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Abstract
We consider spline functions over simplicial meshes inRn. We assume that the spline
pieces join together with some finite order of smoothness but the pieces themselves
are infinitely smooth. Such splines can have extra orders of smoothness at a ver-
tex, a property known as supersmoothness, which plays a role in the construction of
multivariate splines and in the finite element method. In this paper, we characterize
supersmoothness in terms of the degeneracy of spaces of polynomial splines over
the cell of simplices sharing the vertex, and use it to determine the maximal order of
supersmoothness of various cell configurations.
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1 Introduction

Polynomial splines over a simplicial partition of a domain inRn (a triangular mesh in
2D, a tetrahedral mesh in 3D, and so on) are functions whose pieces are polynomials
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up to a certain degree d and which join together with some order of continuity r .
Such spline functions may have extra orders of smoothness at a vertex of the mesh, a
property known as supersmoothness as suggested by Sorokina [14]. For example, the
Clough-Tocher macroelement, which is C1 piecewise cubic, is twice differentiable at
the refinement point, as first observed by Farin [5], and so this element can be said
to have supersmoothness of order 2 at that point.

For the construction of splines or finite elements with higher orders of continu-
ity, it is important to recognize and make use of supersmoothness. For example, it
plays a role in many of the macroelement constructions surveyed by Lai and Schu-
maker [8], where applications of splines to approximation theory and computer-aided
geometric design are discussed. The concept of supersmoothness is also relevant
to the finite element method. Motivated by structure-preserving or compatible dis-
cretizations, there has recently been an increased interest in investigating the use of
splines for vector fields and differential complexes [2–4, 7]. The de Rham complex
reveals a connection between smooth, e.g., C1, finite elements and the Stokes prob-
lem in fluid mechanics. In a discrete de Rham complex, the spline spaces for the
velocity field may inherit the supersmoothness of the scalar field [2, 4, 7, 11]. Thus,
supersmoothness is also of importance in the study of these problems.

Since Farin’s observation about the Clough-Tocher element, Sorokina, in [14]
and [15], has derived further supersmoothness properties of polynomial splines, and
in particular higher order supersmoothness in a cell in 2D; see equation (4). More
recently, Shekhtman and Sorokina [12] observed that supersmoothness is a phe-
nomenon of more general spline functions, not only piecewise polynomials. Their
results imply that at the vertex v of a triangulation with m incoming edges all having
different slopes, any Cr spline with r ≥ m − 2 has derivatives of order r + 1 at v as
long as the spline pieces themselves have Cr+1 continuity in a neighborhood of v.

The results of [12] were the motivation for this paper. If we simplify the framework
of [12] and assume that all the spline pieces are C∞ smooth, which is the case for
polynomials and many other functions of interest, can we extend the results to higher
orders of supersmoothness and also to higher Euclidean space dimensions? Our solu-
tion is to simplify the problem by deriving a characterization of supersmoothness in
terms of the degeneracy of polynomial spline spaces over the cell (in Theorem 1).
Using this, the maximal order of supersmoothness at a vertex can be determined once
a general formula for the dimensions of the polynomial spline spaces over the cell is
known. At the end of the paper, we apply these results to various cell configurations.

2 Cells and supersmoothness

We start with some definitions.

2.1 Simplicial meshes and cells

Let � be a set of n-simplices in R
n. We call � a mesh if the intersection between

any two n-simplices T1, T2 ∈ � is either empty or a common k-face for some k,
0 ≤ k ≤ n − 1. We let � = ∪{T : T ∈ �}.
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Fig. 1 Cells in 2D

If v is a vertex in the mesh, we denote by �v ⊂ � the n-simplices in � that share
v, and we call �v a cell. Let �v = ∪{T : T ∈ �v}. We will say that v is an interior
vertex of � if v is in the interior of �v , in which case we will say that �v is an
interior cell.

In 2D, an interior cell�v is a sequence of triangles�v = {T1, T2, . . . , Tm},m ≥ 3,
that form a star-shaped polygon �, as in Fig. 1.

In the special case that m = 3, �v is known as a Clough-Tocher split since it can
also be constructed by refinement. We could start with any triangle T in the plane
(the outer triangle in the figure), then let v be any point inside T and connect the
three edges of T to v, thus creating three sub-triangles of T .

In 3D, a cell is a collection of tetrahedra. A simple example of an interior cell �v

in 3D is the Alfeld split, constructed by choosing a tetrahedron T , then any point v

inside T and connecting v to the four triangular faces of T . The resulting cell has
four tetrahedra, as in Fig. 2.

Fig. 2 Alfeld split in 3D

v
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2.2 Splines

In this paper in order to have a notion of supersmoothness of various orders, we need
to view a spline as a set of pairs of open neighborhoods and smooth functions: one
pair for each n-simplex in the mesh �. Thus, a spline σ has the form:

σ = {(UT , fT ) : T ⊂ UT ⊂ R
n, UT open, fT ∈ C∞(UT ), T ∈ �},

and we denote by S(�) the set of all such splines. The pieces fT could, for example,
be polynomials of any degree (in which case we can take UT = R

n), trigonometric
functions, rational functions, and so on.

Next, we consider how the pieces of σ might fit together. Let f ∈ C∞(U) for
some open set U ⊂ R

n and let x = (x1, x2, . . . , xn) ∈ U . Let α = (α1, . . . , αn) be a
multi-index, with α1, . . . , αn ≥ 0. Then, we denote by:

Dαf (x) =
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

f (x),

the corresponding partial derivative of f at x, of order |α| = α1 + · · · + αn. We will
say that a spline σ ∈ S(�) has smoothness r ≥ 0 if:

DαfT1 |F = DαfT2 |F , |α| ≤ r, T1, T2 ∈ �, T1 ∩ T2 = F, F is an (n − 1)-face.

We will denote by Sr(�) the set of all such splines.

2.3 Smoothness at a vertex

Suppose that v is a vertex of � and let σ ∈ S(�v). We will say that σ has smoothness
of order ρ at v if:

DαfT1(v) = DαfT2(v), |α| ≤ ρ, T1, T2 ∈ �v .

We will denote by Cρ(�v) the set of all such splines.

2.4 Supersmoothness

Now, we look at enhanced smoothness of splines at an interior vertex v of �. We
will say that a spline σ ∈ Sr(�v) has supersmoothness of order ρ ≥ r at v if
σ ∈ Cρ(�v). Thus, we are interested in the question of whether Sr(�v) ⊂ Cρ(�v)

for some ρ > r . This will depend on the geometric configuration of the n-simplices
of �v .

3 Taylor approximations

Our aim is to characterize supersmoothness in terms of the degeneracy of polynomial
splines. The first step in the derivation is to study Taylor approximations. Let f ∈
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C∞(B) for some domain B ⊂ R
n. With respect to a point v = (v1, . . . , vn) ∈ B, we

denote the Taylor approximation of f of order ρ ≥ 0 by:

Tv,ρf (x) =
∑

|α|≤ρ

Dαf (v)

α! (x1 − v1)
α1 · · · (xn − vn)

αn, x ∈ B,

where α! = α1! · · · αn!. We will make use of the following property of these Taylor
approximations.

Lemma 1 Let v, w be distinct points in R
n and let e = [v, w] be the line segment

connecting them. Let B ⊂ R
n be some domain containing e. Suppose that f, g ∈

C∞(B) and that f |e = g|e. Then, for any ρ ≥ 0, Tv,ρf |e = Tv,ρg|e.

Proof We can represent the line segment e parametrically as:

e = {v + tu : 0 ≤ t ≤ 1},
where u = w − v. Letting x = v + tu for some t ∈ [0, 1], we find that:
Tv,ρf (x) = Tv,ρf (v + tu) =

∑
|α|≤ρ

Dαf (v)

α! (tu1)
α1 · · · (tun)

αn

=
ρ∑

i=0

t i

i!
∑
|α|=i

i!
α!D

αf (v)u
α1
1 · · · uαn

n =
ρ∑

i=0

t i

i!h
(i)(0),

where
h(τ) = f (v + τu), τ ∈ [0, 1].

Since f and g are equal on e, we also have:

h(τ) = g(v + τu), τ ∈ [0, 1],
and so

Tv,ρg(x) =
ρ∑

i=0

t i

i!h
(i)(0) = Tv,ρf (x).

We want to generalize this property to derivatives of f and g. To do this, we first
show:

Lemma 2 Let v ∈ R
n and suppose f ∈ C∞(B) for some domain B ⊂ R

n

containing v. Then, for any integer ρ ≥ 0 and any multi-index β with |β| ≤ ρ:

DβTv,ρf = Tv,ρ−|β|Dβf .

Proof From the definition of Tv,ρ , for x ∈ B:

DβTv,ρf (x) =
∑

|α|≤ρ
α≥β

Dαf (v)

(α − β)! (x1 − v1)
α1−β1 · · · (xn − vn)

αn−βn

=
∑

|α|≤ρ−|β|

Dα+βf (v)

α! (x1 − v1)
α1 · · · (xn − vn)

αn = Tv,ρ−|β|Dβf (x).
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From Lemmas 1 and 2, we obtain:

Lemma 3 Let v, w, e, B be as in Lemma 1. Suppose that f, g ∈ C∞(B) and that
for some r ≥ 0:

Dβf |e = Dβg|e, |β| ≤ r . (1)

Then, for any ρ ≥ 0:

DβTv,ρf |e = DβTv,ρg|e, |β| ≤ r . (2)

Proof If |β| > ρ, Eq. (2) trivially holds since both sides are equal to 0. If |β| ≤ ρ,
by Lemma 2, Eq. (2) is equivalent to:

Tv,ρ−|β|Dβf |e = Tv,ρ−|β|Dβg|e,
and by Lemma 1, this is implied by equation (1).

4 Characterization of supersmoothness

We are now approaching a characterization of supersmoothness.

4.1 Polynomial spline spaces

For integers r and d with 0 ≤ r ≤ d , let

Sr
d(�) := {s ∈ Cr(�) : s|T ∈ 
d, T ∈ �},

where 
d is the linear space of polynomials in R
n of degree at most d . Thus, Sr

d(�)

is the usual linear space of polynomial splines on � of smoothness r and degree at
most d .

4.2 Degeneracy

Consider an interior cell �v . By definition, for any r ≥ 0, we have 
d ⊂ Sr
d(�v).

Sometimes, however, depending on �v and r , we might have Sr
d(�v) = 
d . In this

case, Sr
d(�v) contains no “true” splines, only polynomials, and we view Sr

d(�v) as
being degenerate in this sense.

Definition 1 We will say that Sr
d(�v) is degenerate if Sr

d(�v) = 
d .

As an example, the space Sr
r (�v) is degenerate for any r ≥ 0.

4.3 Piecewise Taylor approximations

Next, recall the more general set of splines S(�v) and let:

σ = {(UT , fT ) : T ∈ �v} ∈ S(�v).
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For any ρ ≥ 0, we can make the following piecewise Taylor approximation of σ :

Tv,ρσ := {(Rn, Tv,ρfT ) : T ∈ �v} ∈ S(�v).

Due to Lemma 3, we next show:

Lemma 4 If σ ∈ Sr(�v) for any r ≥ 0 then Tv,ρσ ∈ Sr(�v) for any ρ ≥ 0.

Proof Let T1, T2 ∈ �v be two n-simplices that share a common (n − 1)-face F . The
face F is the union of all the line segments e that connect v to the (n−2)-dimensional
face of F opposite to v. The pieces fT1 and fT2 have the same derivatives up to order
r on e. Therefore, by Lemma 3, the two Taylor approximations Tv,ρfT1 and Tv,ρfT2

have the same derivatives up to order r on e. Therefore, they have the same derivatives
up to order r on the whole face F . Thus, Tv,ρσ ∈ Sr(�v) as claimed.

4.4 Characterization

With the previous definitions in place, the characterization is as follows.

Theorem 1 Let �v be an interior cell and suppose 0 ≤ r ≤ ρ. Then, Sr(�v) ⊂
Cρ(�v) if and only if Sr

ρ(�v) is degenerate.

Proof Suppose that Sr
ρ(�v) is degenerate and let:

σ = {(UT , fT ) : T ∈ �v} ∈ Sr(�v).

By Lemma 4, Tv,ρσ ∈ Sr(�v). Therefore, we can define a polynomial spline s ∈
Sr

ρ(�v), by:

s|T = Tv,ρfT , T ∈ �v .

By the assumption that Sr
ρ(�v) is degenerate, s ∈ 
ρ . Then, for any T1, T2 ∈ �v ,

DαfT1(v) = DαTv,ρfT1(v) = Dαs(v) = DαTv,ρfT2(v) = DαfT2(v), |α| ≤ ρ.

This proves that Sr(�v) ⊂ Cρ(�v).
Conversely, suppose that Sr(�v) ⊂ Cρ(�v) and let s ∈ Sr

ρ(�v). Then, we can
define:

σ = {(Rn, s|T ) : T ∈ �v} ∈ Sr(�v).

The assumption that Sr(�v) ⊂ Cρ(�v) implies that σ ∈ Cρ(�v). Therefore, for any
T1, T2 ∈ �v ,

Dαs|T1(v) = Dαs|T2(v), |α| ≤ ρ.

Since s|T1 , s|T2 ∈ 
ρ , this implies that s|T1 = s|T2 . Thus, s ∈ 
ρ . This proves that
Sr

ρ(�v) is degenerate.

We remark that this theorem also holds if we reduce the smoothness assumption on
the pieces fT of the splines σ in Sr(�v) to being in Cρ(UT ) instead of in C∞(UT ).
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4.5 Maximal order of supersmoothness

We can also consider the mos (maximal order of supersmoothness) of Sr(�v), i.e.,

mos Sr(�v) := max{ρ ≥ r : Sr(�v) ⊂ Cρ(�v)}.
To characterize this, observe that we have a nested sequence of spaces:


r = Sr
r (�v) ⊂ Sr

r+1(�v) ⊂ Sr
r+2(�v) ⊂ · · · .

Therefore, if Sr
d(�v) is non-degenerate for some d ≥ r , then Sr

k(�v) is non-
degenerate for all k ≥ d . Thus, for any cell �v and any r ≥ 0, there is a unique
highest degree d ≥ r such that Sr

d(�v) is degenerate. From Theorem 1, we deduce:

Corollary 1 mos Sr(�v) = max{d ≥ r : Sr
d(�v) is degenerate}.

5 Applications

We now apply the characterization theorem to some concrete examples. For a cell �v

in R
n and smoothness r ≥ 0 the spline space Sr

d(�v), with d ≥ r , is degenerate if:

dim Sr
d(�v) = dim
d =

(
d + n

n

)
. (3)

For some cell configurations, degeneracy is known for specific degrees d > r . We
then conclude from Theorem 1 that all splines in Sr(�v) have supersmoothness of
order d , but we do not know whether d is optimal. However, if we know the dimen-
sions of all the spaces Sr

d(�v), d > r , we obtain the maximal supersmoothness from
Corollary 1 by finding the largest d satisfying (3).

We note also that Alfeld [1] has computed the dimension of many spline spaces
over various kinds of cell. These computational results also determine supersmooth-
ness by Theorem 1 or Corollary 1.

5.1 Clough-Tocher split

In R
2, when �v has three triangles, it is a Clough-Tocher split, �CT , and, using

the theory of Bernstein-Bézier polynomials, Farin showed in [5, Theorem 7] that
Sr

r+1(�CT ) is degenerate for any r ≥ 1. He then concluded in [5, Corollary 8] that
the pieces of any spline in Sr

d(�CT ), 1 ≤ r ≤ d , have matching derivatives of order
r + 1 at v.

We can now apply Theorem 1 to conclude more generally that Sr(�CT ) ⊂
Cr+1(�CT ) for r ≥ 1. However, this is not optimal supersmoothness for general r .

5.2 An arbitrary cell in 2D

Sorokina made a substantial generalization of Farin’s result. She showed in [14, The-
orem 3.1] that if �v has m triangles, and the m interior edges have different slopes,
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then for 0 ≤ r ≤ d , the pieces of any spline s ∈ Sr
d(�v) have matching derivatives

at v up to order:

ρ = r +
⌊

r + 1

m − 1

⌋
. (4)

The proof was based on comparing the dimension of Sr
d(�) with those of superspline

spaces. Since ρ in (4) is independent of the degree d , one might expect a more general
result. This was also suggested by the work of Shekhtman and Sorokina [12]. From
(4), it follows that there is at least one order of supersmoothness when r ≥ m − 2
for any degree d ≥ r . Shekhtman and Sorokina showed that this is also true for more
general splines, in other words, in our notation, Sr(�v) ⊂ Cr+1(�v) when r ≥
m−2. Their proof was based on expressing partial derivatives as linear combinations
of directional derivatives along the edges meeting at v. Using Corollary 1, we can
now improve this result to match that of the polynomial case. To do this, we first
transform the dimension formula of Lai and Schumaker [8] into a more suitable form.

Lemma 5 Suppose �v has m triangles and suppose there are mv different slopes
among the interior edges of �v . For 0 ≤ r ≤ d:

dim Sr
d(�v) = dim
d + (m − mv) dim
d−r−1 +

d−r∑
j=1

(τv,j )+, (5)

where τv,j := j (mv −1)− (r +1), and (x)+ := x if x > 0 and (x)+ := 0 otherwise.

Proof The dimension of Sr
d(�v) was derived in [8, Theorem 9.3] in the form:

dim Sr
d(�v) =

(
r + 2

2

)
+ m

(
d − r + 1

2

)
+

d−r∑
j=1

(−τv,j )+. (6)

Using the fact that:

d−r∑
j=1

τv,j = mv

d−r∑
j=1

j −
d−r∑
j=1

(r + j + 1) = mv

(
d − r + 1

2

)
−

(
d + 2

2

)
+

(
r + 2

2

)
,

we can rewrite (6) as:

dim Sr
d(�v) = dim
d + (m − mv)

(
d − r + 1

2

)
+

d−r∑
j=1

(
(−τv,j )+ + τv,j

)
.

Then, using the fact that (−x)+ + x = x+, the result follows.

Theorem 2 Suppose �v has m triangles and suppose there are mv different slopes
among the interior edges of �v . Then, for r ≥ 0:

mos Sr(�v) =
{

r +
⌊

r+1
m−1

⌋
, mv = m;

r, mv < m.
(7)
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Proof By Corollary 1, it is sufficient to determine the highest degree d ≥ r such
that Sr

d(�v) is degenerate, i.e., such that dim Sr
d(�v) = dim
d . To do this, we use

Lemma 5. Suppose mv < m. If d = r + 1, the second term in (5) is strictly positive
and so Sr

r+1(�v) is non-degenerate. Therefore, Sr
d(�v) is degenerate if and only if

d = r . Otherwise, mv = m. Then, considering the third term in (5), Sr
d(�v) is

degenerate if and only if τv,j ≤ 0 for all j = 1, . . . , d−r , or equivalently τv,d−r ≤ 0,
which is equivalent to:

d ≤ r +
⌊

r + 1

m − 1

⌋
.

As an example, for the Clough-Tocher split, we have m = mv = 3 and so

mos Sr(�CT ) = r +
⌊

r + 1

2

⌋
. (8)

5.3 The Alfeld split inRn

The dimensions of the spaces Sr
d(�v) are not currently known for a general cell �v

in Rn for n ≥ 3. However, they are known in special cases. One of these is the Alfeld
split in R

n. In R
n, n ≥ 2, the split is constructed by choosing any n-dimensional

simplex T and splitting it into n+1 smaller simplices by choosing an arbitrary interior
point v in T and connecting it to each of the n + 1 faces (of dimension n − 1) of T .
We denote this split by �A,n. The 3D case �A,3 is shown in Fig. 2.

Using the theory of Bernstein-Bézier polynomials, Worsey and Farin showed
in [16, Lemma 3.1] that S1

2(�A,n) is degenerate. From this, Theorem 1 implies that
S1(�A,n) ⊂ C2(�A,n). But we can make a further generalization by invoking the
recently derived dimension formula of Foucart and Sorokina [6] and Schenck [9]. Let
us define, for n ≥ 1 and r ≥ 0:

ρn,r := r + (n − 1)

⌊
r + 1

2

⌋
.

Theorem 3 The maximal order of supersmoothness of the Alfeld split is:

mos Sr(�A,n) = ρn,r .

Proof The dimensions of the polynomial spline spaces on the Alfeld split were gen-
erated and conjectured by Foucart and Sorokina [6] and proved by Schenck [9]: for
0 ≤ r ≤ d ,

dim Sr
d(�A,n) = dim
d + A(n, d, r),

where

A(n, d, r) =
{

n
(
d+n−(r+1)(n+1)/2

n

)
, if r is odd;(

d+n−1−r(n+1)/2
n

) + · · · + (
d−r(n+1)/2

n

)
, if r is even.

Therefore, Sr
d(�A,n) is degenerate if and only if A(n, d, r) = 0, or equivalently if{

d − (r + 1)(n + 1)/2 ≤ −1, if r is odd;
d − 1 − r(n + 1)/2 ≤ −1, if r is even.
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By Corollary 1, the maximal order of supersmoothness is the largest such d , i.e.,

d =
{

(r + 1)(n + 1)/2 − 1, if r is odd;
r(n + 1)/2, if r is even,

or equivalently, d = ρn,r .

For example, S1(�A,n) ⊂ Cn(�A,n), and in particular, S1(�A,3) ⊂ C3(�A,n),
which shows that the C1 macro-element on the Alfeld split �A,3 described in [8,
Section 18.3] has supersmoothness of order 3.

We note that Theorem 3 in the case n = 2 agrees with the supersmoothness of the
Clough-Tocher split in equation (8).

5.4 The�k ,n split

Worsey and Farin [16] proposed an alternative generalization of the Clough-Tocher
split to Rn, using recursion through the Euclidean dimensions; see also [13]. To split
an n-simplex T , they first split the faces of T of dimension 2 (triangles) by making a
Clough-Tocher split. They next split each 3-face (a tetrahedron) F of T by choosing
any point in the relative interior of F and connecting it to the twelve triangles on the
boundary of F constructed in the previous step. They continue in a similar way, next
splitting faces of T of dimension 4 and so on. Part of a Worsey-Farin split in 3D is
shown in Fig. 3, viewed as a refinement of an Alfeld split. One of the subsimplices
of the Alfeld split has been split into three.

Let us consider a more general split. We choose any Euclidean dimension k, 1 ≤
k ≤ n. We then initialize the splitting by splitting each k-face F of T by choosing
any point in the relative interior of F and connecting it to the (k − 1)-faces of F .
Then, for j = k +1, . . . , n in sequence, we split each j -face F of T by choosing any
point in the relative interior of F and connecting it to the

(j + 1) × j !
k! = (j + 1)!

k!

Fig. 3 Part of a Worsey-Farin
split in 3D

Adv Comput Math (2020) 46: 70 Page 11 of 15    70



simplices of dimension (j − 1) on the boundary of F constructed in the previous
step. The resulting split of T is a cell around the point v in the interior of T chosen
at the last step (j = n). It has (n + 1)!/k! sub-simplices and we denote it by �k,n.

For example, in 2D, �2,2 is a Clough-Tocher split and �1,2 is a Powell-Sabin
6-split. In 3D, �3,3 is an Alfeld split, �2,3 is a Worsey-Farin split and �1,3 is a
Worsey-Piper split.

By construction, each of the (n − 1)-faces of T is itself split into a �k,n−1 split. A
split �k,n, k < n, can also be viewed as a refinement of a split �k+1,n.

It was shown by Worsey and Farin [16] that S1
2(�2,n) is degenerate for any n ≥ 2.

Based on this observation, they concluded, as “an interesting aside,” that their C1

piecewise-cubic element has supersmoothness of order 2 at v. Theorem 1 implies
more generally that S1(�2,n) ⊂ C2(�2,n). Using now degeneracy over the Alfeld
split in Rk , we obtain a more general result.

Theorem 4 The maximal order of supersmoothness of a �k,n split, 2 ≤ k ≤ n, is
bounded as follows:

ρk,r ≤ mos Sr(�k,n) ≤ ρn,r .

Proof First let r ≤ d ≤ ρk,r . We will show that Sr
d(�k,n) is degenerate. The proof

of this is similar to that of [16, Theorem 3.2] and is by induction on n ≥ k. Consider
first n = k. Since �k,k is a k-dimensional Alfeld split, it follows from Lemma 5 that
Sr

d(�k,k) is degenerate. Now suppose n > k and let s ∈ Sr
d(�k,n). Let F be one of

the (n − 1)-faces of T . Let w be the point in the relative interior of F used to make
the (n − 1)-dimensional split �k,n−1(F ) of F in the construction of �k,n. For each
λ ∈ (0, 1], let Fλ be the (n − 1)-simplex:

Fλ = {(1 − λ)v + λx : x ∈ F },
which is parallel to F and passes through the point:

p = (1 − λ)v + λw.

The split �k,n−1(F ) induces an analogous split �k,n−1(Fλ). By the induction
hypothesis, Sr

d(�k,n−1(Fλ)) is degenerate and so all the pieces of s meeting at [v, w]
have common derivatives within Fλ up to order d at p. Since all these pieces join
continuously along [v, w], they also have common derivatives along [v, w]. There-
fore, all these pieces are the same polynomial and thus s belongs to Sr

d(�A,n). Since
d ≤ ρk,r ≤ ρn,r , it follows, as in the proof of Theorem 3, that s ∈ 
d .

This proves the lower bound on mos Sr(�WF,n). To prove the upper bound, we
just need to observe that �k,n is a refinement of an Alfeld split �A,n, which implies
that:

Sr
d(�A,n) ⊂ Sr

d(�k,n)

for any 0 ≤ r ≤ d . Thus, if Sr
d(�A,n) is non-degenerate, so is Sr

d(�k,n).

5.5 The�n−1,n split

Consider the special case of the �n−1,n split, which has n(n + 1) subsimplices. It
can be constructed by first making an Alfeld split �A,n (= �n,n) of an n-simplex T
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using some interior point v. We then choose an interior point of each boundary face
F (an (n−1)-simplex) of T and use it to split F into n subsimplices and then connect
them to v.

Let us say that �n−1,n is aligned if, for every face F , the splitting point chosen
for F is the unique point in F that is collinear with v and the vertex of T opposite F .
This is what Schenck and Sorokina [10] called a facet split.

Theorem 5 The maximal order of supersmoothness of an aligned split �n−1,n is

mos Sr(�n−1,n) = ρn−1,r .

Proof The dimensions of the polynomial spline spaces for an aligned split �n−1,n
were derived by Schenck and Sorokina [10]. For 0 ≤ r ≤ d:

dim Sr
d(�n−1,n) = dim
d + A(n, d, r) + (n + 1)P (n, d, r), (9)

where A(n, d, r) is as in Theorem 3 and

P(n, d, r) =
{

(n − 1)
(
d+n−(r+1)n/2

n

)
, if r is odd;(

d+n−1−rn/2
n

) + · · · + (
d+1−rn/2

n

)
, if r is even.

Therefore, Sr
d(�n−1,n) is degenerate if and only ifA(n, d, r)+(n+1)P (n, d, r) = 0.

Since A(n, d, r) = 0 when P(n, d, r) = 0, this is equivalent to the condition that
P(n, d, r) = 0, which holds when:{

d − (r + 1)n/2 ≤ −1, if r is odd;
d − 1 − rn/2 ≤ −1, if r is even.

The largest possible d in both cases gives the result by Corollary 1.

It is remarked in [10, Remark 4.3] that for r = 1, the dimension formula (9) also
holds even without the collinearity condition, from which we conclude that for an
arbitrary �n−1,n split:

mos S1(�n−1,n) = ρn−1,1 = n − 1.

For example, in 3D, for an arbitrary Worsey-Farin split �2,3 we have:

mos S1(�2,3) = 2.

5.6 2-Cells

Finally, we consider a slightly different kind of cell, constructed as follows. Let T be
an n-dimensional simplex and choose an interior point v of T and connect it to just
one (n − 1)-face of T , forming a simplex T1 contained in T . We now let T2 be the
the closure of T \ T1. The two elements T1 and T2 form what we will call a 2-cell,
�2 = {T1, T2}. Of course, it is not a cell of simplices because T2 is not a simplex.
Figure 4 shows a 2-cell in 2D.

Now, we can consider the supersmoothness of splines in Sr(�2). Even though
2-cells do not occur in simplicial meshes, the local configuration of edges emanat-
ing from v could occur in a polytopal mesh if we allowed non-convex polytopes.
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Fig. 4 A 2-cell in 2D

T1

T2

v

Shekhtman and Sorokina [12] studied this kind of configuration in 2D and showed
that the order of supersmoothness is at least r + 1 for any r ≥ 0 (supersmoothness
is “true” supersmoothness in this case, not just the matching of derivatives). We can
now extend this result using our characterization. Even though a 2-cell contains the
non-simplicial element T2, the intersection of T1 and T2 is the union of n faces (of
dimension (n − 1)) and so our characterization of supersmoothness at v also holds
for a 2-cell, i.e., we can apply Theorem 1 and Corollary 1 to a 2-cell �2. To use these
results, we need the dimensions of the spline spaces Sr

d(�2), 0 ≤ r ≤ d .

Lemma 6 For any 0 ≤ r ≤ d ,

dim Sr
d(�2) = dim
d + dim
d−n(r+1).

Proof We have:
dim Sr

d(�2) = dim
d + dim S0,

where
S0 = {s ∈ Sr

d(�2) : s ≡ 0 on T2}.
Letting F1, . . . , Fn be the (n− 1)-dimensional faces common to T1 and T2, we have:

S0 = {p ∈ 
d : Dαp|Fi
= 0, |α| ≤ r, i = 1, . . . , n}.

Let li (x) = 0 be any equation for the face Fi , i = 1, . . . , n. Then, we can express
any p ∈ S0 uniquely in the form:

p(x) = l1(x)r+1 · · · ln(x)r+1q(x), x ∈ T1,

where q = 0 if d − n(r + 1) < 0 and q ∈ 
d−n(r+1) if d − n(r + 1) ≥ 0.

Theorem 6 For r ≥ 0, mos Sr(�2) = r + (n − 1)(r + 1).

Proof By Lemma 6, Sr
d(�2) is degenerate if and only if dim
d−n(r+1) = 0, or

equivalently that d − n(r + 1) < 0. Thus, from Corollary 1, the maximal order of
supersmoothness is:

d = n(r + 1) − 1 = r + (n − 1)(r + 1).
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For example, in R2, mos Sr(�2) = 2r + 1 and in R3, mos Sr(�2) = 3r + 2.
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