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Abstract

The importance of improving STEM education is of perennial interest, and to this end, the

education community needs ways to characterize transformation efforts. Three-dimensional

learning (3DL) is one such approach to transformation, in which core ideas of the discipline,

scientific practices, and crosscutting concepts are combined to support student develop-

ment of disciplinary expertise. We have previously reported on an approach to the charac-

terization of assessments, the Three-Dimensional Learning Assessment Protocol (3D-

LAP), that can be used to identify whether assessments have the potential to engage stu-

dents in 3DL. Here we present the development of a companion, the Three-Dimensional

Learning Observation Protocol (3D-LOP), an observation protocol that can reliably distin-

guish between instruction that has potential for engagement with 3DL and instruction that

does not. The 3D-LOP goes beyond other observation protocols, because it is intended not

only to characterize the pedagogical approaches being used in the instructional environ-

ment, but also to identify whether students are being asked to engage with scientific prac-

tices, core ideas, and crosscutting concepts. We demonstrate herein that the 3D-LOP can

be used reliably to code for the presence of 3DL; further, we present data that show the util-

ity of the 3D-LOP in differentiating between instruction that has the potential to promote 3DL

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0234640 June 16, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bain K, Bender L, Bergeron P, Caballero

MD, Carmel JH, Duffy EM, et al. (2020)

Characterizing college science instruction: The

Three-Dimensional Learning Observation Protocol.

PLoS ONE 15(6): e0234640. https://doi.org/

10.1371/journal.pone.0234640

Editor: Gokhan Hacisalihoglu, Florida Agricultural

and Mechanical University, UNITED STATES

Received: March 17, 2020

Accepted: May 29, 2020

Published: June 16, 2020

Copyright: © 2020 Bain et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This project was supported by the

Association of American Universities’

Undergraduate STEM Education Initiative (funded

by the Helmsley Charitable Trust), the Office of the

Provost of Michigan State University, and the

National Science Foundation (DUE-1725395, DUE-

1725520, DUE-1725609, DUE-1726360).

http://orcid.org/0000-0003-0898-1862
http://orcid.org/0000-0001-6682-8466
http://orcid.org/0000-0001-5788-8539
http://orcid.org/0000-0002-8220-7720
http://orcid.org/0000-0001-9341-4170
http://orcid.org/0000-0001-7713-0637
http://orcid.org/0000-0002-5488-4927
http://orcid.org/0000-0002-4919-2758
http://orcid.org/0000-0002-2243-8252
https://doi.org/10.1371/journal.pone.0234640
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234640&domain=pdf&date_stamp=2020-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234640&domain=pdf&date_stamp=2020-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234640&domain=pdf&date_stamp=2020-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234640&domain=pdf&date_stamp=2020-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234640&domain=pdf&date_stamp=2020-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234640&domain=pdf&date_stamp=2020-06-16
https://doi.org/10.1371/journal.pone.0234640
https://doi.org/10.1371/journal.pone.0234640
http://creativecommons.org/licenses/by/4.0/


from instruction that does not. Our team plans to continue using this protocol to evaluate out-

comes of instructional transformation projects. We also propose that the 3D-LOP can be

used to support practitioners in developing curricular materials and selecting instructional

strategies to promote engagement in three-dimensional instruction.

Introduction

Science is advancing at a breakneck pace. With discoveries like gravitational waves [1], the use

of CRISPR technology to treat sickle cell disease [2], and self-healing polymers [3] in just the

past couple of years, science education that prepares students for careers in current science

fields–and those of tomorrow–and promotes scientific literacy is essential. Discipline-based

education research (DBER) has clearly shown that research-based pedagogical strategies can

positively influence student learning outcomes as compared to traditional lecture-based

approaches, although evidence about the relative effectiveness of specific strategies on learning

is limited [4]. Despite this, changes in science education, particularly in introductory-level col-

lege science courses, have not led to the concomitant, widespread, and robust transformation

that would be expected to support students as they navigate this rapidly changing landscape

[5,6]. In many ways, science education largely looks the same today as it did 70 years ago.

To date, much research involving pedagogical approaches has coalesced around what is

now known as “active learning”–the idea that students must be actively engaged with their

learning [5,7,8]. Until recently, however, what students should learn and what they should do

with that knowledge has not received as much attention. This issue is of particular importance

because while these active learning studies show promise, there remains ample evidence that

students leave science courses and even degree programs with incomplete or incorrect under-

standing of important disciplinary ideas and an inability to transfer knowledge to new situa-

tions [4,9]. Such evidence reveals that there is still much work to do to help students develop

coherent and interconnected knowledge that can be used in a variety of situations. Shifting the

focus away from how classes are taught to what is being taught, an idea rooted in ample litera-

ture such as pedagogical content knowledge, would allow for concentrated study on the inter-

active time that comprises students’ learning experiences in undergraduate science courses

[10,11].

Here, we report on our continuing work to transform gateway science courses by moving

beyond active learning to incorporate what has become known as three-dimensional learning

(3DL) which originates from A Framework for K-12 Science Education (the Framework), a con-

sensus report from the National Research Council [12]. Based on the best available research on

student learning in the sciences, the Framework put forth a vision for science education in

which curricula would be restructured as scaffolded progressions for each of the three dimen-

sions: disciplinary core ideas (fundamental concepts that underpin a discipline), scientific and

engineering practices (what scientists do with their knowledge), and crosscutting concepts

(tools or lenses used across disciplines for making sense of phenomena) [9,12–16].

The three dimensions are used in concert by practicing scientists and engineers when

applying their knowledge to investigate and reason about phenomena; therefore, the Frame-

work stresses that the dimensions should be integrated throughout curricula, instruction, and

assessment to support moving students toward more expert-like engagement in science over

time. The impetus behind 3DL is a response to the status quo of traditional science learning

environments, where instruction and assessment typically focus on collections of facts and
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skills [17,18]. In these settings, it is common for content and skills to be disaggregated, result-

ing in fragmented knowledge for learners [4,9,13,19]. In contrast, 3DL is designed to promote

the development and use of interconnected knowledge that is more expert-like in nature

[9,12–16,19,20]. Such knowledge is contextualized, connected, and useful, rather than a collec-

tion of facts, ideas, and calculations that are disconnected from scientific ideas. Although writ-

ten for a K-12 context, the Framework’s vision can and should be used as a guide to

restructuring science curricula in higher education [9,13–16,20,21]. In addition, implementing

3DL in college science courses provides opportunities to build coherently upon students’ prior

science learning.

To support the adaptation of 3DL to science courses at the college level, our team has devel-

oped two protocols that characterize the extent to which assessments and instruction in gate-

way biology, chemistry, and physics courses provide opportunities for students to engage with

the three dimensions. The previously published Three-Dimensional Learning Assessment Pro-

tocol (3D-LAP) is useful as a tool for both research and faculty professional development [13].

For example, we have used the 3D-LAP to track changes in assessment practice over time in

gateway science courses as one measure of course transformation [16], as well as to explicitly

guide instructors in writing and adapting assessments that can engage students with 3DL [20].

Providing such support to practitioners is critical to propagating course transformation

beyond the research team. The Three-Dimensional Learning Observation Protocol (3D-LOP),

reported here, was developed to characterize instruction in gateway biology, chemistry, and

physics courses for both evidence-based pedagogical practices and the potential for engage-

ment with the three dimensions. The 3D-LOP can be used to evaluate courses and support

research on transformation efforts. In addition, the 3D-LOP can be used as a professional

development tool for faculty as it provides feedback to support the development and modifica-

tion of instructional practice and materials.

Focusing on instruction and characterizing instructional practices

In recent years there has been an increased focus on instruction in undergraduate science,

technology, engineering, and mathematics (STEM) disciplines, often centered on promoting

the adoption and implementation of more student-centered pedagogies, which have become

familiar under the banner of “active learning” [4,5,7,8]. The research on active learning gener-

ally falls into two categories: 1) demonstrating impact on students as shown either by changes

in course grades or responses to concept inventories, and 2) characterizing learning environ-

ments using observation protocols.

Teaching strategies that support student engagement can lead to improved student perfor-

mance and retention in STEM courses compared to outcomes for students in traditional

course settings [7,8]. However, active learning can refer to a host of instructional approaches,

from the adoption of clicker-based technology to answer multiple-choice questions in lecture

courses, to “flipped classrooms” where some material is presented outside of class allowing stu-

dents to spend more class time engaged in some activity, to studio courses where students

work in groups on open-ended problems [5,7,8]. Despite this lack of clarity about the meaning

of active learning, calls to incorporate active learning have strengthened over the past ten years

[4,5,7–9,15,16,22]. Some evidence of the positive impacts of active learning indicates that stu-

dents who are struggling are most likely to benefit from these instructional strategies. For

example, Freeman et al. showed that compared to their traditional counterparts, students in

active learning courses had lower DFW rates (that is, students receiving a grade of D or F and

students withdrawing from the course) and higher scores on exams and concept inventories

[7].
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Despite numerous calls to actively engage students during class sessions in STEM courses,

the recent large-scale study by Stains et al. shows that instructor-centered practices still prevail

in undergraduate STEM courses when characterized with the Classroom Observation Protocol

for Undergraduate STEM (COPUS) [5,23]. Other comparable observation protocols, such as

the Real-time Instructor Observing Tool (RIOT), Reformed Teaching Observation Protocol

(RTOP), and Teaching Dimensions Observation Protocol (TDOP), have been developed and

used for similar purposes [24–26]. These protocols are limited, however, in that they focus on

how a class is being taught without providing information on what is being taught and what

students are expected to do with their knowledge. Because these protocols focus on instructor

and student activities (e.g., working in groups, using clickers, or asking questions) or class-

room environments (e.g., climate, reflective practices, or participation), they are best suited for

characterizing instruction on the instructor-centered to student-centered spectrum. While this

information can provide a rich characterization of the learning environment, it is possible that

an engaged classroom as characterized by one such protocol may engage students only in

developing rote skills, completing algorithmic calculations, or recalling facts. Further, under-

graduate and even graduate students often finish STEM courses and complete degrees without

a firm grasp of foundational ideas and sufficient practice in transferring knowledge to new

contexts [4,27]. Even students who have taken courses that incorporate active learning often

have yet to construct the necessary resources and interconnections needed to effectively use

important science ideas [28].

We propose that it is time to move beyond “active learning” and focus on both how science

is taught (i.e., what instructors and students are doing) and what is taught (i.e., what students

should know and be able to do) in undergraduate courses by incorporating 3DL in college sci-

ence instruction and assessment [13]. Moreover, 3DL is inherently active because it requires

students to explore core ideas through engagement with science and engineering practices and

the application of crosscutting concepts [16]. Indeed, if we transform courses according to the

Framework and implement assessments that align with this vision, what happens in the class-

room must also change to maintain alignment; effective instruction must afford students the

opportunity to gain experience in engaging with each of the three dimensions together in for-

mative situations before summative assessment. Our goal was to develop the 3D-LOP as a tool

that can characterize the extent to which instruction (the learning environment, instructional

techniques, content, and how that content is used) has the potential to engage students with

the three dimensions and the nature of that engagement (student-centered vs. instructor-

centered).

The 3D-LOP complements the 3D-LAP; together they can be used to comprehensively

characterize course transformations and support faculty professional development. Here, we

describe the development of the 3D-LOP and provide evidence that the protocol can distin-

guish between instruction that has the potential to engage students with the three dimensions

outlined in the Framework and instruction that does not.

Methods

The Three-Dimensional Learning Observation Protocol (3D-LOP)

The purpose of the 3D-LOP is to characterize instruction in college-level biology, chemistry,

and physics courses; therefore, the coding criteria target opportunities provided through

instruction for students to engage with each of the dimensions in these three disciplines. The

3D-LOP was not designed to determine the degree to which students engage with the curricu-

lar materials, but rather whether instruction offers opportunities to engage in 3DL. As with the

3D-LAP, development of the 3D-LOP began with a review of the Framework. Further, because
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the 3D-LAP was completed first, it greatly influenced the development of the 3D-LOP. The

research team, composed of disciplinary experts (many who identify as discipline-based educa-

tion researchers) in biology, chemistry, and physics, used similar adaptations of the Frame-

work for both the 3D-LAP and 3D-LOP.

Core ideas are explanatory and generative concepts fundamental to a discipline that under-

lie commonly taught topics in that discipline. The specific core ideas described in the 3D-LAP

and 3D-LOP (Table 1) purposefully differ from those in the Framework for two reasons: the

core ideas in the Framework are foundational but insufficient for college-level content, and

they are organized for physical and biological sciences which is somewhat misaligned with the

disciplinary organization of college-level science courses and degree programs. The core ideas

for biology, chemistry, and physics used in the 3D-LAP and 3D-LOP were identified by mem-

bers of the research team and colleagues from their respective departments [13,29]; it should

be noted that these core ideas may not be suitable for all courses at all levels, and we recom-

mend that faculty consider what core ideas they believe are appropriate. The scientific prac-

tices (Table 2) were used as described in the Framework with two exceptions: 1) engineering

practices were not included because our focus was on developing a protocol for science courses

and our collective expertise did not include engineering, and 2) constructing arguments and

explanations were combined because the criteria for both are similar. The crosscutting con-

cepts (Table 2) were also used as presented in the Framework with the exception that scale,

proportion, and quantity was subdivided into two categories (Table 2).

Data collection

Video recordings of introductory biology, chemistry, and physics class sessions at Michigan

State University (MSU) were collected during the first and third academic years of a three-year

Table 1. The core ideas for biology, chemistry, and physics in the 3D-LAP and 3D-LOP.

Biology Core Ideas Chemistry Core Ideas Physics Core Ideas

1. Chemical and physical

basis of life

2. Matter and energy

3. Cellular basis of life

4. Systems

5. Structure and

function

6. Information flow,

exchange, and storage

7. Evolution

1. Electrostatic and bonding

interactions

2. Atomic/molecular structure

and properties

3. Energy: Macroscopic, atomic/

molecular, quantum mechanical

4. Change and stability in

chemical systems

1. Interactions can cause changes in motion

2. Energy is conserved

3. Exchanges of energy increase total entropy

4. Interactions are mediated by fields

5. Energy, momentum, angular momentum, and

information can be transported without net transfer

of matter

https://doi.org/10.1371/journal.pone.0234640.t001

Table 2. The scientific practices and crosscutting concepts in the 3D-LAP and 3D-LOP.

Scientific Practices Crosscutting Concepts

1. Asking questions

2. Developing and using models

3. Planning investigations

4. Analyzing and interpreting data

5. Using mathematics and computational thinking

6. Constructing explanations and engaging in argument from

evidence

7. Evaluating information

1. Patterns

2. Cause and effect: Mechanism and explanation

3. Scale

4. Proportion and quantity

5. Systems and system models

6. Energy and matter: Flows, cycles, and

conservation

7. Structure and function

8. Stability and change

The scientific practices and crosscutting concepts are adapted from the Framework and are applicable to biology,

chemistry, and physics.

https://doi.org/10.1371/journal.pone.0234640.t002
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project [16]. Instructors from 65 (80%) of the 81 unique course sections opted into the study

and allowed us to record their courses during this time. The recordings focused on the instruc-

tor’s actions, not on students, and instructors were assured that the recordings would be used

only for programmatic improvement, not for individual evaluations. We aimed to record each

course at the following three times: 1) toward the beginning of the semester (in weeks 3–6), 2)

in the middle of the semester (in weeks 7–10), and 3) toward the end of the semester (in weeks

11–14). We asked instructors to avoid scheduling their recordings on review days or days

where they were administering quizzes or exams. Other than that, the choice of which days to

record was left to the discretion of the instructor(s) and the ability of our team to schedule

someone to record the class meeting.

In total, we were able to collect 181 recordings across these 65 course sections, each ranging

in length from approximately 50 to 80 minutes, the two standard class session lengths at MSU.

Recordings were captured with a tripod-mounted video camera located in the back of the class-

room. While the recordings were focused on the instructor and the course materials (board

work, projected slides, demonstrations, etc.), interactions between the instructor and students

were also noted. About 20% of the recordings from the total dataset (39 of 181) were used in the

development of the 3D-LOP, selected to span all the disciplines, courses, and semesters of inter-

est to help ensure that the final protocol would be robust for the entire dataset. Similarly, once

the 3D-LOP criteria were finalized, 18 additional recordings (again spanning the disciplines,

courses, and semesters of interest) were selected and coded to demonstrate reliability. The MSU

Institutional Review Board deemed this project exempt in accordance with federal regulations.

Instructors opted into this study and provided consent via email.

Development of the 3D-LOP

Dividing each recording into segments. Some observation protocols define a fixed length

of time with the coder recording all applicable activities that occur during each time segment (e.g.,

the COPUS [23] uses units of two minutes). However, coding recordings with fixed time units is

not feasible for characterizing three-dimensional instruction where the focus is the nature of what

students are expected to be learning, rather than what they are doing. We determined that a grain

size larger than just a few minutes was typically needed to capture instructional arcs that engage

students with a science practice (e.g., developing and using models or constructing explanations

and engaging in argument from evidence). Disciplinary experts from our research team divided

each full class video into “segments”, which became the unit of analysis in the 3D-LOP.

A segment was defined as a temporally continuous portion of a class session consisting of a

coherent discussion organized around the same topic(s). This approach was chosen, rather than

using arbitrary units of time, because a 3D instructional segment often includes a sequence of

instructional events that taken individually may not appear three-dimensional. Multiple types

of classroom activities (described in the following Teaching Activities section) may be part of

the same segment (e.g., lecture and clicker questions) so long as they were related by topic.

Often, instructor cues were used to help identify segments (e.g., using phrases such as “review-

ing from the previous class session” or “moving on to a new topic”), resulting in segments that

lasted between approximately five and thirty minutes in length. In a typical 50-minute class the

number of segments ranged from two to six. Fig 1 shows the segments from an example physics

class session with segments depicted from class start to end by relative time duration.

In the rare case that a disciplinary expert tasked with segmenting a given video was uncer-

tain, he or she sought input from another member of the research team. When coding for the

three dimensions in a subsequent stage, coders had the opportunity to adjust the segments if

necessary; such adjustment occurred for only one of the eighteen recordings included in this
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study (1 segment out of the original 71 was broken up; the single segment was into 4 smaller

segments). An expanded discussion of the process for identifying segments is provided in the

Supporting Information: 3D-LOP.

Coding segments for the three dimensions. Once the guidelines for dividing each

recording into segments had been determined, we developed the coding criteria for each

dimension. The criteria were developed through an iterative process consisting of both disci-

plinary and interdisciplinary discussions regarding the coding of 39 video recordings from

biology, chemistry, and physics class sessions. This extended process involved the whole

research team coding common recordings and disciplinary subgroups coding additional

recordings to ensure calibration within and across disciplines throughout the development of

the criteria as discussed below in the section on validity and reliability.

It quickly became apparent that coding video data for three-dimensionality is more com-

plex than coding assessment items. To provide structure and support for the coders, an algo-

rithmic workflow for coding video segments with the three dimensions was used as shown in

Fig 2. Although we are ultimately interested in determining whether the instructional segment

incorporates all three dimensions, we prioritized coding for the presence of a scientific practice

because we determined that it was not feasible to reliably identify the presence of a core idea in

the absence of a practice. That is, unless knowledge is used to do something (e.g., explain,

model, analyze and interpret data), it is difficult to determine if a topic or phenomenon is

linked to a core idea given that core ideas are concepts that are central to the discipline and

that individual topics should be connected to these ideas to support the development of a

more expert-like framework. The linkages between topics and core ideas can become more

apparent when scientific practices are present. Arguably, if experts cannot agree on whether a

core idea is present in the absence of a scientific practice, it is unlikely that a student could

identify that a topic or phenomenon is being tied to a core idea.

The vision of three-dimensional instruction is to promote the process of developing and

using connected knowledge. Therefore, when characterizing a class session using the 3D-LOP,

the coder first considers if the instruction within a single segment reflects engagement with a

scientific practice (Fig 2). The presence of a practice is relatively straightforward to identify,

particularly when adapting the criteria developed originally for the 3D-LAP (Table 3). For

example, many class sessions focus on extensive calculations (often called problem solving),

but if the calculation does not lead to some consequence or interpretation of the numerical

answer, the activity of calculating is not coded as using mathematical thinking. Similarly, if stu-

dents are asked to draw chemical structures, the activity is not coded as developing and using

models unless those structures are used to make a prediction about or explain an observation

or phenomenon with the reasoning that explicitly connects the model to the prediction or

explanation.

Fig 1. Example recording showing segments, the unit of analysis used in coding for the opportunity to engage students in 3DL. Segments from the recording of an

example physics class session (47 minutes total) are identified by topic and depicted from class start to class end (left to right) by relative time duration (horizontal length

represents the relative time of the segment with respect to the class session total).

https://doi.org/10.1371/journal.pone.0234640.g001
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Fig 2. Summary of the three dimensions coding workflow for a single segment.

https://doi.org/10.1371/journal.pone.0234640.g002
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If a practice is present, the coder also characterizes whether it is primarily the instructor or

the student who is engaging in this practice (described in the following subsection). At this

point, the coder determines if the instruction in the segment reflects a core idea and again, if

yes, the coder goes on to the final dimension, the crosscutting concept (Fig 2). If at any point

the segment does not reflect a dimension, that segment is not further coded. By moving the sci-

entific practices to the forefront of the coding scheme, characterizing instruction with the

3D-LOP prioritizes the use of knowledge in science courses. As with the 3D-LAP, the 3D-LOP

criteria for each dimension take somewhat different forms. Each scientific practice has two to

four required criteria, each crosscutting concept has one to four criteria, and each core idea is

described in detail. The full protocol is provided in the Supporting Information: 3D-LOP.

Instructor and student engagement in scientific practices. Reviewing many video

recordings across disciplines and instructors revealed a range of approaches to incorporating

scientific practices in instruction, influenced by factors such as the instructor, curriculum, and

class size. Therefore, the 3D-LOP criteria are also designed to characterize who is “doing the

work” of the scientific practice. This is accomplished by denoting whether engagement with

the scientific practice is more instructor-oriented or student-oriented along with the scientific

practice code for a given segment. This distinction is based on the instructor and student

actions during a given segment, particularly noting who is expected to do what. Many of the

practices have criteria that require some form of reasoning. For example, as described above,

to code a segment with the practice of developing and using models, it would not be sufficient

to have students draw a chemical structure (which is rules-based); the structure would also

need to be used to predict and explain physical or chemical properties. For a student-oriented

designation, the students must contribute a majority of the reasoning, and for the instructor-

oriented designation, the instructor would provide the reason that the structure leads to cer-

tain physical or chemical properties. The complete criteria for coding instructor and student

engagement in scientific practices can be found in the Supporting Information: 3D-LOP.

Teaching activities

Each video was also coded for the sequence of activities occurring during the class meeting

(i.e., how the class is being taught) to provide insight into how each class session was facilitated

(Table 4). The coding criteria for these teaching activities [16] were developed through team

Table 3. Coding criteria for two example scientific practices from the 3D-LOP.

Developing and Using Models Using Mathematics and Computational Thinking

Students are given or asked to construct a mathematical,

graphical, computational, symbolic, or pictorial

representation and use it to explain or predict an event,

observation, or phenomenon.

1. Instruction presents an event, observation, or

phenomenon for instructor/students to explain or make

a prediction about.

2. Instruction presents a representation or asks

instructor/students to construct a representation.

3. Instruction has instructor/students explain or make a

prediction about the event, observation, or

phenomenon.

4. Instruction has instructor/students provide the

reasoning that links the representation to their

explanation or prediction.

Students are asked to use mathematical reasoning or a

calculation and interpret the results within the context of

the given event, observation, or phenomenon.

1. Instruction presents an event, observation, or

phenomenon.

2. Instruction has instructor/students perform a

calculation or statistical test, generate a mathematical

representation, or demonstrate a relationship between

parameters.

3. Instruction has instructor/students give a

consequence or an interpretation (not a restatement) in

words, diagrams, symbols, or graphs of the mathematical

results while demonstrating reasoning in the context of

the given event, observation, or phenomenon.

The criteria for the practices that are often missing in instruction that is not three-dimensional are bolded.

https://doi.org/10.1371/journal.pone.0234640.t003
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discussions informed by published criteria from the COPUS, TDOP, and RTOP [23–25]. This

teaching activity coding is independent of the segmenting by a disciplinary expert; that is, mul-

tiple types of teaching activities could occur during a single segment. For example, clicker

questions, a task, and a short lecture might all be part of the segment defined by the disciplin-

ary expert. The full criteria for the teaching activity coding can be found in the Supporting

Information: 3D-LOP.

Reliability

Here, we outline the steps taken to establish validity and reliability for the 3D-LOP in the con-

text of our instructional transformation efforts at MSU. As with all protocols of this nature,

others should conduct their own validity and reliability measures for their datasets, as validity

and reliability are constructs dependent upon both the tools and data [30]. Both the develop-

ment and the inter-rater reliability were conducted using data from our dataset in order to

establish these measures.

The 3D-LOP protocol was developed through extensive negotiation between all of the

authors that included numerous rounds of immersion in the data. The discussions and deci-

sions made in these iterative rounds were grounded in the Framework, our prior work devel-

oping the 3D-LAP, and practice (e.g., video recordings of classroom instruction). Each of

these steps were taken to ensure face and content validity for the 3D-LOP protocol with our

dataset. To conduct this work, the team coded about 20% of our data corpus (39 of 181 record-

ings), discussing results and resolving discrepancies as we developed the coding process.

The reliability of the 3D-LOP with our dataset was assessed by coding six video recordings

per discipline (18 recordings total, ~10% of the dataset); these 18 recordings were in addition

to the 39 selected and used for the development of the 3D-LOP. Each discipline’s six record-

ings were selected to capture both traditional and transformed instruction. Here, traditional

and transformed instruction were defined based on our prior work using the 3D-LAP; record-

ings were selected largely based on the fraction of exam points that were 3D. Each previously

segmented video was coded for the three dimensions by two disciplinary experts from the

research team, and each coder pair was unique for every video. The resultant coding was used

to calculate inter-rater reliability based on percent agreement. Coders were considered to be in

agreement on the dimensions if their coding characterized a segment as 3D or not. While it is

possible to compare coding for each dimension (present or absent as well as the specific prac-

tice, core idea, or crosscutting concept), we contend that ultimately it is the 3D nature of the

instruction that is important due to the nature of our research interests and mode of reporting

(fully 3D segments versus non-3D segments).

As with the 3D-LAP, due to the overlap between many of the practices and core ideas, cod-

ers did not necessarily need to agree on the specific scientific practice, core idea, or crosscutting

Table 4. Description of selected teaching activities coded with the 3D-LOP.

Teaching

Activity

Description

Administration The instructor informs the students about news items and general course business, for example,

material related to how the course is run, homework deadlines, and exam information.

Clicker Question The instructor provides a multiple-choice question that students respond to using a audience-

polling system.

Lecture The instructor presents information to the students relevant to the topic of study for that class

session.

Task The instructor asks the students to engage in an activity alone or with their classmates relevant

to the topic of study for that class session.

https://doi.org/10.1371/journal.pone.0234640.t004
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concept when coding using the 3D-LOP criteria; rather, they needed to agree on the presence

or absence of a given dimension. For example, an activity that asks students to draw molecular-

level pictures of an ionic compound before and after dissolution, describe the forces present in

each scenario, discuss the relative strengths of those forces, and explain the observed tempera-

ture change of a given dissolution process using the drawings and forces could reasonably be

coded as either the scientific practice of Developing and Using Models or Constructing Explana-
tions and Engaging in Argument from Evidence because the segment meets the criteria for each.

Likewise, multiple core ideas (Electrostatic and Bonding Interactions; Energy: Atomic/Molec-

ular and Macroscopic) and crosscutting concepts (Cause and Effect; Systems and System Mod-

els; Energy and Matter) could reasonably be coded.

The inter-rater reliability measured between coders, as well as the number of coders and

segments, is reported in Table 5. If the agreement between two coders was below 70%, a third

coder was added. This addition was necessary for three of the eighteen recordings (one in biol-

ogy and two in chemistry). The addition of a third coder accounts for the differences between

the totals in the third and fourth columns of Table 5; that is, the number of segments in the six

recordings per discipline does not necessarily equal the total number of possible pairwise

agreements. A lower limit of 75% for IRR was set [13]. However, the 67% instructor versus stu-

dent agreement reported for the physics recordings was considered acceptable because of the

small number of 3D segments on which to compare agreement; only three out of 24 segments

across the six physics recordings reflected a scientific practice.

Determining validity: Can the 3D-LOP detect the potential to elicit 3DL instruction?.

Combining the teaching activity and dimension coding into a single timeline provides rich

insight into the instruction during a given class session. Fig 3 depicts two compiled 3D-LOP

timelines, one for a chemistry class session and one for a biology class session, revealing the

topics addressed during instruction (as shown in Fig 1), how the class was facilitated (teaching

activity coding), and engagement in the dimensions (dimension coding, Fig 2). The timelines

can be used to characterize the extent to which the instructors and students are engaging with

each of the three dimensions, as well as how this engagement is being facilitated. More exam-

ples of coded recordings from biology, chemistry, and physics class sessions are provided in

the Supporting Information: Exemplars.

In addition to demonstrating measures of credibility for the 3D-LOP, our goal was to deter-

mine whether the protocol could distinguish between instruction that has potential for engag-

ing students with the three dimensions outlined in the Framework and instruction that does

not. The 18 recordings (six from each discipline) were de-identified and coders were not

aware of any prior results from the 3D-LAP. Each video was coded by two individuals: both

Table 5. Coding reliability.

Discipline Number of Coders Number of Segments 3D Agreement I vs. S Agreement

Biology 4 26a 25 of 32 (78%) 10 of 11 (91%)

Chemistry 7 24a 31 of 38 (82%) 15 of 15 (100%)

Physics 6 24a 24 of 24 (100%) 2 of 3 (67%)

Overall 17 71b 80 of 94 (85%) 27 of 29 (93%)

Pairwise percent agreement used to determine inter-rater reliability in applying the 3D-LOP to characterize instruction in video recordings. The addition of a third

coder for one in biology video and two chemistry videos accounts for the difference in segment totals in columns three and four (i.e., the number of segments in the six

recordings per discipline do not necessarily equal the total number of possible pairwise agreements).
aNumber of segments within the 6 recordings per discipline
bNumber of segments within the 18 recordings overall

https://doi.org/10.1371/journal.pone.0234640.t005
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experts in the discipline of the class who were members of the research team. Independent

coding was used to determine initial agreement between coders. Coders then met to achieve

consensus on the coding for each video to use when reporting the final characterization of a

class session. In the four cases where agreement between two coders was not reached, a third

team member was consulted to assist in making the final decision.

Fig 4 compares the timelines for two chemistry class sessions, one associated with a tradi-

tional curriculum and one from the course that follows a transformed curriculum [31]. In

these recordings, the same instructor taught the same topic two years apart, before and after

course transformation. The percent of 3D exam points was assessed using the 3D-LAP, reveal-

ing an increase from 0% to 47% in the semesters when these recordings were generated. The

3D-LOP dimension coding reveals that the transformed class session had ample potential for

engagement with the dimensions, whereas the traditional class session had little. The teaching

activity coding shows that the instructor changed pedagogical strategies when implementing

3D instruction compared to the traditional instruction. That is, in the transformed class ses-

sion in Fig 4, there were many more opportunities for interaction via student-driven tasks and

clicker questions, whereas in the traditional session the instruction centered around lecture.

During the part of the traditional lecture where there was the potential to engage in 3DL, it

was, in fact, the instructor who was doing the “work”.

Fig 3. Complete timeline. Compiled timeline showing topics by segment, the coding for teaching activities

(administration, lecture, tasks, and clicker questions (CQ)), and dimensions (scientific practices, core ideas, and

crosscutting concepts). An “I” (“S”) for the scientific practice register denotes instructor- (student-) centered

engagement with the practice. The top panel shows an example from a 79-minute chemistry class session with no 3D

segments despite significant use of active learning techniques (Tasks, Clicker Questions, and Interactions; darker to

lighter blue teaching activities). The bottom panel shows an example from an 80-minute biology class session with an

instructor-centered 3D segment without active learning techniques employed, as well as a student-centered 3D

segment.

https://doi.org/10.1371/journal.pone.0234640.g003
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Increased student engagement (as shown through teaching activity coding) did not always

correlate to 3D instruction (as shown through dimension coding). For example, Fig 5 shows

the timeline from an example physics class session. Clicker questions were used throughout,

Fig 4. Comparing a traditional and a transformed class session. Comparison of a traditional chemistry class session

(47 minutes) to a transformed chemistry class session (77 minutes), where the instructor and topics were the same but

recorded two years apart (before and after course transformation). The timelines depict coding for teaching activities

(administration, lecture, tasks, clicker questions (CQ)) and dimensions (scientific practices, including instructor-

centered (I) vs. student-centered (S) engagement, core ideas, and crosscutting concepts).

https://doi.org/10.1371/journal.pone.0234640.g004

Fig 5. Example active class session that does not reflect 3DL. Example physics class session (47 minutes) where the 3D-LOP coding characterizes instruction with

teaching activities that are more student-oriented than in many traditional instructional settings but no engagement with scientific practices is evident. The timeline

depicts coding for teaching activities (administration, lecture, and clicker questions (CQ)) and dimensions (scientific practices, core ideas, and crosscutting concepts).

https://doi.org/10.1371/journal.pone.0234640.g005
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but the instruction did not demonstrate potential for engagement with scientific practices. In

this class session, the students were engaged in numerical problem-solving exercises. However,

because the answers were neither used to explain a phenomenon nor re-expressed in another

form as required to satisfy the criteria for the practice of Using Mathematics and Computa-
tional Thinking, this ostensibly active class did not reflect 3DL. Additional evidence supporting

the ability of the 3D-LOP to distinguish between instruction that has the potential for engage-

ment with the three dimensions is provided in Supporting Information: Exemplars. In future

work, our team intends to use the 3D-LOP to investigate change over time in instruction to

evaluate the extent of transformation in biology, chemistry, and physics courses. This will

complement previous efforts to evaluate the transformation of assessments with respect to

their potential to engage students in 3DL over time in these same courses, and to examine the

relationship between changes in assessments and instruction [16].

Discussion

The goals of this paper are to introduce the 3D-LOP and provide evidence that it can be used

to characterize instruction that has the potential to engage students in 3DL within the context

of introductory biology, chemistry, and physics courses. We have demonstrated that we are

able to reliably code for the presence of 3DL, and that we can also differentiate between

instruction that has the potential to promote three-dimensional learning from instruction that

does not as shown in Fig 4. Our goals for the use of this protocol are two-fold: we plan to use it

to evaluate outcomes of instructional transformation projects, and we also propose that it can

be used to support practitioners in developing curricular materials and selecting instructional

strategies to promote engagement in three-dimensional instruction. For example, it could be

used as a peer observation tool and to identify both 3DL exemplars and missed opportunities

for inclusion of 3DL to support professional development activities.

The 3D-LOP serves to advance the teaching and learning of science in that it provides the

means to characterize not only how a class is taught, but also the nature of what is being taught

by identifying opportunities for students to demonstrate their understanding of core ideas

through engagement with scientific practices. The 3D-LOP goes beyond identifying the vari-

ous teaching activities occurring during a class, such as clicker questions and tasks that often

fall under the banner of “active learning”. In our context, we plan to use the 3D-LOP to evalu-

ate course transformation efforts at Michigan State University, Florida International Univer-

sity, Grand Valley State University, and Kansas State University by characterizing whether

changes in instruction with respect to 3DL have occurred over time. This characterization will

provide a comprehensive picture of transformation efforts, complementing a prior change

over time analysis that used the 3D-LAP to characterize exams [16].

We do not advocate that all instruction should be 3D, just as we do not suggest that all

assessment items should be 3D [13,15,16,20]. However, if 3DL is deemed important and cen-

tral to course transformation, all aspects of a course, including instruction, should align. Stu-

dents must have adequate exposure to and opportunities to engage with 3DL in formative

settings as part of classroom instruction and activities outside of the classroom (e.g., through

homework) to prepare for summative 3D assessments. While the ultimate goal is student

engagement in 3DL, certainly in large enrollment classes it may be necessary for instructors to

model engagement with the practices, as well as provide opportunities for students to do so.

Indeed, if learning objectives and course assessments hold student engagement and profi-

ciency with the three dimensions as important, instruction must provide students the guidance

and support to be successful.
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It should be noted that this characterization of transformation is not linked to individual

faculty data, and we do not recommend using the 3D-LAP or the 3D-LOP for evaluation of

individual faculty. However, the 3D-LOP can also be used as a professional development tool

to support faculty in developing instructional materials and selecting appropriate pedagogies

that promote engagement with the three dimensions. Existing materials can be modified using

the 3D-LOP criteria to guide decisions, providing faculty with a roadmap to 3D learning and

lowering the barrier to transformation. The 3D-LAP and 3D-LOP are used by our research

team in faculty professional development workshops on creating new and modifying existing

course materials to promote adoption of 3DL, while providing support from these tools and

expert users.

The development of the 3D-LOP and implementation of 3DL in college science courses,

opens particular avenues for future inquiry. For example, studies about how students engage

with and respond to 3DL can better guide the design of 3D instructional materials. It will be

important to gather data on the impact of 3D instruction on student expectations and out-

comes such as retention in STEM majors, time to graduation, and success of diverse student

groups. Finally, we need to understand the barriers and levers to faculty adoption of 3D

instruction.

As we move forward with these transformations and gain more understanding about how

and when 3DL can be implemented, we hope to extend the 3DL framework to upper-level

courses and use it to align the curriculum. Doing so will allow students to see how core ideas

underlie their increasingly sophisticated and deeper understanding of the discipline, within

the context of engaging with scientific practices. Further, it will allow students to reocgnize

how crosscutting concepts allow us to focus on aspects of phenomena both within and across

disciplines.

Beyond 3DL: Knowledge-in-use

While our transformation efforts are focused on 3DL, we understand that others may be using

different (and often complementary) approaches. While active learning has been used as an

overarching term for instructional approaches that engage students, there is no guarantee that

such approaches are actually promoting the use of knowledge. Any strategy that goes beyond

active learning to emphasize knowledge-in-use could adapt the 3D-LOP to characterize

instruction by using the approach described here to identify scientific practices. If instruction

is centered around scientific practices, it will necessarily require students to use their knowl-

edge. Therefore, the part of the of the 3D-LOP that focuses on scientific practices could be

used to supplement more commonly used protocols, such as the COPUS [23], while providing

the researcher with the ability to detect whether students are using their knowledge in a mean-

ingful, more expert way or if they are engaging with tasks that require only memorization, pat-

tern recognition, or rote problem-solving skills.

Limitations

We reiterate that the 3D-LOP characterizes the potential for instruction to promote engage-

ment in three-dimensional learning. It does not measure actual engagement (e.g., what the stu-

dents are actually doing, such as having off-topic conversations or discussing presented

materials in a meaningful way). Additionally, the 3D-LOP characterization does not infer

what faculty intended for their instruction. Application of the 3D-LOP relies on observation of

what the instructor says and makes visible to the entire class, such as displaying slides, writing

on a blackboard, whiteboard, or document camera. A worksheet for an in-class activity distrib-

uted to students would not be captured unless the instructor discusses the work that students
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are engaging in. These measures must come from other data sources, such as instructor inter-

views or materials provided to students during class. To add to our evaluation of course trans-

formation, interviews of instructors by our research team are ongoing.

Because entire segments in each recording are characterized as 3D (or not), there may be

the potential to overstate the amount of 3D instruction within a class session if there is only a

small portion of a segment that reflects 3D engagement. To date, instances in which this

occurred in our coding have been rare, but we acknowledge this may be an issue. When we

have noticed this, we revisited the segmenting criteria to see if a reasonable argument can be

made for re-segmenting the video to minimize the issue. However, segments were ultimately

chosen as the unit of analysis because coding according to short, regular units of time fre-

quently did not provide enough time for all of the necessary criteria for the dimensions to be

met in a single, short time block. Segmenting recordings into these natural divisions allowed

for sufficient time to satisfy all of the criteria for dimensions, and thus accurately reflect 3D

engagement.

As a tool for coding 3D instruction, the 3D-LOP does not explicitly identify instruction

where some, but not all, of the criteria for a scientific practice are present. However, by record-

ing in the detailed coding which criteria for a practice are satisfied and which are not, one

could provide a more detailed guide to adapting instruction to include a scientific practice.

Finally, as a consequence of our choice to prioritize the scientific practices, situations where

instruction is organized around a core idea or a crosscutting concept is addressed may not be

detected.

The 3D-LOP was developed for use in evaluating instruction from gateway college-level

biology, chemistry, and physics lecture courses at MSU. Our team and others are evaluating its

fitness for application to courses at other levels and in other instructional environments, as

well as in other science disciplines. We plan to extend our investigations of 3DL to upper-level

undergraduate courses and are additionally extending the use of the 3D-LAP and 3D-LOP to

evaluate exams and instruction at other academic institutions.

Conclusion

While there is substantial work focusing on how to measure whether students are actively

engaging with their learning, there has been less focus on what students are learning and how
they are using that knowledge. In this report, we present an approach that can either replace or

supplement other classroom observation protocols by going beyond what students are doing

in the classroom to consider the content and the use of knowledge. We have shown that the

3D-LOP can identify transformed classes where 3DL is in use and differentiate between classes

where active learning is in place but where students are not engaging in scientific practices.

The 3D-LOP can be used to both monitor change over time, that is, to identify whether 3DL

transformations are propagating over time, and to support faculty development in the use of

3DL or knowledge in use.
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