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CONVERGENCE OF SECOND-ORDER, ENTROPY STABLE METHODS FOR
MULTI-DIMENSIONAL CONSERVATION LAWS

Neelabja Chatterjee1 and Ulrik Skre Fjordholm2

Abstract. High-order accurate, entropy stable numerical methods for hyperbolic conservation laws
have attracted much interest over the last decade, but only a few rigorous convergence results are
available, particularly in multiple space dimensions. In this paper we show how the entropy stability
of one such method, which is semi-discrete in time, yields a (weak) bound on oscillations. Under
the assumption of L∞-boundedness of the approximations we use compensated compactness to prove
convergence to a weak solution satisfying at least one entropy condition.
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1. Introduction

Hyperbolic conservation laws appear in a large variety of applications, including gas dynamics, traffic mod-
eling, multi-phase fluid flow problems, and more; see e.g. [3, 9, 12, 16]. We consider a scalar, d-dimensional
hyperbolic conservation law {

∂tu+∇ · f(u) = 0 ∀ (x, t) ∈ Rd × R+

u(x, 0) = u0(x) ∀ x ∈ Rd
(1.1)

where u = u(x, t) : Rd × R+ → U is the unknown conserved variable, taking values in some nonempty interval
U ⊂ R, and the function f = (f1, . . . , fd) : U → Rd is the smooth (at least C3 on U) and possibly nonlinear
flux function. For the sake of simplicity we will assume that U = R.

It is well-known that even if the initial datum u0(x) is arbitrarily smooth, the solutions of (1.1) may still
be non-smooth [3, 9, 12]. Thus, it is fruitless to look for solutions of (1.1) in the classical sense. Instead these
solutions are sought in a weak sense. A function u ∈ L∞(Rd ×R+) is said to be a weak solution of (1.1) if it is
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a distributional solution, i.e.∫
Rd

∫
R+

∂tuϕ+ f(u) · ∇ϕdx dt+

∫
Rd

u0(x)ϕ(x, 0) dx = 0 ∀ ϕ ∈ C1
c (Rd × [0,∞)). (1.2)

It is well known (see e.g. [3, 9, 12]) that weak solutions may be non-unique. Thus to single out a physically
relevant solution, the notion of weak solution has to be supplemented with an additional admissibility criterion,
namely entropy conditions. A pair of functions η : R → R, q : R → Rd is an entropy pair for (1.1) if η, the
entropy function, is convex and q, the entropy flux function, satisfies q′(u) = η′(u)f ′(u). In particular, for every
k ∈ R we have the well-known Kružkov entropy pair (ηk, qk) given by

ηk(u) := |u− k|, qk(u) := sign(u− k)(f(u)− f(k)), (1.3)

see [14]. Multiplying (1.1) by η′(u) and using the chain rule we have the following entropy conservation identity
for smooth solutions of (1.1),

∂tη(u) +∇ · q(u) = 0. (1.4)

Due to the possible non-smoothness of solutions of (1.1), the above derivation cannot be rigorously justified for
weak solutions. Instead, motivated by the second law of thermodynamics, the entropy inequality

∂tη(u) +∇ · q(u) 6 0 (1.5)

is imposed. As was shown by Kružkov [14], validity of this entropy condition for all Kružkov entropy pairs
(ηk, qk)k∈R guarantees uniqueness and stability of solutions of (1.1).

1.1. Numerical methods for conservation laws

The nonlinear nature of the equation (1.1) and the fact that its solutions are irregular, can make the construc-
tion and analysis of numerical methods for (1.1) challenging. We outline here some of the available literature
on this subject.

In order to converge to a weak solution satisfying the entropy condition (1.5), the numerical method needs to
satisfy some discrete version of the entropy condition. Finite volume methods (to be discussed in subsection 2.1
in detail) with this property are called entropy stable. Harten, Hyman and Lax [10] showed that all monotone
schemes for scalar conservation laws are entropy stable with respect to any entropy pair (η, q). Osher [17]
generalized this to a (presumably) larger class of schemes, the so-called E-schemes. Osher also showed that
these E-schemes are at most first-order accurate. In his papers from 1984 [19] and from 1987 [20], Tadmor laid a
general framework for constructing entropy stable schemes by first constructing entropy conservative methods –
schemes satisfying a discrete version of (1.4) – and then adding numerical diffusion to obtain entropy stability. As
he proved in [20], entropy conservative schemes are generally second-order accurate; even higher-order entropy
conservative schemes were constructed by Lefloch, Mercier and Rohde in [15]. However, the addition of numerical
diffusion to any of these entropy conservative schemes, in the way suggested in [19, 20], degrades the order of
accuracy to 1. Following an alternate approach for higher order entropy stable methods, a discontinuous Galerkin
method was designed in [2]. Convergence analysis of finite volume schemes on unstructured, quasi-uniform
meshes for smooth solutions of first-order systems of hyperbolic balance laws in multiple space dimensions was
carried out in [13].

By combining the high-order accurate entropy conservative schemes in [15, 20] with a judiciously chosen
reconstruction method, Fjordholm, Mishra and Tadmor [4,7] constructed entropy stable methods with an arbi-
trarily high order of accuracy, the so-called TECNO schemes. By estimating the amount of entropy dissipated
by the method (i.e., the amplitude of the left-hand side in (1.5)), the authors could derive a priori weak reg-
ularity bounds on the numerical solution, and these bounds, along with the assumption of L∞-boundedness,
were sufficient to prove convergence of the method in the special case of d = 1 space dimensions.
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To the best of our knowledge there is no available proof of convergence of a high-order accurate entropy stable
method for a multi-dimensional conservation law. The purpose of the present paper is to prove convergence for
a particular semi-discrete numerical method, namely the second-order TECNO scheme. A convergence proof for
a fully discrete method would be similar but much more involved, since this would lead to much more delicate
computations in deriving the a priori estimates that we require in our convergence argument. We refer to the
earlier work [6] for entropy stable, fully discrete TECNO schemes. Finally, we note that our convergence proof
requires an a priori L∞ bound on the numerical approximations; a proof of such a bound, while at the same
time retaining the high order of accuracy, seems to be out of reach.

2. Entropy stable numerical methods

2.1. Finite volume methods

For the sake of notational simplicity we are going to consider the scalar conservation law (1.1) in the particular
case of d = 2 space dimensions, although we emphasize that the results in this paper are equally valid for any
number of spatial dimensions d.

We write (1.1) in the case d = 2 as{
∂tu+ ∂xf

x(u) + ∂yf
y(u) = 0 ∀ (x, y, t) ∈ R2 × R+

u(x, y, 0) = u0(x, y) ∀ (x, y) ∈ R2.
(2.1)

Here and in the remainder we will denote the components of all vector-valued functions by f = (fx, fy).
One of the most popular discretization frameworks is the finite volume method. The spatial domain R2 is

partitioned into rectangles of the form Ci,j = [xi−1/2, xi+1/2) × [yj−1/2, yj+1/2), where for the sake of simplicity
we use uniform grid sizes xi+1/2 − xi−1/2 ≡ ∆x and yj+1/2 − yj−1/2 ≡ ∆y. We denote the midpoint values as
xi =

xi−1/2+xi+1/2

2 and yj =
yj−1/2+yj+1/2

2 . For any quantity (ui,j)i,j∈Z defined on this grid, we define the jump
and average operators

{{u}}i+1/2,j =
ui,j + ui+1,j

2
[[u]]i+1/2,j := ui+1,j − ui,j

{{u}}i,j+1/2 =
ui,j + ui,j+1

2
[[u]]i,j+1/2 := ui,j+1 − ui,j .

We let ui,j(t) be an approximation of the average value of u over the rectangles Ci,j , that is,

ui,j(t) ≈
1

∆x∆y

∫
Ci,j

u(x, y, t) d(x, y).

The initial data is sampled as ui,j(0) = 1
∆x∆y

∫
Ci,j u0(x, y) d(x, y). A semi-discrete finite volume method for

(2.1) can then be written in the generic form

d

dt
ui,j(t) +

F xi+1/2,j − F
x
i−1/2,j

∆x
+
F yi,j+1/2 − F

y
i,j−1/2

∆y
= 0, (2.2)

where the numerical flux function F xi+1/2,j = F x(ui,j , ui+1,j) is computed from an approximate solution of the
Riemann problem at the interface {(xi+1/2, y)}yj−1/26y6yj+1/2

and F yi,j+1/2 is computed analogously [9,12]. As for
the flux function f , we will denote F = (F x, F y). The computed solution generated by the scheme is given by
u∆(x, y, t) =

∑
i,j ui,j(t)χCi,j (x, y), where ∆ = (∆x,∆y) and χC is the characteristic function for the rectangle

C. We say that the numerical flux function F is consistent with f if F x(u, u) = fx(u) and F y(u, u) = fy(u) for
all u ∈ R. We also say that a numerical flux F is locally Lipschitz continuous if F x, F y are locally Lipschitz
continuous in each argument.
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2.2. Entropy stable numerical methods

In order for any limit u = lim∆→0 u
∆ to satisfy the entropy condition (1.5), the numerical method (2.2) must

satisfy some discrete form of the entropy condition. In this section we briefly review the theory of so-called
entropy conservative and entropy stable schemes, and we define the TECNO schemes, which will be the subject
of the rest of the paper.

Definition 2.1 (Entropy conservative methods). Let (η, q) be an entropy pair. We say that the finite volume
method (2.2) is entropy conservative (with respect to (η, q)) if computed solutions satisfy the discrete entropy
equality

d

dt
η(ui,j) +

Qxi+1/2,j −Q
x
i−1/2,j

∆x
+
Qyi,j+1/2 −Q

y
i,j−1/2

∆y
= 0, (2.3)

where Qxi+1/2,j = Qx(ui,j , ui+1,j) and Qyi,j+1/2 = Qy(ui,j , ui,j+1) are numerical entropy flux functions satisfying
Qx(u, u) = qx(u) and Qy(u, u) = qy(u) for all u ∈ R.
Definition 2.2 (Entropy stable methods). Let (η, q) be an entropy pair. We say that the finite volume method
(2.2) is entropy stable (with respect to (η, q)) if computed solutions satisfy the discrete entropy equality

d

dt
η(ui,j) +

Qxi+1/2,j −Q
x
i−1/2,j

∆x
+
Qyi,j+1/2 −Q

y
i,j−1/2

∆y
6 0, (2.4)

where Qxi+1/2,j = Qx(ui,j , ui+1,j) and Qyi,j+1/2 = Qy(ui,j , ui,j+1) are numerical entropy flux functions satisfying
Qx(u, u) = qx(u) and Qy(u, u) = qy(u) for all u ∈ R.

For an entropy pair (η, q) the mapping u 7→ η′(u) is of particular importance, and we denote this entropy
variable by v = v(u) := η′(u). If η is strictly convex, η′′(u) > 0, then the map u 7→ v(u) is strictly monotone
increasing and hence is invertible. This inverse will be denoted by u(v). Thus, the mapping u 7→ v induces a
change of variables, in terms of which we can pose the conservation law (2.2) as

∂tu(v) +∇ · f(u(v)) = 0. (2.5)

We define also the entropy potential ψ : R → Rd defined by ψ(u) := v(u)f(u) − q(u), whose name is given by
the fact that ∂vψ(u(v)) = f(u(v)).

A general approach to designing entropy conservative/stable schemes is as follows. Multiplying both sides of
(2.2) by vi,j := η′(ui,j) and using the chain rule we get

d

dt
η(ui,j) + vi,j

F xi+1/2,j − F
x
i−1/2,j

∆x
+ vi,j

F yi,j+1/2 − F
y
i,j−1/2

∆y
= 0.

Adding and subtracting terms yields

d

dt
η(ui,j) +

Qxi+1/2,j −Q
x
i−1/2,j

∆x
+
Qyi,j+1/2 −Q

y
i,j−1/2

∆y

=
rxi+1/2,j + rxi−1/2,j

2∆x
+
ryi,j+1/2 + ryi,j−1/2

2∆y

(2.6)

where

rxi+1/2,j = [[v]]i+1/2,jF
x
i+1/2,j − [[ψx]]i+1/2,j ,

ryi,j+1/2 = [[v]]i,j+1/2F
y
i,j+1/2 − [[ψy]]i,j+1/2

Qxi+1/2,j = {{v}}i+1/2,jF
x
i+1/2,j − {{ψ

x}}i+1/2,j ,

Qyi,j+1/2 = {{v}}i,j+1/2F
y
i,j+1/2 − {{ψ

y}}i,j+1/2.

(2.7)
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It is straightforward to see that Qx, Qy are consistent with q in the sense of Definitions 2.1 and 2.2, as long as
F x, F y are consistent with f . Thus, if F x, F y are chosen such that either r ≡ 0 or r 6 0, then the scheme (2.2)
is entropy conservative/stable. In particular, if F x, F y are of the form

F xi+1/2,j = F̃ xi+1/2,j −D
x
i+1/2,j [[v]]i+1/2,j , F yi,j+1/2 = F̃ yi,j+1/2 −D

y
i,j+1/2[[v]]i,j+1/2 (2.8)

for nonnegative coefficients Dx, Dy > 0 and numerical fluxes F̃ x, F̃ y satisfying

[[v]]i+1/2,jF̃
x
i+1/2,j = [[ψx]]i+1/2,j , [[v]]i,j+1/2F̃

y
i,j+1/2 = [[ψy]]i,j+1/2 (2.9)

then the resulting scheme (2.2) is entropy stable. These observations were first made by Tadmor [19, 20]; see
also [21]. For fluxes of the form (2.8) we also get a precise expression for the amount of entropy dissipated in
(2.4):

d

dt
η(ui,j) +

Qxi+1/2,j −Q
x
i−1/2,j

∆x
+
Qyi,j+1/2 −Q

y
i,j−1/2

∆y

=
Dx
i+1/2,j [[v]]2i+1/2,j +Dx

i−1/2,j [[v]]2i−1/2,j

2∆x
+
Dy
i,j+1/2[[v]]2i,j+1/2 +Dy

i,j−1/2[[v]]2i,j−1/2

2∆y
.

Under further assumptions on η andD, this yields explicit bounds on “weak TV” terms of the form
∑
i,j [[v]]2i+1/2,j∆y,

which can be used to prove compactness and convergence of the numerical method; see e.g. [4]. We will apply
this approach in Section 3.

Remark 2.3. The above observations can be used to design entropy stable schemes, by first finding numerical
fluxes F̃ x, F̃ y satisfying (2.9), and then adding diffusion in the form (2.8). We note that with this approach,
we are only guaranteed that the discrete entropy inequality (2.4) (or (2.3) for entropy conservative schemes) is
satisfied for one particular entropy pair (η, q).

2.3. The TECNO scheme

The scheme (2.2) with fluxes F̃ x, F̃ y satisfying (2.9) is entropy conservative, in the sense of Definition 2.1.
It can be shown that two-point entropy conservative schemes are at most second-order accurate, in the sense
of truncation error [19, 20]. When adding diffusion in the form (2.8) with D = O(1), the resulting scheme is
at most first-order accurate. The TECNO schemes, introduced in [4, 7], represent a systematic approach to
designing higher-order accurate entropy stable schemes. Since the convergence proof in Section 3 only applies
to the second-order TECNO schemes, we will only describe these methods here, and we refer to [4, 7] for the
general construction.

The TECNO scheme has two main ingredients: An entropy conservative flux F̃ x, F̃ y, and a sign preserving
reconstruction method. Since our mesh is a Cartesian grid, we define the reconstruction procedure in a tensorial
manner. For a partition (Ci)i∈Z of R we consider a pth order reconstruction operator R, mapping any grid
function (wi)i∈Z to a piecewise (p− 1)th order polynomial Rw(x). Multi-dimensional grid functions (wi,j)i,j∈Z
are reconstructed dimension-by-dimension, defining in particular the edge values

w±i+1/2,j = Rw·,j(xi+1/2 ± 0), w±i,j+1/2 = Rwi,·(yj+1/2 ± 0) (2.10a)

(where we by “+0” and “−0” mean right and left limits, respectively). We define also the edge jumps

〈〈w〉〉i+1/2,j = w+
i+1/2,j − w

−
i+1/2,j , 〈〈w〉〉i,j+1/2 = w+

i,j+1/2 − w
−
i,j+1/2. (2.10b)

Fix now some entropy pair (η̃, q̃). The second-order TECNO scheme [4, 7] is constructed from a flux F̃ x, F̃ y
which is entropy conservative with respect to (η̃, q̃), and applies a second-order reconstruction method to the
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entropy variables ṽ = η̃ ◦ u. The resulting scheme (2.2) has numerical flux

F xi+1/2,j = F̃i+1/2,j −Dx
i+1/2,j〈〈ṽ〉〉i+1/2,j ,

F yi,j+1/2 = F̃i,j+1/2 −Dy
i,j+1/2〈〈ṽ〉〉i,j+1/2,

(2.11)

where Dx, Dy > 0. As shown in [7], the above scheme is formally second-order accurate, and it satisfies the
discrete entropy inequality (2.4) for the entropy pair (η̃, q̃), provided the reconstruction operator R satisfies the
sign property

[[ṽ]]i+1/2,j〈〈ṽ〉〉i+1/2,j > 0, [[ṽ]]i,j+1/2〈〈ṽ〉〉i,j+1/2 > 0.

This is indeed true for the ENO reconstruction method [11]:

Theorem 2.4 (The ENO sign property [8]). For some p ∈ N, let R denote the p-th order ENO reconstruction
operator. Then for any grid function (wi)i∈Z,

sign〈〈w〉〉i+1/2 = sign[[w]]i+1/2. (2.12)

Moreover, there exists a constant Cp > 0 depending only on p such that

〈〈w〉〉i+1/2

[[w]]i+1/2
6 Cp. (2.13)

For the sake of simplicity we henceforth select the entropy for which TECNO is entropy stable as η̃(u) = u2/2.
The corresponding entropy variable is then simply ṽ = u, making the mapping between conserved and entropy
variables somewhat easier. A summary of the TECNO scheme that we will analyze in this paper follows:

Definition 2.5. The second-order TECNO scheme for (2.1) is the numerical scheme (2.2) with the numerical
flux

F xi+1/2,j = F̃i+1/2,j −Dx
i+1/2,j〈〈u〉〉i+1/2,j ,

F yi,j+1/2 = F̃i,j+1/2 −Dy
i,j+1/2〈〈u〉〉i,j+1/2,

(2.14)

where
• F̃ is a consistent and locally Lipschitz continuous numerical flux which is entropy conservative with
respect to the entropy η̃(u) = u2/2
• the diffusion coefficients D satisfy

D 6 Dx
i+1/2,j , D

y
i,j+1/2 6 D for fixed D,D > 0

• 〈〈u〉〉i+1/2,j and 〈〈u〉〉i,j+1/2 denote the jumps in the second-order ENO reconstruction of the conserved
variable (ui,j(t))i,j∈Z.

Before stating the next theorem, it should be mentioned once and for all that here and in the later sections, C
has been used as a generic constant which is independent of ∆x and ∆y, but might vary in different calculations.

Theorem 2.6. The second-order TECNO scheme (cf. Definition 2.5) has the following properties:
(i) it is entropy stable with respect to the square entropy η̃(u) = u2/2
(ii) the flux F is locally Lipschitz continuous
(iii) there is some C > 0 independent of ∆x,∆y such that∫ T

0

∑
i,j

(∣∣[[u]]i+1/2,j

∣∣3∆y +
∣∣[[u]]i,j+1/2

∣∣3∆x
)
dt 6 C‖u‖L∞(R2×[0,T ]), (2.15a)
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0

∑
i,j

(
[[u]]i+1/2,j〈〈u〉〉i+1/2,j∆y + [[u]]i,j+1/2〈〈u〉〉i,j+1/2∆x

)
dt 6 C. (2.15b)

where u = (ui,j(t))i,j is the solution computed by the scheme.

Proof. The entropy stability follows from the calculations in Section 2.2 and the sign property (2.12). Local
Lipschitz continuity of F follows from the Lipschitz continuity of F̃ and the upper bound (2.13).

For the “weak TV bounds” (2.15), summing (2.6) over i, j ∈ Z, integrating over t ∈ [0, T ] and using the
specific form of F in (2.14) yields

1

2

∑
i,j

(ui,j(T ))2 ∆x∆y − 1

2

∑
i,j

(ui,j(0))2 ∆x∆y = −E ,

E :=

∫ T

0

∑
i,j

(
Dx
i+1/2,j [[u]]i+1/2,j〈〈u〉〉i+1/2,j∆y +Dy

i,j+1/2[[u]]i,j+1/2〈〈u〉〉i,j+1/2∆x
)
dt.

Since D > 0 and the reconstruction satisfies the sign property (2.12), we have E > 0. From the above we
also see that E 6 1

2

∑
i,j(ui,j(0))2 ∆x∆y 6 1

2‖u0‖2L2(R2), so we see that the left-hand side of (2.15b) can be
upper-bounded by DE 6 1

2D‖u0‖2L2(R2) <∞.
For the remaining property (2.15a) we use the following fact, proved in [5, Section 4.4]: For every grid

function (wi)i∈Z with compact support,∑
i∈Z

∣∣[[w]]i+1/2

∣∣3 6 2‖w‖l∞
∑
i∈Z
〈〈w〉〉i+1/2[[w]]i+1/2 (2.16)

where 〈〈w〉〉i+1/2 = w+
i+1/2 − w

−
i+1/2 denotes the jump in the second-order ENO reconstruction of w. Thus, the

left-hand side of (2.15a) can be bounded by ‖u‖L∞ times the left-hand side of (2.15b). �

Remark 2.7. For even higher-order TECNO schemes, the results in Theorem 2.6 are still valid, with the
exception of (2.15a): The crucial estimate (2.16) has been conjectured but remains unproven; cf. [5, Section
4.4] or [4, Section 5.5].

3. Convergence of the scheme

Given a numerical solution (ui,j(t))i,j∈Z,t∈R+
computed with the second-order TECNO scheme (cf. Definition

2.5) we define the piecewise constant function

u∆(x, y, t) := ui,j(t) for (x, y) ∈ Ci,j ,

where ∆ = (∆x,∆y). The goal of this section will be to show the following theorem:

Theorem 3.1. Assume that the solution u∆ computed by the TECNO scheme (cf. Definition 2.5) is uniformly
L∞ bounded,

‖u∆‖L∞(R2×[0,T ]) 6M for every ∆ = (∆x,∆y) > 0 (3.1)

for someM > 0. Then there is some subsequence ∆′ → 0 such that u∆
′ → u pointwise a.e. and in Lp(R2×[0, T ])

for every p ∈ [1,∞). The function u is a weak solution of (2.1) which satisfies the entropy condition (1.5) for
the entropy η(u) = u2.

We will use the method of compensated compactness, and we give the main results required here in Section
3.1. The convergence proof is given in Section 3.2, but we summarize it here:
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Proof of Theorem 3.1. The compactness result, Corollary 3.4 requires the entropy residuals {∂tη(u∆) + ∇ ·
q(u∆)}∆>0 to lie in a compact subset of H−1

loc . Lemma 3.5 bounds their discrete equivalents ∂tη(u∆)+∇·Q(u∆)
by terms which, by Theorem 2.6(iii) and (3.1), are bounded in the sense of measures. Lemma 3.6 shows that
the remainder ∇· (q−Q) is small in H−1

loc . We then conclude (using Murat’s Lemma) that the entropy residuals
are precompact, and hence there is some strongly convergent subsequence.

Lemma 3.7 is a standard “Lax–Wendroff” proof, showing that the limit is a weak solution, and Lemma 3.8
shows consistency with a single entropy condition. �

3.1. Compensated compactness

We briefly summarize the technical compactness lemmas here, and refer to [1, 22] for more details.

Lemma 3.2 (Murat’s Lemma). Let Ω ⊂ Rd, d > 2 be an open, bounded set. Let (µ)n∈N be a bounded sequence
in W−1,p(Ω) for some 2 < p 6∞. Suppose also that ∀ n ∈ N

µn = ξn + πn, (3.2)

where ξn lies in a compact set of H−1
loc (Ω) and πn lies in a bounded set of Mloc(Ω). Then (µn)n∈N lies in a

compact subset of H−1
loc (Ω).

Theorem 3.3 (Panov, Theorem 5 in [18]). Let (uε)ε>0 be a bounded sequence in L∞(Rd × R+) such that for
every k ∈ R, the set {

∂tηk(uε) +∇ · qk(uε)
}
ε>0

(3.3)

is precompact in H−1
loc (Rd × R+). (Here, (ηk, qk) denote the Kruzkov entropy pairs (1.3).) Then there is a

subsequence εn → 0 as n→∞ and a function u ∈ L∞(Rd × R+) such that

uεn → u a.e. and in Lploc(Rd × R+) for every 1 6 p <∞. (3.4)

The following corollary shows that it is enough to consider smooth entropies in the above result.

Corollary 3.4. Let (uε)ε>0 be a bounded sequence in L∞(Rd×R+) such that for every entropy pair (η, q) with
η ∈ C2

b (R), the set {
∂tη(uε) +∇ · q(uε)

}
ε>0

(3.5)

is precompact in H−1
loc (Rd×R+). Then there is a subsequence εn → 0 as n→∞ and a function u ∈ L∞(Rd×R+)

such that
uεn → u a.e. and in Lploc(Rd × R+) for every 1 6 p <∞. (3.6)

Proof. Since this result is rather standard we omit a full proof, but the idea is to approximate ηk by C2 convex
entropies which converge uniformly to ηk. �

3.2. Convergence of TECNO

The TECNO scheme (Definition 2.5) is guaranteed to dissipate the square entropy η̃(u) = u2/2, but for an
arbitrary entropy η the corresponding discrete entropy residual (2.6) might have either sign. We can nonetheless
show that the entropy residual is not too large, in the following sense:

Lemma 3.5. Assume that the solution computed by the TECNO scheme is L∞ bounded, (3.1). Then for any
entropy pair (η, q) with η ∈ C2, the total discrete entropy production is upper-bounded by

∣∣∂tη(u∆) +∇ ·Q
∣∣(R2 × [0, T ]

)
6 C

∫ T

0

∑
i,j

(
|[[u]]i+1/2,j |3∆y + |[[u]]i,j+1/2|3∆x

)
dt

+C

∫ T

0

∑
i,j

(
[[u]]i+1/2,j〈〈u〉〉i+1/2,j∆y + [[u]]i,j+1/2〈〈u〉〉i,j+1/2∆x

)
dt

(3.7)
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where ∇ ·Q denotes the measure whose integral of any ϕ ∈ C0
c (R2 × R+) is

〈
∇ ·Q, ϕ

〉
=
∑
i,j∈Z

∫
R+

ϕi+1/2,j

Qxi+1/2,j −Q
x
i−1/2,j

∆x
+ ϕi,j+1/2

Qyi,j+1/2 −Q
y
i,j−1/2

∆y
dt∆x∆y,

ϕi+1/2,j :=
1

∆y

∫ yj+1/2

yj−1/2

ϕ(xi+1/2, y, t) dy, ϕi,j+1/2 :=
1

∆x

∫ xi+1/2

xi−1/2

ϕ(x, yj+1/2, t) dx

(3.8)

and where Qx, Qy are given by (2.7).

Proof. The technique of the proof is to compare the entropy residual of an arbitrary entropy η to the entropy
residual of the square entropy. Let (η, q) be any entropy pair with corresponding entropy residual ψ = (ψx, ψy),
and let ψ̃ be the entropy potential with respect to the square entropy η̃ = u2/2, ψ̃(u) = uf(u)− q̃(u). We split
the entropy residual r in (2.7) as r = r1 + r2, where

r1
i+1/2,j = [[v]]i+1/2,jF̃

x
i+1/2,j − [[ψx]]i+1/2,j , r2

i+1/2,j = −[[v]]i+1/2,jD
x
i+1/2〈〈u〉〉i+1/2,j

and similarly for ryi,j+1/2. If [[u]]i+1/2,j = 0 then ri+1/2,j = 0, so assume [[u]]i+1/2,j 6= 0. The first part of the
entropy residual can be estimated as

|r1
i+1/2,j | 6

∣∣∣[[v]]i+1/2,jF̃
x
i+1/2,j − [[ψx]]i+1/2,j

∣∣∣
=

∣∣∣∣[[v]]i+1/2,j

(
[[ψ̃x]]i+1/2,j

[[u]]i+1/2,j
−

[[ψx]]i+1/2,j

[[v]]i+1/2,j

)∣∣∣∣
=
∣∣[[v]]i+1/2,j

∣∣∣∣∣∣ 1

[[u]]i+1/2,j

∫ ui+1,j

ui,j

(ψ̃x)′(v) dv − 1

[[v]]i+1/2,j

∫ vi+1,j

vi,j

(ψx)′(v) dv

∣∣∣∣
=
∣∣[[v]]i+1/2,j

∣∣∣∣∣∣ 1

[[u]]i+1/2,j

∫ ui+1,j

ui,j

fx(u) du− 1

[[v]]i+1/2,j

∫ vi+1,j

vi,j

fx(u(v)) dv

∣∣∣∣
(by the mean value theorem)

=
∣∣[[v]]i+1/2,j

∣∣∣∣∣∣fx(ui,j) + fx(ui+1,j)

2
−

[[u]]2i+1/2,j

12
(ψ̃x)′′′(ξ̃i+1/2,j)

− fx(ui,j) + fx(ui+1,j)

2
+

[[v]]2i+1/2,j

12
(ψx)′′′(ξi+1/2,j)

∣∣∣∣
(by the L∞ bound on u)

6 C
∣∣[[u]]i+1/2,j

∣∣3,
and similarly in the y-direction,

|r1
i,j+1/2| 6 C

∣∣[[u]]i,j+1/2

∣∣3.
The second part of the entropy residual can be bounded by

|r2
i+1/2,j | 6 ‖η

′′‖L∞([−M,M ])D[[u]]i+1/2〈〈u〉〉i+1/2.

The conclusion now follows. �
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We can now show precompactness of the sequence of approximations:

Lemma 3.6. Let Ω ⊂ R2 × [0, T ] be a bounded subset and assume that the solution computed by the TECNO
scheme is L∞ bounded, (3.1). Then there is a subsequence ∆′ → 0 such that u∆

′ → u pointwise a.e. and in
Lploc(R2 × R+) for 1 6 p <∞, for some u ∈ L1 ∩ L∞(R2 × R+).

Proof. Let (η, q) be an arbitrary C2 entropy pair. By Corollary 3.4 it is sufficient to show that the sequence
E∆x,∆y := ∂tη(u∆) +∇ · q(u∆) is precompact in H−1

loc , and to this end we will employ Murat’s lemma. Firstly
note that E∆x,∆y is bounded in W−1,∞(R2 × R+), by the L∞ bound on u∆. Decompose

∂tη(u) +∇ · q(u) = ∂tη(u) +∇ ·Q︸ ︷︷ ︸
=: E1

+∇ · q(u)−∇ ·Q︸ ︷︷ ︸
=: E2

where Q is given in (2.7). Note that, due to the L∞ bound on u∆ and Theorem 2.6, also Q is locally Lipschitz
continuous. By Lemma 3.5 and Theorem 2.6(iii), the discrete entropy production E1 is bounded in the space
of measuresM(Rd × R+).

Now to show that E2 is precompact in H−1
loc (R2 × [0, T ]), let Ω ⊂ R2 × [0, T ] be open and bounded and let

ϕ ∈ H1
0 (Ω). Extending ϕ by zero outside Ω, we get

E2(ϕ) =

∫
Ω

ϕd
(
∇ · q(u)−∇ ·Q

)
d(x, y, t)

(cf. (3.8))

=

∫ T

0

∑
i,j

ϕi+1/2,j

(
qx(ui+1,j)− qx(ui,j)

)
∆y + ϕi,j+1/2

(
qy(ui,j+1)− qy(ui,j)

)
∆x dt

−
∫ T

0

∑
i,j∈Z

ϕi+1/2,j

Qxi+1/2,j −Q
x
i−1/2,j

∆x
+ ϕi,j+1/2

Qyi,j+1/2 −Q
y
i,j−1/2

∆y
dt∆x∆y

(summation by parts)

=

∫ T

0

∑
i,j

ϕi+1/2,j − ϕi−1/2,j

∆x

(
Qxi−1/2,j − q

x(ui,j)
)
dt∆x∆y

+

∫ T

0

∑
i,j

ϕi,j+1/2 − ϕi,j−1/2

∆y

(
Qyi,j−1/2 − q

y(ui,j)
)
dt∆x∆y

(letting I = {(i, j) : Ω ∩ Ci,j 6= ∅})

6 ‖∂xϕ‖L2(Ω)

(∫ T

0

∑
(i,j)∈I

∣∣Qxi−1/2,j − q
x(ui,j)

∣∣2∆x∆y dt

) 1
2

+ ‖∂yϕ‖L2(Ω)

(∫ T

0

∑
(i,j)∈I

∣∣Qyi,j−1/2 − q
y(ui,j)|2∆x∆y dt

) 1
2
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(by Lipschitz continuity of Q)

6 C‖ϕ‖H1(Ω)

[(∫ T

0

∑
(i,j)∈I

|[[u]]i+1/2,j |2∆x∆y dt

) 1
2

+

(∫ T

0

∑
(i,j)∈I

|[[u]]i,j+1/2|2∆x∆y dt

) 1
2
]

6 C‖ϕ‖H1(Ω)|Ω|
3
2

[(∫ T

0

∑
i,j

|[[u]]i+1/2,j |3∆x∆y dt

) 1
3

+

(∫ T

0

∑
i,j

|[[u]]i,j+1/2|3∆x∆y dt

) 1
3
]

→ 0

where the last step follows from (2.15). Thus by invoking Murat’s Lemma 3.2 we can conclude that the sequence
(E∆x,∆y)∆x,∆y>0 is precompact in H−1

loc (R2 × [0, T ]). Applying Corollary 3.4 then yields the desired result. �

Now we need to show that this limit function u is indeed a weak solution of (2.1). To do so we state and
prove the following “Lax–Wendroff result”.

Lemma 3.7. Under the same assumptions as in Lemma 3.6, the limit u is a weak solution of (2.1).

Proof. Let ϕ ∈ C1
c (R2 × (0, T )) be a test function and select a compact set Kx ×Ky ⊂ R2 such that suppϕ ⊂

Kx ×Ky × [0, T ]. Furthermore, denote

ϕi,j(t) = ϕ(xi, yj , t), ϕ∆(x, y, t) =
∑
i,j

ϕi,j(t)χCi,j (x, y).

Multiplying the numerical scheme (2.2) by ϕi,j(t) and integrating/summing in time/space, we get

0 =

∫ T

0

∆x∆y
∑
i,j

(
ϕi,j

d

dt
u∆i,j + ϕi,j

F̃ xi+1/2,j − F̃
x
i−1/2,j

∆x
+ ϕi,j

F̃ yi,j+1/2 − F̃
y
i,j−1/2

∆y

− ϕi,j
Dx
i+1/2,j〈〈u〉〉i+1/2,j −Dx

i−1/2,j〈〈u〉〉i−1/2,j

∆x

− ϕi,j
Dy
i,j+1/2〈〈u〉〉i,j+1/2 −Dy

i,j−1/2〈〈u〉〉i,j−1/2

∆y

)
dt.

After performing integration and summation by parts for temporal and spatial variables respectively we get

A1 +A2 +A3 +B1 +B2 = 0, (3.9)

where we can write

A1 := −
∫ T

0

∆x∆y
∑
i,j

ui,j
d

dt
ϕi,j dt,

A2 := −
∫ T

0

∆x∆y
∑
i,j

F̃ xi+1/2,j

ϕi+1,j − ϕi,j
∆x

dt,

A3 := −
∫ T

0

∆x∆y
∑
i,j

F̃ yi,j+1/2

ϕi,j+1 − ϕi,j
∆y

dt,

B1 :=

∫ T

0

∆x∆y
∑
i,j

Dx
i+1/2,j〈〈u〉〉i+1/2,j

ϕi+1,j − ϕi,j
∆x

dt,
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B2 :=

∫ T

0

∆x∆y
∑
i,j

Dy
i,j+1/2〈〈u〉〉i,j+1/2

ϕi,j+1 − ϕi,j
∆y

dt.

We can write A1 = −
∫ T

0

∫
R
∫
R u

∆∂tϕ
∆ dx dy dt, and thanks to the convergence of u∆ to u from Lemma 3.6

and convergence of ϕ∆ to ϕ a.e., we have lim∆x,∆y→0A
1 = −

∫ T
0

∫
R2 u∂tϕdx dy dt.

For the second term A2, we denote for the sake of simplicity ∆xψ(x, y, t) = ψ(x+∆x,y,t)−ψ(x,y,t)
∆x , for any

function ψ. Since F̃ x is a two-point flux, we can write

A2 = −
∫ T

0

∫
R2

F̃ x
(
u∆(x, y, t), u∆(x+ ∆x, y, t)

)
∆xϕ

∆(x, y, t) d(x, y) dt

= A2,1 +A2,2,

where

A2,1 := −
∫ T

0

∫
R2

fx
(
u∆(x, y, t)

)
∆xϕ

∆(x, y, t) d(x, y) dt,

A2,2 :=

∫ T

0

∫
R2

(
fx
(
u∆(x, y, t)

)
− F̃ x

(
u∆(x, y, t), u∆(x+ ∆x, y, t)

))
∆xϕ

∆(x, y, t) d(x, y) dt.

Thanks to the convergence of u∆ from Lemma 3.6 and the convergence of ∆xϕ
∆ to ∂xϕ we have

A2,1 → −
∫ T

0

∫
R2

fx(u)∂xϕd(x, y) dt as ∆→ 0. (3.10)

For the term A2,2 we apply the Hölder inequality and Lemma 3.6 to get

|A2,2| 6
∫ T

0

∫
R2

∣∣∣f̃x(u∆(x, y, t)
)
− F̃ x

(
u∆(x, y, t), u∆(x+ ∆x, y, t)

)∣∣∣∣∣∆xϕ
∆(x, y, t)

∣∣ d(x, y) dt

(using Lipschitz continuity of F̃ x)

6 C
∫ T

0

∫
R2

∣∣u∆(x+ ∆x, y, t)− u∆(x, y, t)
∣∣∣∣∆xϕ

∆(x, y, t)
∣∣ d(x, y) dt

6 C

(∫ T

0

∫
R2

∣∣∆xϕ
∆
∣∣ 32 d(x, y) dt

) 2
3
(∫ T

0

∑
i,j

∣∣[[u]]i+1/2,j

∣∣3∆x∆y dt

) 1
3

6 C‖∂xϕ‖
L

3
2 (R2×[0,T ))

(∫ T

0

∑
i,j

∣∣[[u]]i+1/2,j

∣∣3∆x∆y dt

) 1
3

→ 0

as ∆x,∆y → 0 by (2.15a). Analogously, A3 → −
∫ T

0

∫
R2 f

y(u)∂yϕdx dy dt as ∆x,∆y → 0. We conclude that

A→ −
∫ T

0

∫
R2

[
u∂tϕ+ f(u) · ∇ϕ

]
d(x, y) dt as ∆x,∆y → 0. (3.11)
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It remains to show that B1, B2 in (3.9) vanish as ∆x,∆y → 0. Indeed,

|B1| 6 D
∫ T

0

∆x∆y
∑
i,j

∣∣〈〈u〉〉i+1/2,j

∣∣∣∣∣∣ϕi+1,j − ϕi,j
∆x

∣∣∣∣ dt
(by (2.13))

6 CD‖η′′‖L∞(R)

∫ T

0

∆x∆y
∑
i,j

∣∣[[u]]i+1/2,j

∣∣∣∣∣∣ϕi+1,j − ϕi,j
∆x

∣∣∣∣ dt
6 CD‖η′′‖L∞(R)‖∂xϕ‖L3/2(R2×[0,T ])

∫ T

0

∆x∆y
∑
i,j

∣∣[[u]]i+1/2,j

∣∣3 dt
1/3

→ 0

as ∆x,∆y → 0, and likewise for B2. This completes the proof. �

Although we are not able to show that the TECNO scheme converges to the entropy solution, we will show
that the weak solution u satisfies at least one of the entropy conditions.

Lemma 3.8. With the same assumptions as in Lemma 3.6, the limit u satisfies

∂tη̃(u) +∇ · q̃(u) 6 0. (3.12)

Proof. As in (2.6) in Lemma 3.5 we can write

d

dt
η̃(ui,j) +

Q̃xi+1/2,j − Q̃
x
i−1/2,j

∆x
+
Q̃yi,j+1/2 − Q̃

y
i,j−1/2

∆y
=
rxi+1/2,j + rxi−1/2,j

2∆x
+
ryi,j+1/2 + ryi,j−1/2

2∆y
(3.13)

where, in this particular case, the entropy residuals r on the right-hand side are all nonpositive (see e.g. [4,7,19]).
Multiplying the above by a nonnegative test function ϕ ∈ C1

c (R2 × (0, T )) and proceeding in the same manner
as in Lemma 3.7 we obtain (3.12) in the sense of distribution. �

4. Conclusions and outlook

We prove convergence of the second-order, semi-discrete TECNO scheme in two space dimensions to a
weak solution of the hyperbolic conservation law (1.1); this can easily be generalized to any number of space
dimensions. The proof of this result relies on estimating the entropy residual appropriately using the (weak)
TV bound obtained from entropy stability with respect to one entropy. Invoking this estimate, along with
an assumption of L∞ boundedness, precompactness of the sequence of approximate solutions is shown using a
corollary derived from a compensated compactness result due to Panov. Finally, to show that the limit function
obtained due to the precompactness property is indeed a weak solution of (1.1), a “Lax–Wendroff” type argument
is used.

Convergence proofs of even higher-order (i.e. more than second order) TECNO scheme in multiple space
dimensions, to a weak solution of the equation (1.1) are still unanswered. In our opinion, this is largely due
to the unavailability of weak TV estimates of the type (2.15a), as well as an appropriate version of Lemma
3.5. This should be an object of interest for future research. Last, but not least, one key estimate to prove
(2.15b), and consequently (2.15a), is (2.16). For even higher-order ENO reconstruction, the estimate (2.16)
(the “ENO-conjecture”) is still not established and remains an open problem.
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