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Film coating by directional droplet spreading on fibers
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Plants and insects use slender conical structures to transport and collect small droplets,
which are propelled along the conical structures due to capillary action. These droplets can
deposit a fluid film during their motion, but despite its importance to many biological
systems and industrial applications, the properties of the deposited film are unknown.
We characterize the film deposition by developing an asymptotic analysis together with
experimental measurements and numerical simulations based on the lubrication equation.
We show that the deposited film thickness depends significantly on both the fiber radius
and the droplet size, highlighting that the coating is affected by finite-size effects relevant
to film deposition on fibers of any slender geometry. We demonstrate that by changing
the droplet size, while the mean fiber radius and the capillary number are fixed, the
thickness of the deposited film can change by an order of magnitude or more. We show
that self-propelled droplets have significant potential to create passively coated structures.
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I. INTRODUCTION

Droplets on slender conical substrates will self-propel due to capillary action [1–10] provided
the droplets are smaller than the capillary length. This principle is used by insects [11,12] and
plants [13–20] for droplet collection. Several studies have focused on mimicking structures found
in nature to control liquid movement [21–27]. Recent work [13] has shown that the conically shaped
trichomes on the underside of the lid of the Sarracenia, a pitcher plant, can transport droplets
with a velocity several orders of magnitude larger than that found in other plants. Enhanced water
transport is the result of surface lubrication of the trichome. The first droplet that slowly spreads
across the trichome deposits a microscopic liquid film, and the following droplets slide along the
lubricating film on the trichome. From a technological point of view, understanding the principles of
film deposition by capillary-driven motion of droplets can provide pathways for relubrication
of slippery liquid infused porous surfaces with conical shapes [6,28] as well as the development of
other multifunctional materials. This lubricating film-coating principle has a fundamental role in
biological phenomena and has untapped potential as a droplet-driven coating technique, yet the
properties of the liquid film are unknown. We study here how droplets deposit lubricating films as
they move along slender structures.
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FIG. 1. (a) A sketch of a droplet on a conical fiber with a local cone angle α. Inset: zoom into the region
connecting the deposited film of thickness hf and the receding edge of the droplet at the fiber radius Rf . The
fiber is prewet with a layer of the same fluid of thickness ε.

Coating a solid substrate with a lubricating liquid film as a way to reduce friction between
substrates has been known since ancient Egypt [29]. The broad relevance of coating processes
have made them widely studied, with great advances in understanding their underlying physical
principles [30–34]. Dip-coating is today one of the most widespread coating techniques [35],
where the solid moves with a velocity U relative to the liquid bath. The foundational work of
Landau-Levich-Derjaguin (LLD) [36,37] has paved the way for a fundamental understanding of
film deposition on solid substrates during wetting. By considering the viscous capillary flow of a
liquid with a viscosity μ and a surface tension γ , LLD predicted that the deposited film thickness
h f , normalized by the characteristic length of the system L, is given by h f /L ∼ Ca2/3 [36,37], where
the Capillary number Ca ≡ μU/γ is the ratio of the viscous and surface tension forces. The LLD
theory was developed for Ca � 1 and when inertia can be neglected. It is a generic scaling and
has proven to be an accurate description of a wide range of coating phenomena, i.e., dip coating of
plates [38], cylinders [31,39,40], and Bretherton bubbles [41]. However, a droplet depositing a film
on a cylinder has a fundamental difference from film deposition from a liquid reservoir; the droplet
size introduces another length scale to the system. The fiber geometry and droplet size are tuneable
parameters to control the coating process [1,2].

II. THEORY AND EXPERIMENT

In the system studied here, a droplet deposits a film as it migrates toward the thicker part of
a prewet conical fiber, driven by the curvature gradient, as shown schematically in Fig. 1. We
investigate the system by combining asymptotic analysis, experiments, and numerical simulations.
The assumptions made are that there is viscous flow driven by capillarity (Ca � 1). Furthermore,
we neglect gravitational effects because the drop size is much smaller than the capillary length, as
is clear from the Bond number, which represents the balance between gravity and surface tension,
Bo = �ρgV 2/3/γ � 1, where �ρ is the density difference between the liquid and surrounding
air, V is the droplet volume, and g is the gravitational acceleration. As will be seen below, these
assumptions are verified by our experiments.

A. Asymptotic analysis

We start off by revising the classical LLD theory for the case of a droplet moving on a cylindrical
fiber with radius R by matching asymptotically the quasistatic droplet profile on the fiber hs(x) and
the self-similar deposited film profile (for details, see [4]). By matching the profiles, we show that
the film thickness h f scales with Ca as [4]

h f = 1.338�Ca2/3, (1)
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FIG. 2. (a) The dimensionless characteristic length �/V 1/3 as a function of the rescaled radius R/V 1/3 of a
cylindrical fiber (solid line). The dotted line represents the linear relation, i.e., � = R. Inset: two static droplets
of the same volume in contact with a fiber with R/V 1/3 = 0.03 and 0.51 (indicated by the two red dots),
which demonstrate different droplet shapes when R varies. The deposited film thickness hf predicted by our
asymptotic analysis scales linearly with � for a given Capillary number Ca (dimensionless droplet velocity); see
Eq. (1). From (a) we see that a droplet of a fixed volume coats a thicker film on a thicker fiber. In (b), � rescaled
by the fiber radius R is plotted as a function of V 1/3/R. It shows that for the same fiber radius, a smaller
droplet coats a thicker film on the fiber. (c) Sample images of two droplets taken with optical microscopy
(top views). Left: α = 0.43◦ and R/V 1/3 = 0.038, and right: α = 2.5◦ and R/V 1/3 = 0.27. The numerically
calculated profiles from the lubrication theory on a cone [Eq. (2)] are shown in red for matching V , R, and α.

where � ≡ 1/[∂2hs(x = xcl )/∂x2] is the inverse of the second derivative of the static profile hs(x)
evaluated at the contact line position x = xcl, i.e., where the profile hs(x) meets the solid substrate. A
crucial difference from the classical LLD theory is that choosing � = R only recovers the correct film
thickness in the limit of R � V 1/3. In general, � depends on both the droplet volume V and the fiber
radius R, which indicates a finite-size effect. To illustrate this point, we plot �/V 1/3 as a function of
R/V 1/3 in Fig. 2(a). In the limit where R � V 1/3, � = R, then the film thickness h f = 1.338R Ca2/3

is independent of the droplet volume. However, when R/V 1/3 � 0.15, the droplet size starts to play
a significant role in predicting the deposited film thickness that is much larger than if we would
naively assume � = R. Since �/V 1/3 increases with R/V 1/3 faster than a linear relation, Eq. (1) also
implies that a smaller droplet deposits a thicker film for fixed R and Ca. This property is shown in
Fig. 2(b), in which �/R decreases with increasing V 1/3/R. For the directional spreading of droplets
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on a conical fiber with a small cone angle α, the influence of α on � only appears as high-order
corrections, which are neglected here (see [4] for details). The conical geometry acts as a factor that
generates the spontaneous motion of the droplet and plays a role in determining the magnitude of
Ca. The theoretical prediction for the film thickness dependence on the droplet size and the fiber
radius [see Eq. (1)] can now be compared to experiments and numerical simulations based on the
lubrication theory.

B. Experiments

The conical substrates used in the experiments are prepared by pulling standard borosilicate
glass capillary tubes in a magnetic micropipette puller (Narishige PN-30). The resulting shape of
the capillary tube is a nearly conical fiber with a smoothly varying diameter and gradient, with a
smaller cone angle nearing the tip of the fiber. The gradient in the cone angle varies slowly along the
fiber, thus on the length scale of the droplet the fibers can be treated as ideal. Droplets of silicone oil
with viscosity of μ ≈ 4.9 Pa s, and with air-liquid surface tension γ = 22 mN/m, were deposited
at the fiber tip. Silicone oil is ideal because it is totally wetting, chemically stable, nonvolatile, and
nonhygroscopic. The fiber is prewet by placing a droplet on the tip of the fiber and allowing it to
migrate from one end of the fiber to the other, thereby depositing a film. Prewet film thicknesses
were found to range from 0.27 to 13.87 μm, as determined by optical microscopy (OM) using an
upright microscope (Olympus BX51) with bottom illumination. OM images of the fiber were taken
from above both before and after coating, and they were used to obtain the film thickness. Droplets
of volumes V in the range of 0.009–1.99 mm3, i.e., Bo ∈ [0.02-0.7], were deposited onto the fiber.
Images of the droplet are taken as it migrates along the fiber at a given radius R, and the deposited
film is observed as the droplet passes a given location. To ensure the effects of gravity are not
affecting the dynamics, a similar experiment was performed in which the entire experimental setup
was tilted at different angles to measure if there were any changes in droplet motion in the plane
of gravity. There were no discernible differences in droplet motion, and thus the effects of gravity
are negligible. The radii of the cone at the measured film thicknesses ranged between 22.26 and
103.92 μm and the deposited film thicknesses were measured in the range of 0.17–19.75 μm.

C. Numerical simulations

To give a mathematical description of the droplet flow on the prewet fiber, we turn to the
lubrication approximation for the viscous incompressible flow, when the cone angle α � 1. The
thin-film equation is obtained by reducing the Navier-Stokes equations for flow in films with large
lateral dimensions in relation to the thickness [42,43], in combination with mass conservation. A
detailed derivation of the lubrication approximation on a conical geometry for α � 1 is found in
[3]. Note that we impose a no-slip condition at the solid substrate and no-shear stress at the free
surface. The axisymmetric liquid-air interface profile is given by h = h(r, t ), defined as the distance
between the interface and the substrate, as a function of the radial distance from the vertex of the
cone r and time t . The evolution of the free surface is described by [3,4],
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The capillary pressure gradient in the liquid generates the flow, and the pressure p = p(r, t ) reads

p = −γ
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where the expression is simplified for α � 1 [3,4]. Equations (2) and (4) are discretized by linear
elements and numerically solved with a Newton solver by using the open source finite-element code
FENICS [44]; additional details about the numerical approach are found in [4]. The initial condition
is a droplet smoothly connected to a prewet film of thickness ε. At the two boundaries (δ
) of the
numerical domain, we impose h(δ
, t ) = ε and p(δ
, t ) = γ /R(δ
), where R(δ
) is the radius
of the cone at the boundaries. We note that only the droplet volume V is important, and the initial
droplet shape does not affect the results.

III. RESULTS AND DISCUSSION

We start by comparing the droplet spreading dynamics on two cones with α = 0.43◦ and 2.5◦,
where the droplet quickly relaxes from its initial condition to its quasistatic shape and then starts to
translate to the thicker part of the fiber. When we overlay the experimental measurement with the
numerical simulations, as shown in Fig. 2(c), we see that the two results are in close agreement.
By zooming into the trailing edge of the droplet, both the experiment and the numerical simulation
show the deposition of a film of different thickness from that of the prewet film ε.

Next we turn to characterize the thickness of the film during the droplet spreading dynamics on
the fiber. To determine the Ca, we extract the droplet velocity U measured at its center of mass. The
film is measured on the cone after the droplet has deposited the film, which is stable throughout the
observation time in the experiments and the numerical simulations. The Rayleigh-Plateau instability
is expected to take place at much longer times as the time scale of the fastest growing mode for a film
coated on a cylinder with similar radius is predicted to be more than an order of magnitude longer
than both the experimental observation time and the simulation time. Since there is a slight gradient
in the cone angle along r in the fiber used in the experiments, we extract the cone angle locally at
a given position on the cone with radius R = R f . Here R f is the cone radius in the receding region,
defined based on the droplet profile; see [4]. The deposited film thickness h f is then a function of
α, R f , V , and ε. We combine all the experimental measurements and the numerical predictions of
h f ∈ [0.17 − 19.75] μm, i.e., for α ∈ [0.35 − 2.3]◦, in Fig. 3(a), and they are in good agreement.
The film thickness is not uniform along the fiber for a fixed cone angle, but increases with the cone
radius R f . The film thickness h f increases by roughly one order of magnitude when the cone angle
α is varied from 0.35◦ to 2.3◦.

To further compare the theory to the experiments and numerical simulations, we rescale our
measurements according to Eq. (1) and also plot the analytical prediction; see Fig. 3(b). Since
the motion of the droplet is driven by capillarity, i.e., it is self-propelled, the droplet velocity is a
function of the position on the cone. The deposited film thickness h f rescaled by � obtained from
the experiments and the lubrication theory on a cone is shown as a function of Ca in Fig. 3(b). When
comparing the results (1) predicted by the asymptotic matching, the experiments, and the numerical
simulations, we observe that they are in close agreement, especially for the smallest cone angles.
When α increases, there is a slight deviation from 2/3 scaling observed in the numerical simulations
with a slightly larger film thickness than predicted from Eq. (1), likely a consequence of the reduced
separation of length scales between the film thickness h f and the droplet size V 1/3.

We show that self-propelled droplets have a significant potential to create passively coated
structures. By combining an asymptotic analysis, experiments, and numerical simulations of the
lubrication equation, we have demonstrated that a droplet that moves on a fiber can deposit a film
with a thickness h f , controlled by the droplet’s capillary number and the characteristic length �. The
quantity � is a geometric factor that is linear with respect to the fiber radius R when R/V 1/3 � 1, i.e.,
the droplet is much greater in size than the fiber radius. Otherwise, �/V 1/3 increases significantly
with R/V 1/3 when R/V 1/3 � 0.15. Our finding has direct implications for control of film deposition
during spreading, e.g., if we fix the fiber radius, decreasing the droplet size can increase the
thickness of the deposited film by an order of magnitude or more at the same Ca. Coating by
droplets introduces novel design features that do not exist in classical coating techniques where
the substrate is connected to a liquid reservoir. For a droplet moving on a cylindrical fiber driven
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FIG. 3. (a) The deposited film thickness hf as a function of the cone radius Rf and the cone angle α.
Both axes are normalized by V 1/3. Symbols are experimental data and curves are numerical results from the
lubrication theory on a cone (LAC). The prewet layer thickness ε in both the experiment and the theory is
controlled within a range of 0.27-13.87 μm. (b) The film thickness hf rescaled by � as a function of the
capillary number Ca. The solid line (AM) is the result of asymptotic matching given by Eq. (1).

by external forces, e.g., electric, magnetic, and gravitational, the deposited film thickness follows
Eq. (1), whereas Ca depends on the magnitude of the driving force. Our findings are expected to
be relevant for any droplet coating application involving a slender geometry, and they may help
shed light on why slender conical structures have evolved in a diverse set of biological systems to
facilitate efficient droplet transport.
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