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Abstract

The purpose of this article is to explore the use of modal logic and/or in-
tuitionistic logic to explicate potentiality and incomplete or indeterminate do-
mains in mathematics. Our primary applications are the traditional notion of
potential infinity, predicativity, a version of real analysis based on Brouwerian
choice sequences, and a potentialist account of the iterative hierarchy in set
theory.

The purpose of this article is to explore the use of modal logic and/or intu-
itionistic logic to explicate potentiality and incomplete or indeterminate domains in
mathematics. Our primary applications are the traditional notion of potential infin-
ity, predicativity, a version of real analysis based on Brouwerian choice sequences,
and a potentialist account of the iterative hierarchy in set theory. We present a uni-
fied framework in which these phenomena can be described and studied. We then
locate various views—historical as well as contemporary (including some developed
by ourselves)—in this framework.

Section 1 is a brief presentation of the history and philosophy behind potential-
ism, with a focus on mathematics. We argue that modality provides the best (or,
at any rate, a very good) framework to explicate potentialism. Section 2 develops
the proper modal logics for various kinds of potentiality. One key issue is the proper
background logic for this. Should it be classical or intuitionistic? We argue that
this distinction turns on a central philosophical thesis that the potentialist might
(or might not) adopt, concerning modal propositions. Section 3 provides sketches
of different applications.

Thanks to Sam Roberts and two referees for valuable comments on earlier versions of this article.
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1 Potential infinity

1.1 A modal analysis

Aristotle famously rejected the notion of the actual infinite—a complete, existing
entity with infinitely many members. He argued that the only sensible notion is
that of potential infinity. In Physics 3.6 (206a27-29), he wrote:

For generally the infinite has this mode of existence: one thing is always
being taken after another, and each thing that is taken is always finite,
but always different.

As Richard Sorabji [41] (322-3) once put it, for Aristotle, “infinity is an extended
finitude”(see also [24], [25]).

The attitude toward the infinite was echoed by the vast majority of mathemati-
cians and philosophers at least until late in the nineteenth century. In 1831, for
example, Gauss [10] wrote:

I protest against the use of infinite magnitude as something completed,
which is never permissible in mathematics. Infinity is merely a way of
speaking.

Aristotle did accept what is sometimes called potential infinity, against the ancient
atomists (see [30]). He argued that this makes sense of the mathematics of his
day.! Subsequent mathematicians followed this, and, indeed, made brilliant use of
potential infinity. But what is potential infinity?

The notion can be motivated by considering procedures that can be repeated
indefinitely.? A nice example is provided by Aristotle’s claim, against the atomists,
that matter is infinitely divisible. Consider a stick. However many times one has
divided the stick, it is always possible to divide it again (or so it is assumed).

! Aristotle wrote (Physics 207b27):

Our account does not rob the mathematicians of their science, by disproving the actual
existence of the infinite in the direction of increase, in the sense of the untraversable.
In point of fact they do not need the infinite and do not use it. They postulate only
that a finite straight line may be produced as far as they wish. It is possible to have
divided into the same ratio as the largest quantity another magnitude of any size you
like. Hence, for the purposes of proof, it will make no difference to them to have such
an infinite instead, while its existence will be in the sphere of real magnitudes.

See [21] for a detailed analysis of ancient Greek mathematics on these issues.

2There is some controversy over whether Aristotle took procedures like these to be central to the
view, or whether he was more concerned with the structure of matter and space. See, for example,
[19],[24], [25], and [5].
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It is natural to explicate this in a modal way.? This yields the following analysis
of the infinite divisibility of a stick s:

OVz(Pzs — O3y Pyx), (1)

where Pxy means that x is a proper part of y. If, by contrast, the parts of the stick
formed an actual infinity, the following would hold:

Va(Pzs — Jy Pyz). (2)

According to Aristotle, the stick does not have, and cannot have, infinitely many
parts:

OV (Pxs — Jy Pyz). (3)

By endorsing (1) and (3), one is asserting that the divisions of the stick are merely
potentially infinite. We thus see that a potential infinity is not the same as the pos-
sibility of an actual infinity. This contrasts with many uses of the word ‘potential’;
e.g. to say that someone is a potential champion is to say that possibly he or she is
a champion. On the Aristotelian view, there is no totality or collection that could
become infinite (whatever that might mean).

As noted above, our present concern is with mathematics. According to Aristotle,
the natural numbers are merely potentially infinite. We can represent this view as
the conjunction of the following theses:

OVm<$3n Succe(m, n) (4)
—~OVm3n Succ(m, n), (5)

where Succ(m,n) states that n comes right after m. The modal language thus
provides a nice way to distinguish the merely potential infinite from the actual
infinite.*

Like David Hilbert ([18]), we are not looking to leave Cantor’s paradise. Follow-
ing contemporary practice, we accept the existence of actually infinite collections.
We suggest, however, that there is room for potentiality in contemporary mathemat-
ics, and in the philosophy of contemporary mathematics. The modal analysis helps
explicate that. It provides a framework in which actual and potential infinity can
live side by side, sometimes in the very same context (see [28]). In other words, we

3We make use here of contemporary modal notions. We make no attempt to recapitulate what
Aristotle himself says about modality.

“For Aristotle, there cannot be an actual infinity. So, here, one might say
O0-CVman Succ(m, n).
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envisage cases where there are actual infinities, but other “collections” or “totalities”
are merely potential.”> We describe some examples below.

1.2 Three orientations towards the infinite

It is useful to distinguish different orientations towards a given infinite totality.
Actualism unreservedly accepts actual infinities, of a given kind, and thus finds no
use for modal notions—or at least no use that is specific to the analysis of the
infinity in question. Actualists maintain that the non-modal language of ordinary
mathematics is already fully explicit and thus deny that we need a translation into
some modal language. Furthermore, actualists accept classical logic when reasoning
about the infinite (or the infinite in question).

Potentialism is the orientation that stands opposed to actualism. According to
it, the objects with which mathematics is concerned—or some of the objects with
which mathematics is concerned—are generated successively, and at least some of
these generative processes cannot be completed. So there is an inherent potentiality
to (at least some) mathematical objects.

There is room for disagreement about which processes can be completed. As
noted from the above passages, the traditional Aristotelian form of potentialism
takes a very restrictive view, insisting that at any stage, there are never more than
finitely many objects, but that we always (i.e., necessarily) have the ability to go
on and generate more. Recall Sorabji’s suggestion that, for Aristotle, infinity is
“extended finitude”. Generalized forms of potentialism take a more relaxed attitude.
Potentialism about set theory provides an extreme example. According to this view,
any generative process that is indexed by a set-theoretic ordinal can be completed,
but it is impossible to complete the the entire process of forming sets. The so-
called “relative predicativism” lies in between the traditional Aristotelian orientation
and potentialized set theory. The view accepts the natural numbers as a complete
infinity, but insists that sets of natural numbers are defined in stages, and there is
no stage at which all sets of natural numbers exist together, so to speak. Other sorts
of relative predicativity are possible as well. Brouwerian choice sequences can also
be taken to fit the mold of potentialism. See §3 below for a bit more detail on these
cases.

Potentialists also differ from each other with respect to a qualitative matter.
As characterized above, potentialism is the view some or all of the objects with
which mathematics is concerned are successively generated and that some of these

5Strictly speaking, there are no sets, collections, or totalities that are potentially infinite. But
it is useful to use a count noun to talk about the kinds of “things” said to be potentially infinite.
We will use “collections” for this, sometimes in scare quotes.
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generative processes cannot be completed. What about the truths of mathematics?
Of course, on any form of potentialism, these are modal truths concerned with
certain generative processes. But how should these modal truths be understood?

Liberal potentialists regard the modal truths as unproblematic, adopting biva-
lence for the modal language. Consider Goldbach’s conjecture. As potentialists
interpret it, the conjecture says that necessarily any even natural number that is
generated can be written as a sum of two primes. Liberal potentialists maintain that
this modal statement has an unproblematic truth-value—it is either true or false.
Their approach to modal theorizing in mathematics is thus much like a realist ap-
proach to modal theorizing in general: there are objective truths about the relevant
modal aspects of reality, and this objectivity warrants the use of some classical form
of modal logic.

Strict potentialists differ from their liberal cousins by requiring, not only that
every object be generated at some stage of a process, but also that every truth be
“made true” at some stage. Consider, again, the Goldbach conjecture. If there
are counterexamples to the conjecture, then its negation will presumably be “made
true” at the stage where the first counterexample is generated. But suppose there
never will be any counterexamples. Since the conjecture is concerned with all the
natural numbers, it is hard to see how it could be “made true” without completing
the generation of natural numbers. This completion would, however, violate the
strict potentialists’ requirement that any truth be made true at some stage of the
process.

We suggest that strict potentialists should adopt a modal logic whose underlying
logic is intuitionistic (or intermediate between classical and intuitionistic logic); this
allows them to adopt a conception of universal generality which does not presuppose
that all the instances are available, thus overcoming the problem just identified.
In particular, strict potentialists should not accept every instance of the law of
excluded middle in the background modal language (see [28] for more details). This
dovetails with a view that Solomon Feferman and others adopt towards predicative
mathematics, and it has ramifications for the articulation of predicativism and the
extent of the mathematics that it captures.

1.3 The modality

Here, as elsewhere, it is often useful to invoke the contemporary heuristic of pos-
sible worlds when discussing the modality in question. Here we insist that this is
only heuristic, as a manner-of-speaking. Our official theory is formulated in the
modal language, with (one or both of) the modal operators as primitive. The modal
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language is rock bottom, not explained or defined in terms of anything else.’

The potentialist does, of course, reject the now common thesis that mathematical
objects exist of necessity (if they exist at all). To invoke the heuristic, the now
common thesis is that all mathematical objects exist in all worlds. The potentialist
gives that up. There is no world with all of the objects in question—all natural
numbers for the Aristotelian, all sets of numbers for the relative predicativist, all
sets for the set-theoretic potentialist, etc.

The potentialist does, however, maintain that once a mathematical object comes
into existence—by being constructed—it continues to exist, of necessity. To para-
phrase Aristotle (from another context), the potentialist accepts generation, but not
corruption.

What about the philosophical nature of the modality invoked in the analysis
of potentiality? For the Aristotelian, it can perhaps be the ordinary metaphysical
modality invoked in contemporary philosophy (or perhaps defined from that notion).
The idea is that mathematical objects are generated successively, in time. At any
stage—in any world—there are finitely many natural numbers, but each such world
has access to another where some more numbers have been generated. Given enough
time, any given natural number can be generated.”

Charles Parsons [32] once argued that this sort of modality does not make sense
for the richer potentialisms, where the “procedure” of generating mathematical ob-
jects extends into the transfinite. Intuitively, generation takes place in time, and the
richer potentialisms stretch the the notion of time too far. Of course, the potentialist
is not going to presuppose a totality of ordinals (or anything else) by which to make
sense of the generation.

So perhaps the non-Aristotelian potentialist should simply sever any link between
metaphysical modality and the modality invoked in explicating potential infinity.
Instead, one might regard the latter as an altogether distinct kind of modality,
say the logico-mathematical modality of [34] or [11] (though see also [32]), or the
interpretational modality of [9], [26], or [42].

Here we remain neutral on the exact interpretation of the modal operators. What

51f a potentialist did make use of the explication of modality in terms of possible worlds, she
would, presumably, think of the collection of worlds as itself potentially infinite. So it is not clear
that there is much of a gain in understanding, analysis, or the like. Here we make use of the
usual possible-worlds semantics to obtain results about what is, and is not, derivable in the formal
systems. We do not directly address the interesting question concerning the extent to which a
potentialist can accept our results. Thanks to two referees for pressing this matter.

"In terms of possible worlds, the relevant modality is the one that results from restricting the
accessibility associated with metaphysical modality by imposing the additional requirement that
domains don’t ever decrease along the accessibility relation. This restriction can be captured proof-
theoretically, using the resources of plural logic (see [28], p. 188, n. 15).
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matters for us are the structural features of any plausible interpretation. That is,
we are concerned to develop the right modal logic.

2 The logic of potentiality

2.1 The modal logic

For the time being, we will be neutral on the liberal vs. strict divide and thus also
on whether the non-modal part of the logic should be classical or intuitionistic. To
invoke the heuristic, the idea is that a “possible world” has access to other possible
worlds that contain objects that have been constructed or generated from those in
the first world. From the perspective of the earlier world, the “new” objects in the
second exist only potentially.

Geometry provides a good illustration, if we take seriously the constructive lan-
guage in, say, Euclid’s Elements. One world might contain a line segment, and a
“later” (or accessible) world might contain a bisect of that line segment. Another
later world might contain an extension of that line segment. Other sorts of con-
structions are arithmetic: the later world might contain more natural numbers than
those of the first, say the successor of the largest natural number in the first world.
Or, for a third kind of example, the later world may contain a set whose members
are all in the first world.

An Aristotelian (or Gauss, etc.) assumes that every possible world is finite, in
the sense that it contains only finitely many objects. This, of course, just is the
rejection of the actually infinite. As noted, we make no such assumption here. Our
goal is to contrast the actually infinite and the potentially infinite, so we need a
framework where both can occur (to speak loosely). An actual infinity—or, to be
precise, the possibility of an actual infinity—is realized at a possible world if it
contains infinitely many objects.

As noted, we also assume that objects are not destroyed in the process of con-
struction or generation. So, to continue the heuristic, it follows from the foregoing
that the domains of the possible worlds grow (or, better, are non-decreasing) along
the accessibility relation. So we assume:

w1 < wo — D(wl) - D(wg) (6)

where ‘w; < wy’ says that ws is accessible from wy, and for each world w, D(w)
is the domain of w. As is well-known, the conditional (6) entails that the converse
Barcan formula is valid. That is,

JxOp(x) — OTxp(z). (CBF)

1207



LINNEBO AND SHAPIRO

For present purposes, we can think of a possible world as determined completely
by the mathematical objects—regions, numbers, sets, etc.—it contains. In other
words, we assume the converse of (6). We will talk neutrally about the extra mathe-
matical objects existing at a world wo but not at an “earlier” world w; which accesses
wo, as having been “constructed” or “generated”. This motivates the following prin-
ciple:

Partial ordering: The accessibility relation < is a partial order. That
is, it is reflexive, transitive, and anti-symmetric.

So the underlying logic is at least S4. So far, then, we have S4 plus (CBF).®

At any stage in the process of construction, we generally have a choice of which
objects to generate. For some types of construction, but not all, it makes sense
to require that a license to generate objects is not revoked at accessible worlds.
Intuitively geometric construction is like this. For example, we might have, at some
stage, two intervals that don’t yet have bisections. We can choose to bisect one or
the other of them, or perhaps to bisect both simultaneously. Assume we are at a
world wg where we can choose to generate objects, in different ways, so as to arrive
at either wy or we. Say at wy we bisect an interval ¢ and at wo we bisect another
interval j. It seems plausible to require that the licence to bisect ¢ can be executed
at wo or any later world. In other words, nothing we do can prevent us from being
able to bisect the other interval.

This corresponds to a requirement that any two worlds w; and wsy accessible
from a common world have a common extension ws. This is a directedness property
known as convergence and formalized as follows:

VWQleva(wo <w ANwg < wy — 3103(101 <wg N wy < wg))
For constructions that have this property, then, we adopt the following principle:
Convergence: The accessibility relation < is convergent.

This principle ensures that, whenever we have a choice of mathematical objects to
generate, the order in which we choose to proceed is irrelevant. Whichever object(s)
we choose to generate first, the other(s) can always be generated later. Unless < is
convergent, our choice whether to extend the ontology of wg to that of wy or that
of wy might have an enduring effect.

8Recall that S4 and (non-free) first-order logic entails (CBF). We can also require the accessi-
bility relation to be well-founded, on the grounds that all mathematical construction has to start
somewhere. However, nothing of substance turns on this here.
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It is well known that the convergence of < ensures the soundness of the following
principle:
O0p — OCp. (G)

The modal propositional logic that results from adding this principle to a complete
axiomatization of S4 is known as S4.2. As noted, not all construction principles
sanction this principle. We give an example below.

2.2 The logic of potential infinity

What is the correct logic when reasoning about the potentially infinite? Informal
glosses aside, the language of contemporary mathematics is strictly non-modal. We
thus need a translation to serve as a bridge connecting the non-modal language in
which mathematics is ordinarily formulated with the modal language in which our
analysis of potentiality is developed. Suppose we adopt a translation * from a non-
modal language £ to a corresponding modal language £°. The question of the right
logic of potential infinity is the question of which entailment relations obtain in L.

To determine whether ¢1,..., ¢, entail ¥, in the non-modal system, we need
to (i) apply the translation and (ii) ask whether ¢7,..., ¢ entail ¢* in the modal
system. This means that the right logic of potential infinity depends on several
factors. First, the logic depends on the bridge that we choose to connect the non-
modal language of ordinary mathematics with the modal language in which our
analysis of potential infinity is given. Second, the logic obviously depends on our
modal analysis of potential infinity; in particular, on the modal logic that is used
in this analysis—including the underlying logic of the modal language, whether it is
classical or intuitionistic. Let us now turn to the first factor.

The heart of potentialism, as we see it, is the idea that the existential quan-
tifier of ordinary non-modal mathematics has an implicit modal aspect. Consider
the statement that a given number has a successor. For the Aristotelian, this is
a proposition that each number potentially has a successor—that it is possible to
generate a successor. This suggests that the right translation of 3 is 4.

Since we consider both classical and intuitionistic backgrounds, we treat the uni-
versal quantifier separately. But it is understood in a dual way. When a potentialist
says that a given property holds of all objects (of a certain sort), he means that
the property holds of all objects (of that sort) whenever they are generated. This
suggests that V be translated as OV.

Thus understood, the quantifiers of ordinary non-modal mathematics are un-
derstood as devices for generalizing over absolutely all objects, not only the ones
available at some stage, but also any that we may go on to generate. In our modal
language, these generalizations are effected by the strings [V and <¢d. Although
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these strings are strictly speaking composites of a modal operator and a quanti-
fier proper, they behave logically just like quantifiers ranging over all entities at all
(future) worlds. We will therefore refer to the strings as modalized quantifiers.

Our proposal is thus that each quantifier of the non-modal language is translated
as the corresponding modalized quantifier.Each connective is translated as itself. Let
us call this the potentialist translation, and let o represent the translation of .2 We
say that a formula is fully modalized just in case all of its quantifiers are modalized.
Clearly, the potentialist translation of any non-modal formula is fully modalized.

Say that a formula ¢ is stable if the necessitations of the universal closures of
the following two conditionals hold:

 — O - — U

Intuitively, a formula is stable just in case it never “changes its mind”, in the sense
that, if the formula is true (or false) of certain objects at some world, it remains
true (or false) of these objects at all “later” worlds as well.

We are now ready to state two key results, which answer the question about
the correct logic for those kinds of potentiality that enjoy the above convergence
property. Let F be the relation of classical deducibility in a non-modal first-order
language £. Let £° be the corresponding modal language, and let - be deducibility,
in this corresponding language, by F, S4.2, and axioms asserting the stability of all
atomic predicates of L.

Theorem 1 (Classical potentialist mirroring). For any formulas 1,
.oy on, and ¥ of L, we have:

1, en bYW T es FO YO

(See [26] for a proof.)

The theorem has a simple moral. Suppose we are interested in logical relations
between formulas in the range of the potentialist translation, in a classical (first-
order) modal theory that includes S4.2 and the stability axioms. Then we may delete
all the modal operators and proceed by the ordinary non-modal logic underlying F.1°
In particular, under the stated assumptions, the modalized quantifiers [V and <3

9This is an alternative to the more familiar Gédel translation, which translates v’ as ‘O’ (as
we do), ‘I’ as itself, and also adopts a non-homophonic translation of negation and the condi-
tional. This translation is poorly suited to explicating potentialism. For example, the translation of
Ym3InSucc(m,n) is OVmInOSucc(m, n), which, as discussed in Section 1.1, a potentialist would
reject. For more detail, see [28].

0T here are interesting issues concerning comprehension axioms in higher-order frameworks. See

(28], §7.
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behave logically just as ordinary quantifiers, except that they generalize across all
(accessible) possible worlds rather than a single world. This buttresses our choice
of the potentialist translation as the bridge connecting actualist and potentialist
theories. We will observe, as we go along, that the stability axioms on which the
mirroring theorem relies are acceptable.

It is important to note, however, that our interest won’t always be limited to
formulas in the range of the potentialist translation. One can often use the extra
expressive resources afforded by the modal language to engage in reasoning that
takes us outside of this range. The modal language allows us to look at the subject
matter under a finer resolution, which can be turned on or off, according to our
needs.!!

An important upshot of the theorem is that ordinary classical first-order logic
is validated via this bridge. However, this response depends on the robustness of
our grasp on the modality. We noted that our liberal potentialist accepts classical
logic when it comes to the modality. Our first mirroring theorem fits in nicely with
that perspective. As noted above, however, Linnebo and Shapiro [28] argue that a
stricter form of potentialism pushes in the direction of intuitionistic logic. What to
do then?

The answer is given by a second mirroring theorem, which we now explain. As
usual, we say that a formula ¢ is decidable in a given (intuitionistic) theory if the
universal closure of ¢ V =y is deducible in that theory. Let iy be the relation of
intuitionistic deducibility in a first-order language £, and let 3, be deducibility in
the modal language corresponding to £, by Fin, S4.2, the stability axioms for all
atomic predicates of £, and the decidability of all atomic formulas of £.'2

Theorem 2 (Intuitionistic potentialist mirroring). For any formulas ¢1,...,¢n,
and Y of L, we have:
Pl Pn I_mtw Zﬁ 90?7a907<z> l_gltwo

(See [28] for a proof.)
Together, the two mirroring theorems show how our analysis of quantification
over a potentially infinite domain can be separated from the question of whether the

1A salient example is the Aristotelian statement, above, rejecting the actual infinity of the
natural numbers:
—~OVmanSucc(m, n) (5)

This is not in the range of the potentialist translation, and so has no counterpart in the non-modal
framework. Moreover, the formula, ~0Vm<&3InSucc(m, n), which is in the range of the translation,
is the contradictory opposite of (4)

2The intuitionistic modal predicate system must be formulated with some care, since the two
modal operators are not inter-definable. See [40] for the details.
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appropriate logic is classical or intuitionistic—at least for those kinds of potentiality
that have the convergence property (and for which the underlying logic is first-order).
Hold fixed our modal analysis of potential infinity, the propositional modal logic S4.2,
and the potentialist bridge. Then the appropriate logic of potential infinity depends
entirely on the (first-order) logic used in the modal system. Whichever logic we plug
in on the modal end—classical or intuitionistic—we also get out on the non-modal
end. Since liberal potentialists see no reason to plug in anything other than classical
first-order logic, they can reasonably regard this as the correct logic for potential
infinity, for the cases in question.

3 Applications

We will now describe some applications of the framework presented above.

3.1 Aristotelian potentialism

Let us begin with Aristotelian potentialism, that is, the view that even the natural
numbers do not form a completed “collection”, only a potential one. The view has
two parts. First, there is the positive thesis that necessarily, given any natural
number, it is possible for there to exist a successor of it. As before, let ‘Succ(m,n)’
express that the immediate successor of m is n. The mentioned view can then be
formalized as:

OvVm<InSucc(m, n) (4)

Next, there is the negative thesis that it is impossible for all of the natural numbers
to exist simultaneously:
—~OVm3nSucc(m, n) (5)

Once again, we can answer the vexed question of the correct logic for ordinary non-
modal reasoning about the natural numbers when these are understood as merely
potential. Provided our view of the modality is sufficiently robust to warrant the
use of classical logic combined with a modal logic at least as strong as S4.2, the
mentioned kind of reasoning is governed by classical first-order logic. This is the
upshot of our first mirroring theorem. The second such theorem ensures that, if only
intuitionistic logic can be assumed in the modal language, then only intuitionistic
logic is warranted in the ordinary non-modal language.

It is also instructive to use our framework to locate some kindred views. Geof-
frey Hellman’s modal structuralism [11] provides an example. The subtle details of
the view don’t matter for present purposes. Hellman avoids asserting the existence
of infinitely many objects. Instead, he asserts the possible existence of a model of
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second-order Dedekind-Peano arithmetic. In effect, this is to assert the contradic-
tory opposite of (5), i.e. OVmInSucc(m,n). In present terms, this is to assert
the possibility of an actual infinity. This is a strictly stronger modal commitment
than that of the Aristotelian potentialist, though still a weaker one than the claim
famously disputed by Hilbert [18], namely that there actually exists a completed
infinity of objects.

3.2 Set-theoretic potentialism

Cantor famously rejected the Aristotelian ban on actual infinities, which had been
the dominant view in mathematics and philosophy up until his time. At times, he
appears to endorse the diametrically opposite view that for every potential infinity,
there is a corresponding actual infinity:

. every potential infinite, if it is to be applicable in a rigorous mathe-
matical way, presupposes an actual infinite ([3], 410-411).

At least at times of his career, however, Cantor retained traces of the old po-
tentialist view, only now applied to the “multiplicity” of all sets rather than the
“multiplicity” of natural numbers. In a much quoted letter to Dedekind, in 1899, he
wrote:

[I]t is necessary ... to distinguish two kinds of multiplicities (by this
I always mean definite multiplicities). For a multiplicity can be such
that the assumption that all of its elements ‘are together’ leads to a
contradiction, so that it is impossible to conceive of the multiplicity as a
unity, as ‘one finished thing’. Such multiplicities I call absolutely infinite
or inconsistent multiplicities ... If on the other hand the totality of the
elements of a multiplicity can be thought of without contradiction as
‘being together’, so that they can be gathered together into ‘one thing’,
I call it a consistent multiplicity or a ‘set’. ([8], 931-932)

In other words, although it is possible for all the natural numbers to “exist together”,
or to form a completed totality, this cannot be said about the “collection” of all sets
or the “collection” all ordinals. These are “inconsistent multiplicities” whose mem-
bers cannot all “coexist”. In present terms, the sets and the ordinals are potential
collections.

Several more recent thinkers have been inspired by these ideas of Cantor’s, in-
choate though they may be. There are two main traditions. One is nicely encapsu-
lated in the following passage by Charles Parsons:
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A multiplicity of objects that exist together can constitute a set, but it
is not necessary that they do. ... However, the converse does hold and
is expressed by the principle that the existence of a set implies that of
all its elements. (pp. 293-4)

This requires some explanation. First, there is the idea that a set exists potentially
relative to its elements. When the elements of some would-be set exist, we have
all that it takes to define or specify the set in question: it is the set of precisely
these things. Then, there is the related idea that the elements are ontologically
prior to their set. The elements can exist although the set does not—much like a
floor of a building can exist without the higher floors that it supports. But a higher
floor cannot exist without the lower floors that support it. Likewise, a set cannot
exist without its elements, which are prior to it and on which the set is therefore
ontologically dependent.
This view suggests that any objects potentially form a set. In the language of
plural logic:!3
OVzxOJySET (22, y) (7)

However, on pain of paradox, we cannot admit a corresponding completed totality;
that is, we have:
—~OVaxIySET (22, Y) (8)

Notice the parallel with the two theses, (4) and (5) of Aristotelian potentialism.

This “potentialist” view of set theory is interesting, philosophically as well as
technically. Potentialist set theories have been developed with (7) at their heart
([42], [26], inspired by [32]). Moreover, by applying the potentialist translation
described in Section 2.2, these theories validate either classical or intuitionistic logic,
depending on whether the modal logic employed is classical or intuitionistic.

A second tradition takes its departure from Ernst Zermelo’s famous 1930 arti-
cle [46]. Studying models of second-order ZF set theory—henceforth ZF2—which
includes a standard replacement axiom, Zermelo comes to the conclusion that the
distinction between sets and proper classes is only a relative one: what is a proper
class in one model is merely a set from the point of view of a larger model.

But [the set-theoretic paradoxes] are only apparent ‘contradictions’, and
depend solely on confusing set theory itself, which is not categorically
determined by its axioms, with individual models representing it. What
appears as an ‘ultrafinite non- or super-set’ in one model is, in the suc-
ceeding model, a perfectly good, valid set with both a cardinal number

13See Boolos [2] for the seminal contribution and [27] for a recent survey.
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and an ordinal type, and is itself a foundation stone for the construction
of a new domain. ([46], 1233)

Let us spell things out. Consider a model of ZF2 based on a domain M and
a membership relation R C M x M, in terms of which the membership predicate
€ is interpreted. The model is said to be standard if (i) the membership relation
R is well founded, (ii) the model has a maximality property akin to the axiom of
separation:

Consider any a in M. Let X be the collection of objects that bear R to
a. Then, for any subcollection Y C X, there must be some b in M such
that Y is the collection of objects that bear R to b,

and (iii) a similar clause for replacement holds. Letting M and M™ range over
standard models, Zermelo’s idea can be formalized as the following extendability
principle:14

OVMO3M Y (M™ properly extends M) (EP)

This approach to set theory has been developed further by Putnam [34] and
Hellman [11]. In particular, they show how this approach too enables us to interpret
ordinary first-order set theoretic discourse. To do so, we need a translation from
the language of ordinary set theory into the language that talks about possible
models and their extensions. A simple example suffices to convey the idea, which is
quite intuitive. Consider the claim that for every ordinal there is a greater ordinal:
Va3f(a < B). This claim is translated as:

Necessarily, for every standard model and every object a that plays the
role of an ordinal in this model, possibly there is an extended standard
model containing an object § that also plays the role of an ordinal, and
according to which « is smaller than f.

How much set theory does this validate? Sam Roberts [35] provides an answer
by formulating a modal structuralist set theory in which a slight strengthening of
Zermelo set theory is faithfully interpretable.

3.3 Predicativism

A third view in the foundations of mathematics where potentialist ideas naturally
come up is predicativism. This may be surprising, given that predicativism is often

14 Admittedly, Zermelo’s language isn’t consistently modal or potentialist. He does write, how-
ever, that “every categorically determined domain can also be interpreted as a set” (1232) and
describes this step as “a creative advance” (1233).
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seen as encapsulated in Russell’s Vicious Circle principle, which instructs us that
no entity can be defined in a way that quantifies over a totality to which this entity
belongs, on the grounds that any such definition would be unacceptably circular.
It is not immediately obvious what this non-circularity requirement has to do with
potentialist ideas.

However, potentialist ideas figure centrally in other characterizations of pred-
icativism. Some authors connect predicativism closely with the view that some
totalities are inherently potential. Consider Solomon Feferman:!®

. we can never speak sensibly (in the predicative conception) of the
“totality”of all sets as a “completed totality” but only as a potential
totality whose full content is never fully grasped but only realized in
stages. ([12], p. 2)

The potentialist framework described above is useful for explicating these ideas.

To see how, consider predicativism relative to the natural numbers. This is the
view that takes the natural numbers to be a completed infinity and then proceeds to
generate sets of natural numbers in a predicative manner. We thus start with a base
world containing all of the natural numbers. We now consider a system of possible
worlds which add more and more sets of natural numbers. The essential constraint
on this generative process is that the sets we add be given a stable definition, that is,
a definition that isn’t disrupted as more entities are generated and the domain thus
expands.'® To ensure this definitional stability, it suffices to restrict all quantifiers
to sets available at the relevant world.

How might this restriction be effected? The crux is to observe that a little bit of
“coding” enables us to use a single set of natural numbers to represent a countable
collection of such sets. If X is a set of numbers and n is a number, we define the
n-section of X, denoted X,, as {z|(n,z) € X}. If X is a set-variable and ¢ is
a formula without any occurrences of X, let ¢<X be the result of restricting the
set-quantifiers in ¢ to the sections of X. That is, we translate VY (Y) as

VYVz(Y = X, — »<X(Y)),

where z is a new first-order variable. And 3Y ¢ (Y") is translated in the obvious dual
manner.

We contend that all of the sets that exist at any given world can be “coded up”
as the sections of a single set X that exists at some other world. This means that
all sets that are predicatively definable, relative to a certain world, are definable by

5 0ther examples can be found Poincaré [33], p. 463.
161n fact, this emphasis on stability of definitions goes back to [33].
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a formula of the form ¢ <¥. The desired predicative set formation principle can thus
be formulated as:
OV OVz(z € Y = =% (1)) 9)

where the formula ¢ does not contain X free, but may contain parameters. It is
possible to formulate stronger principles which assert not only the possibility of
generating a single, predicatively defined set but of simultaneously generating all
sets that are predicatively definable relative to a certain possible world. Call this
step a predicative jump.

Eventually, we lay down that, for any relation R which by predicatively accept-
able means can be proved to be a well-order, it is possible to iterate the predicative
jump along R. The exact analysis of this idea is subtle and somewhat controversial,
so cannot be discussed here (see [29]).

3.4 Free choice sequenecs

L.E.J. Brouwer’s approach to intuitionistic real analysis made crucial use of free
choice sequences. Each such sequence can be thought of as generated by an ideal
mathematician. At any one time, the mathematician has specified some finite initial
segment of the sequence, but she always has the ability to go on and specify a
larger initial segment. However, it is not in the mathematician’s power to complete
the specification of the entire sequence. Each choice sequence is thus a potentially
infinite object: at each moment, it consists of some finite initial segment, and there
is always a possibility of going on.

As realized by Saul Kripke [23] and Joan Moschovakis [31], the idea of choice
sequences naturally admits of a modal explication. For instance, while there is no
upper bound to how long a sequence « can be, it cannot be infinitely long:

OVnol(a) > n
-o0Ovn(l(a) > n) (11)

Consider a free choice sequence o and suppose a is an initial segment. Then, for
any natural number n, it is possible that a should have n as its next entry:

OVaVno3z(x = a™n)

where ‘a”n’ is the result of appending n to the end of a.

This brings out a novel phenomenon not encountered in the forms of potentialism
discussed above: the generation in question is indeterministic. Suppose « has length
10. While it is possible that the 11th entry should be 0, there are many other,
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incompatible possibilities: if the 11th entry turns out to be 0, it will always remain
0, which means that the possibility of this entry being 1—which existed when the
sequence had only 10 entries—has been shut down forever.

This indeterminacy has some important consequences. Most immediately, it
means that the convergence property discussed in Section 2.1 fails. And this failure
has important knock-on effects. Without convergence, we lose the justification for
the axiom G, ¢O¢ — OO¢, and the mirroring theorem is no longer available. There
may, however, be other translations from the non-modal language of intuitionis-
tic analysis into our classical modal language. A natural contender is the Gdédel
translation—although as explained in footnote 9, this is poorly suited to explicate
potentiality. But the translation would at least have the effect of rendering the logic
of choice sequences intuitionistic.

Much work still remains to be done. First, we need to provide a more complete
theory of choice sequences in a classical modal language based on S4 or some related
system. Second, it would be good to provide a translation from the non-modal
language into the modal one that better captures potentialist ideas.

4 Conclusion

We have outlined a powerful and very general framework for analyzing a wide variety
of potentialist ideas. We have made good progress applying this framework to various
such ideas, although much work still remains.
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