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Chapter 1

Introduction
The thesis you are reading is the result of research conducted by the author
during her employment as a PhD student supervised by John Rognes at the
Department of Mathematics at the University of Oslo. The thesis consists of
two papers:

Paper I A. Hedenlund and J. Rognes. A multiplicative Tate spectral sequence
for compact Lie group actions. 2020.

Paper II A. Hedenlund. Multiplicative spectral sequences via décalage. 2020.

This first chapter is meant as both a historical background and a larger context
for the two papers included in this thesis. We will try to keep things conceptual,
focusing on why rather than the more technical how, which we leave to the two
papers and the other references provided in the bibliography. My hope is that
the reader, after finishing this introduction, will have an understanding for what
results to expect in the two papers, and why the author saw the importance in
pursuing them, even if the reader is not necessarily a member of the same field
of mathematics as herself and might not care about the same type of questions.
We will successively narrow down the main themes of this thesis, starting from
a very broad context, and ending in the more specific topics to be covered.

Section 1 We introduce the context in which this thesis is written: homotopi-
cal algebra. We look at two frameworks that have historically been used
to deal with homotopical phenomena: model categories and∞-categories.
We introduce the main mathematical objects that we study: spectra.

Section 2 We introduce the technical tools that we will use and study in this
thesis: spectral sequences. We discuss what we mean by convergence of
spectral sequences, and how to to think about multiplicative structures in
spectral sequences.

Section 3 We introduce the specific topic in homotopical algebra we would like
to study, namely Tate constructions. We start with an introduction to the
classical concept of Tate cohomology, go on to discuss its generalisation
to homotopical algebra, and introduce the Tate spectral sequence. We ex-
plain what technical difficulties one might expect when considering such
a spectral sequence. We end with a short digression where the author ex-
plains her own personal reasons for studying the Tate construction, which
comes from a background in algebraic K-theory and topological Hochschild
homology.
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1. Introduction

1.1 Homotopical algebra

The broad context in which this thesis takes place is within the mathematical
subject known as homotopical algebra. I could call the context algebraic topol-
ogy, or homotopy theory, but I feel like that gives a wrong indication of the
flavour of the results contained in this thesis, which are often more algebraic
and less topological and/or geometrical. While an aspiring mathematician’s
first exposure to “homotopy” often comes packaged in a topology course, one
could argue that this is mostly a historical feature, and that there is nothing
intrinsically topological about the concept, at all. In this first section, I hope
to convince the reader that homotopical algebra is so much more than just
a subset of algebraic topology, with applications going far beyond topological
questions. It is often more fruitful to think of homotopical algebra as a natural
extension of algebra; what Waldhausen envisioned with his “brave new rings”-
paradigm. From this point of view, homotopical algebra is like doing algebra
over a “deeper” base ring; while Z is the initial commutative ring in classical
algebra, the so-called sphere spectrum S is the initial “commutative” ring in
homotopical algebra. We can think of homotopical algebra as what we get if we
base-change classical algebra along the Hurewicz homomorphism S→ Z.

In this section, we start with a motivation for thinking “homotopically”. We
go on to discuss two of the (many) approaches to homotopical algebra that
exist: model categories and ∞-categories. Lastly we discuss the main mathe-
matical objects that we will study in this thesis: spectra, the abelian groups of
homotopical algebra.

Homotopical algebra Algebra
space/∞-groupoid/anima set
spectrum abelian group
E1-ring spectrum associative and unital ring
E∞-ring spectrum commutative ring
Fin' - the underlying space/∞-
groupoid/anima of the category of
finite sets

N - the monoid of natural numbers

S - the sphere spectrum Z - the ring of integers

1.1.1 Homotopical algebra: A motivation
Many important results in mathematics deal with the question of “figuring out
what objects are the same”. This can be something as rudimentary as stating
that 1 + 1 is the same thing as 2, or something as advanced as stating that:

A simply connected closed 3-manifold is “the same thing” as a 3-
dimensional sphere.

One standard way of rigorously dealing with the concept of “sameness” in math-
ematics is through the very useful and powerful language of category theory. In

2



Homotopical algebra

the sense of category theory, we talk about two mathematical objects x and y
of the same category as “the same” (or: isomorphic) if we can find morphisms
f : x → y and g : y → x whose two compositions gf and fg are equal to
the identity morphisms on x and y, respectively [Mac98; Bor94]. For example,
in the statement above, the category we are considering is that of topological
spaces with continuous maps between them. Two spaces that are “the same” in
the above sense are referred to as being homeomorphic, and a more mathe-
matically rigorous statement of what we have written above becomes:

Every simply connected closed 3-manifold is homeomorphic to the
3-sphere.

This statement is known as the Poincaré conjecture, and is to this day the
only one of the seven Millennium Prize Problems to have been solved. The
formulation of the Poincaré conjecture coincides with the conception of the
mathematical subject known as algebraic topology, where the rough aim can be
expressed as “finding algebraic invariants that classify topological spaces up to
homeomorphism”. One of the main branches of algebraic topology is homotopy
theory, where the idea is to use a weaker notion of “sameness” called homotopy
equivalences, in order to approach this aim. Explicitly, two topological spaces X
and Y are said to be homotopy equivalent if there is a homotopy equivalence
between them. This means that we can find continuous maps f : X → Y and
g : Y → X such that gf and fg are homotopic to the identity maps. Here,
two maps φ, ψ : A → B are homotopic if there is homotopy between them; a
continuous map

H : I ×A→ B such that
{
H(0, x) = φ(x)
H(1, x) = ψ(x) .

One equivalent formulation of the Poincaré conjecture says, in layman’s terms,
that this weaker form of “sameness”, is enough to guarantee the stronger form,
when we are dealing with the class of topological spaces known as “3-manifolds”:

A 3-manifold which is homotopy equivalent to the 3-sphere is also
homeomorphic to the 3-sphere.

At this point it is worth taking a step back and note that similar notions of this
“weaker sameness” can be found in many other fields of mathematics, as the
following examples show.

Example 1.1.1. Two chain complexes C∗ and D∗ are said to be chain homo-
topic if there is a chain homotopy equivalence between them. This means that
we can find chain maps f : C∗ → D∗ and g : D∗ → C∗ such that gf and fg are
chain homotopic to the identities on C∗ and D∗, respectively. Here, two chain
maps φ, ψ : A∗ → B∗ are called chain homotopic if there is a chain homotopy
between them; a collection of maps sn : An → Bn+1 satisfying

φn − ψn = sn−1∂
A
n + ∂Bn+1sn .

3



1. Introduction

Example 1.1.2. Even in category theory itself we do not care about cate-
gories up to isomorphism, but rather, only up to equivalence. Recall that two
categories C and D are called equivalent if there are functors F : C → D and
G : D → C such that GF and FG are naturally isomorphic to the identity func-
tors. Here, a natural transformation between two functors Φ,Ψ : A → B is
a class of morphisms τa : Φa→ Ψa in B indexed by the objects of A and such
that for every morphism f : a→ a′ in A , the diagram

Φa Ψa

Φa′ Ψa′

τa

Φf Ψf
τa′

commutes. We say that we have a natural isomorphism if all the morphisms
τa : Φa→ Ψa are isomorphisms.

The context of the above examples are different: the first example can be
placed under homological algebra, while the second example belongs to category
theory. However, we can note that all of these examples describe essentially the
same concept of “sameness”, a concept which involved some notion of morphisms
between morphisms. We called these by different names (homotopy, chain ho-
motopy, and natural transformation) depending on the context, but collectively
these morphisms between morphisms can be referred to as 2-morphisms. It
turns out that it is often useful to also think about morphisms between these
2-morphisms, what we would call 3-morphisms, and so on. The study of such
structures can have many different names depending on the direction you ap-
proach them from, but in this thesis, we will use the terminology higher category
theory and make the following distinctions:

Higher category theory The study of the structures involving an infinite hi-
erarchy of morphisms. Here, the structures, the ∞-categories, are them-
selves the objects of interest.

Homotopy theory The classical study of spaces as living in the context of
higher category theory, rather than in ordinary category theory, via con-
tinuous maps, homotopies between continuous maps, homotopies between
homotopies between continuous maps, and so on.

Homotopical algebra The study of mathematical objects that live naturally
in the context of higher category theory. In particular, it is the study
of those “homotopical” objects that posess some extra structure, like a
multiplicative structure of some kind, as for example spectra1.

We will return to the mathematical objects mentioned in the last point,
spectra, in Section 1.1.3.

1There is not a clear consensus on what the term homotopical algebra should mean. Quillen
was arguably the first one to use the terminilogy and explains it as “the generalization of homo-
logical algebra to arbitrary categories which results by considering a simplicial object as being
a generalization of a chain complex” [Qui67]. In the light of the discussion in Section 1.1.3.3,
we feel confident in claiming that the study of spectra are at the heart of homotopical algebra,
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Homotopical algebra

1.1.2 Approaches to homotopical algebra
Dealing with homotopical phenomena can be quite complicated as it is often
hard to get a concrete grasp on our objects. Indeed, as the above discussion
shows, at its extreme end, homotopical algebra involves keeping track of an
infinite hierarchy of morphisms, which is not always easy in practice. The hands-
on approach usually does not cut it, so one of the main burning questions when
working with some version of homotopical algebra becomes finding a framework
that is rigid enough to grasp the objects we are working with, but flexible
enough to actually prove things. In this section, we introduce two such prevalent
frameworks, namely model categories and ∞-categories.

1.1.2.1 Model categories

Historically, one common way to deal with homotopical phenomena is to use
model categories. This is especially true if one comes from the direction of
homotopy theory, where the broad goal for a long time was, and still is to
some degree, to “classify continuous maps between spaces up to homotopy”.
The set of homotopy classes of (based) continuous maps Y → X is typically
denoted [Y,X]. The most relevant case is when Y is the n-sphere, in which case

πn(X) := [Sn, X]

is referred to as the nth homotopy group2 of X. The basic motivating ques-
tion is this: We want to treat homotopy equivalences as if they are isomorphisms,
so why not simply add formal inverses to them? The first big road-block with
this line of thought is that what we get by inverting an arbitrary class of mor-
phisms might not be a category. Model categories were introduced by Quillen
and provide ways to deal with these sorts of set theoretical issues. Briefly, a
model categoryM is a bicomplete category together with three distinguished
classes of morphisms, weak equivalences, fibrations, and cofibrations, together
with a bunch of axioms [Qui67; Hov99]. The homotopy category of M is
the localisation ofM with respect to the weak equivalences. Here, localisation
simply means that we formally invert all the weak equivalencesW, forcing them
to become isomorphisms:

Ho(M) =M[W−1]
The model axioms make sure that this can be done without any set-theoretical
problems. More specifically, they guarantee that

Ho(M)(Y,X) := [Y,X]
as the term was originally indended to be used. Cisinski seems to use the term in a much
wider sense in [Cis19] when he writes that it is “the study of the compatibility of localisations
with (co)limits”. This is certainly relevant to homotopical algebra, but one could argue that
it describes homotopical behaviour in a larger generality. Our use of homotopical algebra is
close to Lurie’s use of higher algebra, with an affinity towards homotopical rather than higher
as we feel that the former is more descriptive.

2When n = 0, this is just a set, so using the word “group” is perhaps not so appropriate.
For n ≥ 1 they are groups, though. For n ≥ 2, they are additionally abelian by an Eckmann–
Hilton argument.
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1. Introduction

is a set for all objects X and Y , so that Ho(M) is actually a category.
The employment of homotopical algebra in the framework of model cate-

gories has been shown to be quite powerful. Some notable examples are Quillen’s
work in rational homotopy theory [Qui69] and, more recently, Voevodsky’s proof
of the Milnor conjecture [Voe03b; Voe03a] and later the more general Bloch–
Kato conjecture [Voe11], which heavily rely on model categorical methods. How-
ever, it is worth noting that a lot of possibly important information goes lost
when we pass from a model category to its homotopy category. While you re-
member that two maps are homotopic, you lose the information on how they
were homotopic in the first place. As in, you lose explicit information about the
homotopy between the two homotopic maps.

Another problem is that homotopical phenomena interact quite badly with
colimits and limits. To illustrate by an example, consider the category CW
consisting of CW-complexes and continuous maps between them. Along the
program described above, we can deal with homotopical questions in CW by
endowing this category with a suitable model structure. We can then formally
invert the homotopy equivalences (which are the weak equivalences in this model
category) to obtain the category

H = Ho(CW) .

This is referred to as the classical homotopy category3; the objects are still
CW-complexes, but the morphisms are now homotopy classes of continuous
maps. For a simple example of how colimits interact badly with such construc-
tions, consider the two diagrams

D =

 S0 ∗

∗

 and D′ =

 S0 I

I

 ,

where the two points of S0 are sent to the endpoints of the intervals I in dia-
gram D′. The two diagrams are levelwise homotopy equivalent, but note that
their respective colimits, the pushouts, are not. The pushout of the left hand
side is a point ∗, but the pushout of the right hand side is the circle S1, which
is certainly not contractible. Classically, the solution to this problem is to in-
troduce homotopy colimits, but a priori this is just a method of constructing
something that “behaves like a colimit” and is invariant under levelwise homo-
topy equivalences of diagrams. In particular, homotopy colimits do not have
a similar universal property to that of ordinary colimits, neither in the cate-
gory CW, nor in the category H.

3Many different model categories can give rise to equivalent homotopy categories, and this
is certainly true for the classical homotopy category. We can alternatively take the category
of simplicial sets and give its standard Kan-Quillen model structure.
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Homotopical algebra

1.1.2.2 ∞-categories

To be able to use homotopical algebra to its best potential, you have to find a
way to encode all the information on higher morphisms between the objects you
want to study. One way of doing this, which seems to become more and more
prevalent, is ∞-categories, as developed by the likes of Boardman–Vogt, Joyal,
and Lurie [BV73; Joy02; Lur09; Lur17]. These are certain simplicial sets that
can be said to behave like categories. We emphasize that the combinatorial
behaviour of simplicial sets makes them extremely practical to work with in
many situations.

Definition 1.1.3. An ∞-category4 is a simplicial set X in which every inner
horn Λnk → X can be extended to a simplex ∆n → X.

To explain in which sense simplicial sets are category-like, we recall the nerve
functor. The nerve functor is defined as evaluation at the fully faithful inclusion
functor from the simplex category to the category of categories, in the sense
that:

N : Cat −→ sSet , C 7→ HomCat(i(−),C ) .
The reader can check for themself that the 0-simplices in the simplicial set NC
are given by the objects in C , the 1-simplices by the morphisms in C , the 2-
simplices by composable pairs of morphisms, and so on. We can let this serve
as a paradigm when thinking of a simplicial set X as category-like:

• We can think of a 0-simplex v : ∆0 → X as an object of X.

• We can think of a 1-simplex φ : ∆1 → X as a morphism5 of X from the
source x = d1(φ) to the target y = d0(φ).

• We can think of a 2-simplex σ : ∆2 → X as witnessing that d1(σ) is the
composition of the map φ = d2(σ) and ψ = d0(σ), informally visualised
as the diagram:

d0(φ) = d1(ψ)

d1(φ) d0(ψ)

ψ=d0(σ)

ψφ=d1(σ)

φ=d2(σ) .

Nerves of categories are simplicial sets exhibiting a certain specific property:
every inner horn Λnk → NC can be uniquely extended to a simplex ∆n → NC ;
see [Lur09, Proposition 1.1.2.2]. In particular, note that nerves of categories are
examples of ∞-categories. However, there are many examples of ∞-categories
that cannot be written as the nerve of an ordinary category. Using the category-
like description of the simplicial set X, the inner 2-horn condition of Defini-
tion 1.1.3 is supposed to tell us that any pair of composable morphisms in X

4Also called quasi-category or weak Kan complex.
5From this point of view, it makes sense to think of the degenerate 1-simplex idv = s0(v)

as the identity morphism of the object v : ∆0 → X.
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1. Introduction

has a composite. Indeed, any pair of composable morphisms φ, ψ : ∆1 → X
determines an inner 2-horn Λ2

1 → X, informally visualised as:

d0(φ) = d1(ψ)

d1(φ) d0(ψ)

ψφ .

By the inner 2-horn condition, the dotted map in the diagram exists. While this
composite is not unique in a strict sense, the rest of the inner horn conditions
guarantee that it is unique in the sense of higher category theory. Indeed,
possible compositions of φ and ψ form a simplicial set, and the condition that
we have lifts for all inner horns guarantees that this simplicial set is actually
a Kan complex, and even more, that this Kan complex is contractible. If we
want to emphasize this higher categorical view of uniqueness we usually speak
of something “being unique up to contractible choice”6.

The concept of∞-categories solves the conundrum regarding homotopy and
colimits by adding something lying in between the category of CW-complexes
and the classical homotopy category:

CW −→ S −→ H

This something is the∞-category of spaces7. There are∞-categorical interpre-
tations of colimits and limits, with suitable universal properties [Lur09, Chapter
4]. The ∞-category S has all of these, and what is classically referred to as a
homotopy (co)limit in CW is mapped to such a (co)limit in S.

1.1.3 Spectra
One common description of higher category theory is that it is category theory
not built on sets, but on spaces. From this point of view, we can understand

6A way to rigorously state this sort of uniqueness of compositions as the characterising
feature of an ∞-category is given by the following result.

Theorem 1.1.4 (Joyal). A simplicial set X is an ∞-category if and only if the restriction
map Map(∆2, X)→ Map(Λ2

1, X) is an acyclic Kan fibration.

We can think of Map(Λ2
1, X) as “the space composition problems in X” and of Map(∆2, X)

as the “the space of solutions to composition problems”. The theorem above tells us that
the characterizing property of an ∞-category is that these two spaces are the same, from a
homotopical point of view.

7Whether it is reasonable to call the objects in this ∞-category “spaces” is up for debate.
From this historical account it seems reasonable, but it is worth noting that both the ∞-
category S and the category H can be constructed in many other ways, that do not necessarily
make use of spaces, as we usually think of them. Perhaps a better term for the objects in
S is “homotopy types” or “∞-groupoids”. In [CS19], the authors argue for the terminology
“anima”, in the sense of the “soul” of a space. Indeed, the ∞-category S can be obtained
from the category of sets in a process of freely adding sifted colimits, which the authors refer
to as “animation”. We leave it to the reader to make up their own mind on what they think
is the best word, but stick with “spaces” in this thesis, as it is the most well-used terminology
at the time of writing.
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homotopical algebra as algebra not built on sets, but on spaces. It turns out
that the world of classical algebra can be embedded faithfully into the world
of homotopical algebra and this allows for several interesting generalisations of
algebra into a homotopical setting. The abelian groups of homotopical algebra
are referred to as spectra. In the next couple of sections we explain what spectra
are from various points of view.

1.1.3.1 Spectra as stable spaces

The earliest motivation behind spectra is that they describe a relatively well-
behaved part of homotopy theory, namely stable behaviours. This motivation
can be traced back to Freudenthal’s suspension theorem, which tells us that the
sequence

[Y,X] −→ [ΣY,ΣX] −→ · · · −→ [ΣnY,ΣnX] −→ · · ·
of homotopy classes of maps will eventually stabilise [Fre38]. In the case that Y
is an n-sphere, we write

πst
n (X) = colim

k
πn+k(ΣkX)

for this stabilised value and call it the nth stable homotopy group of X.
The subfield of stable homotopy theory can roughly be understood as the
study of stable homotopy groups. Freudenthal’s suspension theorem suggests
the idea of introducing a category with objects that reflect this stable phe-
nomenon and in which it is natural to study these types of stable behaviours.
This category is known as the category of spectra, and was first introduced by
Lima [Lim60]. In his sense, a spectrum X is simply an infinite sequences of
pointed spaces {Xn}∞n=0 equipped with continuous maps ΣXn → Xn+1 from the
suspension of the nth space to the (n+1)th space. Note that every spaceK natu-
rally gives rise to a spectrum, the (unreduced) suspension spectrum Σ∞+ K,
where the nth space is the nth suspension of K+, with the obvious continuous
maps between the different levels. Arguably, the most important example is the
sphere spectrum which is simply defined as the suspension spectrum of the
point:

S = Σ∞+ ∗ .
The sphere spectrum S plays the same role in homotopical algebra, as the in-
tegers Z play in classical algebra; it is the initial “commutative” ring of homo-
topical algebra. For a more algebraic example of spectra, recall that, given an
abelian group A and non-negative integer n, it is always possible to construct a
space K(A,n), the nth Eilenberg–Mac Lane space of A, in such a way that

πkK(A,n) =
{
A if k = n

0 otherwise.

It is known that there are homotopy equivalences ΩK(A,n + 1) ' K(A,n),
so that we have left adjoint maps ΣK(A,n) → K(A,n + 1). These make
sure that the Eilenberg–Mac Lane spaces assemble into a spectrum, called the
Eilenberg–Mac Lane spectrum of A and denoted HA.

9
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1.1.3.2 Spectra as cohomology theories

The example of Eilenberg–Mac Lane spectra at the end of the previous sec-
tion shows how spectra can be algebraic in nature. However, a priori there is
nothing intrinsically algebraic about them, in general. Possibly, a better expla-
nation for in what way they are algebraic is through Atiyah–Whitehead work
on generalised cohomology theories. Recall that a generalised cohomology
theory h∗ is sequence of functors hn : Hop → Ab together with natural iso-
morphisms σ : hn → hn+1 ◦ Σ, satisfying exactness and additivity [Whi62].
These conditions guarantee, via Brown’s representability theorem [Bro62], that
the functors hn : Hop → Set are all representable. That is, we can find pointed
CW-complexes En such that

hn(X) ∼= [X,En].

Using the suspension isomorphism for generalised cohomology theories we have
bijections

[X,En] ∼= [ΣX,En+1] ∼= [X,ΩEn+1] ,

and by full faithfulness of the Yoneda embedding we thus have homotopy equiv-
alences En → ΩEn+1. The left adjoint ΣEn → En+1 of this map is the wanted
structure map in our spectrum {En}∞n=0. Hence, the spaces En assemble into
a spectrum. The converse is also true: every spectrum gives rise to a homology
and cohomology theory. This suggests that we want to put a model structure on
the category of spectra such that two spectra are equivalent if and only if they
give rise to isomorphic (co)homology theories. This leads us to the definition of
the stable homotopy category SHC; what we get if we localise with respect
to the weak equivalences in that model structure [BF78].

Ordinary cohomology with coefficients in the abelian group A gives us back
the Eilenberg–Mac Lane spectrum via the above discussion. However, there are
many examples of more exotic versions of cohomology theories, each of which
gives rise to its own spectrum. Some examples are:

• Various flavours of topological K-theory: complex topological K-theory KU,
real topological K-theory KO, and quaternionic topological K-theory KSp,
...

• Various flavours of cobordism8: complex cobordism MU, unoriented cobor-
dism MO, oriented cobordism MSO,...

• Elliptic cohomology: elliptic curves gives rise to formal groups which in
turn give rise to cohomology theories via Landweber’s exact functor the-
orem [Lan76].

8The sphere spectrum also belongs here and corresponds to framed cobordism via the
Pontryagin–Thom theorem.
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1.1.3.3 Spectra as an analogy of unbounded chain complex

One alternative way of viewing spectra, which might be useful for people that
care neither about stable behaviour of spaces nor generalised cohomology theo-
ries, is as follows:

Spectra are to spaces, what unbounded chain complexes are to non-
negatively graded chain complexes9.

This can give a reason for working with spectra, at least if the reader sees
the point in working with chain complexes and agrees that it is generally a
stupid idea to restrict mathematics to the setting of non-negatively graded ones.
Let us imagine a world where we only have access to non-negatively graded
chain complexes. How would we construct the category of unbounded chain
complexes from this? By thinking backwards, we could start by noting that
every unbounded chain complex can be written as a colimit of bounded below
ones simply by truncating:

C = colim
n→∞

τ≥−nC .

This allows us to describe unbounded chain complexes as colimits of bounded
below chain complexes. A bounded below chain complex can be made into a
non-negatively graded chain complex by suspending it enough times. Indeed,
let us write

C(n) = (τ≥−nC)[n] , n ≥ 0 ,
and notice that this is always a non-negatively graded chain complex. In terms
of non-negative chain complexes, suspensions, and colimits, our original chain
complex can be written as the colimit of the system

C(0) −→ C(1)[−1] −→ C(2)[−2] −→ · · · .

This data could alternatively be phrased as:

1. A sequence {C(n)}∞n=0 of non-negative chain complexes.

2. A chain map C(n)[1]→ C(n+1) for every non-negative integer n.

Compare this to the definition of a spectrum from Section 1.1.3.1. This might
provide meaning to the concept of spectra, especially if the reader is already
using simplicial methods to deal with questions concerning the derived category
of chain complexes, via the Dold–Kan correspondence

Fun(∆op,Ab) ' Ch(Ab)≥0 .

A simplicial abelian group is in particular a Kan complex, which is what is
usually interpret as a “space” in the theory of ∞-categories. From this point
of view, it seems reasonable to make the switch from simplicial methods to
homotopical algebra when you want to better understand unbounded chain
complexes and the derived category of such.

9Thank you to Fabian Hebestreit for calling me in the middle of the night to explain this
point of view when he had his eureka moment on spectra. It was as enlightening to me.
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1.2 Spectral sequences

If spectra are the mathematical objects that we are interested in, then spectral
sequences are the tools that we will use to study them with10. Both of the papers
included in this thesis deal with spectral sequences, in some way or another. We
discuss in order: what spectral sequences are, different ways they arise, what we
mean by convergence of spectral sequences, and how to deal with multiplicative
structures. In particular, although it is of course an important part of the
subject, we will not discuss how to work with, manipulate, and compute with
spectral sequences. This often depends very heavily on the spectral sequence in
question, and it is very hard to say something in general. Instead, we focus on
the aim of giving the reader a feel for what they are and how to think about
them, and refer the reader who is hungry for more to [McC01].

1.2.1 Spectral sequences
Since their conception by Leray [Ler46], spectral sequences have proven to be
incredibly useful tools in various subjects of mathematics. One can view them as
a generalisation of the concept of an exact sequence, and they are primarily used
for the same purpose, namely for computations of homotopy and/or homology
groups. Let us start with the most basic definition. In what follows, we will
consider the category of abelian groups, although similar definitions can be made
in any abelian category. A spectral sequence (of abelian groups) consists of
the following data:

1. for every integer r ≥ 1, a bigraded abelian group Er = Erp,q;

2. for every integer r ≥ 1, a map dr : Er → Er of bidegree (−r, r − 1) such
that dr ◦ dr = 0;

3. for every integer r ≥ 1, an isomorphism Er+1 ∼= H(Er, dr) of bigraded
abelian groups, where H refers to taking homology.

A morphism of spectral sequences is a collection of morphisms of bigraded
abelian groups compatible with the differentials and with the isomorphisms
Er+1 ∼= H(Er, dr), in the obvious way. This makes spectral sequences into
a category which we denote as SSEQ. It is common to refer to the bigraded
abelian group Er∗,∗ as the rth page of the spectral sequence, and to visualise it
as a page in an imagined book, where we pass from one page to the next by
taking homology.

Remark 1.2.1. There are many other grading conventions for spectral se-
quences. The one described above is called homological Serre grading. Another
grading convention that is used is homological Adams grading Ern,s. To go
between these two grading conventions we can use the linear transformations

(n, s) 7→ (−s, n+ s) and (p, q) 7→ (p+ q,−p) .
10Disclaimer: there is really no etymological connection between spectra and spectral se-

quences other than derivatives of the word spectrum being overused in mathematics.
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In homological Adams grading the dr-differentials would go

drn,s : Ern,s → Ern−1,s+r .

Note that the grading conventions are not consistent between the papers con-
tained in this thesis!

A common situation where spectral sequences arise is when considering fil-
trations of mathematical objects. In this way, spectral sequences provide means
to translate homotopical information into algebraic information, that can then
be processed in the standard fashion of homological algebra. This will be our
main point of view on spectral sequences in this thesis; that they are convenient
ways to store and process large amounts of mathematically information. One
could argue that this is the source of both their their usefulness and difficulty.
There are a number of convenient stepping-stones when passing from a filtration
to a spectral sequence, which we now cover briefly. In all the sections below, A
denotes the graded abelian category of abelian groups.

1.2.1.1 Exact couples

After Massey [Mas52, Section 1.4], we define an (unrolled) exact couple as
a diagram

· · · As−2 As−1 As · · ·

Es−1 Es

αs−1

βs−1

αs

βsγs−1 γs

in A , in which every triangle is exact. Here, the internal degrees of the maps
αs, βs, and γs are 0, 0, and −1, respectively. Such an object gives rise to a
spectral sequence by setting the E1-page and d1-differential to be

E1
s,∗ = Es and d1 = βs−1 ◦ γs .

The higher pages are given by considering the part

· · · As−r−1 As−r · · · As+1 As · · ·

Es−r Es

αs−r

βs−r

αs

βsγs−r γs

of the exact couple; see [HR19, Lemma 3.4]. While exact couples are useful for
building additive spectral sequences, they have the disadvantage in that there
is no useful notion of a pairing of exact couples; we will return to this point in
the section dealing with multiplicative structures on spectral sequences.
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1.2.1.2 Cartan–Eilenberg systems

For multiplicative considerations it is often convenient to work with Cartan–
Eilenberg systems [CE56, Section XV.7]. Consider the following two categories:

• The category Z[1] whose objects are pairs (i, j) of integers with i ≤ j, and
where have a single morphism (i, j) → (i′, j′) precisely when i ≤ i′ and
j ≤ j′.

• The category Z[2] whose objects are triples (i, j, k) of integers with i ≤ j ≤
k, and where have a single morphism (i, j, k) → (i′, j′, k′) precisely when
i ≤ i′, j ≤ j′, and k ≤ k′.

Note that we have three obvious functors d0, d1, d2 : Z[2] −→ Z[1] and two nat-
ural transformations ι : d2 −→ d1 and π : d1 −→ d0. We define an finite
Cartan–Eilenberg system as a pair (H, ∂) where H : Z[1] → A is a func-
tor and ∂ : Hd0 → Hd2 is a natural transformation, such that the triangle

Hd2 Hd1

Hd0

Hι

Hπ∂

is exact. Adding an initial object −∞ and terminal object ∞ to the poset Z
gives us the notion of an extended Cartan–Eilenberg system. An extended
Cartan–Eilenberg system thus associates to each pair (i, j) with −∞ ≤ i ≤ j ≤
∞ a graded abelian groupH(i, j), in a functorial way. Furthermore, it associates
to each triple (i, j, k) with −∞ ≤ i ≤ j ≤ k ≤ ∞ a long exact sequence

. . . −→ H(i, j) −→ H(i, k) −→ H(j, k) ∂−→ H(i, j) −→ . . . ,

where ∂ is a natural transformation of total degree −1.

Remark 1.2.2. The notion of a finite Cartan–Eilenberg system is connected to
the notion of a Z-complex in the∞-category of spectra, as in [Lur17, Definition
1.2.2.2]. Indeed, given a Z-complex X : Z[1] → Sp the composition

Z[1] X−→ Sp π∗−→ A

forms a finite Cartan–Eilenberg system.

An extended Cartan–Eilenberg system gives rise to an exact couple by setting

As = H(−∞, s) and Es = H(s− 1, s)

and

αs : H(−∞, s− 1) −→ H(−∞, s)
βs : H(−∞, s) −→ H(s− 1, s)
γs : H(s− 1, s) −→ H(−∞, s− 1)
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where the first two maps are induced by the maps s− 1 ≤ s and −∞ ≤ s− 1 in
the poset Z, while the last map is induced by the natural transformation ∂ in
the Cartan–Eilenberg system [HR19, Section 7].

1.2.1.3 Décalage

Informally, décalage is a way to make sense of “turning a page in the spectral
sequence” on the level of filtrations. This was first introduced by Deligne in
relation to his studies on Hodge structures [Del71]. Without going into too much
detail: given a filtered chain complex (K,F ), the associated decalée Déc(K) is
a new filtered chain complex (K,Déc(F )). This new filtered chain complex is
constructed in such a way that the spectral sequence associated to (K,Déc(F ))
is isomorphic, after reindexing, to the spectral sequence associated to (K,F ),
but shifted forward one page:

Ern,s(Déc(K)) ∼= Er+1
n,s−n(K)

in homological Adams grading. Although not originally phrased in this lan-
guage, we can make sense of décalage using a t-structure on the derived filtered
category, called the Beilinson t-structure [Bĕı87; BMS19]. We will study this
approach to spectral sequences in Paper II.

1.2.2 Convergence
One of the main questions when working with spectral sequences is:

Is the spectral sequence computing what we want it to compute?

This is the question of convergence of spectral sequences. At the inception of
the subject of spectral sequences, dealing with this question usually involved
imposing quite severe finiteness conditions on the objects, but as the subject
developed it became apparent that better considerations were needed. One
groundbreaking article is [Boa99] and its introduction of the notion of condi-
tional convergence.

In order to talk about convergence, we need to first establish some termi-
nology regarding filtrations of abelian groups. For us, a filtration is simply a
sequence of injective homomorphisms of abelian groups

· · · −→ F q+1 −→ F q −→ F q−1 −→ · · · .

We consider this as an abstract filtration, and not as a filtration of a specific
group, though we could of course say that is a filtration of colimq F

q. In this
sense, all filtrations we work with are exhaustive, in Boardman’s terminology.
A filtration is called derived complete if the total derived inverse limit

Rlim
q

F q ' 0

vanishes.
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Remark 1.2.3. We warn the reader that we use the symbol Rlim differently
from Boardman here. What we mean by Rlim is the total right derived functor
of the limit, and not just its first right derived functor. To clarify, for us, the
derived inverse limit Rlimq F

q is an object of DZ[−1,0], since the sequential limit
functor only has two non-vanishing right derived functors. What Boardman
writes as Rlimq F

q, we would instead write as

H−1(Rlim
q

F q) = lim1
q
F q .

Hence, being derived complete is equivalent to being complete and Hausdorff,
in Boardman’s terminology.

Given a spectral sequence E?∗,∗, the E2-page has a filtration

0 = B2
p,q ⊂ B3

p,q ⊂ · · · ⊂ Brp,q ⊂ · · · ⊂ Zrp,q ⊂ · · · ⊂ Z3
p,q ⊂ Z2

p,q = E2
p,q

of abelian groups in such a way that

Erp,q
∼= Zrp,q/B

r
p,q .

We write
Z∞p,q = lim

r
Zrp,q and B∞p,q = colim

r
Brp,q

and call these the infinite cycles and the infinite boundaries, respectively.
The abelian groups

E∞p,q = Z∞p,q/B
∞
p,q and RE∞p,q = lim

r

1Zrp,q

are referred to as the limit page and the derived limit page of the spectral
sequence, respectively. The point of convergence is to connect these objects,
which are internal to the spectral sequence, to some filtration on the wanted
target of the spectral sequence. We start with arguably the most useful notion
of convergence. Strong convergence of a spectral sequence E?∗,∗ to a graded
group G∗ consists of:

1. A derived complete filtration F ?∗ for every integer ∗.

2. An isomorphism
E∞p,q

∼= F qp+q/F
q+1
p+q

for every pair of integers p and q.

3. An isomorphism
G∗ ∼= colim

q
F q∗

for every integer ∗.
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We will often abusively say “the spectral sequence converges strongly to G∗”
even though strong convergence is technically not a property of a spectral se-
quence, but rather extra structure. If our spectral sequence is strongly con-
vergent11, then G∗ can be recovered from the spectral sequence in question in
the strongest possible sense via [Boa99, Proposition 2.5]. However, there are a
lot of spectral sequences that are not a priori strongly convergent. For those,
Boardman introduced the notion of conditional convergence. If we are given an
exact couple such that

Rlim
s

As ' 0 ,

we say that the associated spectral sequence converges conditionally. Note
that conditional convergence is slightly unsatisfactory from a structural point
of view in the sense that conditional convergence technically is a property of an
exact couple, and not a property or structure on the spectral sequence itself. In
other words, given a spectral sequence, with no information on how it arose, the
question “Does the spectral sequence converge conditionally?” does not even
makes sense. Nevertheless, the concept of conditional convergence is very useful
in that it allows one to deduce strong convergence from conditions that are
entirely internal to the spectral sequence in question, and which in many cases
are easy to check. Indeed, depending on what sort of spectral sequence you have,
the following table summarises sufficient criteria for strong convergence [Boa99,
Theorem 6.1, Theorem 7.3, Theorem 8.2]:

half-plane with exiting differentials conditional convergence
half-plane with entering differentials conditional convergence +

vanishing of the derived
limit page RE∞

whole-plane conditional convergence +
vanishing of the derived
limit page RE∞ + vanish-
ing of Boardman’s whole-
plane obstruction W

Let us end this section by discussing the term W appearing in the last entry,
which we have yet to explain. Instead of introducing the necessary terminol-
ogy for introducing it in Boardman’s language we refer to [HR19] where the
authors give a simplified description of Boardman’s obstruction group in terms
of Cartan–Eilenberg systems. They show that it can be expressed as the kernel

W ∼= ker(κ)

of the canonical colimit-limit exchange map

κ : colim
i

lim
j
H(i, j) −→ lim

j
colim
i

H(i, j) .

11Or more correctly: “is endowed with the structure of strong convergence”.
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We note that although Boardman’s obstruction group depends on the exact
couple and/or the Cartan–Eilenberg system, there are criteria internal to the
spectral sequence itself that guarantee the vanishing of Boardman’s obstruction
group [Boa99, Lemma 8.1].

Remark 1.2.4. As mentioned in the previous section, the notion of a spec-
tral sequence makes sense more generally in an abelian category A . To make
sense of convergence for such spectral sequences, we need some assumptions
on the abelian category, though. Assuming that sequential colimits and limits
in A behaves as in the category of abelian groups will do the trick. What
“behaving as” should mean is subtle, though. One might expect that we want
sequential colimits and infinite countable products to be exact. In the termi-
nology of Grothendieck’s Tohoku paper [Gro57], we should require the abelian
category A to satisfy AB5 and AB4*. However, in light of Neeman’s counterex-
ample to AB4* being sufficient to guarantee that lim1 vanishes on Mittag–Leffler
sequences [Nee02], and Boardman heavily making use of Mittag–Leffler short
exact sequences in his paper, we refrain from making any definite claims on this
matter.

1.2.3 Multiplicative structures

One of the main foci of this thesis is multiplicative structures on spectral se-
quences. When the object we want to study has some extra structure, like some
sort of pairing, it is useful, if not often essential, to incorporate this structure
in the spectral sequence used to study the object. Such a structure can then be
heavily exploited in computations.

The category of spectral sequences is not a symmetric monoidal category,
so it does not make sense to talk about the tensor product of two spectral se-
quences. However, it does make sense to talk about multilinear maps of spectral
sequences. This makes the category of spectral sequences into a multicategory,
or, as it is also called, a coloured operad. Given spectral sequences (Cr, dr),
(Dr, dr), and (Er, dr), a bilinear map (or pairing)

φ : (C?∗,∗, D?
∗,∗) −→ E?∗,∗

is a collection of morphisms

φr : Crp,q ⊗Dr
p′,q′ −→ Erp+p′,q+q′

such that the following conditions hold:

1. We have
drφr = φr(dr ⊗ 1 + 1⊗ dr)

as morphisms Crp,q ⊗Dr
p′,q′ → Erp+p′−r,q+q′+r−1.
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2. The diagram

Cr+1
p,q ⊗Dr+1

p′,q′ Er+1
p+p′,q+q′

Hp+p′,q+q′(Cr∗,∗ ⊗Dr
∗,∗) H(Ern+n′,s+s′)

φr+1

∼=
H(φr)

commutes.

The three ways of passing from filtrations to spectral sequences that we
covered in Section 1.2.1 are more and less suitable for dealing with multiplicative
structures on the associated spectral sequences. As already mentioned, exact
couples are at a disadvantage in that there is no useful notion of a pairing of
exact couples12. To deal with multiplicative questions it is therefore better to
use one of the two other constructions: Cartan–Eilenberg systems or décalage.
There is a suitable definition for a pairing of a finite Cartan–Eilenberg system.
Indeed, given finite Cartan–Eilenberg systems (H ′, ∂), (H ′′, ∂) and (H, ∂), a
pairing

φ : (H ′, H ′′)→ H

is a collection of homomorphisms

φr : H ′(i− r, i)⊗H ′′(j − r, j) −→ H(i+ j − r, i+ j)

of total degree 0, for all integers i and j and r ≥ 1. These are required to satisfy
the following two conditions:

1. Each square

H ′(i− r, i)⊗H ′′(j − r, j) φr //

��

H(i+ j − r, i+ j)

��
H ′(i′ − r′, i′)⊗H ′′(j′ − r′, j′)

φr′ // H(i′ + j′ − r′, i′ + j′)

commutes, for all integers i, j, i′, j′ and r, r′ ≥ 1 with i ≤ i′, i− r ≤ i′− r′,
j ≤ j′ and j − r ≤ j′ − r′.

12The reader might disagree by referring to the paper [Mas54]. However, the structure
and properties involved in the notion of a “pairing of exact couples” according to Massey are
abundant enough to the point that the claim that a pairing of exact couples leads to a pairing
of spectral sequences is essentially a tautology. In practice, the conditions one would need to
check in order to show that one has a pairing of exact couples are essentially the same ones
one would need to check in order to show that one has a pairing of the associated spectral
sequences, rendering the use of exact couples as a stepping stone between filtrations and
spectral sequences pointless when dealing with multiplicative questions. Hence our phrasing
“no useful notion”.
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2. In the (non-commutative) diagram

H ′(i− r, i)⊗H ′′(j − r, j)

∂⊗η

��

φr

((

η⊗∂ // H ′(i− 1, i)⊗H ′′(j − r − 1, j − r)

φ1

��

H(i+ j − r, i+ j)
∂

((
H ′(i− r − 1, i− r)⊗H ′′(j − 1, j) φ1 // H(i+ j − r − 1, i+ j − r)

the inner composition is the sum of the two outer ones:

∂φr = φ1(∂ ⊗ η) + φ1(η ⊗ ∂) .

In terms of elements, this identity in H(i + j − r − 1, i + j − r) can be
written

∂φr(x⊗ y) = φ1(∂x⊗ ηy) + (−1)‖x‖φ1(ηx⊗ ∂y)

for x ∈ H ′(i− r, i) of total degree ‖x‖ and y ∈ H ′′(j − r, j).

This definition was exploited by Douady to show that such a pairing of
Cartan–Eilenberg systems gives rise to a pairing of the associated spectral se-
quences [Dou59a; Dou59b].

1.3 The Tate construction

The specific topic in homotopical algebra that this thesis is concerned about
is the Tate construction. This construction was first introduced by Greenlees
and should be seen as a generalisation of Tate cohomology to the setting of
spectra. In particular, the research in this thesis concerns the Tate spectral
sequence, which is a spectral sequence that computes the homotopy groups
of the Tate construction on some spectrum with group action. We start by
discussing Tate cohomology, to explain the classical context, and go on to define
the Tate construction in the setting of G-spectra. Next, we explore the Tate
spectral sequence and what issues one might expect to pop up when studying
this spectral sequence. Lastly, I explain my own personal reason for studying
the Tate spectral sequence, which is connected to my interest in topological
Hochschild homology and algebraic K-theory.

1.3.1 Tate cohomology
Tate cohomology was first introduced by Tate in his study of class field the-
ory [Tat52]. We give a very brief introduction to the subject following [Bro82,
Chapter VI] and [CE56, Chapter XII]. In what follows, G will be a finite group
and M a G-module. The basic idea is that Tate cohomology is a way to splice
together group homology and group cohomology of G with coefficients inM into
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a single cohomology theory. We usually do this via the so-called norm map: the
map from the G-orbits to the G-fixed points of M defined as

NmG : MG →MG , m 7→
∑
g∈G

g ·m.

The Tate cohomology groups of G with coefficients inM can then be defined
as

Ĥi(G;M) =


Hi(G;M) i ≥ 1,
coker(NmG) i = 0,
ker(NmG) i = −1,
H−i−1(G;M) i ≤ −2 .

It turns out that the Tate cohomology groups can also be phrased as the
(co)homology groups of a (co)chain complex of G-modules. Indeed, let P∗ de-
note a projective resolution of Z as a trivial Z[G]-module, and note that the dual
resolution Hom(P,Z)∗ is a ‘coresolution’ of projective modules since Z[G] is a
quasi-Frobenius algebra: projective and injective modules over Z[G] coincide.
The spliced resolution P̂∗, informally visualised as

· · · P2 P1 P0 Hom(P0,Z) Hom(P1,Z) · · · ,

Z

NmG

ε
ε∗

is referred to as a complete resolution. We can then define Tate cohomology
as the cohomology groups

Ĥi(G;M) = Hi HomZ[G](P̂∗,M) .

One thing that is worth noting is that Tate cohomology is indeed a multiplicative
cohomology theory in the sense that we can define a cup product

^: Ĥi(G;M)⊗ Ĥj(G;N) −→ Ĥi+j(G;M ⊗N)

that extends the cup product on group cohomology, in a suitable sense. Al-
though this can be done using complete resolutions and completed tensor prod-
ucts, as in [Bro82, Section VI.6], we here take the opportunity to introduce
another perspective on Tate cohomology that is useful when thinking of the
cup product. Given a projective resolution P∗, consider the mapping cone
P̃∗ = cone(ε : P∗ → Z) of the augmentation. After [Gre95], we define the
Tate complex via the tensor product

T∗(M) = P̃∗ ⊗Hom(P∗,Z) ;

this chain complex is quasi-isomorphic to Hom(P̂∗,M) after taking G-fixed
points, by a zig-zag(
P̃∗ ⊗Hom(P∗,M)

)G (
P̃∗ ⊗Hom(P̂∗,M)

)G
HomZ[G](P̂∗,M) .∼

∼
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This shows that Tate cohomology can alternatively be described as the homology
of the G-fixed points of the Tate complex:

Ĥi(G;M) = H−i

(
P̃∗ ⊗Hom(P,M)∗

)G
The advantage with this perspective is that the cup product on Tate cohomology
can be described by using G-chain maps

Ψ : P∗ → P∗ ⊗ P∗ and Φ : P̃∗ ⊗ P̃∗ → P̃∗

lifting the identity map id : Z→ Z⊗Z and extending the fold map P̃∗⊕Z P̃∗ →
P̃∗, respectively. Indeed, for G-modules M and N , the composite pairing

P̃∗ ⊗Hom(P∗,M)⊗ P̃∗⊗Hom(P∗, N)
−→ P̃∗ ⊗ P̃∗ ⊗Hom(P∗,M)⊗Hom(P∗, N)
−→ P̃∗ ⊗ P̃∗ ⊗Hom(P∗ ⊗ P∗,M ⊗N)
Φ⊗Ψ∗−→ P̃∗ ⊗Hom(P∗,M ⊗N)

is G-equivariant, and so induces an associative, unital, and graded commutative
pairing

^ : Ĥi(G;M)⊗ Ĥj(G;N) −→ Ĥi+j(G;M ⊗N)

after passing to homology, which we refer to as the cup product on Tate co-
homology. This extends the cup product on ordinary group cohomology in the
obvious way.

1.3.2 The Tate construction
The Tate construction on a G-spectrum is the incarnation of Tate cohomology
in homotopical algebra. Although it was first defined in the setting of genuine
equivariant homotopy theory, it turns out that the Tate construction only de-
pends on the naïve equivariant homotopy type of our spectrum, so to simplify
the discussion, we here give an account in a much more naïve setting. We return
to the classical point of view at the end of the section, in Remark 1.3.2.

Let G be a topological group, and let BG denote a fixed classifying space
for it. We usually refer to the stable ∞-category

SpBG = Fun(BG, Sp)

as the ∞-category of G-spectra13. Here Sp denotes the ∞-category of spectra
and the reader is encouraged to think of G-spectra as analogues to G-modules.
We will follow ordinary ∞-categorical notation; in particular, all colimits and

13Again, we point out that these are not genuine G-spectra in the sense of equivariantly
homotopy theory, but rather a naïve version. However, all constructions we consider in this
thesis depend only on the naïve homotopy type of our spectra, so this is a point that we will
sweep under the rug for now.
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limits are implicitly derived, and we denote the smash product of spectra by ⊗.
Given a G-spectrum X, there a two obvious things we can do with it, namely
take the (homotopy) colimit or limit of our functor:

XhG = colim
BG

X and XhG = lim
BG

X .

These spectra are referred to as the homotopy orbits and homotopy fixed
points of X, respectively. One can view these as spectrum level versions of
group homology and group cohomology, respectively. Indeed, if M is a G-
module for some finite group G, then the homotopy orbits and homotopy fixed
points of the Eilenberg–Mac Lane spectrum HM recover group homology and
group cohomology on homotopy groups:

π∗(HMhG) ∼= H∗(G;M) and π∗(HMhG) ∼= H−∗(G;M) .

As mentioned, the Tate construction is the homotopical algebra version of Tate
cohomology and, as in the classical case, we can access it by defining a suitable
norm map between orbits and fixed points. To this end, we follow the discussion
in [Rog08, Section 5.2], and considerG×G-spectra, that is, functors BG×BG→
Sp. Note that a G-spectrum X can always be considered as a G×G-spectrum
by adding an extra trivial G-action. Another important G×G-spectrum is the
spherical group ring

S[G] = Σ∞+ G

with its obvious left and right G-actions coming from left and right multipli-
cation of G on itself. Note that we have a canonical colimit-limit exchange
map

κ : colim
BG

lim
1×BG

(X ⊗ S[G])→ lim
BG

colim
BG×1

(X ⊗ S[G]) .

Simply unravelling the source and the target, we see that this identifies to a
map

NmG : (X ⊗ S[G]h(1×G))hG → XhG

which we refer to as the norm map. The G-spectrum

DG = S[G]h(1×G)

appearing in the source is referred to as the dualising spectrum of G. The
Tate construction on the G-spectrum X can be defined as the cofiber of the
norm map

XtG = cofib(NmG : (X ⊗DBG)hG −→ XhG) ,

and recovers Tate cohomology on homotopy groups, in the sense that

π∗(HM tG) ∼= Ĥ−∗(G;M)

whenever M is a G-module for some finite group G.
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Remark 1.3.1. In general, the dualising spectrum can be quite hard to un-
derstand. However, there is a very nice description of the dualising spectrum
when G is a compact Lie group, due to Klein. In [Kle01], he identifies the dual-
ising spectrum of a compact Lie group G with the representation sphere on the
adjoint representation of G:

DG = SAd(G) .

In particular, note that when G is a finite discrete group, which is a compact
Lie group of dimension 0, the dualising module is just the sphere spectrum with
trivial action, which explains why the dualising spectrum does not appear in
the classical situation.

The homotopy fixed point functor (−)hG : SpBG → Sp is lax symmetric
monoidal, in the same way as group cohomology can be endowed with the
graded commutative cup product. In the previous section, we saw that the
cup product could be extended to Tate cohomology, and the same is true in
homotopical algebra: the Tate construction functor can be endowed with the
structure of a lax symmetric monoidal functor in such a way that the natural
transformation

(−)hG −→ (−)tG

is symmetric monoidal, at least when G is a compact Lie group. In fact, this
lax symmetric monoidal structure is unique up to contractible choice [NS18,
Theorem I.3.1, Theorem I.4.1].

So far, we have not motivated why we should be interested in the Tate con-
struction, so let us now connect it to something quite fundamental in algebraic
topology. Firstly, note that we are not restricted to working with the classifying
space of a group. Indeed, we may replace BG with some general space B all the
way through14. This provides us with a perfectly good definition of Tate coho-
mology of the space B. For example, if HZ denotes the Eilenberg–Mac Lane
spectrum of the integers, let us write HZ for the same spectrum viewed as triv-
ially parametrised over B. Then it seems reasonable to define Tate cohomology
of B with coefficients in Z as the homotopy groups

Ĥ−∗(B;Z) = π∗

(
cofib

(
NmB : colim

B
(HZ⊗DB)→ lim

B
HZ
))

.

One could speculate that the main reason this has not been studied in the past
is that it is trivial on a very big and important class of spaces, namely finite
dimensional manifolds. If B = M is an n-manifold, then the dualising spectrum
is fibre-wise a sphere shifted into degree −n, and the norm map

NmM : (HZ⊗DM )hM → HZhM

14As is common when working with∞-categories, we mean “space” as “Kan complex” here.
Note that δ!(S) = S[G] where δ! denotes induction along the diagonal map δ : BG→ BG×BG,
so the obvious replacement for the spherical group ring will be the parametrised spectrum we
get when inducing up the trivial sphere spectrum along the diagonal map δ : B → B ×B.
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precisely induces the map

H∗+n(M ;Zω)→ H−∗(M ;Z)

appearing in the statement of generalised Poincaré duality, where Zω is the
orientation module of M . In this case, the norm map is an equivalence; this
is quite literally the statement of the generalised Poincaré duality. Of course,
this is a very special situation, and for general B, for example for classifying
spaces of groups, we cannot expect the norm map to be an equivalence. The
above discussion tells us that we could think of the dualising spectrum DB as
a spectrum level analogue of an orientation module for the space B, and of
the Tate construction as a measure for the failure of a generalised version of
Poincaré duality to hold [Kle07].

Remark 1.3.2. The Tate construction was first introduced by Greenless in
the setting of genuine equivariant stable homotopy theory [Gre87; GM95]. This
relies on explicit point-set models of spectra. We have already seen one such
model; the one given by Lima that we recalled in Section 1.1.3.1. The issue with
this model is that, although the stable homotopy category SHC is symmetric
monoidal via the smash product [Ada74, Section III.4], we cannot endow the
category that Lima sets up with a reasonable symmetric monoidal structure.
This is less than stellar; if you want to do any type of algebra involving spectra,
you better have access to some sort of tensor product on them. In the 90’s,
there was a boom of modified symmetric monoidal models of spectra, including,
but not limited to: S-modules [EKMM97], symmetric spectra [HSS00], and
orthogonal spectra [MMSS01]. We focus on orthogonal spectra, as it is the most
well-used when passing to the equivariant setting. Roughly, an orthogonal
spectrum is a spectrum X where the nth space Xn is endowed with an action
of the orthogonal group O(n). The category of orthogonal spectra is indeed
closed symmetric monoidal and can be endowed with a model structure in such
a way that its homotopy category is equivalent to the stable homotopy category.

We pass to equivariant stable homotopy theory when we add a group ac-
tion to the picture. We will try to stay informal in this discussion and refer
the reader to [Sch18, Section 3.1] for a more thorough discussion. Roughly,
an orthogonal G-spectrum is an orthogonal spectrum with an action of a
compact Lie group G. This is a closed symmetric monoidal category via the un-
derlying closed symmetric monoidal structure on orthogonal spectra, equipped
with diagonal and conjugate G-action. The distinction between “genuine” and
“naïve” equivariant homotopy theory comes in when we define the weak equiva-
lences; the notion of a weak equivalence in genuine equivariant homotopy theory
is significantly stronger than simply asking for a G-equivariant map that is a
weak equivalence in the underlying model category of non-equivariant orthog-
onal spectra. This inevitably leads to some homotopy theoretical difficulties
when one studies fixed points. There is an obvious fixed point functor that
takes an orthogonal G-spectrum X to the orthogonal spectrum whose nth level
is given by the set-theoretic fixed points XG

n , but this does not necessarily pre-
serve (genuine) weak equivalences of G-spectra. Instead, one needs to derive this
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functor, and we so obtain a homotopically meaningful functor (−)G referred to
as the genuine fixed points.

In genuine stable homotopy theory, a point-set model for the homotopy fixed
points is given as

XhG = F (EG+, X)G ,

where EG denotes a free (non-equivariantly) contractible G-space and F (−,−)
refers to the function objects in the closed monoidal structure on orthogonal
G-spectra. Similarly, a point-set model for the Tate construction is

XtG =
(
ẼG ∧ F (EG+, X)

)G
where ẼG is the mapping cone of the collapse map EG+ → S0. In this setting,
the multiplicative structure on homotopy fixed points and the Tate construction
relies on the existence of G-equivariant maps

EG+ −→ EG+ ∧ EG+ and ẼG ∧ ẼG −→ ẼG .

Such maps exist due to obstruction theory and are unique up to homotopy.

1.3.3 The Tate spectral sequence
The main common thread through this thesis is the Tate spectral sequence. This
is a spectral sequence which is supposed to compute the homotopy groups of
the Tate construction on a G-spectrum15 for some topological group G. We will
sketchily refer to this spectral sequence, to be constructed in various different
ways, as

Ĥ−p(G, πq(X)) =⇒ πp+q(XtG) .

There are essentially three questions to consider here:

1. How do we algebraically make sense of the left hand side?

2. How do we make sure that the spectral sequence is multiplicative?

3. How do we make sure that the spectral sequence converges?

We note that none of these questions are particularly straight-forward. Re-
garding the first question: we do have a good algebraic understanding for Tate
cohomology when G is a finite group. However, what “Tate cohomology of a
compact Lie group G” should mean is less clear, for example. Multiplicativity
of the Tate spectral sequence is a technical question that involves homotopi-
cal control of the maps of our potential filtrations. Finally, the third question
is made extra tricky by the fact that the Tate spectral sequence is generally
a whole-plane spectral sequence, so we need to take Boardman’s whole-plane
obstruction into account.

15Or more generally, a parametrised spectrum.
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Tate spectral sequences for actions of finite groups are relatively well under-
stood and can be constructed in a number of different ways. Below, we outline
three approaches and point out some advantages and disadvantages with each
method, with indications where the methods used for finite groups are insuffi-
cient for more general topological groups.

1.3.3.1 The Greenlees–May construction

Arguably the first construction of the Tate spectral sequence is due to Greenlees–
May and works in analogy to the complete resolutions view of Tate cohomol-
ogy [Gre87; GM95]. Here, we work in the context of genuine equivariant stable
homotopy theory, and so take our model for the Tate construction as

XtG =
(
ẼG ∧ F (EG+, X)

)G
.

We construct a filtration of ẼG by using its G-CW structure, dualise this filtra-
tion by taking Spanier–Whitehead duals, and splice the two filtration together
to obtain a bi-infinite filtration of ẼG. In turn, this induces a bi-infinite filtra-
tion on the Tate construction which we refer to as the Greenlees filtration.
The first page of the spectral sequences can be expressed as

E1
∗,∗
∼= HomZ[G](P̂∗, π∗(X)) ,

where P̂∗ is a complete resolution of Z as a trivial Z[G]-module. We conclude
that the second page of this spectral sequence is given by the Tate cohomology
groups:

E2
∗,∗
∼= Ĥ−∗(G;π∗(X)) .

It is straight-forward to show that the Tate spectral sequence constructed in
this way is conditionally convergent. The problem with this filtration is that it
is not clear how to endow the resulting spectral sequence with a multiplicative
structure. Indeed, you tend to run into difficult technical problems regarding the
homotopies once you start mixing negative and positive indices in the Greenlees-
filtration. One way of avoiding this problem is to construct a filtration on the
Tate construction that does not involve dualising.

1.3.3.2 The Hesselholt–Madsen construction

The Hesselholt–Madsen construction of the Tate spectral sequence works in
analogy to the Tate complex view of Tate cohomology, and so circumvents the
need to dualise [HM03, Section 4]. Here, we work with the filtrations EG
and ẼG coming from the G-CW structure on the two spaces, simultaneously.
These filtrations induces a filtration on the Tate construction by smashing them
together and totalising the obtained bigraded filtration. The first page of the
Tate spectral sequence obtained in this way is given by

E1
∗,∗ =

(
P̃∗ ⊗Hom(P∗, π∗(X))

)G
.
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Since this chain complex is quasi-isomorphic to HomZ[G](P̂∗, π∗(X)) (see the
discussion in Section 1.3.1), we know that the second page of this spectral
sequence is also given by the Tate cohomology groups:

E2
∗,∗
∼= Ĥ−∗(G;π∗(X)) .

The Hesselholt–Madsen construction of the Tate spectral sequence can be en-
dowed with a multiplicative structure. To deal with homotopical issues Hessel-
holt and Madsen employ functorialG-CW replacements to convert theG-spectra
to G-CW spectra. One can also find functorial G-CW replacements when G is a
non-finite compact Lie group, but the monoidal properties of such are less clear,
which is an issue when moving from the setting of finite groups to compact Lie
groups. We saw before that the multiplicative structure on the Tate construc-
tion relied on the existence of G-equivariant maps EG+ → EG+ ∧ EG+ and
ẼG ∧ ẼG → ẼG. For finite groups these can be chosen to be cellular, so that
they preserve the chosen filtration. On the first page of the Hesselholt–Madsen
Tate spectral sequence, the pairings of filtrations correspond to the maps

P∗ −→ P∗ ⊗ P∗ and P̃∗ ⊗ P̃∗ −→ P̃∗

which precisely induce the cup product on Tate cohomology.

1.3.3.3 The Postnikov tower construction

Given a space or a spectrum there is always a way to kill off the homotopy groups
over or under a certain degree. The filtrations so obtained are referred to as the
Postnikov and Whitehead towers, respectively, and it is possible to construct
the Tate spectral sequence also using these constructions. We focus on the
Whitehead tower construction, since this has better multiplicative properties
than the Postnikov one, see for example [Dug03]. Roughly, the construction
of the Tate spectral sequence constructed in this way proceeds by taking the
G-equivariant Whitehead (or Postnikov) tower of a G-spectrum X and then
taking the G-Tate construction on each level. This construction is also covered
in [GM95]. The fundamental difficulty with this construction, when moving
from finite groups to compact Lie groups, is that is not straight-forward to
access the effect of the action of G on X on the level of the homotopy groups
of X.

Note that the construction illustrated here is a fundamentally different view
on the Tate spectral sequence; for both the Greenlees–May and the Hesselholt–
Madsen filtration we start with a cellular filtration related to the group G,
while in the Postnikov/Whitehead filtration construction we consider filtrations
of the spectrum X. This is reminiscent to various constructions of the Atiyah–
Hirzebruch spectral sequence.

1.3.4 Digression: Topological periodic homology
The author came to study the Tate construction via an interest in topological
Hochschild homology, which can be viewed as a lift of Hochschild homology to
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the setting of homotopical algebra. Topological Hochschild homology was first
introduced by Bökstedt in the unpublished manuscript [Bök85b] as a tool to
study algebraic K-theory. He was motivated by the ‘brave new rings’ paradigm
of Waldhausen. One of the main advantages of topological Hochschild homol-
ogy is that it is a lot more amenable to computations than algebraic K-theory,
yet still allows access to a significant portion of information on the former via
trace methods. Some of the first computations on topological Hochschild homol-
ogy are due to Bökstedt and coauthors; most notable are the articles [Bök85a]
and [BHM93]. In the first of these articles Bökstedt computed topological
Hochschild homology of the prime fields Fp, as well as of the integers Z. The
computation of THH(Z) allowed mathematicians to stretch the boundaries for
what was know about algebraic K-theory of Z, which is in turn intimately con-
nected to the Kummer–Vandiver conjecture in algebraic number theory.

As a cyclic object, topological Hochschild homology has the structure of
a T-spectrum, where T denotes the circle group. The Tate construction on
topological Hochschild homology with respect to the entire T-action is referred
to as topological periodic homology, and denoted

TP(R) = THH(R)tT .

While this construction had been studied before, it was put in the spotlight by
Hesselholt who showed that it has important connections to Hasse–Weil zeta
functions [Hes18]. Work pioneered by Hesselholt and coauthors, had previously
understood the importance of topological Hochschild homology, and its vari-
ous refinements, in arithmetic contexts (see for example [Hes96; GH99; HM03;
Hes06]). The research field is still a very active one, especially after the recent
simplified reformulation of cyclotomic spectra in the ∞-categorical framework
by Nikolaus–Scholze [NS18] motivated by research of Bhatt–Morrow–Scholze on
integral p-adic Hodge theory [BMS18; BMS19].
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Chapter 2

Summary of papers
In this chapter, we give summary of the papers found in this thesis. As the
relevant background and history can be found in the previous chapter, we focus
on the main results.

2.1 A multiplicative Tate spectral sequence for compact Lie
group actions

The aim of this paper, which is joint with John Rognes, is to construct a mul-
tiplicative Tate spectral sequence when we are dealing with actions of compact
Lie groups. Here, we work in the setting of genuine equivariant stable homotopy
theory and so use equivariant orthogonal spectra as our model for G-spectra, as
described in Remark 1.3.2. Given a commutative (non-equivariant) orthogonal
ring spectrum R we consider the group ring

R[G] = R ∧G+ .

If the homotopy groups R[G]∗ = π∗(R[G]) are flat over R∗ = π∗(R), then the
group structure on G makes sure that R[G]∗ is a Hopf algebra over R∗. If we
moreover assume that R[G]∗ is finitely generated projective over R∗, we show
that we have access to a multiplicative G-Tate spectral sequence

E2
p,∗ = Êxt

−p
R[G]∗(R∗, π∗(X)) =⇒ πp+∗(XtG)

where the E2-page is given by the complete Ext groups of R∗ over R[G]∗ with
coefficients in the R[G]∗-module π∗(X). This spectral sequence will be strongly
convergent under mild hypotheses, such as for instance in the case when the
RE∞-page vanishes and the spectrum X is bounded below. The paper can
be said to consist of two parts: an algebraic and a topological one. The al-
gebraic part consists of giving an algebraic formulation for the E2-page of the
spectral sequence described above, while the topological part consists of actual
constructions of the spectral sequences from sequences of orthogonal G-spectra.

Note that the topological framework allows for Hopf algebras over very com-
plicated rings, like S∗, so we do not want to restrict ourselves to an oversimplified
algebraic setting. Given a Hopf algebra Γ over a (possibly graded) commutative
ring k, we study the Tate complex

T∗(M) = P̃∗ ⊗Hom(P∗,M)

for a Γ-module M , where P∗ → k is a projective resolution of k as a trivial
Γ-module and P̃∗ is its mapping cone. In particular, if Γ is finitely generated
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projective over k, then we show that the homology of the Γ-invariants of the
Tate complex is isomorphic to what is referred to as complete Ext [CK97; Mis94]
of Γ with coefficients in M :

Êxt
n

Γ(k,M) ∼= H−n HomΓ(k, T∗(M))

The key ingredient is a result by Pareigis [Par71] which identifies the k-dual of
a finitely generated Hopf algebra with the induced Γ-module

Homk(Γ, k) ∼= IndΓ
k P (Homk(Γ, k)) ,

where P (Homk(Γ, k)) is the primitives for the Γ-coaction on Homk(Γ, k), which
is a finitely generated projective k-module of constant rank 1. In particular,
this result implies that induced modules over Γ are coinduced, and vice versa.

The main motivation behind working with Tate complexes, as opposed to
complete resolutions, has to do with multiplicative structures on the Tate spec-
tral sequence. In the algebraic setting, we show that there is an associative,
unital, and graded commutative pairing on complete Ext

^ : ÊxtΓ(k,M)⊗ ÊxtΓ(k,N) −→ ExtΓ(k,M ⊗N)

which we refer to simply as the cup product. This extends the ordinary cup
product on Ext, in a suitable sense.

The topological part of the paper can be said to contain two sub-parts: a
more general consideration of spectral sequences coming from filtrations of or-
thogonal G-spectra via Cartan–Eilenberg systems, and the construction of the
Tate spectral sequence, more specifically. In the more general part, we show
that a pairing of sequences of orthogonal G-spectra gives rise of a pairing of
the corresponding spectral sequences, via the use of Cartan–Eilenberg systems.
This can be regarded as folklore, but we felt that an explicit reference for this
fact was not available at the time of writing, so we decided to give a complete
proof. Here, we use hands-on methods to handle homotopy theoretical issues.
In particular, we use the classical mapping telescope construction, which has
convenient monoidal properties, to deal with sequential homotopy colimits of
spectra. As mentioned in Section 1.3.3.2, in the case of finite groups Hesselholt
and Madsen [HM03, Section 4.3] instead use a functorial G-CW replacement
deal with these sorts of issues in the Tate spectral sequence. There exists a func-
torial G-CW replacement also for compact Lie groups [Sey83], but its monoidal
properties are less clear.

To construct the G-Tate spectral sequence, we use the point-set model

XtG =
(
ẼG ∧ F (EG+, X)

)G
'
(

(R ∧ ẼG) ∧R FR(R ∧ EG+, X)
)G

.

The idea is to start by giving the free G-space EG the simplicial skeletal fil-
tration coming from the construction of EG using the simplicial bar construc-
tion [May72]. This induces filtrations on FR(R ∧ EG+, X) and R ∧ ẼG, which
can be combined into a filtration called the Hesselholt–Madsen filtration:

HMc(X) = hocolim
a+b≤c

Ẽa ∧ F (E/E−b−1, X) .
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As we have mentioned before, the existence of a multiplicative structure on the
Hesselholt–Madsen G-Tate spectral sequence relies on the existence of filtration-
preserving maps EG+ → EG+∧EG+ and ẼG∧ ẼG→ ẼG. The first is known
to exist, and we prove by obstruction theory that the second one exists under
the assumption that R[G]∗ is projective over R∗. The work we have done in the
more general setting of Cartan–Eilenberg systems from sequences of orthogonal
G-spectra then guarantees that the Tate spectral sequence is multiplicative.
However, convergence is much less clear.

To settle questions about convergence, we compare the Hesselholt–Madsen
filtration to another possible filtration of the Tate construction, that we dub
the Greenlees–May filtration and refer to as GM?(X). It is not hard to show
that the G-Tate spectral sequence associated to this filtration is conditionally
convergent. By showing that there is a map of filtrations

α : GM?(X) −→ HM?(X)

which induces an isomorphism of spectral sequences from the E2-page and on,
we can then deduce convergence results for the Hesselholt–Madsen G-Tate spec-
tral sequence under mild conditions, such as when the spectrum X is bounded
below and the derived limit term RE∞ vanishes.

2.2 Multiplicative spectral sequences via décalage

The aim of this article is to give an clear account of the subject of multiplicative
spectral sequences using the modern language of ∞-categories, and from this
access highly structured results regarding the passage from filtrations to spectral
sequences. I am the sole author of this paper, but it is worth noting that it
builds on joint work together with Achim Krause and Thomas Nikolaus. I hope
to eventually publish the results of the article in a joint paper that also includes
(yet unfinished) considerations of conditional convergence from the décalage
point of view.

As we explained in Section 1.2.1.3, décalage is a way to make sense of “turn-
ing the page in a spectral sequence” on the level of filtrations. Although it was
initially defined quite hands-on in the context of filtered chain complexes, one
can make sense of décalage in the language of the Beilinson t-structure. This
allows one to generalise the construction also to spectra. Indeed, the stable
∞-category Tow(Sp) = Fun(Zop,Sp), whose objects we refer to as filtrations,
can be equipped with a t-structure by declaring the Beilinson n-connective fil-
trations to be the objects in the subcategory

Tow(Sp)Bei
≥n = {X ∈ Tow(Sp) | Grq(X) ∈ Sp≥n−q for all n} ,

where
Grq(X) = X(q)/X(q + 1) = cofib(X(q + 1)→ X(q)) ,

and the cofibre is meant in the ∞-categorical sense, i.e. as a homotopy colimit.
The heart of this t-structure is the abelian category of chain complexes of abelian
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groups. This is shown in [BMS19, Section 5], and we take care to show that this
equivalence of categories is also compatible with all the multiplicative structures
involved. It is an observation by Antieau that décalage can be phrased using
the cover functors in the Beilinson t-structure, and that this extends the notion
of décalage to the setting of filtered spectra. In the paper, we define the décalée
of the filtration X as the filtration Déc(X) given by

· · · −→ colim
q

(τBei
≥n+1X)(q) −→ colim

q
(τBei
≥nX)(q) −→ colim

q
(τBei
≥n−1X)(q) −→ · · · ,

where the middle term is placed in filtration degree n. The above construction
gives us a functor

Déc : Tow(Sp) −→ Tow(Sp)

that we refer to as décalage. If X is a complete filtration of A, then Déc(X) is
a complete filtration of A, as well, and we can use iterated décalage to build a
spectral sequence associated to X. Explicitly, we show that the assignment

Ern,s(X) = πn(Gr(r−1)n+s(Décr−1(X)))

determines a spectral sequence (in homological Adams grading). Here, the dif-
ferential drn,s : Ern,s → Ern−1,s+r is induced by the connecting homomorphism
in the pushout square

Gr(r−1)n+s+1(Décr−1(X)) Décr−1(X)((r − 1)n+ s)
Décr−1(X)((r − 1)n+ s+ 2)

0 Gr(r−1)n+s(Décr−1(X)) .

This is essentially trivial once we prove that the nth associated graded of the
décalée of X can be expressed as the Eilenberg–Mac Lane spectrum of the nth
Beilinson homotopy groups of X:

Grn Déc(X) ' HπBei
n (X)[n] .

Indeed, the isomorphism between the r + 1th page of the associated spectral
sequence and the homology of the rth page is precisely induced by this equiva-
lence. Careful considerations shows that this equivalence is symmetric monoidal
in a suitable sense, and this allows us to prove that the functor

E?∗,∗ : Tow(Sp) −→ SSEQ

from filtrations to spectral sequences admits the structure of a map of ∞-
operads. Let us elaborate on this statement. The ∞-category Tow(Sp) can
be endowed with a symmetric monoidal structure via Day convolution. The
category of spectral sequences is not symmetric monoidal, however. But while
cannot technically speak of the tensor product of two spectral sequences, it is
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possible to speak of multilinear maps of such, and this makes spectral sequences
into a coloured operad. Hence Tow(Sp) and SSEQ both fit into the framework
of ∞-operads, and the above statement has meaning.

In an appendix, we describe how to prove the Tate spectral sequence is
multiplicative, using the machinery developed in the rest of the paper. In par-
ticular, we look closer at the Tate spectral sequence for topological Hochschild
homology and topological restriction homology at the prime p, and describe in
what sense topological periodic homology is a version of 2-periodic crystalline
cohomology.
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