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Abstract This paper analyzes the approximation properties of spaces of piecewise
tensor product polynomials over box meshes with a focus on application to IsoGe-
ometric Analysis (IGA). Local and global error bounds with respect to Sobolev or
reduced seminorms are provided. Attention is also paid to the dependence on the
degree and exponential convergence is proved for the approximation of analytic
functions in the absence of non-convex extended supports.
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1 Introduction

Let Ω be a union of axis aligned boxes in Rn and S a space of piecewise poly-
nomials of degree d := (d1, . . . , dn) on Ω. We use a local approximation operator
ℵ : Lp(Ω) → S, which reproduces polynomials of degree d, to derive a priori ap-
proximation estimates for how well a function f can be approximated by a function
in S. Bounds for the approximation error on both the mesh elements and on Ω are
provided. The Lp, Lq estimates on Ω have the following form

‖∂σ(f − ℵf)‖p ≤ C
∑
k∈K

‖ρk∂kf‖q, (1)
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where K ⊂ Nn is an index set of integers and the weights ρk are powers of the
local resolution of S. The precise form of the ρk depends on K, k, p, q, d and σ.
The constant C depends on a subset of some constants Cλ, . . . , Cs , which come
from the abstract assumptions HP,. . . ,Hs ; see Table 1 at the end of the paper.

Different index sets K are possible, we focus on K = {k ∈ Nn : |k| = d + 1}
that correspond to Sobolev seminorms and on index sets K that correspond to
reduced seminorms that involve a smaller set of partial derivatives. For σ = 0
the reduced seminorm leads to bounds in term of the partial derivatives in the
coordinate directions ∥∥f − ℵf∥∥

p
≤ C

n∑
i=1

∥∥ρi∂kii f∥∥q. (2)

For Sobolev seminorms and p ≤ q we are able to weaken the usual mesh
quasi uniformity and mesh shape regularity assumptions matching those for tensor
product splines. This can be seen by comparing our assumptions H#

M and Hs with
the corresponding assumptions in [12][39][40].

For 1 ≤ p ≤ q and σ = 0 we obtain anisotropic estimates that take into
consideration the local resolution of S in the different coordinate directions. In the
other cases the estimates are isotropic, i.e., the directional information is discarded.

We also consider a sequence of spline spaces {Sd} of increasing degree d =
(d, . . . , d) and corresponding approximation operators {ℵd}. Under suitable as-
sumptions, if f : Ω → R admits an analytic extension on ∆ ⊂ Cn, the approxi-
mation error decreases exponentially as d increases. There are τ, Cτ , τ#, Cτ# ∈ R
that depend on ∆, σ and n, but independent of the degree d, such that

‖∂σ(f − ℵdf)‖∞ ≤Cττ
d+1−|σ| ‖f‖∞,∆

≤Cτ#τ
(dim Sd)

1
n

# ‖f‖∞,∆ .
(3)

Exponential convergence is of interest for the numerical solutions of PDEs and it is
known to hold for Finite Element discretizations and univariate splines even in the
presence of singularities [15][35]. The novelty here is that exponential convergence
is proved using local approximation operators and without assumptions on the
smoothness of the functions in Sd.

Following the application of splines to numerical methods for PDEs, mostly
in the framework of IsoGeometric Analysis (IGA) [22], there has been a renewed
interest in extension of tensor product splines (TPS) that are suitable to adap-
tive methods. Many of the available constructions fit our abstract framework. We
provide an approximation operator ℵ satisfying HP,. . . ,Hs for TPS, Analysis Suit-
able T splines (AST) [4][3], truncated hierarchical splines (THB) [20] and Locally
Refined splines (LR) [16].

TPS are included for the sake of comparison and similar results are available
in the literature [27][5][6]. The results for AST splines and for THB splines require
weaker assumptions on the mesh compared to [39][40][3]; moreover, both global
estimates and estimates without mixed derivatives are included. To the best of our
knowledge the operator in Section 8.4 is the first quasi-interpolant that is proposed
for LR splines.

The notation and the setting of this paper are described in Section 2. Section 3
contains the main approximation results under the assumptions HP,. . . ,Hs . The
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index set K of partial derivatives is determined by HΠ that describes polynomial
approximation. In Section 4 we prove that different variants of averaged Taylor
expansion operators satisfy HΠ . Section 5 specializes the abstract theory to bounds
in terms of Sobolev and reduced seminorms. Section 6 studies the approximation
of analytic functions and contains the proof of exponential convergence. Section 7
recalls the B-spline theory necessary for this paper and provides the building blocks
for the approximation operators ℵ described in Section 8. Sections 8 contains an
approximation operator for TPS, AST, THB and LR. For each case we provide a
definition of ℵ that satisfies the required abstract assumptions. Section 9 contains
a few closing remarks.

2 Preliminaries

Sets are usually denoted by capital letters, except when they are subsets of a
topological space. The cardinality of a set A is denoted by #A. The interior of a
subsets ω of a topological space, i.e. the biggest open set contained in ω, is denoted
by ω and the closure, i.e. the smallest closed set containing ω, is denoted by ω.

Z is the set of integers and N := {0, 1, . . . }. The floor, or integer part, of a real
number a ∈ R is denoted by bac := max{z ∈ Z : z ≤ a}. We also use the positive
and negative parts: a+ := max{0, a} and a− := min{0, a} so that a = a+ + a−.

2.1 Multi-index notation

Multi-indices in Nn and vectors in Rn are highlighted by boldface. For convenience
we use 0 := (0, . . . , 0) and 1 := (1, . . . , 1) in Nn and Rn. Given a multi-index
α ∈ Nn and a sufficiently smooth function f : Ω ⊆ Rn → R

∂αf :=
∂α1+···+αn

∂xα1
1 · · · ∂x

αn
n
f.

The factorial of a multi-index α ∈ Nn is α! :=
∏n
i=1(αi!). Consequently for α, β ∈

Nn we have (
α

β

)
:=

α!

(α− β)!β!
=

n∏
i=1

(
αi
βi

)
.

Many scalar operations are extended to vectors in Rn. The relations <,>,≥,≤
hold on a pair of vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn if and only if they
hold for each pair of components, e.g.

a ≤ b⇔ ai ≤ bi, ∀i = 1, . . . , n.

Similarly max{a, b}, min{a, b}, and a± act component wise: e.g.,

a+ := ((a1)+, . . . , (an)+), max{a, b} := (max{a1, b1}, . . . ,max{an, bn}).

For a vector a ∈ Rn we define

|a| :=
n∑
i=1

|ai| , ‖a‖ :=
( n∑
i=1

a2i
) 1

2 ,

maxa := max{a1, . . . , an}, mina := min{a1, . . . , an},
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and for a, b ∈ Rn, we define the power ab as

ab :=
n∏
i=1

abii .

Note that we have the following relations for a, b, c ∈ Rn

ac

bc
=
(a1
b1
, . . . ,

an
bn

)c
, a ≥ 0⇒ ab ≤ (maxa)|b+|(mina)−|b−|. (4)

2.2 Function spaces

As usual C(U) denotes the space of continuous functions U → R and for α ∈ N,
Cα(U) is the space of continuous functions whose derivatives up to order α are in
C(U). The definition is extended to α ∈ Nn with the following meaning

Cα(U) := {f : U → R : ∀β ∈ Nn with β ≤ α, ∂βf ∈ C(U)}.

Polynomials of maximal degree d and polynomials of multidegree d = (d1, . . . , dn)
are respectively denoted by

Pd := span{xα : α ∈ Nn, |α| ≤ d}, Pd := span{xα : α ∈ Nn, α ≤ d}.

In general the polynomial space PA associated with A ⊆ Nn is

PA := span{xα : α ∈ A}.

The standard Lebesgue measure on Rn is denoted by µ. As customary Lp(U),
1 ≤ p ≤ ∞, is the Banach space of the equivalence classes of measurable functions
U → R that agree almost everywhere (a.e.) and Lp(U ;Rn) is the corresponding
space of vector valued functions. The norm on Lp(U) is the usual

‖f‖p,U :=

{
(
∫
U
|f(x)|p dx)

1
p p 6=∞,

ess sup{|f(x)| , x ∈ U} p =∞.

The dual of Lp(U) is the space of linear continuous functionals λ : Lp(U) → R
and it is denoted by Lp(U)∗. It is a Banach space with norm

‖λ‖∗p := sup{λ(f) : f ∈ Lp(U) : ‖f‖p = 1}.

If 1 < p < ∞ then Lp(U)∗ is isometrically isomorphic to Lp
′
(U) where p′ =

(1− 1/p)−1 and the isomorphism maps λ to w if for all f ∈ Lp(U)

λ(f) =

∫
U

f(x)w(x) dx.

The support of a function f ∈ Lp(U) is the closed set

supp f := U \
⋃
W∈Z

W, Z = {open W ⊆ U : f |W = 0 a.e.}.



Local approximation from spline spaces on box meshes 5

This definition agrees with the standard definition supp f = {x ∈ U : f̃(x) 6= 0}
if f̃ is a continuous representative of f . For λ ∈ Lp(U)∗ we use suppλ to denote
the distributional support, i.e.

suppλ := U \
⋃
W∈Z

W, Z = {open W ⊆ U : ∀f with supp f ⊂W, λ(f) = 0}.

For 1 < p < ∞ the supports of λ as an element of Lp(U)∗ and as an element of

Lp
′
(U) coincide.
To deal with mixed norms as in (1) we introduce the following notations

ν :=
1

p
− 1

q
, ν := (ν, . . . , ν). (5)

2.3 Spline spaces on box meshes

In this paper a box in Rn is axis aligned, i.e. it is either empty or a Cartesian
product of non-empty closed intervals η = [a, b] := [a1, b1] × · · · × [an, bn]. Given
a set U ⊂ Rn the bounding box of U is denoted b(U) and it is the smallest box
containing U :

b(U) := min{box η : U ⊆ η}.

The size of a box η = [a, b] = [a1, b1]× · · · × [an, bn] is the vector

hη := (hη,1, . . . , hη,n) := (b1 − a1, . . . , bn − an) ∈ Rn.

For a set U ⊂ Rn we define hU := hb(U). For all U ⊂ Rn we have

µ(U) ≤ h1
U =

n∏
i=1

hU,i = µ(b(U)).

A box meshM is a collection of boxes having non-empty pairwise-disjoint interiors

ω ∈M⇒ ω 6= ∅, ω, η ∈M, ω 6= η ⇒ ω ∩ η = ∅.

The domain Ω of the box mesh M is the union of the boxes it contains

Ω :=
⋃
ω∈M

ω.

Note that the domain of a box mesh is not necessarily connected. We will shorten
‖·‖p,Ω to ‖·‖p, i.e. the domain Ω will be subsumed in norms.

A spline space S of degree d on a box mesh M is a subspace of

{f : Ω → R : ∀ω ∈M, ∃g ∈ Pd : f = g in ω}.

We always assume Pd ⊆ S. The support of any function f ∈ S is a union of boxes
in M. We denote the set of boxes contained in supp f by

Mf := {ω ∈M : ω ⊆ supp f}.
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Ω

sφ

suppφ
ω

suppλφ

Fig. 1 An example of ω ( ), suppφ ( ), suppλφ ( ) and sφ ( ).

2.4 Quasi-interpolants

A quasi-interpolant ℵ : Lp(Ω)→ S can be constructed using a generating system
Φ and a collection of linear functionals Λ = {λφ, φ ∈ Φ} ⊂ Lp(Ω)∗ by setting

ℵf :=
∑
φ∈Φ

λφ(f)φ. (6)

Note that ℵ is linear , i.e., ℵ(af + bg) = aℵf + bℵf .
For U ⊆ Ω we define the set AU of active generators of U as

AU := {φ ∈ Φ : suppφ ∩ U 6= ∅}.

In particular we will use Aω for ω ∈M. To allow for suppλφ 6⊆ suppφ we introduce
the extended support sφ and the set Eω of extended active generators of ω

sφ := b(suppφ ∪ suppλφ) ∩Ω, Eω := {φ ∈ Φ : ω ⊆ sφ}.

Note that Eω ⊇ Aω and the equality holds if suppλφ ⊆ suppφ. An example of sφ is
shown in Fig. 1. The set sφ is convex and a box if and only if b(suppφ∪suppλφ) ⊆
Ω. In this paper we assume that the sφ is a truncated box, i.e. it has the form

sφ = η \ β, (7)

where η, β are two boxes in Rn sharing a common vertex and β ⊂ η. The truncated
boxes in Rn are classified by the face of η that does not intersect sφ and has
maximum dimension m, m := −1 when sφ = η. It can be shown that there are
3n−2n types of truncated boxes in Rn. In R2 a truncated box is either a rectangle
or an L-shaped domain, see Fig. 2. In R3 it is either a box, a Fichera corner or a
product of an L-shape and an interval, see Fig. 3.

Diversification, see [33], can sometimes provide a Φ such that all the sφ’s are
truncated boxes, starting from a Ψ not having this property. It consists in replacing
each generator φ ∈ Ψ with the set of its restrictions to the connected components
of suppφ. A similar technique is decoupling, see [28] and the variation in [11]. In
Fig. 4 there are three examples of a non-convex sφ in R2. The left is a truncated
box. The middle one is not a truncated box, but diversification of φ can provide two
truncated boxes. The right one is not a truncated box and neither diversification,
nor decoupling can be applied.
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1 type, (m = −1) 4 types, (m = 0)

Fig. 2 Truncated boxes in R2: the box and the L-shaped domains. The face of η of dimension
m not intersecting sφ is highlighted in red.

1 type, (m = −1) 8 types, (m = 0) 12 types, (m = 1)

Fig. 3 Truncated boxes in R3: the box, the Fichera corner and the product of an L-shape
with an interval. The face of η of dimension m not intersecting sφ is highlighted in red.

sφ

sφ

sφ

Fig. 4 Three examples of a non-convex sφ( ), where b(sφ)( ) is not contained in the U

shaped region Ω( ).

We describe the approximation power of a spline space using the piecewise
constant functions hΦ and hM in L∞(Ω,Rn) defined as follows:

hΦ|ω := (hΦ,1, . . . , hΦ,n)|ω := max
φ∈Eω

{hsφ}, (8)

hM|ω := (hM,1, . . . , hM,n)|ω := hω. (9)

The function hΦ gives a local measure of the resolution of S, while hM represents
the local mesh size. The form of ρk in (1) classifies the estimates as

– anisotropic, if ρk = hekΦ with ek ∈ Rn;
– isotropic, if ρk = (max hΦ)ek with ek ∈ R.

Anisotropic estimates differentiate between the resolution in each coordinate di-
rections, while for isotropic estimates only the maximum is considered.
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2.5 Some useful inequalities

For all a1, . . . , am ≥ 0 and e ≥ 0 we have

( m∑
i=1

ai
)e ≤ m∑

i=1

aei ≤ m1−e( m∑
i=1

ai
)e
, 0 ≤ e ≤ 1,

m∑
i=1

aei ≤
( m∑
i=1

ai
)e ≤ me−1

m∑
i=1

aei , 1 ≤ e <∞.
(10)

The left inequalities can be proved by rescaling the ai by (
∑m
i=1 ai)

−1 and using
that for a ∈ [0, 1], ae ≤ a⇔ e ≥ 1. The right inequalities are corollaries of Hölder’s
inequality: for 1 < e <∞ and a1, . . . , am, b1, . . . , bm ≥ 0

m∑
i=1

aibi ≤
( m∑
i=1

aei

) 1
e
( m∑
i=1

b
e
e−1

i

) e−1
e
. (11)

2.6 Some properties of analytic functions

The following material will be used only in Section 6. For more details see, for
example, [31].

Definition 1 A function f : U ⊆ Cn → C or f : U ⊆ Rn → R is analytic at x if
there is an open neighborhood Ux of x where the sequence

Tdf(y) :=
∑
α≤d

(y − x)α

α!
∂αf(x)

converges uniformly to f as d→∞. A function is said to be analytic on U if it is
analytic at x for all x ∈ U .

If f : U ⊂ C→ C is analytic on Dx,r := {z ∈ C : |x− z| ≤ r} then the Cauchy
formula states

f(x) =
1

2πi

∫
∂Dx,r

f(z)

z − x dz.

This has a multivariate analogue [31, Theorem1.3] that follows by applying the
above formula to each coordinate. Given x ∈ Cn and 0 < r ∈ Rn let

Dx,r := Dx1,r1 × · · · ×Dxn,rn , ∂̃Dx,r := ∂Dx1,r1 × · · · × ∂Dxn,rn .

For f : U ⊂ Cn → C analytic on Dx,r we have

f(x) = (2πi)−n
∫
∂̃Dx,r

f(z)

(z − x)1
dz. (12)

The Cauchy formula implies the following proposition, see also [31, Theorem 1.6].
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Proposition 1 Let Ω ⊂ Cn be any set. If f is analytic on ∆ ⊆ Cn containing Ω
and

r(x) := max{w : Dx,w ⊆ ∆} > 0, ∀x ∈ Ω (13)

then for all x ∈ Ω

|∂αf(x)| ≤ α!

r(x)α
‖f‖∞,∆ .

Proof Differentiating the Cauchy formula α times with respect to x we have

∂αf(x) = ∂α(2πi)−n
∫
∂̃Dx,r(x)

f(z)

(z − x)1
dz = (2πi)−nα!

∫
∂̃Dx,r(x)

f(z)

(z − x)α+1
dz

and consequently

|∂αf(x)| ≤ (2π)−nα! ‖f‖∞,∆
∫
∂̃Dx,r(x)

∣∣(z − x)−α−1
∣∣ dz.

Since the integral equals r(x)−α(2π)n, the result follows. ut

Proposition 1 does not apply to real analytic function U ⊂ Rn → R and we
use the following proposition:

Proposition 2 All real analytic functions f : Ω ⊂ Rn → R admit an analytic
extension to a neighborhood ∆ ⊂ Cn containing Ω and such that r(x) defined in
(13) is strictly positive on Ω.

Proof For x ∈ Ω, let r(x) > 0 be the radius of convergence of the Taylor series
of f around x. The series is absolutely convergent on {y ∈ Rn : ‖x− y‖ < r(x)}
and thus on Dx,r(x) := {y ∈ Cn : ‖x− y‖ < r(x)}. This implies that f admits an
analytic continuation to

∆ :=
⋃
x∈Ω

Dx,r(x)/2 ⊂
⋃
x∈Ω

Dx,r(x)

and min r(x) ≥ r(x)/
√
n > 0 for all x ∈ Ω. ut

3 Estimates on box meshes

This section describes how error estimates of the form (1) follow from the assump-
tions HP,. . . ,Hs . In the first subsection local error estimates are derived from
HP,. . . ,HΠ . Global error bounds require additionally HE,. . . ,Hs and are stated in
the second and third subsections. The fourth subsection describes the dependence
of the mesh assumption on the parameters of HΠ .

It is important to highlight that error estimates can only be obtained for suit-
able choices of the Sobolev spaces involved and this will be discussed in Section 4
where HΠ is shown for the averaged Taylor expansion operator.
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3.1 Local error

Usually local error bounds are stated using the support extension

‖f − ℵf‖p,ω ≤ C inf
g∈P
‖f − g‖p,extω , extω :=

⋃
φ∈Aω

suppλφ.

The drawback of this approach is that the polynomial approximation properties
depends on the shape of extω. Common assumptions for polynomial approxima-
tion are that the domain is star-shaped with respect to a subset of positive measure
[17][18][41] or bounded by graphs of regular functions [32]. In [39] local estimates
for the approximation error are obtained without shape constraints on extω by
using the convex hull of extω. Unfortunately this technique cannot be extended
to global estimates because it is difficult to bound the number of overlapping hulls
in terms of elementary properties of the mesh.

Here we avoid the support extension by using the form

‖f − ℵf‖p,ω ≤ C inf
g∈P

∑
φ∈Aω

‖f − g‖p,sφ . (14)

This reduces the complexity of the shape on which we use polynomial approxi-
mation and allow us to derive global estimates and to reduce the mesh regularity
assumptions.

The local error bounds are based on the following assumptions1 where we use
hφ as a shortening for hsuppφ.

HP ℵg = g for all g ∈ Pd, polynomial reproduction;
Hλ ‖λφ‖∗p ‖φ‖p ≤ Cλ, for all φ ∈ Φ, functional continuity ;

Hφ ∂σφ ∈ Lp(Ω), for all φ ∈ Φ, and ‖∂σφ‖p,ω ≤ CΦh
−σ
φ

µ(ω)
1
p

µ(suppφ)
1
p
‖φ‖p, genera-

tors’ regularity ;
Hs hsφ ≤ Cshφ, and h1

sφ ≤ C
n
s µ(suppφ) for all φ ∈ Φ, locality of ℵ;

HΠ for each ω ∈ M there is an approximation operator Πω : Lp(ω) → Pd such
that for β ∈ {0,σ}, η ∈ {ω} ∪ {sφ : φ ∈ Aω} it holds

∥∥∂β(f −Πωf)
∥∥
p,η
≤ CΠ

hγω
hγη

∑
k∈Kβ

hk−β+νη

∥∥∂kf∥∥
q,η
, ν = 1/p− 1/q.

Note that Cs ≥ 1, and for simplicity we assume that also Cλ, CΦ ≥ 1.
The abstract upper bound for polynomial approximation in HΠ depends on the

index sets K0, Kσ ⊂ Nn and the parameter γ ∈ Rn that influences the required
mesh assumptions. In Section 5 we describe operators Πω leading to error bounds
with Sobolev and reduced seminorms.

Remark 1 If suppλφ ⊆ suppφ = b(sφ) then Hs is satisfied with Cs = 1. This will
be the case for the proposed operators for TPS, LR and AST splines. The control
on the support measure in Hs is needed if suppφ or sφ is not a box. This happens
for THB and non-convex domains.

1 All the assumptions are conveniently listed in the last page, see Table 1.
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Theorem 1 (Local error) For 1 ≤ p, q ≤ ∞ and assuming HP,. . . ,HΠ we have∥∥∂σ(f − ℵf)
∥∥
p,ω
≤ CλCΦC

|σ|+n
p

s CΠ[ ∑
k∈Kσ

hk−σ+νω

∥∥∂kf∥∥
q,ω

+
∑
φ∈Aω

h
γ+1/p
ω

h
γ+1/p
sφ

∑
k∈K0

hk−σ+νsφ

∥∥∂kf∥∥
q,sφ

]
.

(15)

Moreover, if σ = 0 and p = ∞ the same inequality holds under the reduced
assumptions HP, Hλ,Hφ and HΠ .

Proof The reproduction of polynomial property HP and linearity of ℵ imply that
for all g ∈ Pd∥∥∂σ(f − ℵf)

∥∥
p,ω

=
∥∥∂σ(f − g)− ∂σℵ(f − g)

∥∥
p,ω

=
∥∥∂σ(f − g)−

∑
φ∈Aω

λφ(f − g)∂σφ
∥∥
p,ω

≤ ‖∂σ(f − g)‖p,ω +
∑
φ∈Aω

‖∂σφ‖p,ω |λφ(f − g)| .

By Hs we obtain

h−σφ ≤ C|σ|s h−σsφ , µ(ω)1/p = h1/p
ω , µ(suppφ)−1/p ≤ Cn/ps h−1/p

sφ . (16)

Using this, Hφ, Hλ and HΠ with g = Πωf we have

‖∂σφ‖p,ω |λφ(f − g)| ≤ CΦh−σsφ

µ(w)1/p

µ(suppφ)1/p
‖φ‖p ‖λφ‖∗p ‖f − g‖p,suppλφ

≤ CΦC|σ|s h−σsφ h
1/p
ω Cn/ps h−1/p

sφ CλCΠh
γ
ωh
−γ
sφ

∑
k∈K0

hk+νsφ

∥∥∂kf∥∥
q,sφ

.
(17)

Summing over the φ ∈ Aω and simplifying we obtain the second term in (15).
Using HΠ with η = ω and β = σ we have∥∥∂σ(f −Πωf)

∥∥
p,ω
≤ CΠ

∑
k∈Kσ

hk−σ+νω

∥∥∂kf∥∥
q,ω

(18)

and (15) follows since CλCΦC
|σ|+n

p
s ≥ 1. ut

3.2 Global error p <∞

The global error bound is obtained by summing the local bounds from Theorem 1.
The procedure uses the following additional assumptions

HE #Eω ≤ CE, for all ω ∈M, bound on sφ overlaps;
HM Γφ ≤ CM for all φ ∈ Φ, mesh regularity, where

Γφ :=


(∑

ω∈Mφ
hγp+1
ω

hγp+1
sφ

) 1
p

p 6=∞

maxω∈Mφ

{
hγω
hγsφ

}
p =∞,

and γ was introduced in HΠ ;
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Hω maxhω ≤ Cω minhω for all ω ∈M, element shape regularity ;
Hs maxhsφ ≤ Cs minhsφ for all φ ∈ Φ, shape regularity of sφ.

Note that CE, Cω, Cs ≥ 1, and for simplicity we assume that also CM ≥ 1.
HM is a mesh regularity property that mirrors the result of the computations.

It is implied by the usual assumptions for non-tensor-product spaces, but it allows
for weaker mesh regularity if γ ≥ −1/p. In particular tiny and not shape regular
elements are allowed as long as each extended support is shape regular and contains
a bounded number of elements, see Subsection 3.4. Assumptions Hω and Hs will
be used only if σ 6= 0 or if p > q.

Remark 2 As Eω ⊇ Aω, we have #Aω ≤ #Eω ≤ CE. Some estimates can be made
slightly sharper by using an upper bound for #Aω.

Theorem 2 (Global error) For 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and assuming
HP,. . . ,HM we have∥∥∂σ(f − ℵf)

∥∥
p
≤ Cµ(Ω)ν+

( ∑
k∈Kσ

∥∥hk−σ+ν−M ∂kf
∥∥
q
+
∑
k∈K0

∥∥ρk,σ∂kf∥∥q), (19)

where we recall that ν := 1/p − 1/q, hM is defined in (9), ρk,σ : Ω → R is the

piecewise constant function defined by ρk,σ|ω := maxφ∈Eω{h
k−σ+ν−
sφ } and

C := 2
1− 1

p#(Kσ ∪K0)1−1/pCλCΦC
|σ|+|ν+|+n

p
s CΠC

1−ν−
E CM. (20)

Before giving the proof we state two Corollaries.

Corollary 1 For 1 ≤ p ≤ q ≤ ∞, p 6=∞ and assuming HP,. . . ,HM we have

‖f − ℵf‖p ≤ C µ(Ω)ν+
∑
k∈K0

∥∥hkΦ∂kf∥∥q (21)

where C := 4#K0
1− 1

pCλCΦC
n( 2

p
− 1
q
)

s CΠCECM.

Proof Since hM|ω = hω ≤ maxφ∈Eω hsφ = hΦ|ω and K0 ≥ 0 we have hkM ≤ hkΦ.
Moreover, ν− = 0 because p ≤ q, so that

ρk,0|ω = max
φ∈Eω

n∏
i=1

hkisφ,i ≤
n∏
i=1

max
φ∈Eω

hkisφ,i = h
k
Φ|ω.

Inserting the above in Theorem 2 gives the result. ut

Corollary 2 For 1 ≤ p, q ≤ ∞, p 6= ∞ and assuming HP,. . . ,Hs , Kσ ≥ σ and
|k| ≥ |σ|+ |ν−| for k ∈ K0 ∪Kσ, we have∥∥∂σ(f − ℵf)

∥∥
p
≤C(C

|ν−|
ω + C

|σ|+|ν−|
s )

µ(Ω)ν+
∑

k∈Kσ∪K0

∥∥(max hΦ)|k|−|σ|−|ν−|∂kf
∥∥
q
,

(22)

where C is given in Theorem 2. Moreover, if p ≤ q then Hω is not required. If
p ≤ q and σ = 0 then Hω and Hs are not required.
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Proof With α = k − σ + ν− and using (4) and Hω we have

h
α
M|ω ≤ (maxhω)|α+| (minhω)−|α−| ≤ C|α−|ω (maxhω)|α+|−|α−|. (23)

Since k ≥ σ we have |ν−| ≥ |α−| and using Cω ≥ 1 and maxhω ≤ max hΦ|ω we
obtain

h
k−σ+ν−
M ≤ C|ν−|ω (max hΦ)|k|−|σ|−|ν−|. (24)

Note that for p ≤ q and k ∈ Kσ then α ≥ 0 and Hω is not required. Similarly
using Hs and |α−| ≤ |σ|+ |ν−| we obtain

ρk,σ ≤ C
|σ|+|ν−|
s (max hΦ)|k|−|σ|−|ν−|. (25)

Moreover, for p ≤ q and σ = 0 we have K0 = Kσ ≥ 0 and Hs is not required.
Inserting (24) and (25) in Theorem 2 gives the result. ut

Proof (Theorem 2) From ‖∂σ(f − ℵf)‖p =
(∑

ω∈M ‖∂
σ(f − ℵf)‖pp,ω

)1/p
, (15)

and (10) with e = p ≥ 1 and m = #Kσ + #Aω#K0 ≤ 2#(Kσ ∪K0)CE and again
(10) with e = 1/p ≤ 1 we get

‖∂σ(f − ℵf)‖p ≤ 2
1− 1

p#(Kσ ∪K0)
1− 1

pCλCΦC
|σ|+n/p
s CΠC

1− 1
p

E[ ∑
k∈Kσ

( ∑
ω∈M

hp(k−σ+ν)ω

∥∥∂kf∥∥p
q,ω

) 1
p

+
∑
k∈K0

( ∑
ω∈M

∑
φ∈Aω

hγp+1
ω

hγp+1
sφ

hp(k−σ+ν)sφ

∥∥∂kf∥∥p
q,sφ

) 1
p

]
.

By changing the summation order we have∑
ω∈M

∑
φ∈Aω

hγp+1
ω

hγp+1
sφ

hp(k−σ+ν)sφ

∥∥∂kf∥∥p
q,sφ

=
∑
φ∈Φ

∑
ω∈Mφ

hγp+1
ω

hγp+1
sφ

hp(k−σ+ν)sφ

∥∥∂kf∥∥p
q,sφ

.

Using HM this leads to

‖∂σ(f − ℵf)‖p ≤ 2
1− 1

p#(Kσ ∪K0)
1− 1

pCλCΦC
|σ|+n

p
s CΠC

1− 1
p

E CM[ ∑
k∈Kσ

( ∑
ω∈M

hp(k−σ+ν)ω

∥∥∂kf∥∥p
q,ω

) 1
p

+
∑
k∈K0

(∑
φ∈Φ

hp(k−σ+ν)sφ

∥∥∂kf∥∥p
q,sφ

) 1
p

]
.

(26)
For p ≤ q, Hölder inequality (11) with ai = hpνω and e = (pν)−1 ≥ 1 implies∑

ω∈M
hp(k−σ+ν)ω

∥∥∂kf∥∥p
q,ω
≤
( ∑
ω∈M

h1
ω

)pν( ∑
ω∈M

hq(k−σ)ω

∥∥∂kf∥∥q
q,ω

) p
q

≤ µ(Ω)pν
∥∥hk−σM ∂kf

∥∥p
q
.

(27)

Similarly we get∑
φ∈Φ

hp(k−σ+ν)sφ

∥∥∂kf∥∥p
q,sφ
≤
(∑
φ∈Φ

h1
sφ

)pν(∑
φ∈Φ

hq(k−σ)sφ

∥∥∂kf∥∥q
q,sφ

) p
q

≤ CEC
npν
s µ(Ω)pν

∥∥ρk,σ∂kf∥∥pq ,
(28)
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where we used Hs and HE to obtain∑
φ∈Φ

h1
sφ ≤ C

n
s

∑
φ∈Φ

µ(suppφ) ≤ Cns CEµ(Ω),

and the characteristic functions 1sφ to obtain∑
φ∈Φ

hq(k−σ)sφ

∥∥∂kf∥∥q
q,sφ

=

∫
Ω

(∑
φ∈Φ

1sφ(x)hq(k−σ)sφ

)∣∣∂kf(x)
∣∣q dx

≤
∫
Ω

CEρ
q
k,σ

∣∣∂kf(x)
∣∣q dx = CE

∥∥ρk,σ∂kf∥∥qq.
Inserting (27) and (28) in (26) gives (19) for p ≤ q.

If p > q then using (10) with e = p/q ≥ 1 we have∑
ω∈M

hp(k−σ+ν)ω

∥∥∂kf∥∥p
q,ω
≤ (

∑
ω∈M

hq(k−σ+ν)ω

∥∥∂kf∥∥q
q,ω

)
p
q

=
∥∥hk−σ+νM ∂kf

∥∥p
q
.

(29)

Similarly ∑
φ∈Aω

hp(k−σ+ν)sφ

∥∥∂kf∥∥p
q,sφ
≤
( ∑
φ∈Aω

hq(k−σ+ν)sφ

∥∥∂kf∥∥q
q,sφ

) p
q

=
(∑
φ∈Φ

∫
Ω

1sφ(x)hq(k−σ+ν)sφ

∣∣∂kf(x)
∣∣q dx) pq

≤ C
p
q

E

∥∥ρk,σ∂kf∥∥pq .
(30)

Inserting (29) and (30) in (26) gives (19) for p ≥ q. ut

3.3 Global error p =∞

For p = ∞, HE can be replaced with a bound on #Aω, see Remark 2. Moreover,
we have ν = ν− = −1/q.

Theorem 3 Assuming HP,. . . ,HM, we have

‖f − ℵf‖∞ ≤ C max
φ∈Φ

{ ∑
k∈K0

∥∥hksφ∂kf∥∥∞,sφ}, (31)

where C := 2CλCΦCΠC
|σ|
s CECM. Assuming in addition Hω, Hs , Kσ ≥ σ and

|k| ≥ |σ|+ |ν−| for k ∈ K0 ∪Kσ we have with the same C

‖∂σ(f − ℵf)‖∞ ≤C(C
|ν−|
ω + C

|σ|+|ν−|
s

)
max
φ∈Φ

{ ∑
k∈Kσ∪K0

∥∥(maxhsφ)|k|−|σ|−|ν−|∂kf
∥∥
q,sφ

}
.

(32)

Moreover, if q =∞ then (32) does not require Hω.
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Proof By HM, (15) and #Aω ≤ CE we have

‖∂σ(f − ℵf)‖∞,ω ≤ CλCΦC
|σ|
s CΠCECM[ ∑

k∈Kσ

hk−σ+νω

∥∥∂kf∥∥
q,ω

+ max
φ∈Aω

∑
k∈K0

hk−σ+νsφ

∥∥∂kf∥∥
q,sφ

]
.

(33)

If q =∞ and σ = 0, then ν = 0 and hkω ≤ hksφ , so that the first term in brackets
is bounded by the second and we get (31).

If q <∞ or σ 6= 0 we use (4), Hω and Hs to obtain

hk−σ+νω ≤ C|ν|ω (maxhsφ)|k|−|σ|−|ν|, k ≥ σ,

hk−σ+νsφ ≤ C|σ|+|ν|s (maxhsφ)|k|−|σ|−|ν|,

and inserting these in (33) gives (32). If q =∞ then Hω is not required. ut

3.4 Mesh assumptions

The assumption HM can be replaced by one of the following

H#
M #Mφ ≤ C#, for all φ ∈ Φ, #elements in suppφ;

Hsω
M hsφ ≤ Csωhω, for all ω ∈M and φ ∈ Aω, local quasi-uniformity.

We show in Proposition 3 that H#
M implies HM for γ ≥ −1/p and that Hsω

M implies
HM for all values of γ.

Proposition 3 The conditions listed in the following table imply HM with the
corresponding constants CM.

conditions CM
0 ≤ γ 1

−1/p ≤ γ, H#
M C−min γ

#

γ ∈ Rn, Hsω
M C

|(γ+1/p)−|+n
p

sω

Proof First we note that for all α ≥ 1 we have

∑
ω∈Mφ

hαω
hαsφ

=
∑
ω∈Mφ

n∏
i=1

( hω,i
hsφ,i

)αi
≤
∑
ω⊆sφ

h1
ω

h1
sφ

=
µ(suppφ)

µ(b(sφ))
≤ 1.

This gives the first case as α = γp + 1 ≥ 1. For γ ≥ −1/p, we use (10) with

e = minγp+ 1, H#
M , and with α = (γp+ 1)/(minγp+ 1) ≥ 1 we obtain

∑
ω∈Mφ

hγp+1
ω

hγp+1
sφ

≤ #Mφ
−min γp

( ∑
ω∈Mφ

hαω
hαsφ

)min γp+1
≤ C−min γp

# .

This shows the second case. For the last case, if Hsω
M holds then

µ(sφ) ≥
∑
ω∈Mφ

µ(ω) ≥ #Mφ min
ω∈Mφ

µ(ω) ≥ #MφC
−n
sω µ(sφ).
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ε ω

sφ

Fig. 5 A family of LR spaces on which H#
M and Hs hold uniformly, but Cω is not bounded.

Therefore H#
M holds with C# = Cnsω. Using Hsω

M again and with α = γp + 1 we
have ∑

ω∈Mφ

hαω
hαsφ
≤ #Mφ max

ω∈Mφ

hαω
hαsφ
≤ Cnsω C

|α−|
sω .

ut

An interesting observation is that H#
M and Hsω

M influence the relation between
Hω and Hs . Assuming H#

M we have that Hω implies Hs . Assuming Hsω
M the two

shape regularity assumptions are equivalent. This is proved in Proposition 4.

Proposition 4 We have

H#
M ⇒ ( Hω ⇒ Hs ),

Hsω
M ⇒ ( Hω ⇔ Hs ) and C−1

sω Cs ≤ Cω ≤ CsωCs .

Proof Let ω ⊆ sφ be the element having the longest edge hω,i. Then by H#
M and

Hω

maxhsφ ≤ C# maxhω ≤ C#Cωminhω ≤ C#Cωminhsφ .

Let i, j ∈ {1, . . . , n} be such that minhω = hω,i and minhsφ = hsφ,j . Then using
Hsω
M and Hs we have

maxhω ≤ maxhsφ ≤ Cs minhsφ

= Cshsφ,j ≤ Cshsφ,i ≤ CsCsωhω,i = CsCsω minhω

and Hω follows. Similarly with the same i, j and using Hsω
M and Hω we have

maxhsφ ≤ Csω maxhω ≤ CωCsω minhω

= CωCsωhω,i ≤ CωCsωhω,j ≤ CωCsωhsφ,j = CωCsω minhsφ

and Hs follows. ut

Fig. 5 shows a family of LR spaces [8][16] on which H#
M and Hs hold uniformly,

but Cω is not bounded. The element ω ( ) has size hω = (1, ε) and suppφ = sφ

( ) has size hsφ = (3, 1). It can be shown that H#
M holds with C# = 13, Hω holds

with Cω = ε−1 and Hs holds with Cs = 3. By letting ε→ 0 we observe that no
bound for Cω can be a function of C# and Cs .
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Fig. 6 Examples of index sets A ( ) and their bases AB ( ) in N2.

4 Polynomial approximation

This section describes collections of operators Πω that satisfy HΠ . The construc-
tion is based on averaged Taylor expansion operators. To an index set A ⊆ Nn
and a weight function ψ ∈ L1(Ω) such that

∫
ψ = 1 we associate the operator

TA,ψ : C∞(Ω)→ PA defined by

TA,ψf(x) :=
∑
α∈A

∫
Ω

ψ(y)
(x− y)α

α!
∂αf(y) dy. (34)

It is required that PA is translation invariant:

∀y ∈ Rn, PA := span{xα : α ∈ A} = span{(x− y)α : α ∈ A}. (35)

Different choices are possible. The error bounds in terms of Sobolev and reduced
seminorms use A = {α ∈ Nn : |α| ≤ d} and A = {α ∈ Nn : α ≤ d}, respectively.

The operators TA,ψ are defined on C∞(Ω) and are uniquely extended to a
Sobolev space W , provided C∞(Ω) is dense in W and TA,ψ is continuous with
respect to the norm of W . We also use the symbol TA,ψ for such extensions.

In the following we recall and prove the elementary properties of averaged
Taylor expansions. For the approximation properties we refer to [17]. We will need
the translations A− σ of A and the base AB of A defined as follows

A− σ := {α− σ ∈ Nn : α ∈ A}, (36)

AB := {β ∈ Nn \A : k ∈ Nn \A and k ≤ β ⇒ k = β}. (37)

Fig. 6 contains some examples of A and AB .

4.1 General properties

Proposition 5 TA,ψ is a projector, i.e., for all g ∈ PA, TA,ψg = g.

Proof The Taylor expansion at the point y of g ∈ PA is a polynomial that has the
same partial derivatives as g. Therefore

g(x) =
∑
α∈A

(x− y)α

α!
∂αg(y)

and since
∫
ψ = 1 we have TA,ψg(x) = g(x). ut
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Proposition 6 For all σ ≥ 0 and f ∈ C∞ we have

∂σTA,ψf = TA−σ,ψ∂
σf. (38)

Proof The derivatives are with respect to x and can be computed inside the inte-
gral. We obtain

∂σTA,ψf(x) =
∑
α∈A
α≥σ

∫
Ω

ψ(y)
(x− y)α−σ

(α− σ)!
∂αf(y) dy

=
∑

β∈A−σ

∫
Ω

ψ(y)
(x− y)β

β!
∂β∂σf(y) dy = TA−σ,ψ∂

σf(x).

ut

Lemma 1 If ψ ∈ CmaxA
0 (ω) then

TA,ψf(x) =
∑
α∈A

Cα,A

∫
ω

∂αψ(y)
(x− y)α

α!
f(y) dy. (39)

where Cα,A := (−1)|α|
∑
β∈A
β≥α

(
β
α

)
.

Proof Writing (34) with β in place of α, integrating each term by parts, noting
that the boundary terms vanish and expanding ∂β(ψ(y)(x− y)β) leads to

TA,ψf(x) =
∑
β∈A

(−1)|β|
∑
α∈A
α≤β

(
β

α

)∫
ω

∂αψ(y)
(−1)|β|−|α|(x− y)α

α!
f(y) dy

=
∑
α∈A

[
(−1)|α|

∑
β∈A
β≥α

(
β

α

)]∫
ω

∂αψ(y)
(x− y)α

α!
f(y) dy.

ut

Lemma 2 For all weights ψ with suppψ ⊆ ω, and box η ⊂ Rn the operator TA,ψ
is continuous, meaning that for all v such that ∂αv ∈ Lq(ω),α ∈ A we have

‖TA,ψv‖p,η ≤ ‖ψ‖q′
∑
α∈A

h
α+1/p
η

α!
‖∂αv‖q,ω . (40)

Moreover, if ψ ∈ CmaxA
0 (ω) then for any v ∈ Lq(ω)

‖TA,ψv‖p,η ≤
( ∑
α∈A
|Cα,A|

h
α+1/p
η

α!
‖∂αψ‖q′,ω

)
‖v‖q,ω , (41)

where Cα,A is from Lemma 1.
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Proof First note that for y ∈ η∥∥∥ (· − y)α

α!

∥∥∥
p,η
≤ h

α+1/p
η

α!
.

Let fα(x,y) :=
∣∣ψ(y)(x− y)α(α!)−1∂αv(y)

∣∣ . Using Minkowski’s integral inequal-
ity, see [2, Theorem 4, p. 21], the above and Hölder’s inequality we have

‖TA,ψv‖p,η ≤
∥∥∥∑
α∈A

∫
ω

fα(·,y) dy
∥∥∥
p,η
≤
∑
α∈A

∥∥∥∫
ω

fα(·,y) dy
∥∥∥
p,η

≤
∑
α∈A

∫
ω

‖fα(·,y)‖p,η dy ≤
∑
α∈A

h
α+1/p
η

α!
‖ψ‖q′,ω ‖∂

αv‖q,ω .

Similarly, with fα(x,y) = |Cα,A∂αψ(y)(x− y)α(α!)−1v(y)| we obtain (41). ut

4.2 Approximation and HΠ

In this subsection we prove that the operators TA,ψω satisfy HΠ . Here for any box
η, the function ψη is

ψη := µ(η)−1(ψ̂ ◦Mη), (42)

where Mη is the orientation preserving affine bijection η → [0,1] and ψ̂ : [0,1]→ R
is a fixed function such that

∫
ψ̂ = 1. The result requires the following assumption

on the sφ

HF each sφ, φ ∈ Φ, is star shaped with respect to a box ζφ and hsφ ≤ CFhζφ .

If the sφ are boxes then taking ζφ = sφ implies HF with CF = 1.
The main idea is to specialize the approximation results from Dupont and

Scott [17] to truncated boxes satisfying HF. The error bounds in [17] for a domain
η star shaped with respect to suppψ have the general form

‖f − TA,ψf‖p,η ≤ C
∑
α∈AB

‖∂αf‖q,η .

The assumptions in [17] are equivalent to (1/q, 1/p) ∈ R|α|, α ∈ AB , where

Rr :=

{
{(1
q ,

1
p ) : 1

p −
1
q + r

n ≥ 0} \ {( rn , 0), (1, 1− r
n )} r < n

[0,1] r ≥ n.
(43)

See Fig. 7. Note that Rr almost coincide with the domain of validity of the Sobolev

embedding W r,q(Ω) → Lp(Ω). In fact the embedding also holds at the point
(1, 1− r/n) [1, Theorem 4.12 and Remark 4.13 point 3].

Proposition 7 Let ψ̂ ∈ CmaxA
0 ([0,1]) and

∫
ψ̂ = 1. Suppose A ⊆ Nn satisfies

(35), and that for all α ∈ (A − σ)B we have (1/q, 1/p) ∈ R|α|. Then there exists
constants Cα, such that for all truncated boxes η star shaped with respect to a box
ζ as in HF, and for all f with ∂α+σf ∈ Lq(η) we have∥∥∂σ(f − TA,ψζf)

∥∥
p,η
≤

∑
α∈(A−σ)B

Cα
∥∥hα+ν

η ∂α+σf
∥∥
q,η
. (44)
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1
q

1
p

(0, 0)

(1, 1)(0, 1)

1
p

= 1
q
− |α|

n

(
|α|
n
, 0)

(1, 1− |α|
n

)

1
q

1
p

(0, 0)

(1, 1)(0, 1)

(1, 0)

Fig. 7 On the left, the region R|α| for |α| < n. On the right the case |α| ≥ n.

Proof First we consider σ = 0 and a truncated box η = [0,1] \ β where β is a
box. The diameter of η is

√
n because it contains two opposite vertices of [0,1].

For a given ζ this is a special case of [17, Theorem 4.2] and corresponds to the
following substitutions and equivalency

Dupont-Scott m β q pα A0 A− D d µα > 0
here 0 0 p q A AB η

√
n (1

q ,
1
p ) ∈ R|α|

Note that in [17] the floor of r ∈ R is written as dre.
The Cα provided by [17] depend on ψζ , p, q. To find Cα independent of ζ

we use a compactness argument. By Proposition 2, and since ψζ ∈ CmaxA
0 (ζ),

TA,ψζ depends continuously on the size and position of ζ. These are described

respectively by hζ ∈ [C−1
F 1,1] ⊆ Rn and a vector in [0,1−hζ ] ⊆ Rn. Consequently

the constants are bounded on a compact set and they have a maximum.
For other truncated boxes η we apply a scaling and a translation. For σ 6= 0

we use Proposition 6 in the form ∂σ(f − TA,ψf) = g − TA−σ,ψg, g = ∂σf . ut

We next consider a constant weight. Proposition 7 does not apply since ψ 6∈
CmaxA
0 , nevertheless we obtain an error bound with an explicit constant.

Proposition 8 Let η be a box. For 1 ≤ p, q ≤ ∞, d ≥ n, A = {α ∈ Nn : |α| ≤ d}
and ψη(x) := µ(η)−1

1η(x) we have

∥∥∂σ(f − TA,ψηf)
∥∥
p,η
≤

∑
|α|=d+1−|σ|

(d+ 1− |σ|)n
d−1
2

α!

∥∥hα+ν
η ∂α+σf

∥∥
q,η
. (45)

Proof Suppose σ = 0. It is enough to prove the case p = ∞ and q = 1 because∥∥f − TA,ψηf∥∥p,[0,1] ≤ ∥∥f − TA,ψηf∥∥∞,[0,1] and ‖∂αf‖1,[0,1] ≤ ‖∂
αf‖q,[0,1]. Using

Sobolev representation [17, Section 3], that holds also for ψ 6∈ CmaxA
0 , we have

(f − TA,ψηf)(x) =
∑

|α|=d+1

d+ 1

α!

∫
[0,1]

Kα(x,y)∂αf(y) dy (46)

where Kα(x,y) := (x − y)α
∫
[0,1]

s−n−1ψη(x + s−1(y − x)) ds. The integrand in

Kα is 0 for x + s−1(y − x) 6∈ suppψη, in particular for s ≤ n−1/2 ‖x− y‖. For
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x,y ∈ [0,1] we have ‖x− y‖ ≤ n1/2 and we get

|Kα(x,y)| ≤ ‖x− y‖d+1

∫ 1

n−1/2‖x−y‖
s−n−1 ds ≤ nn/2−1 ‖x− y‖d+1−n ≤ n(d−1)/2.

Inserting this estimate in (46) gives the result for p = ∞ and q = 1. The case
σ 6= 0 follows as in Proposition 7. ut

Theorem 4 Let ψ̂ ∈ CmaxA
0 ([0,1]) and

∫
ψ̂ = 1. Suppose A ⊆ Nn satisfies (35),

and that for all α ∈ (A−σ)B we have (1/q, 1/p) ∈ R|α|. Assume HF. Then there
exists a constant CΠ such that the collection of operators TA,ψω satisfies HΠ with
the following pairs (Kβ,γ)

Kβ =
⋃

b∈(A−β)

((A− b− β)B + b) and γ = −1/q, (47)

Kβ = (A− β)B and γ = −maxA− 1/q. (48)

In particular for A = {α ∈ Nn : |α| ≤ d}, (47) becomes

Kβ = {k ≥ β : |k| = d+ 1}, γ = −1/q,

and if in addition the sφ are boxes, i.e. CF = 1, ψ̂ = 1[0,1] and d− |σ| ≥ n then

CΠ = 2
(2n

3
2 )d+1

(d− |σ|)! . (49)

Proof We first consider the case β = 0. For each ω ∈M, we need to consider the
approximation for both η = ω and η = sφ, φ ∈ Aω. If η = ω then HΠ follows from
equation (44) in Proposition 7.

Suppose η = sφ. By Proposition 5, TA,ψω is a projector on PA and for all g we
have

f − TA,ψωf = (f − g) + TA,ψω (f − g). (50)

By (40) and ‖ψω‖q′ = h
−1/q
ω ‖ψ̂‖q′ we deduce

‖f − TA,ψωf‖p,η ≤ ‖f − g‖p,η + ‖ψ̂‖q′
h
1/q
η

h
1/q
ω

∑
b∈A

hb+νη

b!

∥∥∂b(f − g)
∥∥
q,η
. (51)

We fix g := TA,ψζf ∈ PA where ζ ⊆ η is a box satisfying HF, use Proposition 7,
and obtain

‖f − TA,ψωf‖p,η ≤
∑
α∈AB

Cα,ph
α+ν
η

∥∥∂αf∥∥
q,η

+ ‖ψ̂‖q′
h
−1/q
ω

h
−1/q
η

∑
b∈A

∑
α∈(A−b)B

Cα,q
hb+α+ν
η

b!

∥∥∂α+bf
∥∥
q,η

≤CΠ
h
−1/q
ω

h
−1/q
η

∑
k∈K0

hk+νη

∥∥∂kf∥∥
q,η
,

(52)
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where we used h
−1/q
ω h

1/q
η ≥ 1, β = 0, K0 as in (47) and CΠ equals the maximum

of the Cα,p, α ∈ AB and ‖ψ̂‖q′Cα,q(b!)−1, b ∈ A, α ∈ (A − b)B times the
maximum number of repetitions of a derivative of f .

To prove (49) we use Proposition 8 instead of Proposition 7 in (51) and obtain

‖f − TA,ψωf‖p,η ≤ E1 + E2

where

E1 :=
∑

|α|=d+1

(d+ 1)n
d−1
2

α!
hα+ν
η ‖∂αf‖q,η ,

E2 :=
h
1/q
η

h
1/q
ω

∑
|b|≤d

hb+νη

b!

∑
|α|=d+1−|b|

(d+ 1− |b|)n
d−1
2

α!
hαη ‖∂α+bf‖q,η.

Setting c = b+ α and re-indexing the double sum leads to the upper bound

E2 ≤
h
1/q
η

h
1/q
ω

∑
|c|=d+1

(∑
b≤c

(d+ 1− |b|)n
d−1
2

(c− b)!b!

)
hc+νη ‖∂cf‖q,η.

Using
∑
b≤c

c!
(c−b)!b! = 2|c| = 2d+1 we get

E2 ≤ E3 :=
h
1/q
η

h
1/q
ω

∑
|c|=d+1

(d+ 1)2d+1n
d−1
2

c!
hc+νη ‖∂cf‖q,η.

Finally, since E1 ≤ E3 and (c!)−1 ≤ nd+1(d+ 1)!−1 we obtain (49) for σ = 0.
To obtain (48) we start from (41), set g = TA,ψζf ∈ PA where ζ ⊆ η is a box

satisfying HF, use ‖∂αψω‖q′ = h
−1/q
ω h−αω ‖∂αψ̂‖q′ , Proposition 7 and a scaling

argument and obtain

∥∥f − TA,ψωf∥∥p,η ≤ ( ∑
α∈A

|Cα,A|
α!

h
−α−1/q
ω

h
−α−1/q
η

hνη‖∂αψ̂‖q′
)∥∥f − g∥∥

q,η

≤ CΠ
h
−maxA−1/q
ω

h
−maxA−1/q
η

∑
α∈AB

hα+ν
η

∥∥∂αf∥∥
q,η

(53)

where CΠ = (
∑
α∈A |Cα,A|α!−1‖∂αψ̂‖q′) maxα∈AB Cα.

The case β = σ 6= 0 follows from Proposition 6. ut

5 Sobolev and reduced seminorms

We define two families of operators ΠS
ω and ΠR

ω of the form TA,ψω from which
error bounds are derived in term of Sobolev and reduced seminorms, respectively.
For each case we summarize the assumptions required by Theorems 1, 2 and 3.

The family ΠS
ω is defined by A = {α ∈ Nn : |α| ≤ d}, ψω = µ(ω)−1

1ω and
satisfy HΠ according to (47) with

γ = −1/q, K0 = {k : |k| = d+ 1}, Kσ = {k : σ ≤ k and |k| = d+ 1}. (54)
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The family ΠR
ω is defined by A = {α ∈ Nn : α ≤ d}, ψω as in (34) for a fixed

ψ̂ ∈ Cd0 ([0,1]) and satisfy HΠ according to (48) with

γ = −d− 1/q,

K0 = {(0, . . . , di + 1, . . . , 0) : i = 1, . . . , n},
Kσ = {(σ1, . . . , di + 1, . . . , σn) : i = 1, . . . , n}.

(55)

A graphical representation of the index sets for ΠS
ω and ΠR

ω is shown in Fig. 8
and 9. Remembering Propositions 3, HM is implied by different mesh properties
depending on whether p ≤ q or p > q. This leads to the following theorem.

Theorem 5 Suppose that HP, Hλ, Hφ, Hs, HE, HF hold and (1/q, 1/p) ∈ Rd+1−|σ|
for ΠS

ω and in Rmin(d−σ)+1 for ΠR
ω . Then (21), (22), (31) and (32) hold under

the additional assumptions listed in the following table.

ΠS
ω ΠR

ω

K0, Kσ from (54) K0, Kσ from (55)
p ≤ q <∞ p ≤ q =∞ q < p p ≤ q q < p

error bound assumptions assumptions

(21) H#
M Hsω

M

(31) impossible Hsω
M

(22) H#
M , Hs Hs Hsω

M , Hs Hsω
M , Hs Hsω

M , Hs

(22), σ = 0 H#
M Hsω

M Hsω
M Hsω

M

(32) H#
M , Hs Hs Hsω

M , Hs Hsω
M , Hs Hsω

M , Hs

(32), σ = 0 H#
M Hsω

M Hsω
M Hsω

M

constant substitutions substitutions

CM C
1
q

# 1 C
nν−+

n
p

sω C
|d|+n
sω C

|d|+2n
sω

Cω 1 1 CsωCs 1 CsωCs

CΠ if d−|σ|≥n and CF =1 see (49)

Empty cells mean the estimate holds without additional assumptions. A stroked cell
means that the estimate does not apply and one should refer to Theorem 2. The
table also lists possible substitutions for CM, Cω and CΠ .

Example 1 For σ = 0 and p = q = 2 one obtains (22) for ΠS
ω from HP, Hλ,

Hφ, Hs, HE, HF plus H#
M with the substitution from the same column in C, i.e.,

CM = C
1/2
# , Cω = 1 and #K0 =

(
d+n−1
n−1

)
giving

C = 4

(
d+ n− 1

n− 1

) 1
2

CλCΦCΠC
n
2
s CEC

1
2

#.

Remark 3 For p > q element shape regularity, i.e. Hω, is required indirectly as it
is implied by the assumptions Hsω

M and Hs . For p ≤ q element shape regularity is
not required and shape regularity of the sφ’s is sufficient. Finally for q = ∞ and
σ = 0 no shape regularity assumption is required.
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A = {k : |k| ≤ 6}
K0 = {k : |k| = 7}

A = {k : |k| ≤ 6}
K(2,3) = {(2, 5), (3, 4), (4, 3)}

Fig. 8 Some examples of A( ) and Kβ( ) for Sobolev seminorms and given β( ).

A = {k ≤ (4, 5)}
K0 = {(0, 6), (5, 0)}

A = {k ≤ (4, 5)}
K(3,4) = {(3, 6), (5, 4)}

Fig. 9 Examples of A( ) and Kβ( ) for reduced seminorms and given β( ).

6 Analytic functions and exponential convergence

In this section we consider a sequence of spline spaces {Sd = spanΦd}d≥|σ|+n of
degree d = (d, . . . , d) and defined on the same domain Ω. To each space we asso-
ciate a corresponding operator ℵd and we study the behavior of ‖∂σ(f − ℵdf)‖p
as a function of d.

6.1 Exponential convergence

The following theorem implies that the error decreases exponentially as the degree
increases, provided that the space resolution is sufficiently small.

Theorem 6 Let {Φd}, {ℵd}, d ≥ |σ| + n be a sequence of generating systems
such that sφ is a box for all φ ∈

⋃
d Φd. Suppose HP, Hλ, Hφ, Hs, HE Hs hold with

constants satisfying

CλCΦC
|σ|
s CEC

|σ|
s ≤ CeBd+1

e (d+ 1)Se , (56)

for some Ce, Be, Se > 0. Then for all analytic function f : Ω ⊆ Rn → R and ∆
and r as in Proposition 2 we have

‖∂σ(f − ℵdf)‖∞ ≤ Cσ(d+ 1)n+Se+|σ|τ̂d+1−|σ| ‖f‖∞,∆

where

τ̂ := 2n
3
2Be sup

d

∥∥∥max hΦd
min r

∥∥∥
∞
, Cσ := 4Ce(2n

3
2Be)

|σ|∥∥(min r)−|σ|
∥∥
∞.
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Proof Since the sφ are boxes, HF holds with CF = 1. Theorem 5 applies and (32)
holds with K0,Kσ as in (54) for p = q =∞. Bounding

∣∣∂kf(x)
∣∣ as in Proposition 1

and noting K0 ∪Kσ = K0 we have

‖∂σ(f − ℵdf)‖∞ ≤ C#K0 max
φ∈Φd
|k|=d+1

{∥∥∥k!(maxhsφ)d+1−|σ|

rk

∥∥∥
∞,sφ

}
‖f‖∞,∆

where using the substitutions from Theorem 5, CΠ from (49) and (56)

C = 2CλCΦCΠC
|σ|
s CECM

(
C
|ν−|
ω + C

|σ|+|ν−|
s ) ≤ 4Ce

(d+ 1)Se(2n
3
2Be)

d+1

(d− |σ|)! .

The result follows using #K0 ≤ (d+ 1)n−1, k!/(d− |σ|)! ≤ (d+ 1)|σ|+1 and

(maxhsφ)d+1−|σ|

rk
≤ 1

(min r)|σ|
max h

d+1−|σ|
Φd

(min r)d+1−|σ| ≤
1

(min r)|σ|
τ̂d+1−|σ|

(2n
3
2Be)d+1−|σ|

.

ut

If τ̂ < 1 then (d + 1)n+Se+|σ|τ̂d+1−|σ| decreases exponentially in d. More
precisely for all 1 > τ > τ̂ we have

‖∂σ(f − ℵdf)‖∞ ≤ Cττ
d+1−|σ| ‖f‖∞,∆ , (57)

where Cτ := Cσ maxd≥|σ|+n{(d + 1)n+Se+|σ|(τ̂ /τ)d+1−|σ|} is bounded indepen-
dently of d. This shows exponential convergence.

Note that by h-refinement of the {Φd} it is always possible to obtain τ̂ < 1.
We are able to prove exponential convergence on the space dimension by linking
the space resolution with the cardinality of Φ as done in the following proposition.

Proposition 9 If spanΦ ⊇ Pd and the sφ are boxes then

(d+ 1)1
∫
Ω

h
−1
Φ dx ≤ #Φ ≤ CgCE

∫
Ω

h
−1
Φ dx

where the upper bound requires HE and that for all ω ∈M

max{h1
sφ : φ ∈ Aω}

min{h1
sφ : φ ∈ Aω}

≤ Cg. (58)

Proof First we rewrite #Φ as a sum of integrals

#Φ =
∑
φ∈Φ

1 =
∑
φ∈Φ

∫
sφ

h−1
sφ dx =

∑
φ∈Φ

∑
ω⊆sφ

∫
ω

h−1
sφ dx =

∑
ω∈M

∫
ω

∑
φ∈Eω

h−1
sφ dx.

Since #Eω ≥ (d+1)1 and h−1
sφ ≥ h−1

Φ we have the lower bound. Using HE and (58)

we have #Eω ≤ CE and h−1
sφ ≤ Cgh

−1
Φ from which the upper bound follows. ut

We now show exponential convergence as a function of the space dimension
provided that space resolution is small, but not too small.
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Corollary 3 Under the assumptions of Theorem 6 and of Proposition 9, if τ̂ < 1
and there are a, b > 0 such that for all d ≥ |σ|+ n

CECg ≤ a(d+ 1)n,
1

b

τ̂ min r

2n
3
2Be

≤ min hΦd ,∀x ∈ Ω, (59)

then there is τ# < 1 and Cτ# independent of d and Φd such that

‖∂σ(f − ℵdf)‖∞ ≤ Cτ#τ
(#Φd)

1/n

# ‖f‖∞,∆ .

Proof From (59) we have

h
−1
Φd
≤ (min hΦd)−n ≤ bnτ̂−n(2n

3
2Be)

n(min r)−n.

Proposition 9 gives

#Φd ≤ a(d+ 1)n
∫
Ω

h
−1
Φd
dx ≤ t−n(d+ 1)n

where t−n := abnτ̂−n(2n
3
2Be)

n
∫
Ω

(min r(x))−n dx. From the above we deduce

d+ 1 ≥ t(#Φd)
1
n . By (57), and setting τ# := τ t and Cτ# := Cττ

−|σ|, we have the
result for all 1 > τ# > τ̂ t. ut

7 B-splines and coefficient functionals

Many of the spline spaces used in applications are generated by B-splines and in
Section 8 we consider tensor product splines (TPS), analysis suitable T-splines
(AST), hierarchical splines (HS) and the locally refined splines (LR). This section
recalls some properties of B-splines and TPS that help in the construction of ℵ
satisfying the assumptions in Sections 3,. . . ,6. For more material and proofs of
some of the results below we refer to [7][26][36].

We recall first the properties of B-splines that we need for HP and Hφ. Then
we introduce two families of coefficient functionals for TPS that satisfy Hλ. The
functional Sφ from [34] provides the smallest bound for Cλ available in the liter-
ature, but is restricted to suppSφ = suppφ. Another functional Gφ,η allows for
the choice of η = suppGφ,η ⊆ suppφ and it is based on [25].

7.1 B-splines and their smoothness: Hφ

A univariate B-spline of degree d is a compactly supported non-negative piecewise
polynomial with minimal support. Each B-spline of degree d is uniquely associated
to a knot vector, a non-decreasing sequence of d + 2 real numbers that encodes
its smoothness properties and its polynomial subdomains. The univariate B-spline
ϕ of degree d associated with the knot vector Θ(ϕ) := [θ1(ϕ), . . . , θd+2(ϕ)] has
support [θ1(ϕ), θd+2(ϕ)] so that hϕ = θd+2(ϕ)− θ1(ϕ) and it is defined by

ϕ(x) := hϕ[[θ1(ϕ), . . . , θd+2(ϕ)]](· − x)d+, (60)

where [[θ1, . . . , θd+2]]f is the usual divided difference of f , that in this case is given
by f(θ) := (θ − x)d+.
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We recall that ϕ|Z ∈ Pd for all Z of the form [θi(ϕ), θi+1(ϕ)] with θi(ϕ) <
θi+1(ϕ). If mΘϕ(x) is the number of repetitions of x in Θ(ϕ) then ϕ has d−mΘϕ(x)
continuous derivatives at x.

Note that from (60) and properties of divided differences it follows that∫
ϕ(x) dx = hϕ[[θ1(ϕ), . . . , θd+2(ϕ)]]

∫
suppϕ

(· − x)d+ dx =
hϕ
d+ 1

. (61)

A n-variate tensor product B-spline φ of degree d = (d1, . . . , dn) is a product
of n univariate B-splines

φ(x) := ϕ1(x1) · · ·ϕn(xn) (62)

and is defined by an n-tuple Θ(φ) := (Θ(ϕ1), . . . , Θ(ϕn)) of knot vectors. We
recall that hφ = hsuppφ.

Lemma 3 For all B-spline φ = ϕ1 · · ·ϕn of degree d we have

h
1/p
φ

(d+ 1)1
≤ ‖φ‖p ≤

h
1/p
φ

(d+ 1)1/p
, 1 ≤ p ≤ ∞. (63)

Proof By (62) we have ‖φ‖p = ‖ϕ1‖p · · · ‖ϕn‖p. By (61) and Hölder’s inequality

1 =
di + 1

hϕi

∫
R
ϕi(xi) dxi ≤

di + 1

hϕi
‖ϕi‖p hϕi

1−1/p

and the lower bound follows. Since ‖ϕi‖∞ ≤ 1 we have

(∫
R
ϕi(xi)

p dxi
)1/p

≤
(∫

R
ϕi(xi) dxi

)1/p
=

h
1/p
ϕi

(di + 1)1/p

giving the upper bound. ut

The L∞ norms of the derivatives of a B-spline depend on its knot vectors. For
φ = ϕ1 · · ·ϕn let

∆φ,i,k := min
`=k+1,...,di+2

{θ`(ϕi)− θ`−k(ϕi)}. (64)

Then, as stated in the following proposition, Hφ is implied by

HΘφ
∆φ,i,di+1

∆φ,i,di−σi+1
≤ CΘ, for all φ ∈ Φ, i = 1, . . . , n, knot vector regularity.

Proposition 10 Let Φ be a collection of B-splines of the same degree satisfying
HΘφ . Then Hφ holds with

CΦ =
(d+ 1)! 2|σ|

(d− σ)!
C
|σ|
Θ . (65)
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Proof Using ∂σφ(x) = ∂σ1
1 ϕ1(x1) · · · ∂σnn ϕn(xn), HΘφ , and the following univariate

bound [36, Theorem 4.22]

‖∂σiϕi‖∞ ≤
di! 2σi

(di − σi)!

d∏
k=di+1−σi

∆−1
φ,i,k ≤

di! 2σi

(di − σi)!
∆−σiφ,i,di+1−σi , (66)

we have

‖∂σφ‖∞ ≤
d!2|σ|

(d− σ)!

n∏
i=1

∆−σiφ,i,di+1−σi ≤
d!2|σ|

(d− σ)!
C
|σ|
Θ h−σφ .

Hφ follows using Hölder’s inequality and the lower bound for ‖φ‖p in (63). ut

7.2 Tensor product splines and polynomial representation

A (d + 1)-open knot vector is a non-decreasing sequence of real numbers Ξ :=
[ξ1, . . . , ξs+d+1], s ≥ d+ 1, with the following properties

ξ1 = · · · = ξd+1, ξs+1 = · · · = ξs+d+1, ξi+d+1 > ξi, i = 1, . . . , s.

Associated with Ξ is the space SΞ,d ⊇ Pd of piecewise polynomials of degree d
on the mesh {[ξi, ξi+1] : ξi < ξi+1} that have d −mΞ(x) continuous derivatives
at x ∈ [ξ1, ξs+d+1], where mΞ(x) is the number of repetitions of x in Ξ. The
B-splines {ϕ1, . . . , ϕs}, where Θ(ϕi) = [ξi, . . . , ξi+d+1], constitute a basis of SΞ,d
and provide a non-negative partition of unity.

Similarly, with an n-tuple of knot vectors Ξ := (Ξ1, . . . , Ξn) where each Ξi :=
[ξi,1, . . . , ξi,si+di+1] is a (di + 1)-open knot vector we associate the tensor product
spline space

SΞ,d := SΞ1,d1 ⊗ · · · ⊗ SΞn,dn .

The canonical basis has s1 elements φi, with i ∈ [1, s] ∩ Nn

φi(x) := ϕ1,i1(x1) · · ·ϕn,in(xn), Θ(ϕj,ij ) := [ξj,ij , . . . , ξj,ij+dj+1].

Any g ∈ Pd can be written explicitly as linear combination of the φi

g =
∑
i∈[1,s]

c(g, φi)φi. (67)

The coefficients c(g, φi) are sometimes called blossoms and depend only on g and
the internal knots ξj,ij+1, . . . , ξj,ij+dj , j = 1, . . . , n of φi.
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7.3 Two families of coefficient functionals

A collection {Sϕ} of bi-orthogonal functionals for the B-spline basis of SΞ,d was
constructed in [34]. The collection satisfies Hλ with Cλ = (d+1)2d+1. No collection
of bi-orthogonal functionals can satisfy Hλ with Cλ < kd,p where kd,p is the
condition number of the B-spline basis. It is known, see [36, p.528] for references,
that kd,p ≥ c(d+ 1)−1/p2d+1 for some c > 0 independent of d and p. In this sense
the functionals Sϕ’s are close to optimal.

The functional in [34] is defined only for univariate B-splines, but it can easily
be extended to the tensor product B-splines. To a B-spline φ = ϕ1 · · ·ϕn we
associate the operator Sφ defined by

Sφ(f) :=

∫
suppφ

wϕ1(x1) · · ·wϕn(xn)f(x) dx, (68)

where the wϕi are described in [34] and have the same support as ϕi.
The bi-orthogonality properties of the Sφ, their support and their norm directly

lead to the following proposition.

Proposition 11 Let Φ be a collection of B-splines of degree d, then Λ = {Sφ :

φ ∈ Φ} satisfies the assumptions Hλ and Hs with Cλ = (d+1)12|d|+n and Cs = 1.
Moreover, if Φ is a TPS basis satisfying HΘφ then ℵ defined by (6) is a projector
onto spanΦ, and HP, Hλ, Hφ and Hs are satisfied.

We will use the functional Sφ for TPS, AST, THB and a subclass of LR. In the
next subsection and for general LR we need a functional with a smaller support.
We obtain it by modifying the construction in [25].

Definition 2 Let φ = ϕ1 · · ·ϕn be a B-spline of degree d and η = η1×· · ·× ηn ⊆
suppφ be a box. We define

Gφ,η(f) :=
1

µ(η)

∫
η

wϕ1,η1(x1) · · ·wϕn,ηn(xn)f(x) dx (69)

where wϕi,ηi ∈ Pdi are such that

Gφ,η(g) = c(g, φ), ∀g ∈ Pd. (70)

Proposition 12 For all φ and η ⊆ suppφ, Gφ,η is well defined. If Φ is a col-
lection of B-splines of degree d, then for Λ = {Gφ,ηφ : ηφ ⊆ suppφ, φ ∈ Φ} the
assumptions Hλ and Hs hold with constants Cs = 1 and

Cλ = (d+ 1)1−1/p max
φ∈Φ
{hd+1/p

φ h−d−1/p
ηφ }

n∏
i=1

|||H−1
di
|||.

Here Hd is the Hilbert matrix of order d + 1, i.e., the element in position (s, t)
is (s + t − 1)−1, and ||| · ||| is the `∞ operator norm. Moreover, if Φ is a TPS
basis satisfying HΘφ then with ℵ defined by (6), HP, Hλ, Hφ and Hs are satisfied.
If additionally each ηφ is contained in some ωφ ∈ M, then ℵ is a projector onto
spanΦ.
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Proof Due to the tensor product structure, all claims follow from the univariate
case. Let ϕ be a B-spline of degree d and η ⊆ suppϕ be the desired support.

First we show that wϕ,η is determined by (70). Let t := x−min η
µ(η) , then express-

ing wϕ,η(x) as

wϕ,η(x) :=
d∑
j=0

cjt(x)j

we find

Gϕ,η(ti) =
d∑
j=0

cj
1

µ(η)

∫
η

t(x)i+j dx =
d∑
j=0

cj
i+ j + 1

.

Thus (70) is equivalent to c := (c1, . . . , cd+1) satisfying

Hdc = b, (71)

where b := (c(t0, ϕ), . . . , c(td, ϕ)). Since Hd is square and invertible the system is
well posed and wϕ,η is uniquely determined.

We now prove Hλ. By Hölder’s inequality, and 0 ≤ t(x) ≤ 1 for x ∈ η, we have

‖Gϕ,η‖∗p ≤
‖wϕ,η‖p′,η
µ(η)

≤
‖wϕ,η‖∞,η
µ(η)1/p

≤ (d+ 1)

µ(η)1/p
|||H−1

d ||| ‖b‖`∞ . (72)

To bound ‖b‖`∞ we use Marsden’s identity

c((y − x)d, φ) =

d+1∏
i=2

(y − θi(φ)) (73)

to obtain

|c(tr, φ)| ≤ 1

(d− r)!
µ(suppϕ)r

µ(η)r
≤ µ(suppϕ)d

µ(η)d
, r = 0, . . . , d.

Now Hλ for univariate B-splines follows from (72) and (63).

Finally if Φ is a TPS basis and ηφ ⊆ ωφ ∈M then by (67) we have Gφ,ηφ(ψ) =
c(ψ|ωφ , φ) = δφ,ψ for all ψ ∈ Φ, and consequently ℵ is a projector. ut

8 Space specific results

In this section we describe a specific approximation operator ℵ for TPS, AST, THB
and LR splines. For each operator we show which of the abstract assumptions of
Section 3 hold and give an upper bound for the corresponding constants. Com-
bining this information with Theorem 5 one obtains error bounds with Sobolev or
reduced seminorms.
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8.1 Application to tensor product B-splines

Assuming the usual mesh regularity, i.e. Hsω
M and Hs , we obtain all the error

bounds in Theorem 5 for TPS. Compared to what can be found in the litera-
ture, see for example [27][5][6], we take into account the local mesh size for all
combinations of p and q.

Theorem 7 Let Φ be a TPS basis satisfying HΘφ . Then the operator ℵ correspond-
ing to Λ = {λφ = Sφ : φ ∈ Φ} is a projector onto S = spanΦ and the assumptions

HP, Hλ, Hφ, Hs, HE, H#
M and HF are satisfied with

Cλ = (d+ 1)12|d|+n, CΦ =
(d+ 1)! 2|σ|

(d− σ)!
C
|σ|
Θ , Cs = 1,

CE = (d+ 1)1, C# = (d+ 1)1, CF = 1.

Proof For TPS H#
M holds with C# = (d+ 1)1, and since suppφ = sφ we have HE

with CE = (d+ 1)1. Then the thesis follows from Proposition 10, Proposition 11.

8.2 Application to AST-splines

Cubic T-splines were introduced in [37][38] for geometric modeling applications.
The idea was to reduce the number of control points by replacing the control
polygon of TPS with a T-mesh. Depending on d, a tensor product B-spline is
associated with each vertex, edge or element of the T-mesh. The T-spline space is
spanned by these B-splines.

Analysis Suitable T-splines (AST) avoid linear dependencies by restricting the
class of allowed T-meshes [4][24][3]. AST spaces can be constructed in 2D [30]
and are also defined for 3D domains [29]. In particular AST are dual compati-
ble, cf. [4][3] and bi-orthogonal functionals for TPS are bi-orthogonal to AST. A
characterization of the piecewise polynomials spanned by an AST basis is in [9].

By Proposition 10 and and the bi-orthogonality properties of Sφ we obtain the
following theorem. Compared to the result for TPS there is no a priori bound for
C# which can be used as a measure of the mesh complexity.

Theorem 8 Let Φ be an AST basis satisfying HΘφ . The operator ℵ corresponding
to Λ = {λφ = Sφ : φ ∈ Φ} is a projector onto S = spanΦ and HP, Hλ,Hφ, Hs, HE

and HF hold with

Cλ = (d+ 1)12|d|+n, CΦ =
(d+ 1)!2|σ|

(d− σ)!
C
|σ|
Θ ,

Cs = 1, CE = (d+ 1)1, CF = 1.

8.3 Application to THB splines

Hierarchical spline were introduced in [19] [23]. Quasi-interpolants have been con-
structed in [39][40] based on the preservation of coefficient property [21] of the
truncated basis [20]. See [25] for a recent survey.
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Let Ψ1, . . . , Ψs be a sequence of TPS bases that span nested spaces, i.e. i <
j ⇒ spanΨi ⊂ spanΨj and Ω = Ω1 ⊇ · · · ⊇ Ωs = ∅ a corresponding sequence of
closed domains. The hierarchical basis H is as follows

H :=
s⋃
i=1

{ψ ∈ Ψi : suppψ ⊆ Ωi and suppψ ∩ (Ωi \Ωi+1) 6= ∅}. (74)

The associated box-mesh M contains a similar selection of elements from the
tensor product meshes M1, . . . ,Ms corresponding to Ψ1, . . . , Ψs:

M :=
s⋃
i=1

{ω ∈Mi : ω ∈ Ωi \Ωi+1}.

The truncation operator Ti : spanΨi → span{ψ ∈ Ψi : ψ|Ω\Ωi 6= 0} is defined as

Ti

( ∑
ψ∈Ψi

cψψ
)

:=
∑
ψ∈Ψi:

ψ|Ω\Ωi 6=0

cψψ. (75)

By recursive truncation one obtains the truncated basis

HT := {Ts · · · Ti+1ψ : ψ ∈ H ∩ Ψi, i = 1, . . . , s}.

It is convenient to abbreviate Ts · · · Ti+1ψ with Tψ and to annotate the symbols
referring to HT with a superscript T to distinguish them from those referring to H.
One of the advantages of the truncated basis is that the coefficients of a polynomial
g ∈ Pd are the same as for TPS

g =
∑
φ∈H

c(g, φ)Tφ. (76)

We say that a HB basis is k-admissible if for each ω ∈ Mj ∩M, Aω contains
only functions φ ∈ Ψi for j − k < i ≤ j. A THB basis is k-admissible if the
corresponding HB basis is. See also [13][14].

Theorem 9 Let Φ be a k-admissible THB basis satisfying Hφ, and a be such
that hφ ≤ ahω, for all φ ∈ Ψi and ω ⊆ suppφ, such that ω ∈ Mi ∩M. Then
the operator ℵ corresponding to Λ = {λTφ = Sφ : Tφ ∈ Φ} is a projector onto
S = spanΦ, and HP, Hλ, Hs, HE and HF hold with

Cλ = (d+ 1)12|d|+n, Cs = a, CE = k(d+ 1)1, CF = 1.

Proof HP follows from (76). Since ‖Tφ‖p ≤ ‖φ‖p we have Hλ with Cλ = (d +

1)12|d|+n. Noting that sTφ = suppSφ = suppφ we have hsTφ = hφ ≤ ahω ≤ ahTφ

and Hs follows with Cs = a. As Φ is k-admissible and sTφ = suppφ we have
ETω = Aω and consequently #ETω ≤ k(d+ 1)1. Since sTφ is a box we have CF = 1.

ut

Note that THB require more assumptions than TPS and AST. Comparing
with [39][40], we obtain global estimates with different p, q norms that take into
consideration the local mesh size, see Theorem 5.
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Fig. 10 Two examples with B-splines of degree (2, 2). On the left, φ( ) is nested in ψ( ).
The dashed red lines represent a possible sequence of knots insertions to obtain φ form ψ. On
the right, φ is not nested in ψ even if suppφ ⊆ suppψ because the marked line corresponds to
a knot of ψ, but not to a knot of φ.

8.4 Application to LR-splines

LR-splines where introduced in [16], here we use the equivalent definition from
[8]. A box mesh M and a function m that assigns a nonnegative integer to each
interface between two elements define the spline space

K :=

{
f ∈ L∞(Ω) :f |ω ∈ Pd, ∀ω ∈M,

f ∈ Cdi−m(E)(E), for all inter-element interfaces E

}
,

where i is the direction of the normal to E. Here we assume that Ω is a box.
Given a B-spline φ = ϕ1 · · ·ϕn and s ∈ {1, . . . , n} we can insert a knot θ̄ ∈

(θ1(ϕs), θd+2(ϕs)) in Θ(ϕs) and obtain the two B-splines φ̂ = ϕ1 · · · ϕ̂s · · ·ϕn and
φ̃ = ϕ1 · · · ϕ̃s · · ·ϕn whose knot vectors are Θ(ϕ̂s) = [θ1(ϕs), . . . , θ̄, . . . , θd+1(ϕs)]
and Θ(ϕ̃s) = [θ2(ϕs), . . . , θ̄, . . . , θd+2(ϕs)], respectively. We have

φ = aφ̂+ bφ̃, a, b ∈ (0, 1]. (77)

Knot insertion defines a partial ordering on the set of B-splines, we write φ ≺ ψ,
if there exists a sequence of B-splines φ1, . . . , φr with ψ = φ1 and φ = φr such that
each φi+1 is obtained from φi by knot insertion, see Fig. 10. If φ ≺ ψ we define

cψ,φ :=
r∏
i=2

ai, where φi−1 = aiφi + biφ̃i as in (77).

We write φ ≺K ψ if there exists a similar sequence whose elements are all contained
in K. The minimal B-splines for ≺K are called minimal support B-splines in K.

Since Pd ⊆ K, the space K contains the Bernstein polynomialsBi, i ∈ [0,d]∩Nn
on Ω. The LR generating set Φ associated to K contains the minimal support B-
splines φ ∈ K that are obtained from the Bi’s using knot insertion. The B-splines in
Φ span a subset of K containing Pd, but they can be linearly dependent. If g ∈ Pd
then we have g =

∑
φ∈Φ l(g, φ)φ, where, with c(g, φ) as in (67), the coefficients are

given by the following recursive formula [8, Theorem 4.4]

l(g, φ) := c(g, φ)−
∑
ψ∈Nφ

cψ,φl(g, ψ), Nφ := {ψ ∈ Φ : φ ≺ ψ}. (78)
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Unfolding the recursion we find

l(g, φ) = c(g, φ) +
∑
ψ∈Nφ

zψ,φc(g, ψ) (79)

for some zψ,φ ∈ R. It follows that HP is satisfied by the collection Λ = {λφ, φ ∈ Φ},

λφ := Sφ +
∑
ψ∈Nφ

zψ,φGψ,suppφ, (80)

where Sφ and Gψ,suppφ are defined in (68) and (69), respectively.

Theorem 10 Let Φ be an LR generating system satisfying HΘφ , HE and such that
for all φ ∈ Φ, ψ ∈ Nφ we have hψ ≤ `hφ. Then the collection Λ = {λφ, φ ∈ Φ}
with λφ as in (80) defines an operator ℵ that satisfies HP, Hλ,Hφ and Hs with

Cλ = 2CE+|d+1|(d+ 1)1−1/pCE`
|d|+n

p

n∏
i=1

|||H−1
di
|||,

CΦ =
(d+ 1)! 2|σ|

(d− σ)!
C
|σ|
Θ , Cs = 1, CF = 1.

Moreover, if CE = (d+ 1)1, then Cλ = (d+ 1)12|d|+n.

Proof HP follows from (80). Proposition 10 implies Hφ. Since sφ is a box we deduce
Hs with Cs = 1 and HF with CF = 1. We need to show Hλ. From (80) we have

‖λφ‖∗p ≤
(
‖Sφ‖∗p +

∑
ψ∈Nφ

|zφ,ψ| ‖Gψ,suppφ‖∗p
)
. (81)

The zψ,φ are sums of products of cη,β . Consequently they are sums of terms in
[−1, 1]. Therefore |zψ,φ| is bounded by the number of terms and we have

|zψ,φ| ≤ #{oriented paths in Nφ from ψ to φ} ≤ 2#Nφ−1 ≤ 2CE−2. (82)

Finally, φ ≺ ψ implies ‖φ‖p ≤ ‖ψ‖p, and using (81), (82), Proposition 12 and
hψ ≤ `hφ we obtain Hλ with the claimed Cλ.

If CE = (d+ 1)1 then by [10, Theorem 4], Nφ = ∅ and λφ = Sφ. ut

9 Closing remarks

The polynomial approximation assumption HΠ can be extended to allow for more
general bounding terms. A possibility are fractional order Sobolev seminorms, or
derivative dependent summability qk as in [17]. We do not foresee major difficulties
in such extensions, but surely they would be notationally heavy.

A second remark is that the results are based on local bounds. In particular the
cardinality of Φ and the boundedness of Ω are not used in the proofs. Note however
that the embedding of Lq(Ω) ⊆ Lp(Ω) for the case p ≤ q requires µ(Ω) <∞.
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Assumptions for space independent estimates

HP polynomial reproduction ℵg = g, ∀g ∈ P

Hλ functional continuity
∥∥λφ∥∥∗p ‖φ‖p ≤ Cλ

Hφ generators’ regularity ‖∂σφ‖p,ω ≤ CΦh
−σ
φ µ(ω)

1
p µ(suppφ)

− 1
p ‖φ‖p

Hs locality of ℵ hsφ ≤ Cshφ and h1
sφ
≤ Cns µ(suppφ)

HΠ
∥∥∂β(f −Πωf)

∥∥
p,η
≤ CΠ

hγω

hγη

∑
k∈Kβ h

k−β+ν
η

∥∥∂kf∥∥
q,η

HE bound on sφ overlaps #Eω ≤ CE

HM mesh regularity Γφ :=
(∑

ω∈Mφ h
γp+1
ω h−γp−1

sφ

)1/p ≤ CM
Hω element shape regularity maxhω ≤ Cωminhω

Hs shape regularity of sφ maxhsφ ≤ Cs minhsφ

Mesh regularity assumptions that imply HM

H#
M #elements in suppφ #Mφ ≤ C#

Hsω
M local quasi uniformity hsφ ≤ Csωhω

Assumptions that imply HΠ using averaged Taylor expansion

HF sφ star shaped and hsφ ≤ CFhζφ

B-spline specific assumption

HΘφ knot vector regularity ∆φ,i,di+1∆
−1
φ,i,di−σi+1 ≤ CΘ

Table 1 Table of the assumptions and corresponding constants.
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