to

fix
sv_cirt <- mod2values( cirt_fit ) # obtain matrix of parameters to

fix

# specifiy dimensionality similar to CIRT to score the dimensions (
assume a testlet structure)

# specify sv_uirt_fx_from_cirt to specify matrix of parameters to
fix similar to cirt

# this is done to resemble the two step procedure
# in this case, we assume the dimensions are uncorrelated

unidimensional pieces
sv_uirt_fx_from_cirt <- sv_cirt

# Insert d from uirt to cirt
sv_uirt_fx_from_cirt[ sv_uirt_fx_from_cirt$name =="d", "value" ] <-

sv_uirt[ sv_uirt$name =="d", "value" ]
# fix item parameters, not to be estimated (set True to False)
sv_uirt_fx_from_cirt[1: ((ncol(cirt_ip)-1) *total_items) , "est"]

<- FALSE #estimate covariances
# place item parameters into the model
uirt_fx_from_cirt <- mirt::mirt(resp, # Responses

model = cirt_cc, # cirt factor
structure

itemtype = "Rasch", # IRT model
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, #

saved item parametersspecify
item parameters for sa

SE = TRUE, # standard error
estimation

draws = 5000, # number of
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iterations and draws for
maximum likelihood

verbose = FALSE) # operate
discreetly

# estimate uirt EAP scores [Justification in Kim, S., & Lee, W. C.
(2006); Lu, Thomas, & Zumbo, 2005; Von Davier, Gonzalez, &
Mislevy, 2009]

uirt_score <- mirt::fscores( uirt_fx_from_cirt, # the UIRT fix of
the item parameters

method = "EAP", # EAP method for
scoring

full.scores.SE = TRUE, # standard
error

QMC = TRUE ) # use quasi-Monte Carlo
integration, recommended for
multidimensional estimation

# prepare and save UIRT scores
u_score <- data.frame(Study = Study,

no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
theta_df,
uirt_score)

save(u_score, file = paste0("est_individual_uirt_score_", "ss",
Study, "_zz", no_factors, "_rr", rr,

"_cc", items_per_fac, "_kk", kk, ".
Rdata")) # save individual uirt
scores

uirt_score_mean <- apply(uirt_score, 2, mean) # estimate population
means

uirt_score_sd <- apply(uirt_score, 2, sd) # estimate the standard
deviations

uirt_prmse <- empirical_rxx(uirt_score) # obtain PRMSE

# estimate cirt EAP scores [Justification in Kim, S., & Lee, W. C.
(2006); Lu, Thomas, & Zumbo, 2005; Von Davier, Gonzalez, &
Mislevy, 2009]

cirt_score <- mirt::fscores( cirt_fit, method = "EAP", full.scores.
SE=TRUE, QMC=TRUE )

c_score <- data.frame(Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
theta_df,
cirt_score)

save(c_score, file = paste0("est_individual_cirt_score_", "ss",
Study, "_zz", no_factors, "_rr", rr,

"_cc", items_per_fac, "_kk", kk, ".
Rdata")) # save individual cirt
scores
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cirt_score_mean <- apply(cirt_score, 2, mean) # estimate population
means

cirt_score_sd <- apply(cirt_score, 2, sd) # estimate the standard
deviations

cirt_prmse <- empirical_rxx(cirt_score) # obtain PRMSE

# estimate mirt EAP scores [Justification in Kim, S., & Lee, W. C.
(2006); Lu, Thomas, & Zumbo, 2005; Von Davier, Gonzalez, &
Mislevy, 2009]

mirt_score <- mirt::fscores( mirt_fit, method = "EAP", full.scores
.SE=TRUE, QMC=TRUE )

m_score <- data.frame(Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
theta_df,
mirt_score)

save(m_score, file = paste0("est_individual_mirt_score_", "ss",
Study, "_zz", no_factors, "_rr", rr,

"_cc", items_per_fac, "_kk", kk, ".
Rdata")) # save individual mirt
scores

mirt_score_mean <- apply(mirt_score, 2, mean) # estimate population
means

mirt_score_sd <- apply(mirt_score, 2, sd) # estimate the standard
deviations

mirt_prmse <- empirical_rxx(mirt_score) # obtain PRMSE

#----------------------------------------------------#
# Summarize and save estimated scores
#----------------------------------------------------#
est_score <- data.frame(
Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replications = kk,
domain = 1: no_factors,
uirt_score = uirt_score_mean, # CUIRT mean
uirt_score_sd = uirt_score_sd, # CUIRT mean sd
cirt_score = cirt_score_mean, # CIRT mean
cirt_score_sd = cirt_score_sd, # CIRT mean sd
mirt_score = mirt_score_mean, # MIRT mean
mirt_score_sd = mirt_score_sd) # MIRT mean sd

save(est_score, file = paste0("est_score_", "ss", Study, "_zz", no_
factors, "_rr", rr,

"_cc", items_per_fac, "_kk", kk, ".
Rdata"))

#----------------------------------------------------#
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# Summarize and save PRMSE
#----------------------------------------------------#
prmse <- data.frame(
Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replications = kk,
domain = 1: no_factors,
uirt_prmse = uirt_prmse,
cirt_prmse = cirt_prmse,
mirt_prmse = mirt_prmse)

save(prmse, file = paste0("prmse_", "ss", Study, "_zz", no_factors,
"_rr", rr,

"_cc", items_per_fac, "_kk", kk, ".Rdata"
))

#----------------------------------------------------#
# Specify the output
#----------------------------------------------------#
output <- list(est_ip = est_ip,

mirt_cov = mirt_cov, cirt_cov = cirt_cov, uirt_cov =
uirt_cov,

test_items = test_items, est_score = est_score,
prmse = prmse, mod_fit = mod_fit )

return(output)
# saves all output to a file

}

#----------------------------------------------------#
# Send the function to parallel nodes.
# The function contains the simulation code.
# In this case, if the computer has 4 nodes, use 3 to run seperate

replications.
#----------------------------------------------------#
library(parallel) # load the package
cl <- makeCluster(3) # specify the number of clusters
# serialize the analysis by sending it to multiple cores
sim_output <- parLapply(cl, replications, myFunction, Study = Study,

no_factors = no_factors, items = items,
test_items = test_items, items_per_fac =

items_per_fac, rr = rr, n_examinees = n_
examinees,

total_items = total_items, mods = mods) #
rename the stored results

# rename each solution of the saved output based on its replication
names(sim_output) <- paste0("r", 1:no_reps)
# save the output to the folder
save(sim_output, file = paste0("sim_output_", "ss", Study, "_zz", no_

factors,
"_rr", rr, "_cc", items_per_fac, ".

Rdata"))
# stop cluster
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stopCluster(cl)

# End run

C.2 Sample Code for Study 1’s Multiple Groups Simulation

# Do not run

options(width = 100)
rm(list = ls())

library(mirt)
library(mvtnorm)
library(lsasim)

# set working directory
# setwd("C:/workingDirectory")
setwd("//kant/uv-ils-vit-u1/kondwanm/pc/Desktop/Try")

#----------------------------------------------------#
## Define the conditions
#----------------------------------------------------#
Study <- 1 # study 1b - multiple groups
no_factors <- 3 # 3 or 5 number of factors
items_per_fac <- 5 # 5, 10, or 15 number of items per factor
rr <- cors <- .45 # correlations, e.g., .45, .75, 95
no_reps <- 100 # 1:100 replications
total_items <- max(items_per_fac) * max(no_factors)
n_examinees <- 30000 # Multiple groups sample
# kk = a specific replication
# rr = a specific covariance matrix

#----------------------------------------------------#
# Specify all possible models
#----------------------------------------------------#
# (a) uirt = single factor model
# (b) cuirt = D uncorrelated factor model
# (c) mirt = D correlated factor model
# where D = number of factors

uirt_3_5 <- mirt::mirt.model('F1 = 1 - 15')
cuirt_3_5 <- mirt::mirt.model("

F1 = 1 - 5
F2 = 6 - 10
F3 = 11 - 15
") # 5 items per domain

mirt_3_5 <- mirt::mirt.model("
F1 = 1 - 5
F2 = 6 - 10
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F3 = 11 - 15
COV = F1 * F2, F2 * F3, F1 * F3
") # 5 items per domain

uirt_3_10 <- mirt::mirt.model('F1 = 1 - 30')
cuirt_3_10 <- mirt::mirt.model("

F1 = 1 - 10
F2 = 11 - 20
F3 = 21 - 30
") # 10 items per domain

mirt_3_10 <- mirt::mirt.model("
F1 = 1 - 10
F2 = 11 - 20
F3 = 21 - 30
COV = F1 * F2, F2 * F3, F1 * F3
") # 10 items per domain

uirt_3_15 <- mirt::mirt.model('F1 = 1 - 45')
cuirt_3_15 <- mirt::mirt.model("

F1 = 1 - 15
F2 = 16 - 30
F3 = 31 - 45
") # 15 items per domain

mirt_3_15 <- mirt::mirt.model("
F1 = 1 - 15
F2 = 16 - 30
F3 = 31 - 45
COV = F1 * F2, F2 * F3, F1 * F3
") # 15 items per domain

uirt_5_5 <- mirt::mirt.model('F1 = 1 - 25')
cuirt_5_5 <- mirt::mirt.model("

F1 = 1 - 5
F2 = 6 - 10
F3 = 11 - 15
F4 = 16 - 20
F5 = 21 - 25
") # 5 items per domain

mirt_5_5 <- mirt::mirt.model("
F1 = 1 - 5
F2 = 6 - 10
F3 = 11 - 15
F4 = 16 - 20
F5 = 21 - 25
COV = F1 * F2, F1 * F3, F1 * F4, F1 * F5

, F2 * F3, F2 * F4, F2 * F5, F3 * F4
, F3 * F5, F4 * F5

") # 5 items per domain

uirt_5_10 <- mirt::mirt.model('F1 = 1 - 50')
cuirt_5_10 <- mirt::mirt.model("'

F1 = 1 - 10
F2 = 11 - 20
F3 = 21 - 30
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F4 = 31 - 40
F5 = 41 - 50
") # 10 items per domain

mirt_5_10 <- mirt::mirt.model("
F1 = 1 - 10
F2 = 11 - 20
F3 = 21 - 30
F4 = 31 - 40
F5 = 41 - 50
COV = F1 * F2, F1 * F3, F1 * F4, F1 *

F5, F2 * F3, F2 * F4, F2 * F5, F3 *
F4, F3 * F5, F4 * F5

") # 10 items per domain

uirt_5_15 <- mirt::mirt.model('F1 = 1 - 75')
cuirt_5_15 <- mirt::mirt.model("

F1 = 1 - 15
F2 = 16 - 30
F3 = 31 - 45
F4 = 46 - 60
F5 = 61 - 75
") # 15 items per domain

mirt_5_15 <- mirt::mirt.model("
F1 = 1 - 15
F2 = 16 - 30
F3 = 31 - 45
F4 = 46 - 60
F5 = 61 - 75
COV = F1 * F2, F1 * F3, F1 * F4, F1 *

F5, F2 * F3, F2 * F4, F2 * F5, F3 *
F4, F3 * F5, F4 * F5

") # 15 items per domain

# save all of the models as a list to be used for each condition
mods <- list("uirt_3_5" = uirt_3_5, "cuirt_3_5" = cuirt_3_5, "

mirt_3_5" = mirt_3_5,
"uirt_3_10" = uirt_3_10, "cuirt_3_10" = cuirt_3_10, "

mirt_3_10" = mirt_3_10,
"uirt_3_15" = uirt_3_15, "cuirt_3_15" = cuirt_3_15, "

mirt_3_15" = mirt_3_15,
"uirt_5_5" = uirt_5_5, "cuirt_5_5" = cuirt_5_5, "

mirt_5_5" = mirt_5_5,
"uirt_5_10" = uirt_5_10, "cuirt_5_10" = cuirt_5_10, "

mirt_5_10" = mirt_5_10,
"uirt_5_15" = uirt_5_15, "cuirt_5_15" = cuirt_5_15, "

mirt_5_15" = mirt_5_15)

#----------------------------------------------------#
## Specify 9 countries
#----------------------------------------------------#
# All 9 countries
ccc <- c( "CNT1", "CNT2", "CNT3", # top performing

"CNT4", "CNT5", "CNT6", # middle performing
"CNT7", "CNT8", "CNT9" ) # bottom performing
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#----------------------------------------------------#
## Population proficiency (sss)
#----------------------------------------------------#
sss <- c( 1.76, 1.12, 0.44, 0.07, 0.04, -0.04, -0.83, -1.33, -1.71 )

#----------------------------------------------------#
## Generate item parameters
#----------------------------------------------------#
items <- list()
set.seed( round( 5653 + Study + no_factors + items_per_fac )) #

fixed across models
for ( zz in 1: no_factors){
items[[zz]] <- lsasim::item_gen(n_1pl = items_per_fac, b_bounds = c

(-2, 2))
} # generate true item difficulty parameters from a uniform

distribution (-2, 2)
# The loop allows me to generate the same distribution for all

domains

#--- combined sub-test items into a single data frame
test_items <- do.call("rbind", items)

#--- re-write items numbers
test_items$item <- 1:nrow(test_items)

#--- assign items to a domains
test_items$domain <- rep(1:no_factors, each = items_per_fac )

test_items$Study <- Study # specify the study
test_items$no_factors <- no_factors # specify the number of factors
test_items$items_per_fac <- items_per_fac # specify the number of

items per factor
test_items$cors <- rr # specify the correlations

save(test_items, file = paste0("test_items_", "ss", Study, "_zz",
no_factors, "_rr", rr, "_cc", items_

per_fac, "_trueip.Rdata"))

#----------------------------------------------------#
## Specify replications
#----------------------------------------------------#
replications <- vector("list", no_reps) # when running replication

1:100
for (rep in 1:no_reps) {
replications[[rep]] <- rep

}

#----------------------------------------------------#
## Specify the function here
#----------------------------------------------------#
# specify my function to be distributed across all of the specified

nodes
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# the function includes all of the input:
# number of factors, items, items per factorm covariance, sample,

total tems,
# country proficiency, country standard deviation
myFunction <- function(X, Study, no_factors, items, items_per_fac, rr

, n_examinees,
total_items, test_items, mods, ccc, sss,

verbose = TRUE) {
#----------------------------------------------------#
## Load packages
#----------------------------------------------------#
library(mirt)
library(mvtnorm)
library(lsasim)

#----------------------------------------------------#
## Specify replications
#----------------------------------------------------#
kk <- X

#----------------------------------------------------#
## Create function
#----------------------------------------------------#
# correlation to covariance function for sigma
cov_matrix <- function(xx){
b <- xx %*% t(xx)
covariance <- b * r1
return(covariance)

}

#----------------------------------------------------#
## Generate thetas
#----------------------------------------------------#
#--- generate correlation matrix from factor loadings
p2_vec <- rep(sqrt(rr), no_factors)
p2_X_tp2 <- p2_vec %*% t(p2_vec)
diag_p2_X_tp2_matrix <- diag(diag(p2_X_tp2))
i1_matrix <- diag(no_factors)
u1_matrix <- i1_matrix - diag_p2_X_tp2_matrix
r1 <- p2_X_tp2 + u1_matrix # results in a correlation matrix
# direct deerivation from an inverse Wishart

#----------------------------------------------------#
## Correlation to covariance
#----------------------------------------------------#
#--- Specify the standard deviations for wach country
# The same across all domains because SACMEQ does not report

subscale scores
# Note: correlation is the standardized correlation
sd_cnt1 <- rep( .82, no_factors )
sd_cnt2 <- rep( .85, no_factors )
sd_cnt3 <- rep( .97, no_factors )
sd_cnt4 <- rep( .75, no_factors )
sd_cnt5 <- rep( .88, no_factors )

267



sd_cnt6 <- rep( .88, no_factors )
sd_cnt7 <- rep( .80, no_factors )
sd_cnt8 <- rep( .87, no_factors )
sd_cnt9 <- rep( .86, no_factors )

true_country_sd <- data.frame(rbind(sd_cnt1, sd_cnt2, sd_cnt3, sd_
cnt4,

sd_cnt5, sd_cnt6, sd_cnt7, sd_
cnt8,

sd_cnt9))
colnames(true_country_sd) <- paste0( "theta_sd_", 1:no_factors )
# save the standard deviations
save(true_country_sd, file = paste0("true_country_sd_", "ss",

Study, "_zz", no_factors, "_rr"
, rr,

"_cc", items_per_fac, "_kk", kk
, ".RData"))

#--- covariance matrices
# convert each countries correlation matrix to a covariance matrix
cnt1_r1 <- cov_matrix( sd_cnt1 )
cnt2_r1 <- cov_matrix( sd_cnt2 )
cnt3_r1 <- cov_matrix( sd_cnt3 )
cnt4_r1 <- cov_matrix( sd_cnt4 )
cnt5_r1 <- cov_matrix( sd_cnt5 )
cnt6_r1 <- cov_matrix( sd_cnt6 )
cnt7_r1 <- cov_matrix( sd_cnt7 )
cnt8_r1 <- cov_matrix( sd_cnt8 )
cnt9_r1 <- cov_matrix( sd_cnt9 )

set.seed( round((1234 + Study + no_factors + items_per_fac + kk)*
rr) )

# For each country, generate their true theta
cnt1 <- data.frame( mvtnorm::rmvnorm( 3656,

mean = rep(1.76, no_factors),
sigma = cnt1_r1) )

cnt2 <- data.frame( mvtnorm::rmvnorm( 3491,
mean = rep(1.12, no_factors),

sigma = cnt2_r1) )
cnt3 <- data.frame( mvtnorm::rmvnorm( 2242,

mean = rep(0.44, no_factors),
sigma = cnt3_r1) )

cnt4 <- data.frame( mvtnorm::rmvnorm( 5859,
mean = rep(0.07, no_factors),

sigma = cnt4_r1) )
cnt5 <- data.frame( mvtnorm::rmvnorm( 2253,

mean = rep(0.04, no_factors),
sigma = cnt5_r1) )

cnt6 <- data.frame( mvtnorm::rmvnorm( 3329,
mean = rep(-0.04, no_factors)

, sigma = cnt6_r1) )
cnt7 <- data.frame( mvtnorm::rmvnorm( 2482,
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mean = rep(-0.83, no_factors)
, sigma = cnt7_r1) )

cnt8 <- data.frame( mvtnorm::rmvnorm( 3701,
mean = rep(-1.33, no_factors)

, sigma = cnt8_r1) )
cnt9 <- data.frame( mvtnorm::rmvnorm( 2987,

mean = rep(-1.71, no_factors)
, sigma = cnt9_r1) )

theta_df <- rbind( cnt1, cnt2, cnt3, cnt4, cnt5, cnt6, cnt7, cnt8,
cnt9 )

colnames(theta_df) <- paste0( "theta", 1:no_factors )

true_theta_df <- data.frame(Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
theta_df)

# save country true generating theta
save(true_theta_df, file = paste0("True_theta_df_", "ss",

Study, "_zz", no_factors, "_rr",
rr,

"_cc", items_per_fac, "_kk", kk,
".RData"))

#----------------------------------------------------#
# Generate item responses
#----------------------------------------------------#
# Create a container to store the data
resp <- data.frame(matrix(NA, nrow= n_examinees, ncol = total_items

))
colnames(resp) <- paste0("i.", 1:total_items)

# generate response by each domain by specifying a loop that takes
into account the:

# (a) domain specific item parameters
# (b) domain theta from theta_df (true theta)
# (c) booklet and booklet design
for (zz in 1:no_factors) { #generate response by each domain

# assign items to block
block_bk1 <- lsasim::block_design(n_blocks = 1,

item_parameters = items[[zz]] )
#select items in specific
domain

#assign block to booklet
book_bk1 <- lsasim::booklet_design(item_block_assignment = block_

bk1$block_assignment,
book_design = matrix(1))

#assign booklet to subjects
book_samp <- lsasim::booklet_sample(n_subj = n_examinees,

book_item_design = book_bk1,
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book_prob = NULL)

# generate item responses
cog <- lsasim::response_gen(subject = book_samp$subject,

item = book_samp$item,
theta = theta_df[, zz], #use theta

for specific domain
b_par = items[[zz]]$b) #use item

difficulty from specific domain
resp[, c((zz-1)*items_per_fac+1):(zz*items_per_fac) ] <- cog[, c

(1:nrow(items[[zz]]) ) ] #fill in subdomain responses

}
# save the test responses
save(resp, file = paste0("resp_", "ss", Study, "_zz",

no_factors, "_rr", rr, "_cc",
items_per_fac, "_kk", kk, ".RData"))

#----------------------------------------------------#
# Create country data sets
#----------------------------------------------------#
# Specify each country as a dataset
dat1 <- resp[ 1 : 3656, ]
dat2 <- resp[ 3657 : 7147, ]
dat3 <- resp[ 7148 : 9389, ]
dat4 <- resp[ 9390 : 15248, ]
dat5 <- resp[ 15249: 17501, ]
dat6 <- resp[ 17502: 20830, ]
dat7 <- resp[ 20831: 23312, ]
dat8 <- resp[ 23313: 27013, ]
dat9 <- resp[ 27014: 30000, ]

#----------------------------------------------------#
# Fit model 1 - UIRT
#----------------------------------------------------#
uirt_cc <- mods[[paste0("uirt_", no_factors, "_", items_per_fac)]]
# specify the UIRT model
uirt_fit <- mirt::mirt(resp, # specify test responses

model = uirt_cc, # specify the model
itemtype = "Rasch", # specify the IRT model
method = "SEM", # specify the estimation

method
draws = 5000, # the number of draws for

estimation
verbose = FALSE) # not to show the processes

and iterations in the background; run
discreetly

# obtain fit indices
logLik_uirt <- uirt_fit@Fit$logLik # extract the loglikelihood
AIC_uirt <- uirt_fit@Fit$AIC # extract the AIC
BIC_uirt <- uirt_fit@Fit$BIC # extract the BIC
uirt_indices <- data.frame(cbind(logLik_uirt, AIC_uirt, BIC_uirt))

# dataframe of CUIRT model fit
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# obtain item parameters and save standard errors
uirt_coef <- coef(uirt_fit, printSE = TRUE) # extract item

parameter coefficients
uirt_ip <- data.frame(do.call("rbind", uirt_coef[paste0("i.", 1:

total_items)])) # place them in a table

# specify which parameters to save and how
uirt_item <- data.frame( id = 1:total_items,

d = uirt_ip$d) # item difficulty, to be
converted in analysis, b = -d

uirt_item$b <- - uirt_item$d # specify the b parameter conversion

#----------------------------------------------------#
# Fit model 2 - CIRT
#----------------------------------------------------#
cirt_cc <- mods[[paste0("cuirt_", no_factors, "_", items_per_fac)]]
# specify the CIRT model
cirt_fit <- mirt::mirt(resp, # specify test responses

model = cirt_cc, # specify the model
itemtype = "Rasch", # specify the IRT model
method = "SEM", # specify the estimation

method
draws = 5000, # the number of draws for

estimation
verbose = FALSE) # not to show the processes

and iterations in the background; run
discreetly

# obtain fit indices
logLik_cirt <- cirt_fit@Fit$logLik # extract the loglikelihood
AIC_cirt <- cirt_fit@Fit$AIC # extract the AIC
BIC_cirt <- cirt_fit@Fit$BIC # extract the BIC
cirt_indices <- data.frame(cbind(logLik_cirt, AIC_cirt, BIC_cirt))

# obtain item parameters and save standard errors
cirt_coef <- coef(cirt_fit, printSE = TRUE)
cirt_ip <- data.frame(do.call("rbind", cirt_coef[paste0("i.", 1:

total_items)]))

# specify which parameters to save and how
cirt_item <- data.frame( id = 1:total_items,

d = cirt_ip$d) # item difficulty, to be
converted in analysis, b = -d

cirt_item$b <- - cirt_item$d # convert d to b

#----------------------------------------------------#
# Fit model 3 - MIRT
#----------------------------------------------------#
mirt_cc <- mods[[paste0("mirt_", no_factors, "_", items_per_fac)]]
# specify the MIRT model
mirt_fit <- mirt::mirt(resp, # specify test responses

model = mirt_cc, # specify the model
itemtype = "Rasch", # specify the IRT model
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method = "SEM", # specify the estimation
method

draws = 5000, # the number of draws for
estimation

verbose = FALSE) # not to show the processes
and iterations in the background; run
discreetly

# obtain fit indices
logLik_mirt <- mirt_fit@Fit$logLik # extract the loglikelihood
AIC_mirt <- mirt_fit@Fit$AIC # extract the AIC
BIC_mirt <- mirt_fit@Fit$BIC # extract the BIC
mirt_indices <- data.frame(cbind(logLik_mirt, AIC_mirt, BIC_mirt))

# obtain item parameters and save standard errors
mirt_coef <- coef(mirt_fit, printSE = TRUE)
mirt_ip <- data.frame(do.call("rbind", mirt_coef[paste0("i.", 1:

total_items)]))

# specify which parameters to save and how
mirt_item <- data.frame( id = 1:total_items,

d = mirt_ip$d) # item difficulty standard
error

mirt_item$b <- - mirt_item$d # convert d to b

#----------------------------------------------------#
# Rescale item parameters using the mean-mean method in order to

put the items
# on the same scale in scoring.
#----------------------------------------------------#
# rescale estimated item parameters using mean/sigma method
u <- mean( 1 )/ mean( 1 )
v <- mean( test_items$b ) - u*mean( uirt_item$b )
uirt_item$rs_b <- u*uirt_item$b + v #rescaled item difficulty

u <- mean( 1 )/ mean( 1 )
v <- mean( test_items$b ) - u*mean( cirt_item$b )
cirt_item$rs_b <- u*cirt_item$b + v # rescaled item difficulty

u <- mean( 1 )/ mean( 1 )
v <- mean( test_items$b ) - u*mean( mirt_item$b )
mirt_item$rs_b <- u*mirt_item$b + v #rescaled item difficulty

#----------------------------------------------------#
# Summarize and save estimated item parameters
#----------------------------------------------------#
est_ip <- data.frame(test_items,

replication = kk,
uirt = uirt_item[,-1], # CUIRT item parameters
cirt = cirt_item[,-1], # CIRT item parameters
mirt = mirt_item[,-1] ) # MIRT item parameters

save(est_ip, file = paste0("est_ip_", "ss", Study, "_zz", no_
factors, "_rr", rr,
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"_cc", items_per_fac, "_kk", kk, ".Rdata
"))

#----------------------------------------------------#
# Save fit indices
#----------------------------------------------------#
all_mod_fit <- data.frame(Study = Study,

no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replications = kk,
uirt_indices, # CUIRT fit
cirt_indices, # CIRT fit
mirt_indices) # MIRT fit

save(all_mod_fit, file = paste0("all_mod_fit_", "ss", Study, "_zz",
no_factors, "_rr", rr, "_cc", items

_per_fac, "_kk", kk, "_.Rdata")
)

#----------------------------------------------------#
# Rescale item parameters using the mean-mean method in order to

put the items
# on the same scale in scoring.
#----------------------------------------------------#
## Insert d from uirt to cirt
sv_uirt <- mod2values( uirt_fit ) # obtain matrix of parameters to

fix
sv_cirt <- mod2values( cirt_fit ) # obtain matrix of parameters to

fix

# specifiy dimensionality similar to CIRT to score the dimensions (
assume a testlet structure)

# specify sv_uirt_fx_from_cirt to specify matrix of parameters to
fix similar to cirt

# this is done to resemble the two step procedure
# in this case, we assume the dimensions are uncorrelated

unidimensional pieces
sv_uirt_fx_from_cirt <- sv_cirt

# Insert d from uirt to cirt
sv_uirt_fx_from_cirt[ sv_uirt_fx_from_cirt$name =="d", "value" ] <-

sv_uirt[ sv_uirt$name =="d", "value" ]
# fix item parameters, not to be estimated (set True to False)
sv_uirt_fx_from_cirt[1: ((ncol(cirt_ip)-1) *total_items) , "est"]

<- FALSE #estimate covariances
# place item parameters into the model

#------- Country specific scores
# (a) fit model to country
cnt1_uirt <- mirt::mirt(dat1, # data for country 1

model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item
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parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly

# CNT 1 model fit
CNT_1_logLik_uirt <- cnt1_uirt@Fit$logLik # extract logLikelihood
CNT_1_AIC_uirt <- cnt1_uirt@Fit$AIC # extract AIC
CNT_1_BIC_uirt <- cnt1_uirt@Fit$BIC # extract BIC
# Place fit indices in a table
CNT_1_uirt_indices <- data.frame(cbind(CNT_1_logLik_uirt, CNT_1_AIC

_uirt, CNT_1_BIC_uirt))

cnt2_uirt <- mirt::mirt(dat2, # data for country 2
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item

parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 2 model fit
CNT_2_logLik_uirt <- cnt2_uirt@Fit$logLik # extract logLikelihood
CNT_2_AIC_uirt <- cnt2_uirt@Fit$AIC # extract AIC
CNT_2_BIC_uirt <- cnt2_uirt@Fit$BIC # extract BIC
CNT_2_uirt_indices <- data.frame(cbind(CNT_2_logLik_uirt, CNT_2_AIC

_uirt, CNT_2_BIC_uirt))

cnt3_uirt <- mirt::mirt(dat3, # data for country 3
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item

parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 3 model fit
CNT_3_logLik_uirt <- cnt3_uirt@Fit$logLik # extract logLikelihood
CNT_3_AIC_uirt <- cnt3_uirt@Fit$AIC # extract AIC
CNT_3_BIC_uirt <- cnt3_uirt@Fit$BIC # extract BIC
CNT_3_uirt_indices <- data.frame(cbind(CNT_3_logLik_uirt, CNT_3_AIC

_uirt, CNT_3_BIC_uirt))

cnt4_uirt <- mirt::mirt(dat4, # data for country 4
model = cirt_cc, # model
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itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item

parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 4 model fit
CNT_4_logLik_uirt <- cnt4_uirt@Fit$logLik # extract logLikelihood
CNT_4_AIC_uirt <- cnt4_uirt@Fit$AIC # extract AIC
CNT_4_BIC_uirt <- cnt4_uirt@Fit$BIC # extract BIC
CNT_4_uirt_indices <- data.frame(cbind(CNT_4_logLik_uirt, CNT_4_AIC

_uirt, CNT_4_BIC_uirt))

cnt5_uirt <- mirt::mirt(dat5, # data for country 5
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item

parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 5 model fit
CNT_5_logLik_uirt <- cnt5_uirt@Fit$logLik # extract logLikelihood
CNT_5_AIC_uirt <- cnt5_uirt@Fit$AIC # extract AIC
CNT_5_BIC_uirt <- cnt5_uirt@Fit$BIC # extract BIC
CNT_5_uirt_indices <- data.frame(cbind(CNT_5_logLik_uirt, CNT_5_AIC

_uirt, CNT_5_BIC_uirt))

cnt6_uirt <- mirt::mirt(dat6, # data for country 6
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item

parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 6 model fit
CNT_6_logLik_uirt <- cnt6_uirt@Fit$logLik # extract logLikelihood
CNT_6_AIC_uirt <- cnt6_uirt@Fit$AIC # extract AIC
CNT_6_BIC_uirt <- cnt6_uirt@Fit$BIC # extract BIC
CNT_6_uirt_indices <- data.frame(cbind(CNT_6_logLik_uirt, CNT_6_AIC

_uirt, CNT_6_BIC_uirt))

cnt7_uirt <- mirt::mirt(dat7, # data for country 7
model = cirt_cc, # model
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itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item

parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly

# CNT 7 model fit
CNT_7_logLik_uirt <- cnt7_uirt@Fit$logLik # extract logLikelihood
CNT_7_AIC_uirt <- cnt7_uirt@Fit$AIC # extract AIC
CNT_7_BIC_uirt <- cnt7_uirt@Fit$BIC # extract BIC
CNT_7_uirt_indices <- data.frame(cbind(CNT_7_logLik_uirt, CNT_7_AIC

_uirt, CNT_7_BIC_uirt))

cnt8_uirt <- mirt::mirt(dat8, # data for country 8
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item

parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 8 model fit
CNT_8_logLik_uirt <- cnt8_uirt@Fit$logLik # extract logLikelihood
CNT_8_AIC_uirt <- cnt8_uirt@Fit$AIC # extract AIC
CNT_8_BIC_uirt <- cnt8_uirt@Fit$BIC # extract BIC
CNT_8_uirt_indices <- data.frame(cbind(CNT_8_logLik_uirt, CNT_8_AIC

_uirt, CNT_8_BIC_uirt))

cnt9_uirt <- mirt::mirt(dat9, # data for country 9
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_uirt_fx_from_cirt, # fix item

parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 9 model fit
CNT_9_logLik_uirt <- cnt9_uirt@Fit$logLik # extract logLikelihood
CNT_9_AIC_uirt <- cnt9_uirt@Fit$AIC # extract AIC
CNT_9_BIC_uirt <- cnt9_uirt@Fit$BIC # extract BIC
CNT_9_uirt_indices <- data.frame(cbind(CNT_9_logLik_uirt, CNT_9_AIC

_uirt, CNT_9_BIC_uirt))
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# (b) score
#--- For each country
# (i) estimate factor scores
# (ii) calculate the standard deviation
# (iii) estimate the country mean
# (iv ) calculate the PRMSE
cnt1_uirt_score <- mirt::fscores( cnt1_uirt, method = "EAP",

full.scores.SE=TRUE, QMC=TRUE )
cnt1_uirt_score_sd <- apply(cnt1_uirt_score, 2, sd) # estimate the

standard deviations
cnt1_uirt_score_mean <- apply(cnt1_uirt_score, 2, mean)
cnt1_uirt_prmse <- empirical_rxx(cnt1_uirt_score)

cnt2_uirt_score <- mirt::fscores( cnt2_uirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt2_uirt_score_sd <- apply(cnt2_uirt_score, 2, sd) # estimate the
standard deviations

cnt2_uirt_score_mean <- apply(cnt2_uirt_score, 2, mean)
cnt2_uirt_prmse <- empirical_rxx(cnt2_uirt_score)

cnt3_uirt_score <- mirt::fscores( cnt3_uirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt3_uirt_score_sd <- apply(cnt3_uirt_score, 2, sd) # estimate the
standard deviations

cnt3_uirt_score_mean <- apply(cnt3_uirt_score, 2, mean)
cnt3_uirt_prmse <- empirical_rxx(cnt3_uirt_score)

cnt4_uirt_score <- mirt::fscores( cnt4_uirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt4_uirt_score_sd <- apply(cnt4_uirt_score, 2, sd) # estimate the
standard deviations

cnt4_uirt_score_mean <- apply(cnt4_uirt_score, 2, mean)
cnt4_uirt_prmse <- empirical_rxx(cnt4_uirt_score)

cnt5_uirt_score <- mirt::fscores( cnt5_uirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt5_uirt_score_sd <- apply(cnt5_uirt_score, 2, sd) # estimate the
standard deviations

cnt5_uirt_score_mean <- apply(cnt5_uirt_score, 2, mean)
cnt5_uirt_prmse <- empirical_rxx(cnt5_uirt_score)

cnt6_uirt_score <- mirt::fscores( cnt6_uirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt6_uirt_score_sd <- apply(cnt6_uirt_score, 2, sd) # estimate the
standard deviations

cnt6_uirt_score_mean <- apply(cnt6_uirt_score, 2, mean)
cnt6_uirt_prmse <- empirical_rxx(cnt6_uirt_score)

cnt7_uirt_score <- mirt::fscores( cnt7_uirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt7_uirt_score_sd <- apply(cnt7_uirt_score, 2, sd) # estimate the
standard deviations

cnt7_uirt_score_mean <- apply(cnt7_uirt_score, 2, mean)
cnt7_uirt_prmse <- empirical_rxx(cnt7_uirt_score)
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cnt8_uirt_score <- mirt::fscores( cnt8_uirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt8_uirt_score_sd <- apply(cnt8_uirt_score, 2, sd) # estimate the
standard deviations

cnt8_uirt_score_mean <- apply(cnt8_uirt_score, 2, mean)
cnt8_uirt_prmse <- empirical_rxx(cnt8_uirt_score)

cnt9_uirt_score <- mirt::fscores( cnt9_uirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt9_uirt_score_sd <- apply(cnt9_uirt_score, 2, sd) # estimate the
standard deviations

cnt9_uirt_score_mean <- apply(cnt9_uirt_score, 2, mean)
cnt9_uirt_prmse <- empirical_rxx(cnt9_uirt_score)

#--- UIRT individual scores
# Prepare data set of individual scores
uirt_cnt_individual_score <- data.frame(rbind(cnt1_uirt_score,

cnt2_uirt_score,
cnt3_uirt_score,
cnt4_uirt_score,
cnt5_uirt_score,
cnt6_uirt_score,
cnt7_uirt_score,
cnt8_uirt_score,
cnt9_uirt_score))

est_uirt_cnt_individual_score <- data.frame(Study = Study,
no_factors = no_factors

,
items_per_fac = items_

per_fac,
cors = rr,
replication = kk,
theta_df,
uirt_cnt_individual_

score)
# Save individual scores
save(est_uirt_cnt_individual_score, file = paste0("est_uirt_cnt_

individual_score_",
"ss", Study, "_zz

",
no_factors, "_rr"

,
rr, "_cc", items_

per_fac,
"_kk", kk, ".

RData"))

#--- Score standard deviations
# Prepare data set of individual score standard deviation
est_uirt_individual_country_sd <- data.frame(rbind(cnt1_uirt_score_

sd,
cnt2_uirt_score_
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sd,
cnt3_uirt_score_

sd,
cnt4_uirt_score_

sd,
cnt5_uirt_score_

sd,
cnt6_uirt_score_

sd,
cnt7_uirt_score_

sd,
cnt8_uirt_score_

sd,
cnt9_uirt_score_

sd))

uirt_individual_country_sd <- data.frame(Study = Study,
CNT = ccc,
true_country_sd = true_

country_sd,
no_factors = no_factors,
items_per_fac = items_per_

fac,
cors = rr,
replication = kk,
est_uirt_individual_

country_sd)
# Save individual score standard deviation
save(uirt_individual_country_sd, file = paste0("uirt_individual_

country_sd_", "ss", Study, "_zz",
no_factors, "_rr",

rr, "_cc", items
_per_fac, "_kk",
kk, ".RData"))

#--- Place uirt scores into a data frame
uirt_score_by_country <- data.frame(rbind( cnt1_uirt_score_mean,

cnt2_uirt_score_mean,
cnt3_uirt_score_mean,
cnt4_uirt_score_mean,
cnt5_uirt_score_mean,
cnt6_uirt_score_mean,
cnt7_uirt_score_mean,
cnt8_uirt_score_mean,
cnt9_uirt_score_mean ))

colnames(uirt_score_by_country)[1:no_factors] <- paste0( "uirt_",
1:no_factors )

colnames(uirt_score_by_country)[(no_factors+1):(2*no_factors)] <-
paste0( "uirt_se_", 1:no_factors )

rownames(uirt_score_by_country) <- NULL

#--- Place UIRT prmse into a data frame
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uirt_PRMSE_by_country <- data.frame(rbind(cnt1_uirt_prmse, cnt2_
uirt_prmse, cnt3_uirt_prmse,

cnt4_uirt_prmse, cnt5_
uirt_prmse, cnt6_uirt
_prmse,

cnt7_uirt_prmse, cnt8_
uirt_prmse, cnt9_uirt
_prmse ))

colnames(uirt_PRMSE_by_country)[1:no_factors] <- paste0( "uirt_
prmse_", 1:no_factors )

rownames(uirt_PRMSE_by_country) <- NULL

# save uirt fit indices
uirt_fit_by_country <- data.frame(Study = Study,

no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
CNT_1_uirt_indices, CNT_2_uirt_

indices, CNT_3_uirt_indices,
CNT_4_uirt_indices, CNT_5_uirt_

indices, CNT_6_uirt_indices,
CNT_7_uirt_indices, CNT_8_uirt_

indices, CNT_9_uirt_indices)
save(uirt_fit_by_country, file = paste0("uirt_fit_by_country_", "ss

", Study, "_zz", no_factors, "_rr",
rr, "_cc", items_per_fac, "

_kk", kk, "_.Rdata"))

#----------------------------------------------------#
# Rescale item parameters using the mean-mean method in order to

put the items
# on the same scale in scoring.
#----------------------------------------------------#
## Insert d from uirt to cirt
sv_cirt <- mod2values(cirt_fit)
sv_cirt_score <- sv_cirt
# use rescaled_difficulty and change from b to d
sv_cirt_score[sv_cirt_score$name=="d", "value"] <- ( cirt_item$rs_b

) * -1
sv_cirt_score[1: ((ncol(cirt_ip)-1) *total_items) , "est"] <-

FALSE # do not estimate covariances

#------- Country specific scores
# (a) fit model to country
cnt1_cirt <- mirt::mirt(dat1, # data for country 1

model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun
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discreetly

# CNT 1 model fit
CNT_1_logLik_cirt <- cnt1_cirt@Fit$logLik # extract logLikelihood
CNT_1_AIC_cirt <- cnt1_cirt@Fit$AIC # extract AIC
CNT_1_BIC_cirt <- cnt1_cirt@Fit$BIC # extract BIC
# Place fit indices in a table
CNT_1_cirt_indices <- data.frame(cbind(CNT_1_logLik_cirt, CNT_1_AIC

_cirt, CNT_1_BIC_cirt))

cnt2_cirt <- mirt::mirt(dat2, # data for country 2
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 2 model fit
CNT_2_logLik_cirt <- cnt2_cirt@Fit$logLik # extract logLikelihood
CNT_2_AIC_cirt <- cnt2_cirt@Fit$AIC # extract AIC
CNT_2_BIC_cirt <- cnt2_cirt@Fit$BIC # extract BIC
CNT_2_cirt_indices <- data.frame(cbind(CNT_2_logLik_cirt, CNT_2_AIC

_cirt, CNT_2_BIC_cirt))

cnt3_cirt <- mirt::mirt(dat3, # data for country 3
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 3 model fit
CNT_3_logLik_cirt <- cnt3_cirt@Fit$logLik # extract logLikelihood
CNT_3_AIC_cirt <- cnt3_cirt@Fit$AIC # extract AIC
CNT_3_BIC_cirt <- cnt3_cirt@Fit$BIC # extract BIC
CNT_3_cirt_indices <- data.frame(cbind(CNT_3_logLik_cirt, CNT_3_AIC

_cirt, CNT_3_BIC_cirt))

cnt4_cirt <- mirt::mirt(dat4, # data for country 4
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
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# CNT 4 model fit
CNT_4_logLik_cirt <- cnt4_cirt@Fit$logLik # extract logLikelihood
CNT_4_AIC_cirt <- cnt4_cirt@Fit$AIC # extract AIC
CNT_4_BIC_cirt <- cnt4_cirt@Fit$BIC # extract BIC
CNT_4_cirt_indices <- data.frame(cbind(CNT_4_logLik_cirt, CNT_4_AIC

_cirt, CNT_4_BIC_cirt))

cnt5_cirt <- mirt::mirt(dat5, # data for country 5
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 5 model fit
CNT_5_logLik_cirt <- cnt5_cirt@Fit$logLik # extract logLikelihood
CNT_5_AIC_cirt <- cnt5_cirt@Fit$AIC # extract AIC
CNT_5_BIC_cirt <- cnt5_cirt@Fit$BIC # extract BIC
CNT_5_cirt_indices <- data.frame(cbind(CNT_5_logLik_cirt, CNT_5_AIC

_cirt, CNT_5_BIC_cirt))

cnt6_cirt <- mirt::mirt(dat6, # data for country 6
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 6 model fit
CNT_6_logLik_cirt <- cnt6_cirt@Fit$logLik # extract logLikelihood
CNT_6_AIC_cirt <- cnt6_cirt@Fit$AIC # extract AIC
CNT_6_BIC_cirt <- cnt6_cirt@Fit$BIC # extract BIC
CNT_6_cirt_indices <- data.frame(cbind(CNT_6_logLik_cirt, CNT_6_AIC

_cirt, CNT_6_BIC_cirt))

cnt7_cirt <- mirt::mirt(dat7, # data for country 7
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly

# CNT 7 model fit
CNT_7_logLik_cirt <- cnt7_cirt@Fit$logLik # extract logLikelihood
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CNT_7_AIC_cirt <- cnt7_cirt@Fit$AIC # extract AIC
CNT_7_BIC_cirt <- cnt7_cirt@Fit$BIC # extract BIC
CNT_7_cirt_indices <- data.frame(cbind(CNT_7_logLik_cirt, CNT_7_AIC

_cirt, CNT_7_BIC_cirt))

cnt8_cirt <- mirt::mirt(dat8, # data for country 8
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 8 model fit
CNT_8_logLik_cirt <- cnt8_cirt@Fit$logLik # extract logLikelihood
CNT_8_AIC_cirt <- cnt8_cirt@Fit$AIC # extract AIC
CNT_8_BIC_cirt <- cnt8_cirt@Fit$BIC # extract BIC
CNT_8_cirt_indices <- data.frame(cbind(CNT_8_logLik_cirt, CNT_8_AIC

_cirt, CNT_8_BIC_cirt))

cnt9_cirt <- mirt::mirt(dat9, # data for country 9
model = cirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_cirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 9 model fit
CNT_9_logLik_cirt <- cnt9_cirt@Fit$logLik # extract logLikelihood
CNT_9_AIC_cirt <- cnt9_cirt@Fit$AIC # extract AIC
CNT_9_BIC_cirt <- cnt9_cirt@Fit$BIC # extract BIC
CNT_9_cirt_indices <- data.frame(cbind(CNT_9_logLik_cirt, CNT_9_AIC

_cirt, CNT_9_BIC_cirt))

# (b) score
#--- For each country
# (i) estimate factor scores
# (ii) calculate the standard deviation
# (iii) estimate the country mean
# (iv) calculate the PRMSE
cnt1_cirt_score <- mirt::fscores( cnt1_cirt, method = "EAP",

full.scores.SE=TRUE, QMC=TRUE )
cnt1_cirt_score_sd <- apply(cnt1_cirt_score, 2, sd) # estimate the

standard deviations
cnt1_cirt_score_mean <- apply(cnt1_cirt_score, 2, mean)
cnt1_cirt_prmse <- empirical_rxx(cnt1_cirt_score)

cnt2_cirt_score <- mirt::fscores( cnt2_cirt, method = "EAP",
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full.scores.SE=TRUE, QMC=TRUE )
cnt2_cirt_score_sd <- apply(cnt2_cirt_score, 2, sd) # estimate the

standard deviations
cnt2_cirt_score_mean <- apply(cnt2_cirt_score, 2, mean)
cnt2_cirt_prmse <- empirical_rxx(cnt2_cirt_score)

cnt3_cirt_score <- mirt::fscores( cnt3_cirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt3_cirt_score_sd <- apply(cnt3_cirt_score, 2, sd) # estimate the
standard deviations

cnt3_cirt_score_mean <- apply(cnt3_cirt_score, 2, mean)
cnt3_cirt_prmse <- empirical_rxx(cnt3_cirt_score)

cnt4_cirt_score <- mirt::fscores( cnt4_cirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt4_cirt_score_sd <- apply(cnt4_cirt_score, 2, sd) # estimate the
standard deviations

cnt4_cirt_score_mean <- apply(cnt4_cirt_score, 2, mean)
cnt4_cirt_prmse <- empirical_rxx(cnt4_cirt_score)

cnt5_cirt_score <- mirt::fscores( cnt5_cirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt5_cirt_score_sd <- apply(cnt5_cirt_score, 2, sd) # estimate the
standard deviations

cnt5_cirt_score_mean <- apply(cnt5_cirt_score, 2, mean)
cnt5_cirt_prmse <- empirical_rxx(cnt5_cirt_score)

cnt6_cirt_score <- mirt::fscores( cnt6_cirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt6_cirt_score_sd <- apply(cnt6_cirt_score, 2, sd) # estimate the
standard deviations

cnt6_cirt_score_mean <- apply(cnt6_cirt_score, 2, mean)
cnt6_cirt_prmse <- empirical_rxx(cnt6_cirt_score)

cnt7_cirt_score <- mirt::fscores( cnt7_cirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt7_cirt_score_sd <- apply(cnt7_cirt_score, 2, sd) # estimate the
standard deviations

cnt7_cirt_score_mean <- apply(cnt7_cirt_score, 2, mean)
cnt7_cirt_prmse <- empirical_rxx(cnt7_cirt_score)

cnt8_cirt_score <- mirt::fscores( cnt8_cirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt8_cirt_score_sd <- apply(cnt8_cirt_score, 2, sd) # estimate the
standard deviations

cnt8_cirt_score_mean <- apply(cnt8_cirt_score, 2, mean)
cnt8_cirt_prmse <- empirical_rxx(cnt8_cirt_score)

cnt9_cirt_score <- mirt::fscores( cnt9_cirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt9_cirt_score_sd <- apply(cnt9_cirt_score, 2, sd) # estimate the
standard deviations

cnt9_cirt_score_mean <- apply(cnt9_cirt_score, 2, mean)
cnt9_cirt_prmse <- empirical_rxx(cnt9_cirt_score)
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#--- CIRT individual student scores
cirt_cnt_individual_score <- data.frame(rbind(cnt1_cirt_score,

cnt2_cirt_score,
cnt3_cirt_score,
cnt4_cirt_score,
cnt5_cirt_score,
cnt6_cirt_score,
cnt7_cirt_score,
cnt8_cirt_score,
cnt9_cirt_score))

est_cirt_cnt_individual_score <- data.frame(Study = Study,
no_factors = no_factors

,
items_per_fac = items_

per_fac,
cors = rr,
replication = kk,
theta_df,
cirt_cnt_individual_

score)

save(est_cirt_cnt_individual_score, file = paste0("est_cirt_cnt_
individual_score_",

"ss", Study, "_zz
",

no_factors, "_rr"
, rr,

"_cc", items_per_
fac, "_kk",

kk, ".RData"))

#--- Score standard deviations
est_cirt_individual_country_sd <- data.frame(rbind(cnt1_cirt_score_

sd,
cnt2_cirt_score_

sd,
cnt3_cirt_score_

sd,
cnt4_cirt_score_

sd,
cnt5_cirt_score_

sd,
cnt6_cirt_score_

sd,
cnt7_cirt_score_

sd,
cnt8_cirt_score_

sd,
cnt9_cirt_score_

sd))
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cirt_individual_country_sd <- data.frame(Study = Study,
CNT = ccc,
true_country_sd = true_

country_sd,
no_factors = no_factors,
items_per_fac = items_per_

fac,
cors = rr,
replications = kk,
est_cirt_individual_

country_sd)

save(cirt_individual_country_sd, file = paste0("cirt_individual_
country_sd_", "ss", Study, "_zz",

no_factors, "_rr",
rr, "_cc", items
_per_fac, "_kk",
kk, ".RData"))

#--- Place cirt scores into a data frame
cirt_score_by_country <- data.frame(rbind( cnt1_cirt_score_mean,

cnt2_cirt_score_mean,
cnt3_cirt_score_mean,
cnt4_cirt_score_mean,
cnt5_cirt_score_mean,
cnt6_cirt_score_mean,
cnt7_cirt_score_mean,
cnt8_cirt_score_mean,
cnt9_cirt_score_mean ))

colnames(cirt_score_by_country)[1:no_factors] <- paste0( "cirt_",
1:no_factors )

colnames(cirt_score_by_country)[(no_factors+1) : (2*no_factors)] <-
paste0( "cirt_se_", 1:no_factors )

rownames(cirt_score_by_country) <- NULL

#--- Place CIRT prmse into a data frame
cirt_PRMSE_by_country <- data.frame(rbind( cnt1_cirt_prmse,

cnt2_cirt_prmse,
cnt3_cirt_prmse,
cnt4_cirt_prmse,
cnt5_cirt_prmse,
cnt6_cirt_prmse,
cnt7_cirt_prmse,
cnt8_cirt_prmse,
cnt9_cirt_prmse ))

colnames(cirt_PRMSE_by_country)[1:no_factors] <- paste0( "cirt_
prmse_", 1:no_factors )

rownames(cirt_PRMSE_by_country) <- NULL

#--- save cirt fit
# create data frame of cirt fit indices
cirt_fit_by_country <- data.frame(Study = Study,
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no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
CNT_1_cirt_indices,
CNT_2_cirt_indices,
CNT_3_cirt_indices,
CNT_4_cirt_indices,
CNT_5_cirt_indices,
CNT_6_cirt_indices,
CNT_7_cirt_indices,
CNT_8_cirt_indices,
CNT_9_cirt_indices)

save(cirt_fit_by_country, file = paste0("cirt_fit_by_country_", "ss
",

Study, "_zz", no_factors, "
_rr",

rr, "_cc", items_per_fac, "
_kk",

kk, "_.Rdata"))

#----------------------------------------------------#
# Rescale item parameters using the mean-mean method in order to

put the items
# on the same scale in scoring.
#----------------------------------------------------#
## Insert d from uirt to mirt
sv_mirt <- mod2values(mirt_fit)
sv_mirt_score <- sv_mirt
sv_mirt_score[sv_mirt_score$name=="d", "value"] <- ( mirt_item$rs_b

) * -1 #use rescaled_difficulty and change from b to d
sv_mirt_score[1: ((ncol(mirt_ip)-1) *total_items) , "est"] <- TRUE

# estimate covariances

cnt1_mirt <- mirt::mirt(dat1, # data for country 1
model = mirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly

# CNT 1 model fit
CNT_1_logLik_mirt <- cnt1_mirt@Fit$logLik # extract logLikelihood
CNT_1_AIC_mirt <- cnt1_mirt@Fit$AIC # extract AIC
CNT_1_BIC_mirt <- cnt1_mirt@Fit$BIC # extract BIC
# Place fit indices in a table
CNT_1_mirt_indices <- data.frame(cbind(CNT_1_logLik_mirt, CNT_1_AIC

_mirt, CNT_1_BIC_mirt))
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cnt2_mirt <- mirt::mirt(dat2, # data for country 2
model = mirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 2 model fit
CNT_2_logLik_mirt <- cnt2_mirt@Fit$logLik # extract logLikelihood
CNT_2_AIC_mirt <- cnt2_mirt@Fit$AIC # extract AIC
CNT_2_BIC_mirt <- cnt2_mirt@Fit$BIC # extract BIC
CNT_2_mirt_indices <- data.frame(cbind(CNT_2_logLik_mirt, CNT_2_AIC

_mirt, CNT_2_BIC_mirt))

cnt3_mirt <- mirt::mirt(dat3, # data for country 3
model = mirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 3 model fit
CNT_3_logLik_mirt <- cnt3_mirt@Fit$logLik # extract logLikelihood
CNT_3_AIC_mirt <- cnt3_mirt@Fit$AIC # extract AIC
CNT_3_BIC_mirt <- cnt3_mirt@Fit$BIC # extract BIC
CNT_3_mirt_indices <- data.frame(cbind(CNT_3_logLik_mirt, CNT_3_AIC

_mirt, CNT_3_BIC_mirt))

cnt4_mirt <- mirt::mirt(dat4, # data for country 4
model = mirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 4 model fit
CNT_4_logLik_mirt <- cnt4_mirt@Fit$logLik # extract logLikelihood
CNT_4_AIC_mirt <- cnt4_mirt@Fit$AIC # extract AIC
CNT_4_BIC_mirt <- cnt4_mirt@Fit$BIC # extract BIC
CNT_4_mirt_indices <- data.frame(cbind(CNT_4_logLik_mirt, CNT_4_AIC

_mirt, CNT_4_BIC_mirt))

cnt5_mirt <- mirt::mirt(dat5, # data for country 5
model = mirt_cc, # model
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itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 5 model fit
CNT_5_logLik_mirt <- cnt5_mirt@Fit$logLik # extract logLikelihood
CNT_5_AIC_mirt <- cnt5_mirt@Fit$AIC # extract AIC
CNT_5_BIC_mirt <- cnt5_mirt@Fit$BIC # extract BIC
CNT_5_mirt_indices <- data.frame(cbind(CNT_5_logLik_mirt, CNT_5_AIC

_mirt, CNT_5_BIC_mirt))

cnt6_mirt <- mirt::mirt(dat6, # data for country 6
model = mirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 6 model fit
CNT_6_logLik_mirt <- cnt6_mirt@Fit$logLik # extract logLikelihood
CNT_6_AIC_mirt <- cnt6_mirt@Fit$AIC # extract AIC
CNT_6_BIC_mirt <- cnt6_mirt@Fit$BIC # extract BIC
CNT_6_mirt_indices <- data.frame(cbind(CNT_6_logLik_mirt, CNT_6_AIC

_mirt, CNT_6_BIC_mirt))

cnt7_mirt <- mirt::mirt(dat7, # data for country 7
model = mirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly

# CNT 7 model fit
CNT_7_logLik_mirt <- cnt7_mirt@Fit$logLik # extract logLikelihood
CNT_7_AIC_mirt <- cnt7_mirt@Fit$AIC # extract AIC
CNT_7_BIC_mirt <- cnt7_mirt@Fit$BIC # extract BIC
CNT_7_mirt_indices <- data.frame(cbind(CNT_7_logLik_mirt, CNT_7_AIC

_mirt, CNT_7_BIC_mirt))

cnt8_mirt <- mirt::mirt(dat8, # data for country 8
model = mirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
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pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 8 model fit
CNT_8_logLik_mirt <- cnt8_mirt@Fit$logLik # extract logLikelihood
CNT_8_AIC_mirt <- cnt8_mirt@Fit$AIC # extract AIC
CNT_8_BIC_mirt <- cnt8_mirt@Fit$BIC # extract BIC
CNT_8_mirt_indices <- data.frame(cbind(CNT_8_logLik_mirt, CNT_8_AIC

_mirt, CNT_8_BIC_mirt))

cnt9_mirt <- mirt::mirt(dat9, # data for country 9
model = mirt_cc, # model
itemtype = "Rasch", # IRT estimation
method = "SEM", # estimation method
pars = sv_mirt_score, # fix item parameters
removeEmptyRows = TRUE, # remove all rows

with no responses
draws = 5000, # number of IRT draws
verbose = FALSE) # allow the process to tun

discreetly
# CNT 9 model fit
CNT_9_logLik_mirt <- cnt9_mirt@Fit$logLik # extract logLikelihood
CNT_9_AIC_mirt <- cnt9_mirt@Fit$AIC # extract AIC
CNT_9_BIC_mirt <- cnt9_mirt@Fit$BIC # extract BIC
CNT_9_mirt_indices <- data.frame(cbind(CNT_9_logLik_mirt, CNT_9_AIC

_mirt, CNT_9_BIC_mirt))

# (b) score
#--- For each country
# (i) estimate factor scores
# (ii) calculate the standard deviation
# (iii) estimate the country mean
# (iv) calculate the PRMSE
cnt1_mirt_score <- mirt::fscores( cnt1_mirt, method = "EAP", full.

scores.SE=TRUE, QMC=TRUE )
cnt1_mirt_score_sd <- apply(cnt1_mirt_score, 2, sd) # estimate the

standard deviations
cnt1_mirt_score_mean <- apply(cnt1_mirt_score, 2, mean)
cnt1_mirt_prmse <- empirical_rxx(cnt1_mirt_score)

cnt2_mirt_score <- mirt::fscores( cnt2_mirt, method = "EAP", full.
scores.SE=TRUE, QMC=TRUE )

cnt2_mirt_score_sd <- apply(cnt2_mirt_score, 2, sd) # estimate the
standard deviations

cnt2_mirt_score_mean <- apply(cnt2_mirt_score, 2, mean)
cnt2_mirt_prmse <- empirical_rxx(cnt2_mirt_score)

cnt3_mirt_score <- mirt::fscores( cnt3_mirt, method = "EAP", full.
scores.SE=TRUE, QMC=TRUE )

cnt3_mirt_score_sd <- apply(cnt3_mirt_score, 2, sd) # estimate the
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standard deviations
cnt3_mirt_score_mean <- apply(cnt3_mirt_score, 2, mean)
cnt3_mirt_prmse <- empirical_rxx(cnt3_mirt_score)

cnt4_mirt_score <- mirt::fscores( cnt4_mirt, method = "EAP", full.
scores.SE=TRUE, QMC=TRUE )

cnt4_mirt_score_sd <- apply(cnt4_mirt_score, 2, sd) # estimate the
standard deviations

cnt4_mirt_score_mean <- apply(cnt4_mirt_score, 2, mean)
cnt4_mirt_prmse <- empirical_rxx(cnt4_mirt_score)

cnt5_mirt_score <- mirt::fscores( cnt5_mirt, method = "EAP", full.
scores.SE=TRUE, QMC=TRUE )

cnt5_mirt_score_sd <- apply(cnt5_mirt_score, 2, sd) # estimate the
standard deviations

cnt5_mirt_score_mean <- apply(cnt5_mirt_score, 2, mean)
cnt5_mirt_prmse <- empirical_rxx(cnt5_mirt_score)

cnt6_mirt_score <- mirt::fscores( cnt6_mirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt6_mirt_score_sd <- apply(cnt6_mirt_score, 2, sd) # estimate the
standard deviations

cnt6_mirt_score_mean <- apply(cnt6_mirt_score, 2, mean)
cnt6_mirt_prmse <- empirical_rxx(cnt6_mirt_score)

cnt7_mirt_score <- mirt::fscores( cnt7_mirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt7_mirt_score_sd <- apply(cnt7_mirt_score, 2, sd) # estimate the
standard deviations

cnt7_mirt_score_mean <- apply(cnt7_mirt_score, 2, mean)
cnt7_mirt_prmse <- empirical_rxx(cnt7_mirt_score)

cnt8_mirt_score <- mirt::fscores( cnt8_mirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt8_mirt_score_sd <- apply(cnt8_mirt_score, 2, sd) # estimate the
standard deviations

cnt8_mirt_score_mean <- apply(cnt8_mirt_score, 2, mean)
cnt8_mirt_prmse <- empirical_rxx(cnt8_mirt_score)

cnt9_mirt_score <- mirt::fscores( cnt9_mirt, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cnt9_mirt_score_sd <- apply(cnt9_mirt_score, 2, sd) # estimate the
standard deviations

cnt9_mirt_score_mean <- apply(cnt9_mirt_score, 2, mean)
cnt9_mirt_prmse <- empirical_rxx(cnt9_mirt_score)

#--- Individual scores
mirt_cnt_individual_score <- data.frame(rbind(cnt1_mirt_score,

cnt2_mirt_score,
cnt3_mirt_score,
cnt4_mirt_score,
cnt5_mirt_score,
cnt6_mirt_score,
cnt7_mirt_score,
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cnt8_mirt_score,
cnt9_mirt_score))

est_mirt_cnt_individual_score <- data.frame(Study = Study,
no_factors = no_factors

,
items_per_fac = items_

per_fac,
cors = rr,
replication = kk,
theta_df,
mirt_cnt_individual_

score)

save(est_mirt_cnt_individual_score, file = paste0("est_mirt_cnt_
individual_score_",

"ss", Study, "_zz
",

no_factors, "_rr"
, rr,

"_cc", items_per_
fac,

"_kk", kk, ".
RData"))

#--- Score standard deviations
est_mirt_individual_country_sd <- data.frame(rbind(cnt1_mirt_score_

sd,
cnt2_mirt_score_

sd,
cnt3_mirt_score_

sd,
cnt4_mirt_score_

sd,
cnt5_mirt_score_

sd,
cnt6_mirt_score_

sd,
cnt7_mirt_score_

sd,
cnt8_mirt_score_

sd,
cnt9_mirt_score_

sd))

mirt_individual_country_sd <- data.frame(Study = Study,
CNT = ccc,
true_country_sd = true_

country_sd,
no_factors = no_factors,
items_per_fac = items_per_

fac,
cors = rr,
replications = kk,
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est_mirt_individual_
country_sd)

save(mirt_individual_country_sd, file = paste0("mirt_individual_
country_sd_",

"ss", Study, "_zz",
no_factors, "_rr",

rr,
"_cc", items_per_fac

,
"_kk", kk, ".RData")

)

#--- Place mirt scores into a data frame
mirt_score_by_country <- data.frame(rbind( cnt1_mirt_score_mean,

cnt2_mirt_score_mean,
cnt3_mirt_score_mean,
cnt4_mirt_score_mean,
cnt5_mirt_score_mean,
cnt6_mirt_score_mean,
cnt7_mirt_score_mean,
cnt8_mirt_score_mean,
cnt9_mirt_score_mean ))

colnames(mirt_score_by_country)[1:no_factors] <- paste0( "mirt_",
1:no_factors )

colnames(mirt_score_by_country)[(no_factors+1) : (2*no_factors)] <-
paste0( "mirt_se_", 1:no_factors )

rownames(mirt_score_by_country) <- NULL

#--- Place MIRT prmse into a data frame
mirt_PRMSE_by_country <- data.frame(rbind( cnt1_mirt_prmse,

cnt2_mirt_prmse,
cnt3_mirt_prmse,
cnt4_mirt_prmse,
cnt5_mirt_prmse,
cnt6_mirt_prmse,
cnt7_mirt_prmse,
cnt8_mirt_prmse,
cnt9_mirt_prmse ))

colnames(mirt_PRMSE_by_country)[1:no_factors] <- paste0( "mirt_
prmse_", 1:no_factors )

rownames(mirt_PRMSE_by_country) <- NULL

#--- save mirt fit
# create data frame of mirt fit indices
mirt_fit_by_country <- data.frame(Study = Study,

no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
CNT_1_mirt_indices,
CNT_2_mirt_indices,
CNT_3_mirt_indices,
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CNT_4_mirt_indices,
CNT_5_mirt_indices,
CNT_6_mirt_indices,
CNT_7_mirt_indices,
CNT_8_mirt_indices,
CNT_9_mirt_indices)

save(mirt_fit_by_country, file = paste0("mirt_fit_by_country_", "ss
", Study, "_zz", no_factors, "_rr",

rr, "_cc", items_per_fac, "
_kk", kk, "_.Rdata"))

#----------------------------------------------------#
# Summarize and save estimated country scores
#----------------------------------------------------#
cnt_domain_score <- data.frame(
CNT = ccc,
Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac,
theta_T = sss,
cors = rr,
replication = kk,
uirt_score_by_country,
cirt_score_by_country,
mirt_score_by_country )

save(cnt_domain_score, file = paste0("est_cnt_score_",
"ss", Study, "_zz", no_factors

,
"_rr", rr, "_cc", items_per_

fac,
"_kk", kk, ".Rdata"))

#----------------------------------------------------#
# Summarize and save estimated country PRMSE
#----------------------------------------------------#
PRMSE_by_country <- data.frame(
CNT = ccc,
Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
uirt_PRMSE_by_country,
cirt_PRMSE_by_country,
mirt_PRMSE_by_country )

save(PRMSE_by_country, file = paste0("PRMSE_by_country_", "ss",
Study, "_zz", no_factors, "_rr

",
rr, "_cc", items_per_fac, "_kk

",
kk, ".Rdata"))

#----------------------------------------------------#
# Entire data PRMSE
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#----------------------------------------------------#
uirt_all_fit <- mirt::mirt(resp,

model = cirt_cc,
itemtype = "Rasch",
method = "SEM",
pars = sv_uirt_fx_from_cirt,
draws = 5000,
verbose = FALSE)

uirt_all_score <- mirt::fscores(uirt_all_fit, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

uirt__all_score_sd <- apply(uirt_all_score, 2, sd) # estimate the
standard deviations

uirt_all_score_mean <- apply(uirt_all_score, 2, mean)
uirt_all_prmse <- empirical_rxx(uirt_all_score)

cirt_all_score <- mirt::fscores( cirt_fit, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

cirt__all_score_sd <- apply(cirt_all_score, 2, sd) # estimate the
standard deviations

cirt_all_score_mean <- apply(cirt_all_score, 2, mean)
cirt_all_prmse <- empirical_rxx(cirt_all_score)

mirt_all_score <- mirt::fscores( mirt_fit, method = "EAP",
full.scores.SE=TRUE, QMC=TRUE )

mirt__all_score_sd <- apply(mirt_all_score, 2, sd) # estimate the
standard deviations

mirt_all_score_mean <- apply(mirt_all_score, 2, mean)
mirt_all_prmse <- empirical_rxx(mirt_all_score)

#----------------------------------------------------#
# Save scores
#----------------------------------------------------#
temp_all_data_uirt_scores <- data.frame(uirt_all_score)
all_data_uirt_scores <- data.frame(no_factors = no_factors,

items_per_fac = items_per_fac,
cors = rr,
replication = kk,
temp_all_data_uirt_scores)

save(all_data_uirt_scores, file = paste0("all_data_uirt_scores_", "
ss",

Study, "_zz", no_factors,
"_rr", rr, "_cc", items_

per_fac,
"_kk", kk, ".Rdata"))

temp_all_data_cirt_scores <- data.frame(cirt_all_score)
all_data_cirt_scores <- data.frame(no_factors = no_factors,

items_per_fac = items_per_fac,
cors = rr,
replication = kk,
temp_all_data_cirt_scores)
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save(all_data_cirt_scores, file = paste0("all_data_cirt_scores_", "
ss",

Study, "_zz", no_factors,
"_rr", rr, "_cc", items_

per_fac,
"_kk", kk, ".Rdata"))

temp_all_data_mirt_scores <- data.frame(mirt_all_score)
all_data_mirt_scores <- data.frame(no_factors = no_factors,

items_per_fac = items_per_fac,
cors = rr,
replication = kk,
temp_all_data_mirt_scores)

save(all_data_mirt_scores, file = paste0("all_data_mirt_scores_", "
ss",

Study, "_zz", no_factors,
"_rr", rr, "_cc", items_

per_fac,
"_kk", kk, ".Rdata"))

#----------------------------------------------------#
# Save standard deviations
#----------------------------------------------------#
all_sd <- data.frame(uirt__all_score_sd, cirt__all_score_sd,

mirt__all_score_sd)

all_standard_deviations <- data.frame(Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac

,
cors = rr,
replication = kk,
all_sd)

save(all_standard_deviations, file = paste0("all_standard_
deviations_", "ss",

Study, "_zz", no_
factors,

"_rr", rr, "_cc", items
_per_fac,

"_kk", kk, ".Rdata"))

#----------------------------------------------------#
# Summarize population PRMSE and save PRMSE
#----------------------------------------------------#
#---- Entire population
prmse_all <- data.frame(
Study = Study,
no_factors = no_factors,
items_per_fac = items_per_fac,
cors = rr,
replication = kk,
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domain = 1: no_factors,
uirt_all_prmse = uirt_all_prmse,
cirt_all_prmse = cirt_all_prmse,
mirt_all_prmse = mirt_all_prmse)

save(prmse_all, file = paste0("prmse_all_", "ss", Study, "_zz", no_
factors,

"_rr", rr, "_cc", items_per_fac, "_kk
", kk, ".Rdata"))

# } #close the replication
} # close function

#----------------------------------------------------#
# Send the function to parallel nodes.
# The function contains the simulation code.
# In this case, if the computer has 4 nodes, use 3 to run seperate

replications.
#----------------------------------------------------#
library(parallel)
cl <- makeCluster(3)
Analysis <- parLapply(cl, replications, myFunction, Study = Study,

no_factors = no_factors, items = items,
items_per_fac = items_per_fac, rr = rr,
n_examinees = n_examinees, total_items = total_

items,
test_items = test_items, mods = mods, ccc = ccc

, sss = sss) # rename the stored results

names(Analysis) <- paste0("r", 1:no_reps)

stopCluster(cl)

save(Analysis, file = paste0("Analysis_", "ss", Study,
"_zz", no_factors, "_rr", rr, "_cc",

items_per_fac, ".Rdata"))

# End run

297





Appendix D

Study 2 d1- and d2-Parameter
Bias: Multiple Groups

D.1 Single Groups

D.1.1 d1

D.1.2 d2

D.2 Multiple Groups

D.2.1 d1

D.2.2 d2
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Figure D.1
Bias of d1-Parameter for the 3 Domain, 40 Items per Domain Tests: Single
Groups
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Figure D.2
Bias of d1-Parameter for the 3 Domain, 60 Items per Domain Tests: Single
Groups
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Figure D.3
Bias of d1-Parameter for the 4 Domain, 40 Items per Domain Tests: Single
Groups
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Figure D.4
Bias of d1-Parameter for the 4 Domain, 60 Items per Domain Tests: Single
Groups
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Figure D.5
Bias of d2-Parameter for the 3 Domain, 40 Items per Domain Tests: Single
Groups
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Figure D.6
Bias of d2-Parameter for the 3 Domain, 60 Items per Domain Tests: Single
Groups
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Figure D.7
Bias of d2-Parameter for the 4 Domain, 40 Items per Domain Tests: Single
Groups
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Figure D.8
Bias of d2-Parameter for the 4 Domain, 60 Items per Domain Tests: Single
Groups
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Figure D.9
Bias of d1-Parameter for the 3 Domain, 40 Items per Domain Tests: Multiple
Groups
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Figure D.10
Bias of d1-Parameter for the 3 Domain, 60 Items per Domain Tests: Multiple
Groups
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Figure D.11
Bias of d1-Parameter for the 4 Domain, 40 Items per Domain Tests: Multiple
Groups

310



Figure D.12
Bias of d1-Parameter for the 4 Domain, 60 Items per Domain Tests: Multiple
Groups
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Figure D.13
Bias of d2-Parameter for the 3 Domain, 40 Items per Domain Tests: Multiple
Groups
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Figure D.14
Bias of d2-Parameter for the 3 Domain, 60 Items per Domain Tests: Multiple
Groups
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Figure D.15
Bias of d2-Parameter for the 4 Domain, 40 Items per Domain Tests: Multiple
Groups
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Figure D.16
Bias of d2-Parameter for the 4 Domain, 60 Items per Domain Tests: Multiple
Groups
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Appendix E

Study 1 Item Parameter ABS and
RMSE: Single Groups

E.1 ABS: Three-Subdomain Test Conditions

E.2 ABS: Five-Subdomain Test Conditions
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Figure E.1
Item Difficulty Absolute Bias for the 3 Domain, 5 Items per Domain Tests
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Figure E.2
Item Difficulty Absolute Bias for the 3 Domain, 10 Items per Domain Tests
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Figure E.3
Item Difficulty Absolute Bias for the 3 Domain, 15 Items per Domain Tests
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Figure E.4
Item Difficulty Absolute Bias for the 5 Domain, 5 Items per Domain Tests
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Figure E.5
Item Difficulty Absolute Bias for the 5 Domain, 10 Items per Domain Tests
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Figure E.6
Item Difficulty Absolute Bias for the 5 Domain, 15 Items per Domain Tests
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E.3 RMSE: Three-Subdomain Test Conditions

Figure E.7
Item Difficulty RMSE for the 3 Domain, 5 Items per Domain Tests

E.4 RMSE: Five-Subdomain Test Conditions
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Figure E.8
Item Difficulty RMSE for the 3 Domain, 10 Items per Domain Tests
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Figure E.9
Item Difficulty RMSE for the 3 Domain, 15 Items per Domain Tests
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Figure E.10
Item Difficulty RMSE for the 5 Domain, 5 Items per Domain Tests
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Figure E.11
Item Difficulty RMSE for the 5 Domain, 10 Items per Domain Tests
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Figure E.12
Item Difficulty RMSE for the 5 Domain, 15 Items per Domain Tests
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Appendix F

Study 1 Item Parameter ABS and
RMSE: Multiple Groups

F.1 ABS: Three-Subdomain Test Conditions

F.2 ABS: Five-Subdomain Test Conditions
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Figure F.1
Item Difficulty Absolute Bias for the 3 Domain, 5 Items per Domain Tests
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Figure F.2
Item Difficulty Absolute Bias for the 3 Domain, 10 Items per Domain Tests
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Figure F.3
Item Difficulty Absolute Bias for the 3 Domain, 15 Items per Domain Tests
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Figure F.4
Item Difficulty Absolute Bias for the 5 Domain, 5 Items per Domain Tests
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Figure F.5
Item Difficulty Absolute Bias for the 5 Domain, 10 Items per Domain Tests
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Figure F.6
Item Difficulty Absolute Bias for the 5 Domain, 15 Items per Domain Tests
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F.3 RMSE: Three-Subdomain Test Conditions

Figure F.7
Item Difficulty RMSE for the 3 Domain, 5 Items per Domain Tests

F.4 RMSE: Five-Subdomain Test Conditions
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Figure F.8
Item Difficulty RMSE for the 3 Domain, 10 Items per Domain Tests
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Figure F.9
Item Difficulty RMSE for the 3 Domain, 15 Items per Domain Tests
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Figure F.10
Item Difficulty RMSE for the 5 Domain, 5 Items per Domain Tests
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Figure F.11
Item Difficulty RMSE for the 5 Domain, 10 Items per Domain Tests
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Figure F.12
Item Difficulty RMSE for the 5 Domain, 15 Items per Domain Tests
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Appendix G

Study 2 Item Parameter ABS and
RMSE: Single Groups

G.1 ABS

G.1.1 Item Discrimination
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Figure G.1
Absolute Bias of a-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure G.2
Absolute Bias of a-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure G.3
Absolute Bias of a-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure G.4
Absolute Bias of a-Parameter for the 4 Domain, 60 Items per Domain Tests
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G.1.2 Item Difficulty

Figure G.5
Absolute Bias of b-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure G.6
Absolute Bias of b-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure G.7
Absolute Bias of b-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure G.8
Absolute Bias of b-Parameter for the 4 Domain, 60 Items per Domain Tests
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G.1.3 Item threshold d1

Figure G.9
Absolute Bias of d1-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure G.10
Absolute Bias of d1-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure G.11
Absolute Bias of d1-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure G.12
Absolute Bias of d1-Parameter for the 4 Domain, 60 Items per Domain Tests
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G.1.4 Item threshold d2

Figure G.13
Absolute Bias of d2-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure G.14
Absolute Bias of d2-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure G.15
Absolute Bias of d2-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure G.16
Absolute Bias of d2-Parameter for the 4 Domain, 60 Items per Domain Tests
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G.2 RMSE

G.2.1 Item Discrimination

Figure G.17
RMSE of a-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure G.18
RMSE of a-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure G.19
RMSE of a-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure G.20
RMSE of a-Parameter for the 4 Domain, 60 Items per Domain Tests
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G.2.2 Item Difficulty

Figure G.21
RMSE of b-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure G.22
RMSE of b-Parameter for the 3 Domain, 60 Items per Domain Tests

367



Figure G.23
RMSE of b-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure G.24
RMSE of b-Parameter for the 4 Domain, 60 Items per Domain Tests
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G.2.3 Item threshold d1

Figure G.25
RMSE of d1-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure G.26
RMSE of d1-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure G.27
RMSE of d1-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure G.28
RMSE of d1-Parameter for the 4 Domain, 60 Items per Domain Tests
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G.2.4 Item threshold d2

Figure G.29
RMSE of d2-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure G.30
RMSE of d2-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure G.31
RMSE of d2-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure G.32
RMSE of d2-Parameter for the 4 Domain, 60 Items per Domain Tests
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Appendix H

Study 2 Item Parameter ABS and
RMSE: Multiple Groups

H.1 ABS

H.1.1 Item Discrimination
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Figure H.1
Absolute Bias of a-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure H.2
Absolute Bias of a-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure H.3
Absolute Bias of a-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure H.4
Absolute Bias of a-Parameter for the 4 Domain, 60 Items per Domain Tests
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H.1.2 Item Difficulty

Figure H.5
Absolute Bias of b-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure H.6
Absolute Bias of b-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure H.7
Absolute Bias of b-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure H.8
Absolute Bias of b-Parameter for the 4 Domain, 60 Items per Domain Tests
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H.1.3 Item threshold d1

Figure H.9
Absolute Bias of d1-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure H.10
Absolute Bias of d1-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure H.11
Absolute Bias of d1-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure H.12
Absolute Bias of d1-Parameter for the 4 Domain, 60 Items per Domain Tests
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H.1.4 Item threshold d2

Figure H.13
Absolute Bias of d2-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure H.14
Absolute Bias of d2-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure H.15
Absolute Bias of d2-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure H.16
Absolute Bias of d2-Parameter for the 4 Domain, 60 Items per Domain Tests
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H.2 RMSE

H.2.1 Item Discrimination

Figure H.17
RMSE of a-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure H.18
RMSE of a-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure H.19
RMSE of a-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure H.20
RMSE of a-Parameter for the 4 Domain, 60 Items per Domain Tests
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H.2.2 Item Difficulty

Figure H.21
RMSE of b-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure H.22
RMSE of b-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure H.23
RMSE of b-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure H.24
RMSE of b-Parameter for the 4 Domain, 60 Items per Domain Tests
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H.2.3 Item threshold d1

Figure H.25
RMSE of d1-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure H.26
RMSE of d1-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure H.27
RMSE of d1-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure H.28
RMSE of d1-Parameter for the 4 Domain, 60 Items per Domain Tests
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H.2.4 Item threshold d2

Figure H.29
RMSE of d2-Parameter for the 3 Domain, 40 Items per Domain Tests
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Figure H.30
RMSE of d2-Parameter for the 3 Domain, 60 Items per Domain Tests
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Figure H.31
RMSE of d2-Parameter for the 4 Domain, 40 Items per Domain Tests
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Figure H.32
RMSE of d2-Parameter for the 4 Domain, 60 Items per Domain Tests

411





Appendix I

Study 1 Score Parameter ABS and
RMSE: Single Groups

I.1 ABS
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Figure I.1
Subscale Score ABS for the 3 Subdomain Tests

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3.
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Figure I.2
Subscale Score ABS for the 5 Subdomain Tests

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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I.2 RMSE

Figure I.3
Subscale Score RMSE for the 3 Subdomain Tests

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3.
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Figure I.4
Subscale Score RMSE for the 5 Subdomain Tests

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Appendix J

Study 1 Score Parameter ABS and
RMSE: Multiple Groups

J.1 ABS
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Figure J.1
Subscale score ABS for the 3-Domain, 5-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.2
Subscale score ABS for the 3-Domain, 5-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.3
Subscale score ABS for the 3-Domain, 5-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.4
Subscale score ABS for the 3-Domain, 10-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.5
Subscale score ABS for the 3-Domain, 10-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.6
Subscale score ABS for the 3-Domain, 10-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.7
Subscale score ABS for the 3-Domain, 15-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.8
Subscale score ABS for the 3-Domain, 15-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.9
Subscale score ABS for the 3-Domain, 15-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.10
Subscale score ABS for the 5-Domain, 5-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.11
Subscale score ABS for the 5-Domain, 5-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.12
Subscale score ABS for the 5-Domain, 5-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.13
Subscale score ABS for the 5-Domain, 10-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.14
Subscale score ABS for the 5-Domain, 10-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.15
Subscale score ABS for the 5-Domain, 10-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.16
Subscale score ABS for the 5-Domain, 15-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.17
Subscale score ABS for the 5-Domain, 15-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.18
Subscale score ABS for the 5-Domain, 15-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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J.2 RMSE

Figure J.19
Subscale score RMSE for the 3-Domain, 5-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.20
Subscale score RMSE for the 3-Domain, 5-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.21
Subscale score RMSE for the 3-Domain, 5-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.22
Subscale score RMSE for the 3-Domain, 10-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.23
Subscale score RMSE for the 3-Domain, 10-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.24
Subscale score RMSE for the 3-Domain, 10-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.

443



Figure J.25
Subscale score RMSE for the 3-Domain, 15-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.26
Subscale score RMSE for the 3-Domain, 15-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.27
Subscale score RMSE for the 3-Domain, 15-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3.
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Figure J.28
Subscale score RMSE for the 5-Domain, 5-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.29
Subscale score RMSE for the 5-Domain, 5-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.30
Subscale score RMSE for the 5-Domain, 5-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.31
Subscale score RMSE for the 5-Domain, 10-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.32
Subscale score RMSE for the 5-Domain, 10-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.33
Subscale score RMSE for the 5-Domain, 10-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.34
Subscale score RMSE for the 5-Domain, 15-item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.35
Subscale score RMSE for the 5-Domain, 15-item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Figure J.36
Subscale score RMSE for the 5-Domain, 15-item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; C = CIRT; M = MIRT; D1 = domain
1; D2 = domain 2; D3 = domain 3; D4 = domain 4; D5 = domain 5.
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Appendix K

Study 2 Score Parameter ABS and
RMSE: Single Groups

K.1 ABS
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Figure K.1
Subscale score ABS for the 3 Subdomain Tests

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3.
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Figure K.2
Subscale score ABS for the 4 Subdomain Tests

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3; D4 = domain 4.
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K.2 RMSE

Figure K.3
Subscale score RMSE for the 3 Subdomain Tests

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3.
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Figure K.4
Subscale score RMSE for the 4 Subdomain Tests

Note. D = number of domains; J = number of items; D1 = domain 1; D2 =
domain 2; D3 = domain 3; D4 = domain 4.
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Appendix L

Study 2 Score Parameter ABS and
RMSE: Multiple Groups

L.1 ABS
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Figure L.1
Subscale Score ABS for the 3-Subdomain, 40-Item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.2
Subscale Score ABS for the 3-Subdomain, 40-Item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.3
Subscale Score ABS for the 3-Subdomain, 40-Item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.

466



Figure L.4
Subscale Score ABS for the 3-Subdomain, 60-Item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.5
Subscale Score ABS for the 3-Subdomain, 60-Item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.6
Subscale Score ABS for the 3-Subdomain, 60-Item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.7
Subscale Score ABS for the 4-Subdomain, 40-Item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.8
Subscale Score ABS for the 4-Subdomain, 40-Item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.9
Subscale Score ABS for the 4-Subdomain, 40-Item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.10
Subscale Score ABS for the 4-Subdomain, 60-Item, .45 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.

L.2 RMSE
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Figure L.11
Subscale Score ABS for the 4-Subdomain, 60-Item, .75 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.12
Subscale Score ABS for the 4-Subdomain, 60-Item, .95 Correlation Subdomain
Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.13
Subscale Score RMSE for the 3-Subdomain, 40-Item, .45 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.14
Subscale Score RMSE for the 3-Subdomain, 40-Item, .75 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.15
Subscale Score RMSE for the 3-Subdomain, 40-Item, .95 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.16
Subscale Score RMSE for the 3-Subdomain, 60-Item, .45 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.17
Subscale Score RMSE for the 3-Subdomain, 60-Item, .75 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.18
Subscale Score RMSE for the 3-Subdomain, 60-Item, .95 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3.
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Figure L.19
Subscale Score RMSE for the 4-Subdomain, 40-Item, .45 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.20
Subscale Score RMSE for the 4-Subdomain, 40-Item, .75 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.21
Subscale Score RMSE for the 4-Subdomain, 40-Item, .95 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.22
Subscale Score RMSE for the 4-Subdomain, 60-Item, .45 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.23
Subscale Score RMSE for the 4-Subdomain, 60-Item, .75 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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Figure L.24
Subscale Score RMSE for the 4-Subdomain, 60-Item, .95 Correlation
Subdomain Tests

Note. CNT = country; CU = CUIRT; CU_Op = CUIRT-Op; C = CIRT; M
= MIRT; D1 = domain 1; D2 = domain 2; D3 = domain 3; D4 = domain 4.
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