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ABSTRACT
Kemeny’s constant κ(G) of a connected graph G is a measure of the
expected transit time for the random walk associated with G. In the
current work, we consider the case when G is a tree and, in this set-
ting, we provide lower and upper bounds for κ(G) in terms of the
order n and diameter δ of G by using two different techniques. The
lower bound is given as Kemeny’s constant of a particular caterpillar
tree and, as a consequence, it is sharp. The upper bound is found via
induction, by repeatedly removing pendent vertices from G. By con-
sidering a specific family of trees – the broom-stars – we show that
the upper bound is asymptotically sharp.
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1. Introduction

In the information age, when people and ideas have virtually no physical barriers other
than the ones of communicability, the role of information media is becoming increasingly
crucial. Having a direct control on the global flow of information is progressively difficult;
an indirect control, however, is possible by acting on the architecture and geometry of
networks transferring data [1].

Markov chains are a widely usedmodel for a physical entity moving in a network in dis-
crete time steps. Consider the network as a simple nontrivial connected undirected graph
G = (V(G),E(G)), where the vertices in V(G) represent states and the edges in E(G) rep-
resent connections between states. Given i, j ∈ V(G), we denote the probability of going to
j in one step starting from i by the real number tij, with 0 ≤ tij ≤ 1. The lack of a connec-
tion between i and j makes it impossible to go from i to j in one step, and this is reflected
by choosing tij = 0 if {i, j} �∈ E(G). Moreover, we require that

∑
j∈V(G) tij = 1 for i ∈ V(G).

Note that this description implies absence of memory: the behavior of the system in the next
time step does not depend on the complete history of the process, but only on the current
state. The so-called transition matrix T = [tij] ∈ Mn (where n = |V(G)|) thus encodes the
entire behavior of theMarkov chain. As a consequence, it is possible to use linear algebraic
techniques to predict the short- and long-term behavior of the system. Observe that T is
a real nonnegative row-stochastic matrix. If T is irreducible – meaning that for any pair of
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indices i, j there exists k ∈ N such that (Tk)ij > 0 – by virtue of Perron-Frobenius theory
there is a unique stationary distributionw = (wi) ∈ Rn, which satisfieswTT = wT ,w > 𝟘,
and wTe = 1 (where e ∈ Rn is the all ones vector). Notice, in particular, that w is a prob-
ability distribution. If, in addition, T is primitive – i.e. ∃k ∈ N such that Tk > 0 – then the
Markov chain will converge tow regardless of the initial probability distribution. As a con-
sequence, we say thatw encodes the long-term behavior of the system. A way to look at the
short-termbehavior is to consider the so-calledmean first passagematrixM = [mij] ∈ Mn,
where mij is the expected number of steps needed to reach state j for the first time start-
ing from state i. For background on the theory of Markov chains we refer the reader
to [2] and [3].

A meaningful indicator of the communicability in a network arises by combining long-
term and short-term behavior of the associated Markov chain. It was shown in [2] that the
quantity

κi(T) := (Mw)i − 1 =
n∑
j=1

mijwj − 1

is not dependent on the choice of i, and it is thus a constant for the Markov chain. This
quantity is called Kemeny’s constant and it is denoted by κ(T). As, clearly,

κ(T) = wTMw − 1 =
n∑

i,j=1
mijwiwj − 1,

we see that κ(T) measures the expected travel time between two randomly chosen states,
sampled accordingly to the stationary distribution w1. We can then see Kemeny’s constant
as a networkmetric that measures the long-run ability to transmit information: the smaller
κ(T) is, the faster information can spread in the network [5–7]. As a consequence, one can
control the long-run diffusion rate of the information flow by performing modifications
on the network that lead to the desired change in the value of Kemeny’s constant. Particu-
larly interesting in this regard, is the phenomenon known as the Braess’ paradox for graphs,
which occurswhen adding a new connection in the network has the counter-intuitive effect
of increasing the value of Kemeny’s constant instead of decreasing it [8–10].

In the present work, we focus on a particular kind of Markov chain on G, where, in
each step, a random walker moves from a vertex i (the current position) to one of the
neighbors of i with all the neighbors being equally likely (see [11] for a survey on this type
of random walk). Let A be the adjacency matrix of G and D = diag(Ae) be its diagonal
degree matrix. We observe that, in this case, the transition matrix is given by T = D−1A
(which is irreducible sinceG is connected). For such a Markov chain, the stationary distri-
bution, themean first passagematrix, andKemeny’s constant are each determined once the
graphG is fixed. Hence, we can write κ(G) instead of κ(T). The problem of understanding
how the structure of the network influences the value of Kemeny’s constant then becomes
entirely graph-theoretical. Moreover, this quantity is strongly linked to a particular metric
on graphs known as resistance distance and the related Kirchhoff index and multiplicative

1 The term “−1” in the definitions of κi(T) and κ(T) is convenient in order to yield the following expression for Kemeny’s
constant in terms of the spectrumσ(T) = {1, λ2, λ3, . . . , λn} of the transitionmatrix T : κ(T) = ∑n

j=2 1/(1 − λj) (see [4]).
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degree-Kirchhoff index [12]. In Remark 2.1 and Remark 4.1, we comment on our results in
the light of this connection.

The aim of the current work is to exhibit a lower and an upper bound for Kemeny’s con-
stant for a tree – i.e. an acyclic connected graph – in terms of its order n and its diameter
δ. Following the interpretation given above, this provides knowledge about the long-term
spread of information in a network once two basic quantities of the network – the number
of nodes and the maximum distance – are known. In Section 2 we give a recursive formula
for Kemeny’s constant of a tree in terms of Kemeny’s constant of certain subtrees. Both
lower and upper bounds make use of this formula, but they are built following two differ-
ent approaches. For the former, we explicitly exhibit the minimizers of Kemeny’s constant
among the trees having fixed order and diameter, and we show that they belong to the class
of so-called caterpillars. The recursive formula mentioned above is particularly simple in
the case of caterpillars, and this allows us to obtain a (sharp) lower bound as the explicit
expression for Kemeny’s constant of the minimizers. This is done in Sections 3 and 4. In
contrast, the upper bound is obtained by using the recursive formula in an inductive argu-
ment (Section 5). Finally, in Section 6 we consider a family of trees – the broom-stars – that
attain a particularly large value for Kemeny’s constant. We use this family to show that the
upper bound is asymptotically sharp.

Notation: We let Rn denote the space of n-dimensional real column vectors and we
identify such vectors with the corresponding n-tuples. The i-th unit vector inRn is denoted
by ei and the all ones vector in Rn is denoted by e. To keep the notation light, for both ei
and e we do not indicate the dimension n explicitly: it will be clear from the context. Mn
denotes the space of real square matrices of order n and Mn1,n2 denotes the space of real
n1 × n2 matrices. The vertex set and the edge set of a graph G are denoted by V(G) and
E(G), respectively. The order and the size of G are |V(G)| and |E(G)|, respectively. The
trivial graph is the graph having one vertex. If v ∈ V(G) is a pendent vertex (i.e. a vertex
of degree 1), G−v denotes the graph obtained from G by removing v and the unique edge
incident to v. We identify two graphs when they are isomorphic. We denote the star tree
having n vertices by S(n). A rooted tree (T, r) is a tree with a distinguished vertex (root)
r ∈ V(T). When the root r is clear or not relevant in the context, we write T instead of
(T, r).

2. Concatenation of trees

Given a tree T having n vertices, let d ∈ Rn be its degree vector, whose i-th entry di is
the degree of vertex i. Also, let � ∈ Mn be its distance matrix, whose ij-th entry �ij is the
number of edges in the path connecting vertex i and vertex j. In [10, Theorem 3.1.], we find
the following combinatorial formula for Kemeny’s constant κ(T) of a nontrivial tree T:

κ(T) = dT�d
4(n − 1)

(1)

(by convention, we set Kemeny’s constant of the trivial tree to be equal to 0).
In this section we use (1) to provide an expression for Kemeny’s constant of a tree

obtained by concatenating some given rooted trees. In the rest of the paper this will be
used to find lower and upper bounds on Kemeny’s constant for trees with fixed order and
diameter.
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Figure 1. A rooted tree having vertex 1 as root. The weight of each vertex is its degree, so that the
moment is dist(1, 1)|F1| + dist(2, 1)|F2| + dist(3, 1)|F3| + dist(4, 1)|F4| + dist(5, 1)|F5| = 0 · 1 + 1 ·
3 + 2 · 2 + 2 · 1 + 3 · 1 = 12.

Let (R, r) be a rooted tree. We define itsmoment μ(R, r) as follows:

μ(R, r) =
∑

v∈V(R)

dist(v, r) deg(v). (2)

The motivation for this name comes from the homonymous notion in mechanics. Given
a force F applied to a point particle having position P with respect to a fixed point (“ful-
crum”), the moment or torque of F is the vector P × F. The moment of a set of forces
F1,F2, . . . ,Fn, each one applied to a point particle having position P1,P2, . . . ,Pn, is sim-
ply

∑n
i=1 Pi × Fi. Let us now draw the tree R by arranging its vertices horizontally, starting

from the root r (which we consider as the fixed fulcrum). Suppose, also, that the degree of
a vertex represents its weight. Then, formula (2) gives the (magnitude of) the moment of
the gravity force acting on the vertices of R (Figure 1).

Lemma 2.1: Let (R, r) be a rooted tree of order n. Then

μ(R, r) ≥ n − 1,

with equality if and only if R is the star S(n) and r is the central vertex of S(n).

Proof: From the definition (2) of moment we have

μ(R, r) =
∑

v∈V(R)

dist(v, r) deg(v) =
∑

v∈V(R)
v �=r

dist(v, r) deg(v) ≥
∑

v∈V(R)
v �=r

1 · 1 = n − 1.

Equality holds precisely when all the vertices except the root r have degree 1 and distance
1 from r, i.e. when R is the star S(n) and r is the central vertex of S(n). �

Given an integer k ≥ 1, consider k rooted trees (T1, r1), (T2, r2), . . . , (Tk, rk). For each
� = 1, 2, . . . , k, let n� = |V(T�)| be the order of T�, m� = |E(T�)| = n� − 1 be the size of
T�, d(�) = (d(�)

i ) ∈ Rn� be the degree vector of T�, �(�) = [�(�)
ij ] ∈ Mn�

be the distance
matrix of T�, and μ� = μ(T�, r�) = eT1 �(�)d(�) be the moment of (T�, r�) (where the ver-
tices ofT� are labeled in such a way that vertex 1 corresponds to the root r�).We also define
the size vectorm = (m1,m2, . . . ,mk) ∈ Rk and themoment vectorµ = (μ1,μ2, . . . ,μk) ∈



LINEAR ANDMULTILINEAR ALGEBRA 5

Figure 2. Four rooted trees and their concatenation T = conc((T1, r1), (T2, r2), (T3, r3), (T4, r4)).

Rk. Consider the tree T = conc((T1, r1), (T2, r2), . . . , (Tk, rk)) obtained by taking the
disjoint union of T1,T2, . . . ,Tk and adding the edges r1r2, r2r3, . . . , rk−1rk (Figure 2),
and let its order be n = ∑k

�=1 n�. We shall refer to T as to the concatenation of
(T1, r1), (T2, r2), . . . , (Tk, rk). Finally, we introduce the symmetric Toeplitz matrix X =
[xij] ∈ Mk defined by xij = |i − j| (i, j ≤ k).

Proposition 2.2: Let T = conc((T1, r1), (T2, r2), . . . , (Tk, rk)). If T is nontrivial, its
Kemeny’s constant may be expressed as

κ(T) = 1
n − 1

( k∑
i=1

miκ(Ti) + mTX(m + 2e) + (n − 1)µTe − µTm

+ k3

3
− kn + n + k

6
− 1

2

)
.

Proof: If k = 1, a straightforward computation shows that the result holds, so assume that
k ≥ 2. Denote the degree vector of T by d ∈ Rn. Using a suitable ordering of vertices in T
and defining

d̃ =

⎡
⎢⎢⎢⎢⎢⎣

d(1)

d(2)

...
d(k−1)

d(k)

⎤
⎥⎥⎥⎥⎥⎦ , g =

⎡
⎢⎢⎢⎢⎢⎣

e1
e1
...
e1
e1

⎤
⎥⎥⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎢⎢⎣

e1
𝟘
...
𝟘
e1

⎤
⎥⎥⎥⎥⎥⎦ ,

where the dimensions of the blocks in g and h agree with those in d̃, we see that

d = d̃ + 2g − h.

We partition the distance matrix � = [�ij] ∈ Mn of T as follows:

� =

⎡
⎢⎢⎢⎣

�(11) �(12) · · · �(1k)

�(21) �(22) · · · �(2k)

...
...

. . .
...

�(k1) �(k2) · · · �(kk)

⎤
⎥⎥⎥⎦
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where �(ij) ∈ Mni,nj . Given two vertices u, v ∈ V(T) and supposing that u and v both
belong to V(Ti) for some i ∈ {1, 2, . . . , k}, we see that �uv = �

(i)
uv . This shows that

�(ii) = �(i) for i ∈ {1, 2, . . . , k}. On the other hand, if u ∈ V(Ti) and v ∈ V(Tj)with i �= j,
then

�uv = �
(i)
u1 + �

(j)
1v + |i − j| = eTu�(i)e1 + eT1 �(j)ev + |i − j|

and hence

�(ij) = �(i)e1eT + eeT1 �(j) + |i − j|eeT .
We obtain

dT�d = (d̃T + 2gT − hT)�(d̃ + 2g − h)

= d̃T�d̃ + 4gT�g + hT�h + 4d̃T�g − 2d̃T�h − 4gT�h.

Observe that

•
d̃T�d̃ =

k∑
i,j=1

d(i)T�(ij)d(j)

=
k∑

i=1
d(i)T�(i)d(i) +

∑
i�=j

d(i)T(�(i)e1eT + eeT1 �(j) + |i − j|eeT)d(j)

=
k∑

i=1
4miκ(Ti) +

∑
i�=j

(2μimj + 2μjmi + 4mimj|i − j|)

=
k∑

i=1
4miκ(Ti) + 4

∑
i�=j

μimj + 4
k∑

i,j=1
mimj|i − j|

=
k∑

i=1
4miκ(Ti) + 4(eTµmTe − µTm) + 4mTXm

=
k∑

i=1
4miκ(Ti) + 4(n − k)µTe − 4µTm + 4mTXm.

•
gT�g =

k∑
i,j=1

eT1 �(ij)e1

=
∑
i�=j

eT1 (�(i)e1eT + eeT1 �(j) + |i − j|eeT)e1

=
∑
i�=j

|i − j| = k3 − k
3

.
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• hT�h = eT1 �(11)e1 + eT1 �(kk)e1 + 2eT1 �(1k)e1

= 2eT1 (�(1)e1eT + eeT1 �(k) + |1 − k|eeT)e1 = 2|1 − k| = 2(k − 1).

•
d̃T�g =

k∑
i,j=1

d(i)T�(ij)e1

=
k∑

i=1
d(i)T�(i)e1 +

∑
i�=j

d(i)T�(ij)e1

=
k∑

i=1
μi +

∑
i�=j

d(i)T(�(i)e1eT + eeT1 �(j) + |i − j|eeT)e1

= µTe +
∑
i�=j

(μi + 2mi|i − j|)

= µTe + (k − 1)µTe + 2
k∑

i,j=1
mi|i − j| = kµTe + 2mTXe.

•
d̃T�h =

k∑
i=1

(
d(i)T�(i1)e1 + d(i)T�(ik)e1

)

= d(1)T�(1)e1 +
k∑

i=2
d(i)T�(i1)e1 + d(k)T�(k)e1 +

k−1∑
i=1

d(i)T�(ik)e1

= μ1 + μk +
k∑

i=2
d(i)T(�(i)e1eT + eeT1 �(1) + (i − 1)eeT)e1

+
k−1∑
i=1

d(i)T(�(i)e1eT + eeT1 �(k) + (k − i)eeT)e1

= μ1 + μk +
k∑

i=2
(μi + 2mi(i − 1)) +

k−1∑
i=1

(μi + 2mi(k − i))

= 2µTe +
k−1∑
i=2

2mi(k − 1) + 2mk(k − 1) + 2m1(k − 1)

= 2µTe + 2(k − 1)
k∑

i=1
mi

= 2µTe + 2(k − 1)(n − k).

•
gT�h =

k∑
i=1

(
eT1 �(i1)e1 + eT1 �(ik)e1

)
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= eT1 �(1)e1 +
k∑

i=2
eT1 �(i1)e1 + eT1 �(k)e1 +

k−1∑
i=1

eT1 �(ik)e1

=
k∑

i=2
eT1 (�(i)e1eT + eeT1 �(1) + (i − 1)eeT)e1

+
k−1∑
i=1

eT1 (�(i)e1eT + eeT1 �(k) + (k − i)eeT)e1

=
k∑

i=2
(i − 1) +

k−1∑
i=1

(k − i)

=
k∑

i=1
(i − 1) +

k∑
i=1

(k − i)

=
k∑

i=1
(k − 1)

= k2 − k.

Putting these observations all together, we obtain

dT�d =
k∑

i=1
4miκ(Ti) + 4(n − k)µTe − 4µTm + 4mTXm + 4

3
(k3 − k)

+ 2(k − 1) + 4kµTe + 8mTXe − 4µTe − 4(k − 1)(n − k) − 4k2 + 4k

=
k∑

i=1
4miκ(Ti) + 4mTX(m + 2e) + 4(n − 1)µTe − 4µTm

+ 4
3
k3 − 4kn + 4n + 2

3
k − 2.

Applying (1) yields the desired expression for κ(T). �

Remark 2.1: The Kirchhoff index of a graph, defined as half the sum of the resistance
distances between vertices in the graph, is related to Kemeny’s constant (see [12]). In
[13, Proposition 2.5.], the author computes the Kirchhoff index of so-called cluster net-
works, which can be viewed as generalizing concatenations of trees. The formula for this
different parameter obtained in [13] parallels the expression for Kemeny’s constant in
Proposition 2.2.

A first, straightforward application of Proposition 2.2 allows us to express Kemeny’s
constant of a tree T in terms of that of T−v where v is a pendent vertex.
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Figure 3. The caterpillar C6(p)with p = (1, 3, 0, 5, 0, 2).

Corollary 2.3: Let T be a nontrivial tree of order n, let v be a pendent vertex, and let w be
the neighbor of v. Then

κ(T) = 1
n − 1

(
(n − 2)κ(T − v) + μ(T − v,w) + n − 3

2

)
.

Proof: Consider the trees T1 and T2, where T1 is the trivial tree on vertex set {v} and
T2 = T − v, and notice that T is the concatenation of the rooted trees (T1, v) and (T2,w).
Denote the size vector and the moment vector of the concatenation bym = (m1,m2) and
µ = (μ1,μ2), respectively, and notice thatm1 = 0,m2 = n − 2,μ1 = 0, andμ2 = μ(T −
v,w). Using Proposition 2.2, we obtain

κ(T) = 1
n − 1

( 2∑
i=1

miκ(Ti) + mTX(m + 2e) + (n − 1)µTe − µTm

+ 8
3

− 2n + n + 1
3

− 1
2

)

= 1
n − 1

(
(n − 2)κ(T2) + mTX(m + 2e) + (n − 1)µTe − µTm − n + 5

2

)
.

The result follows by observing that

mTX(m + 2e) = [
0 n − 2

] [0 1
1 0

] [
2
n

]
= 2n − 4

and

(n − 1)µTe − µTm = µT((n − 1)e − m) = [
0 μ(T − v,w)

] [n − 1
1

]
= μ(T − v,w).

�

3. Kemeny’s constant for caterpillars

Given a positive integer k and a nonnegative integer vector p = (p1, p2, . . . , pk), we define
the caterpillar Ck(p) to be the tree consisting of a path c1c2 . . . ck of k vertices, called the
central vertices, and pi pendent vertices attached to ci for each i ≤ k (Figure 3). Observe
that the order of Ck(p) is n = k +∑k

i=1 pi.
From Proposition 2.2 one can obtain a particularly simple expression for Kemeny’s con-

stant of a caterpillar (Proposition 3.1). This expression will be used to find the minimizer
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and the maximizer of Kemeny’s constant in the class of caterpillars having a given order
and a given number of central vertices (Theorem 3.2). In Section 4, this will lead to a sharp
lower bound for Kemeny’s constant of trees having fixed order and diameter.

Proposition 3.1: Let Ck(p) be a caterpillar of order n ≥ 2. Then

κ(Ck(p)) = 1
n − 1

(
pTXp + 2pTXe + k3

3
− 2nk + n2 − n

2
+ 5

3
k − 1

2

)
.

Proof: We notice that Ck(p) is the concatenation of the rooted stars (S(p1 +
1), r1), (S(p2 + 1), r2), . . . , (S(pk + 1), rk), where the root ri is the central vertex of the
corresponding star. From Proposition 2.2 we have that

κ(Ck(p)) = 1
n − 1

( k∑
i=1

piκ(S(pi + 1)) + pTX(p + 2e) + (n − 1)µTe − µTp

+ k3

3
− kn + n + k

6
− 1

2

)
.

We claim that

piκ(S(pi + 1)) = p2i − pi
2

(i = 1, 2, . . . , k). (3)

If pi = 0, equation (3) trivially holds. If pi ≥ 1, notice that the degree vector d(i) and the
distance matrix �(i) of the star S(pi + 1) have the following simple description:

d(i) =
[
pi
e

]
, �(i) =

[
0 eT

e 2(eeT − I)

]

where e ∈ Rpi and I is the identity matrix inMpi . Hence,

piκ(S(pi + 1)) = pi
d(i)T�(i)d(i)

4pi
= 1

4
[
pi eT

] [0 eT

e 2(eeT − I)

] [
pi
e

]

= 1
4
[
pi eT

] [ pi
(3pi − 2)e

]
= 4p2i − 2pi

4
= p2i − pi

2
.

Moreover, fromLemma 2.1 we see thatμi = pi for i = 1, 2, . . . , k, so thatµ = p.We obtain

κ(Ck(p)) = 1
n − 1

( k∑
i=1

(
p2i − pi

2

)
+ pTX(p + 2e) + (n − 1)pTe − pTp

+ k3

3
− kn + n + k

6
− 1

2

)

= 1
n − 1

(
pTp − n − k

2
+ pTXp + 2pTXe + (n − 1)(n − k) − pTp

+ k3

3
− kn + n + k

6
− 1

2

)
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= 1
n − 1

(
pTXp + 2pTXe + k3

3
− 2nk + n2 − n

2
+ 5

3
k − 1

2

)

as desired. �

Remark 3.1: Equation (3) may be directly obtained from the expression of Kemeny’s con-
stant for stars found in [12, p. 241]. Compare also with Proposition 4.1 in the present
work.

Let Cn,k denote the class of caterpillars Ck(p) having k central vertices and order n, so
that

n = |V(Ck(p))| = k +
k∑

i=1
pi.

The goal of the remaining part of this section is to find the maximum and the minimum
value of Kemeny’s constant in the class Cn,k. In particular, wewill prove the following result.

Theorem 3.2: Let k and n be integers such that 2 ≤ k ≤ n.

(i) The unique caterpillar in Cn,k minimizing Kemeny’s constant is Ck((n − k)er), with r =
�k/2�.

(ii) The unique caterpillar in Cn,k maximizing Kemeny’s constant is Ck(t1e1 + tkek), with
t1 = �(n − k)/2�, tk = 	(n − k)/2
.

Example 3.1: Let k = 7 and n = 15. Then the caterpillar C7(p) where p = (0, 0, 0, 8, 0,
0, 0)minimizes κ(C) forC ∈ Cn,k, andC7(p′)wherep′ = (4, 0, 0, 0, 0, 0, 4)maximizes κ(C)

for the same class.

Proof of Theorem 3.2: Consider the two functions f , g : Rk → R defined by f (p) =
pTXp and g(p) = 2pTXe (p ∈ Rk). From Proposition 3.1 we see that the problem reduces
to minimizing (resp. maximizing) the function h = f + g in the setKn−k = {p ∈ Zk | p ≥
𝟘, pTe = n − k}.

(i) The diagonal entries of X are zero and its off-diagonal entries are strictly positive.
Hence, given p ∈ Kn−k, f (p) = 0 if at most one entry of p is strictly positive and f (p) > 0
otherwise. Therefore, the minimum value of f in Kn−k is attained uniquely in (n − k)ei for
i ∈ {1, 2, . . . , k}. Moreover, a straightforward computation shows that

(Xe)i = i2 − ki − i + k2 + k
2

(i = 1, 2, . . . , k). (4)

If k is odd, expression (4) attains its minimum only for i = (k + 1)/2 = �k/2�. Therefore,
g and h are minimized uniquely for p = (n − k)e�k/2�. If k is even, expression (4) attains
its minimum only for i1 = k/2 and i2 = k/2 + 1. Therefore, h is minimized uniquely for
p1 = (n − k)ek/2 and p2 = (n − k)ek/2+1. Since the two caterpillarsCk(p1) andCk(p2) are
isomorphic and since k/2 = �k/2� for k even, part (i) of the theorem follows.

(ii)Given v = (vi) ∈ Rk and j ∈ {1, 2, . . . , k}, we define sj(v) = ∑j
i=1 vi. Let p = (pi) ∈

Kn−k. We define the “right perturbation function” Rq(p) = h(p + eq+1 − eq) − h(p) for
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q ∈ {1, 2, . . . , k − 1} with pq ≥ 1, and the “left perturbation function” Lq(p) = h(p +
eq−1 − eq) − h(p) for q ∈ {2, 3, . . . , k} with pq ≥ 1. Observe that Lq(p) = −Rq−1(p +
eq−1 − eq). Defining y = eq+1 − eq, we see that

Rq(p) = h(p + y) − h(p) = f (p + y) + g(p + y) − f (p) − g(p)

= f (p) + f (y) + 2pTXy + g(p) + g(y) − f (p) − g(p)

= f (y) + 2pTXy + g(y).

Notice that f (y) = −2. Additionally,

(Xy)i =
{
1 if i ≤ q
−1 if i > q

and, therefore,

pTXy = sq(p) − (n − k − sq(p)) = 2sq(p) − n + k,

g(y) = 2eTXy = 2(q − (k − q)) = 4q − 2k.

We conclude that

Rq(p) = 4sq(p) + 4q − 2n − 2

and, hence,

Lq(p) = −Rq−1(p + eq−1 − eq)

= −4sq−1(p + eq−1 − eq) − 4(q − 1) + 2n + 2

= −4sq−1(p) − 4 − 4q + 4 + 2n + 2

= −4sq(p) + 4pq − 4q + 2n + 2

= −Rq(p) + 4pq.

Suppose now that p∗ = (p∗
i ) attains the maximum value of h in Kn−k. If p∗

q ≥ 1 for some
q ∈ {2, 3, . . . , k − 1}, then the maximality of p∗ implies that Rq(p∗) ≤ 0 and Lq(p∗) ≤ 0.
This means that 4p∗

q = Rq(p∗) + Lq(p∗) ≤ 0, which is a contradiction. As a consequence,
there exists t ∈ {0, 1, . . . , n − k} such that p∗ = te1 + (n − k − t)ek. Then, a straightfor-
ward computation yields

h(p∗) = t2(2 − 2k) + t(2nk − 2k2 − 2n + 2k) + nk2 − k3 − nk + k2.

Considering this expression as a quadratic polynomial in the variable t, we find that its
maximum is attained for t∗ = (n − k)/2, from which part (ii) of the theorem readily
follows. �
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4. A lower bound on Kemeny’s constant for trees

The results concerning extremal caterpillars presented in Section 3 provide a tool for find-
ing a lower bound on Kemeny’s constant of a tree in terms of the number of its vertices
and its diameter. To do so, we shall prove a stronger version of part (i) of Theorem 3.2.
Namely, we will show that the caterpillar C∗ minimizing Kemeny’s constant among all the
caterpillars having n vertices and δ + 1 central vertices is also a minimizer in the class Tn,δ
of trees having n vertices and diameter equal to δ (Theorem 4.3). κ(C∗) will then yield a
(sharp) lower bound for Kemeny’s constant in Tn,δ (Corollary 4.4).

Let T(G) be the transition matrix of a nontrivial connected graph G on n vertices and
let 1, λ2, λ3, . . . , λn be the eigenvalues of T(G). From [4], we have the following formula
for Kemeny’s constant of G:

κ(G) =
n∑
j=2

1
1 − λj

.

We use this expression to obtain a result on Kemeny’s constant for bipartite graphs (Propo-
sition 4.1) and, as a consequence, for trees (Corollary 4.2). The latter will be useful in the
proof of Theorem 4.3.

Proposition 4.1: Let G be a nontrivial connected bipartite graph on n vertices. Then

κ(G) ≥ n − 3
2
,

with equality if and only if G is a complete bipartite graph.

Proof: Let A and D denote the adjacency matrix and the diagonal degree matrix of G,
respectively. We observe that

T(G) = D−1A = D−(1/2)(D−(1/2)AD−(1/2))D1/2.

Hence, T(G) is similar to the symmetric matrix D−(1/2)AD−(1/2), so that its eigenvalues
are real. Denote them by 1 = λ1 ≥ λ2 ≥ . . . ≥ λn = −1. Since G is bipartite, λn−j+1 =
−λj, j = 1, 2, . . . , n. Suppose for concreteness that exactly q eigenvalues are zero, and let
� = (n − q)/2. Then

κ(G) =
n∑
j=2

1
1 − λj

=
�∑

j=2

(
1

1 − λj
+ 1

1 − λn−j+1

)
+ q + 1

2

= q + 1
2

+
�∑

j=2

2
1 − λ2j

≥ q + 1
2

+ 2(� − 1) = n − 3
2
.

Observe that if q < n − 2, then in fact κ(G) > n − (3/2); it now follows that κ(G) = n −
(3/2) if and only if the transition matrix has rank 2 – i.e. if and only if G is a complete
bipartite graph. �

Remark 4.1: The inequality stated in Proposition 4.1 may also be derived from [14,
Corollary 4.], which provides a lower bound for the multiplicative degree-Kirchhoff index
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of a bipartite graph. This quantity, defined as R∗(G) = 1
2d

T�d (where d and � denote the
degree vector and the resistance distance matrix of a given graphG, respectively), is linked
to Kemeny’s constant via the relation R∗(G) = 2m κ(G), wherem is the size of G ([12]).

Corollary 4.2: For any integer n ≥ 1, the star S(n) is the unique tree minimizing Kemeny’s
constant value in the set of trees having n vertices.

Theorem4.3: Let n and δ be integers such that Tn,δ �= ∅. The unique tree in Tn,δ minimizing
Kemeny’s constant is the caterpillar Cδ+1((n − δ − 1)et), with t = �(δ + 1)/2� and et =
(0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Rδ+1.

Proof: If δ = 0 (resp. δ = 1), then n = 1 (resp. n = 2) and the result is immediate,
so we assume that δ ≥ 2. Consider a tree T ∈ Tn,δ . If T is a caterpillar, then we can
write it as T = Cδ+1(p) for some nonnegative integer vector p = (p1, p2, . . . , pδ+1) such
that p1 = pδ+1 = 0, so T ∈ Tn,δ ∩ Cn,δ+1. Suppose that T minimizes Kemeny’s constant
in Tn,δ . Then, T minimizes Kemeny’s constant in Tn,δ ∩ Cn,δ+1. Applying part (i) of
Theorem 3.2, we deduce that T = Cδ+1((n − δ − 1)et) with t = �(δ + 1)/2�. If T is
not a caterpillar, let r1r2 . . . rδ+1 be a longest path in T. We can unambiguously write
T as the concatenation of suitable rooted trees (T1, r1), (T2, r2), . . . , (Tδ+1, rδ+1). Let
m = (mi) ∈ Rδ+1 be the size vector of (T1, r1), (T2, r2), . . . , (Tδ+1, rδ+1) and consider
the caterpillar C̃ = Cδ+1(m). Notice that C̃ is the concatenation of the rooted stars
(S(m1 + 1), r1), (S(m2 + 1), r2), . . . , (S(mδ+1 + 1), rδ+1), where the root ri of S(mi + 1)
is chosen to be the central vertex of the star. Let µ be the moment vector of
(T1, r1), (T2, r2), . . . , (Tδ+1, rδ+1), and let µ̃ be the moment vector of (S(m1 + 1), r1),
(S(m2 + 1), r2), . . . , (S(mδ+1 + 1), rδ+1). Using Proposition 2.2, we obtain

(n − 1)(κ(T) − κ(C̃)) =
δ+1∑
i=1

miκ(Ti) −
δ+1∑
i=1

miκ(S(mi + 1)) + (n − 1)(µ − µ̃)Te

− (µ − µ̃)Tm

=
δ+1∑
i=1

mi(κ(Ti) − κ(S(mi + 1))) + (µ − µ̃)T((n − 1)e − m).

Corollary 4.2 shows that κ(Ti) ≥ κ(S(mi + 1)) for each i; since T is not a caterpillar, more-
over, there exists an index j such thatmj ≥ 1 and the previous inequality is strict. We thus
obtain

(n − 1)(κ(T) − κ(C̃)) > (µ − µ̃)T((n − 1)e − m).

The vector ((n − 1)e − m) is entrywise nonnegative. Additionally, Lemma 2.1 shows that
µ ≥ µ̃, so that µ − µ̃ is also entrywise nonnegative. We deduce that

(n − 1)(κ(T) − κ(C̃)) > 0

and, hence, κ(T) > κ(C̃). Since C̃ ∈ Tn,δ , T does not minimize Kemeny’s constant in Tn,δ .
�

Corollary 4.4: Let T be a nontrivial tree of order n and diameter δ. Then
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• if δ is odd,

κ(T) ≥ 1
n − 1

(
nδ2

2
− δ3

6
+ n2 − nδ − δ2

2
− 2n + 7

6
δ + 1

)
;

• if δ is even,

κ(T) ≥ 1
n − 1

(
nδ2

2
− δ3

6
+ n2 − nδ − δ2

2
− 5

2
n + 5

3
δ + 3

2

)
.

Additionally, in both cases,T satisfies the bound with equality if and only if T is the caterpillar
Cδ+1((n − δ − 1)et), with t = �(δ + 1)/2�.

Proof: The result is obtained by applying Theorem 4.3 and computing Kemeny’s constant
of the caterpillar Cδ+1((n − δ − 1)et) using the formula given in Proposition 3.1. �

5. An upper bound on Kemeny’s constant for trees

One can check by inspection that the maximizer of Kemeny’s constant in Tn,δ – i.e. the set
of trees having order n and diameter δ – is not a caterpillar in general. Hence, contrary to
what happens for the lower bound (see Section 4), we do not obtain an upper bound for
Kemeny’s constant in Tn,δ from Proposition 3.1.

Example 5.1: Note that any tree on n ≥ 4 vertices with diameter 3 is necessarily a caterpil-
lar. Hence, by Theorem 3.2, the tree on n vertices with diameter 3 thatmaximizes Kemeny’s
constant isC2(�(n − 2)/2�e1 + 	(n − 2)/2
e2); it is straightforward to determine that this
maximum value is 3/2n − 3 + (1/2n − 2) if n is even, 3/2n − 3 if n is odd.

For trees of diameter 4, the maximizer of Kemeny’s constant may no longer be a cater-
pillar. For instance, consider trees on 13 vertices with diameter 4. The value of Kemeny’s
constant for the caterpillar C3(5e1 + 5e3) is equal to 43/2. In contrast, consider the tree
T on 13 vertices formed from three copies of S(4) by making each of their central ver-
tices adjacent to a common 13-th vertex. Then T has diameter 4, but κ(T) = 47/2 >

κ(C3(5e1 + 5e3)).

Nevertheless, an upper bound can be found bymeans of an iterative use of Corollary 2.3.

Theorem 5.1: Let T be a tree of order n and diameter δ. Then

κ(T) ≤ nδ − δ2

2
.

Remark 5.1: A different upper bound for Kemeny’s constant of a tree T of order n and
diameter δ can be derived from expression (1) by looking at the norms of the degree vector
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Figure 4. Two examples of rooted broom.

d and of the distance matrix � separately. For example, one easily obtains

κ(T) = dT�d
4(n − 1)

≤ ρ(�)‖d‖22
4(n − 1)

≤ ρ(�)‖d‖21
4(n − 1)

= ρ(�)(2(n − 1))2

4(n − 1)
= ρ(�)(n − 1)

where ρ(�) is the spectral radius of �. Using for example [15, Theorem 8.1.22.], we have
that

ρ(�) ≥ min
1≤i≤n

n∑
j=1

�ij ≥ n − 1.

Hence, this method would provide an upper bound asymptotically larger than or equal to
n2, thus worse than the one given in Theorem 5.1.

Before provingTheorem5.1, we present a sharp upper bound for themoment of a rooted
tree.Whoever has ever played on a seesaw can confirm that tomaximize themoment of the
gravity force one needs to push all the weight as far from the fulcrum as possible. Proposi-
tion 5.2 shows that the seesaw principle applies to the moment of a rooted tree too. Given
integers x ≥ 1 and y ≥ 0, we define the rooted broom B(x, y) as the rooted tree obtained by
attaching y pendent vertices to an endpoint of a path of x vertices and by letting the other
endpoint be the root (if x = 1, B(x, y) is the star S(y + 1) with the central vertex as root;
see Figure 4). We also let B(0, 1) be the trivial tree, with the unique vertex as root.

Proposition 5.2: Let T be a rooted tree of order n and diameter δ. Then its moment μ(T)

satisfies

μ(T) ≤ 2nδ − δ2 − n − δ + 1,

with equality if and only if T = B(δ, n − δ).

Proof: For i = 0, 1, . . ., let Si be the set of vertices in T having distance i from the root
r of T, and let si = |Si|. Define t = max{i | si ≥ 1}, and observe that si ≥ 1 for 0 ≤ i ≤ t.
Notice, also, that 0 ≤ t ≤ δ. Using the definition (2) of moment, we see that

μ(T) =
∑

v∈V(T)

dist(v, r) deg(v) =
t∑

i=1
i
∑
v∈Si

deg(v).

Each vertex in Si (i = 1, 2, . . . , t) is adjacent to exactly one vertex in Si−1. Moreover, no
edge links a vertex in Si with a vertex in Sj unless j = i+ 1 or j = i−1. This implies that∑

v∈Si deg(v) = |Si| + |Si+1| = si + si+1 for i = 1, 2, . . . , t. We obtain

μ(T) =
t∑

i=1
i(si + si+1) =

t∑
i=1

isi +
t+1∑
i=2

(i − 1)si =
t∑

i=1
isi +

t∑
i=1

(i − 1)si
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= 2
t∑

i=1
isi − n + 1 = 2

t∑
i=1

i + 2
t∑

i=1
i(si − 1) − n + 1

= t2 + t − n + 1 + 2
t∑

i=1
i(si − 1) ≤ t2 + t − n + 1 + 2

t∑
i=1

t(si − 1)

= t2 + t − n + 1 + 2t(n − 1) − 2t2 = 2nt − t2 − n − t + 1.

Equality holds if and only if (t − i)(si − 1) = 0 ∀i = 1, 2, . . . , t or, equivalently, if and only
if si = 1 ∀i = 1, 2, . . . , t − 1. This occurs precisely when T = B(t, n − t). Since

∂

∂x
(2nx − x2 − n − x + 1) = 2n − 2x − 1 > 0fort ≤ x ≤ δ,

we have that

2nt − t2 − n − t + 1 ≤ 2nδ − δ2 − n − δ + 1,

with equality if and only if t = δ. We conclude that

μ(T) ≤ 2nδ − δ2 − n − δ + 1,

with equality if and only if T = B(δ, n − δ). �

Proof of Theorem 5.1: We use induction on the order n of T. If n = 1, then κ(T) = 0 by
definition and the theorem holds. Let now T be a tree of order n ≥ 2 and diameter δ, and
suppose the theorem is true for trees of order up to n−1. Let P be a longest path in T and
let v be one of the two endpoints of P. Observe that v is a pendent vertex in T and let w be
its neighbor. Using Corollary 2.3 we obtain

κ(T) = 1
n − 1

(
(n − 2)κ(T − v) + μ(T − v,w) + n − 3

2

)
. (5)

If diam(T − v) = δ, by Proposition 5.2

μ(T − v,w) ≤ 2(n − 1)δ − δ2 − (n − 1) − δ + 1 = 2nδ − δ2 − n − 3δ + 2.

If diam(T − v) = δ − 1, by Proposition 5.2

μ(T − v,w) ≤ 2(n − 1)(δ − 1) − (δ − 1)2 − (n − 1) − (δ − 1) + 1

= 2nδ − δ2 − 3n − δ + 4

= (2nδ − δ2 − n − 3δ + 2) − 2n + 2δ + 2

≤ 2nδ − δ2 − n − 3δ + 2.

In either case, then, we have thatμ(T − v,w) ≤ 2nδ − δ2 − n − 3δ + 2. Moreover, apply-
ing the inductive hypothesis to T−v yields

κ(T − v) ≤ (n − 1)δ − δ2

2
= nδ − δ2

2
− δ
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if diam(T − v) = δ, and

κ(T − v) ≤ (n − 1)(δ − 1) − (δ − 1)2

2
= nδ − δ2

2
− n + 1

2

=
(
nδ − δ2

2
− δ

)
+ δ − n + 1

2

≤ nδ − δ2

2
− δ

if diam(T − v) = δ − 1. Hence, in either case κ(T − v) ≤ nδ − (δ2/2) − δ. Substituting
this into (5), we obtain

κ(T) ≤ 1
n − 1

(
(n − 2)

(
nδ − δ2

2
− δ

)
+ 2nδ − δ2 − n − 3δ + 2 + n − 3

2

)

= n2δ − nδ2
2 − nδ − δ + 1

2
n − 1

= (n − 1)(nδ − δ2

2 ) − δ2

2 − δ + 1
2

n − 1

≤ (n − 1)(nδ − δ2

2 )

n − 1

= nδ − δ2

2
,

thus validating the inductive step and concluding the proof of the theorem. �

Putting Corollary 4.4 and Theorem 5.1 together, we obtain the following main result.

Theorem 5.3: Let T be a tree of order n and diameter δ. Then

n + δ2

3
− δ − 1 ≤ κ(T) ≤ nδ − δ2

2
.

Proof: The second inequality is Theorem 5.1. We easily check that the first inequality is
satisfied for the trivial tree (whose Kemeny’s constant value is 0) and for the unique tree
of order 2 (whose Kemeny’s constant value is 1/2), so we assume that n ≥ 3. We apply
Corollary 4.4 as follows. If δ is odd,

(n − 1)κ(T) ≥ nδ2

2
− δ3

6
+ n2 − nδ − δ2

2
− 2n + 7

6
δ + 1

= (n − 1)
(
n + δ2

3
− δ − 1

)
+ 1

6
(nδ2 − δ3 − δ2 + δ)

≥ (n − 1)
(
n + δ2

3
− δ − 1

)
,
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where the last inequality is due to the fact that

nδ2 − δ3 − δ2 + δ ≥ (δ + 1)δ2 − δ3 − δ2 + δ = δ ≥ 0.

If δ is even,

(n − 1)κ(T) ≥ nδ2

2
− δ3

6
+ n2 − nδ − δ2

2
− 5

2
n + 5

3
δ + 3

2

= (n − 1)
(
n + δ2

3
− δ − 1

)
+ 1

6
(nδ2 − δ3 − δ2 − 3n + 4δ + 3)

≥ (n − 1)
(
n + δ2

3
− δ − 1

)
,

where the last inequality is due to the fact that the polynomial p(n, δ) = nδ2 − δ3 − δ2 −
3n + 4δ + 3 is nonnegative when n ≥ δ + 1 and δ ≥ 2 (since p(δ + 1, δ) = δ ≥ 0 and
∂p/∂n = δ2 − 3 ≥ 0). The conclusion follows, since a tree of order n ≥ 3 has diameter
δ ≥ 2. �

6. Asymptotic analysis of the upper bound

The lower bound for Kemeny’s constant presented in Corollary 4.4 is sharp: given two
integers n and δ such that n ≥ 2 and Tn,δ �= ∅, there exists a tree of order n and diameter δ

whose Kemeny’s constant equals the bound – namely, the caterpillar Cδ+1((n − δ − 1)et),
with t = �(δ + 1)/2�. The same does not hold for the upper bound

κ(T) ≤ nδ − δ2

2
(6)

given in Theorem 5.1. As an example, for the unique treeU having order n = 2 and diam-
eter δ = 1, we get κ(U) = 1/2 < 3/2 = nδ − δ2/2. Nevertheless, it can be shown that the
upper bound (6) is asymptotically sharp, in the sense described in the following theorem.

Theorem 6.1: There exists a sequence T1,T2, . . . of trees such that, letting ni be the order of
Ti and δi be its diameter for i = 1, 2, . . . ,

lim
i→∞ ni = ∞ and

lim
i→∞

κ(Ti)

niδi − δ2i /2
= 1.

The remaining part of this section is dedicated to proving Theorem 6.1. A first natural
candidate to look at in order to check the asymptotic sharpness of the bound (6) is themax-
imizer of Kemeny’s constant within the class of caterpillars having n vertices and k central
vertices. From part (ii) of Theorem 3.2, we know that its expression is C̃ = Ck(t1e1 + tkek),
with t1 = �(n − k)/2� and tk = 	(n − k)/2
. Assume, for simplicity, that n−k is even and
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at least 2, so that the diameter of C̃ is δ = k + 1. Using Proposition 3.1, we find that

κ(C̃) = 1
n − 1

(
n2δ
2

− δ3

6
− 2nδ + δ2 + 3

2
n + δ

6
− 3

2

)
.

If the order n is much larger than the diameter δ, we see that κ(C̃) ∼ nδ/2. As a conse-
quence, if n � δ, then κ(C̃) is – asymptotically – one half of the bound (6).

Let us take a closer look at the structure of C̃ in order to figure out how to increase its
Kemeny’s constant. C̃ consists of two star-like clusters connected by a path. Its relatively
high Kemeny’s constant value is due to the fact that escaping from one cluster to reach the
other is quite laborious: a random walker starting in one of the clusters will most likely
remain trapped for a long time before managing to find the central path and, eventually,
reach the other cluster. On the other hand, traveling from one vertex to another in the same
cluster is faster. A good strategy to further increase the expected travel-time (and Kemeny’s
constant) is to addmore clusters. By doing so, it will be less likely that two randomly chosen
vertices belong to the same cluster. In this way, we end up with a particular tree called
broom-star: given integers t ≥ 2, q ≥ 2, and p ≥ 1, the broom-star BS(t, q, p) is the tree
obtained by considering t disjoint copies of the rooted broom B(q, p) and identifying their
t roots in a unique vertex which we call the center of the broom-star (Figure 5). We shall
refer to the t paths of q vertices hanging from the center as to the arms of the broom-star.
Observe that the diameter of BS(t, q, p) is twice the length of the arms: δ = 2q. Moreover,
the order of BS(t, q, p) is n = tp+ tq−t+ 1.

Attempting to find an explicit expression for Kemeny’s constant of a broom-star by using
the general formula (1) turns out to be a laborious task. Instead, our strategy will consist
of the following three steps:

(I) exhibit a recursive formula that the numbers κ(BS(t, q, p)) satisfy by virtue of
Proposition 2.2;

(II) guess an expression for κ(BS(t, q, p));
(III) verify that the guess of step (II) satisfies the recursive formula of step (I).

Figure 5. The broom-star BS(6, 4, 3). The center is the vertex in white.
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This will finally lead to the explicit expression of Proposition 6.3 which, in turn, will
allow to prove Theorem 6.1. Step (I) is performed in the next proposition, where Kemeny’s
constant of a broom-star is expressed in terms of Kemeny’s constant of a smaller broom-
star, having one less arm. For simplicity, we define κt,q,p = κ(BS(t, q, p)).

Proposition 6.2: Let q ≥ 2 and p ≥ 1 be integers. Then

• κ2,q,p = 1
p + q − 1

(
2p2q + 4pq2 + 4

3
q3 − 6pq − 4q2 + 3

2
p + 25

6
q − 3

2

)
;

• κt+1,q,p = Aκt,q,p + B/C for t = 2, 3, . . . , where

A = pt + qt − t,

B = q3

3
− pq + 4tp + 6tq − 2p2t − 6q2t + 2q3t + pq2 − 1

2
− p

2
− 2t + p2 − q2

+ 6pq2t − 10pqt + 4p2qt + 7
6
q,

C = pt + qt + p + q − t − 1.

Proof: Observe that the broom-star BS(2, q, p) coincides with the caterpillar C2q−1(p)

where p = p e1 + p e2q−1 ∈ N2q−1. As a consequence, we obtain the expression for κ2,q,p
by computing Kemeny’s constant of C2q−1(p) via Proposition 3.1.

Suppose that t ≥ 2. We can view the broom-star BS(t + 1, q, p) as the concatena-
tion of rooted trees as follows. Let T1 be the star S(p + 1) rooted in the central vertex,
T2,T3, . . . ,Tq−1 be copies of the trivial tree rooted in the unique vertex, and Tq be the
broom-star BS(t, q, p) rooted in the center. Then, BS(t + 1, q, p) = conc(T1,T2, . . . ,Tq).
We can compute κt+1,q,p via Proposition 2.2:

κt+1,q,p = 1
n − 1

( q∑
i=1

miκ(Ti) + mTX(m + 2e) + (n − 1)µTe − µTm

+ q3

3
− qn + n + q

6
− 1

2

)
(7)

wherem = (mi) and µ = (μi) are the size vector and the moment vector of the concate-
nation, respectively, and n is the order of BS(t + 1, q, p). Observe that

n = (t + 1)(p + q) − t;

m = [
p 0 . . . 0 tp + tq − t

]T ;
µ = [

p 0 . . . 0 t · μ(B(q, p))
]T = [

p 0 . . . 0 t(2pq+ q2 − p− 2q + 1))
]T ;

q∑
i=1

miκ(Ti) = p κ(S(p + 1)) + (tp + tq − t) κ(BS(t, q, p))
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= p2 − p
2

+ (tp + tq − t)κt,q,p

(in the last line we have used the same argument as for (3)). Substituting this into (7) yields
the desired expression for κt+1,q,p. �

We have thus concluded step (I). Step (II) was performed via MATLAB, by applying
multivariate regression on a sample of 100 randomly generated broom-stars, and it pro-
duced the candidate expression (8). To show that this candidate is correct (step (III)), we
only need to check that it satisfies the recursive relation of Proposition 6.2.

Proposition 6.3: Let t ≥ 2, q ≥ 2, and p ≥ 1 be integers. Kemeny’s constant of the broom-
star BS(t, q, p) is

κt,q,p = 2pqt+ q2t − 2
3
p2 − 4

3
pq − tp − 2

3
q2 − 2tq + 4

3
p + 4

3
q + t − 1

2
+ 2

3
p

p2 − 1
p + q − 1

.

(8)

Proof: For any fixed q∗ ≥ 2 and p∗ ≥ 1, the sequence κ2,q∗,p∗ , κ3,q∗,p∗ , . . . defined by (8)
satisfies the requirements of Proposition 6.2. The result follows since, clearly, those require-
ments cannot be satisfied by two distinct sequences. �

Proof of Theorem 6.1: Let T1 be a nontrivial tree and, for i = 2, 3, . . ., let Ti = BS(i, i, i2).
Observe that, if i ≥ 2, the diameter of Ti is δi = 2i and its order is ni = i3 + i2 − i + 1. In
particular,

lim
i→∞ ni = ∞.

Moreover, using Proposition 6.3, we find that

lim
i→∞

κ(Ti)

niδi − δ2i /2
= lim

i→∞

1
3

(
4i4 − 4i3 − 4i2 + 7i − 3

2 + 2 i
2(i4−1)
i2+i−1

)
2i4 + 2i3 − 4i2 + 2i

= 1.

Therefore, the sequence T1,T2, . . . satisfies the requirements in the statement of the
theorem. �
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