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Abstract

Today we use the Standard Model of particle physics to describe Nature, and it is one of the
most successful theories in history, being able to both predict the discovery of new particles
and withstanding every scrutinizing test we have examined it with. Still we know that the
Standard Model is not the Final Theory, as it fails to describe several observed phenomena,
most noticeably maybe gravity and dark matter.

High energy collisions between some of the smallest units of Nature provide us with a
unique possibility to probe the fabric of reality. It enables us to measure the properties of
apparent pointlike particles, like their mass, their spin and their decay modes, and it allows us
to test the many possible models we have constructed to explain Nature. This thesis is about
testing a small handful of these models, by searching through the vast amount of 13 TeV
proton-proton collision data, corresponding to 139 fb~!, collected by the ATLAS detector at
the Large Hadron Collider between the years 2015 and 2018.

The hypothetical new, electrically neutral, spin 1 gauge boson Z’ appears in quite a few
of the many Beyond the Standard Model theories. In general, many models that propose
to extend the gauge group of Nature beyond the SM gauge group feature additional U(1)
symmetries with corresponding Z’ bosons. Some of these theories are inspired by Grand
Unified Theories, in which the electroweak and strong strong forces are united at some higher
energy, like the Fg-motivated theories which we will encounter throughout this thesis. In the
analysis presented in this thesis, we search for a Z’ boson that decays to a muon and an
antimuon, resulting in a resonance in the dimuon invariant mass distribution. This is a clean
search channel, without the extra complications that channels with jets or missing energy
provide.

The data analyzed in this thesis did not provide us with any sign of physics beyond the
Standard Model. We therefore set upper exclusion limits on the production cross-sections
and lower exclusion limits on the mass of the Z’ in three scenarios - Z;, Z} and Z{g); - at
3.8 TeV, 4.1 TeV and 4.4 TeV respectively. The results are found to be comparable to the
most recent published results from both the ATLAS Collaboration and the CMS Collabora-
tion.
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Introduction

In the year 2008, the very first proton-proton bunches at the Large Hadron Collider (LHC),
located on the border between Switzerland and France near the city of Geneva, collided
together. The goal was to reach center-of-mass energies many times higher than any other
experiment had ever achieved, reproducing the conditions that prevailed in the very early
Universe.

In the time leading up to this first collision, some physicists were worried that the LHC
could create ever-growing micro black holes that could devour the whole Earth, and even
tried to hinder the start up of LHC in the court of law. The newspapers were writing fran-
tically about it. The world was watching, holding its breath. A collective wave of fear
traversed the globe. In an office in Oslo, however, I was watching together with many of
my colleagues. The air was buzzing with excitement as the time of the first collisions drew
nearer. We knew that micro black holes could very well be created that day, but we also
knew that they would evaporate within a tiny fraction of a second. The world did not come
to an end, and the collective fear slowly died away. To this day, some people remember this
event, but most have forgotten.

Today we understand the most basic of the building blocks of Nature and the forces they
communicate with via the Standard Model of particle physics, often referred to only as the
SM. The first building blocks of the model started developing in the 1920s with Paul Dirac’s
first attempt at quantizing the electromagnetic field. The Standard Model emerged in an
incomplete form in the 1950s, reaching its current form late in the 1960s. The development
of particle detectors meant that several of the theorized particles in the SM could be detected.
The last missing piece, the Higgs boson, was discovered at the LHC in 2012, realizing one
of the main goals of the LHC.

Even though the SM is a hugely successful theory, tested to an extremely high precision,
it does not describe everything we have observed in Nature. There are, in fact, many unex-
plained phenomena. Most noticeably among these are, in my opinion, the fact that Gravity
cannot be explained within the SM framework, and that ordinary matter described by the SM
account for a mere 5% of the energy content of the Universe. This means, in all simplicity,
that the SM is not the Final Theory of Nature. There will most probably be a paradigm shift
at some point in the future. We will, or so I hope and believe, at some point discover a better
model of Nature. My guess is that it will somehow contain the SM as a low-energy special
case. How this new Theory will evolve, is hard to guess, but it is certainly true that it must
come with testable predictions. This might include e.g. looking deep into the observable
Universe and making a very precise measurement, or it might be colliding particles together
at center-of-mass energies that are high enough to allow for the creation of previously unob-
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served particles. This thesis concerns the latter.

There are two general-purpose particle detectors at the LHC, the ATLAS detector and the
CMS detector. They are designed independently, which means that they can make individual
measurements which can be statistically combined. In this thesis, I use data collected with
the ATLAS detector in the four years from 2015 to 2018 at a center-of-mass energy of 13 TeV
to search for hypothetical electrically neutral gauge bosons, referred to in general as Z’.
These hypothesized gauge bosons appear in a variety of Beyond the Standard Model (BSM)
theories, usually in the context of extending the Standard Model symmetry group.

The work presented in this thesis has partly been in close cooperation with the dilepton
resonant search working group within the ATLAS Collaboration, and partly on my own con-
tinuing the analysis as performed within the dilepton working group on a larger dataset than
what was used for the published result. The structure of the thesis is as follows. In Chap-
ter 1 the Standard Model is presented, with a short historical account, a brief review of the
particle content, followed by a brief mathematical description of the main concepts. Chap-
ter 2 concerns the shortcomings of the SM and also looks into some possible BSM theories
containing Z’. A description of the LHC and the ATLAS detector follows in Chapter 3, also
covering important physics concepts needed to understand the physics at hadron colliders.
In Chapter 4 we review the tools we need to perform the dimuon high-mass resonant search,
which follows directly after in Chapter 5. This chapter contains the main analysis, with a
detailed description of the treatment of simulated data (Monte Carlo data, or MC data), the
event selection, data to MC comparisons, systematic uncertainties and the statistical analysis
with observed significances and excluded Z’ hypotheses. In addition, the results are com-
pared to the published ATLAS results and to the published CMS results. Chapter 6 briefly
discussed the results of four previous ATLAS publications, all of which I have worked on,
with additional details about my contribution. In Chapter 7 we look at a separate study aimed
at confirming the negligibility of the fake background in the dimuon channel. Chapter 8 con-
cerns outreach, in particular The International hands-on particle physics Masterclasses. The
focus of this chapter is on the OPIoT, a result display and result combination program which
I have written. There are two appendices, the first one, Appendix A, concerns my qualifi-
cation work, which I performed within the Monte Carlo Production Group. The last one,
Appendix B, contains tables with additional information on the MC samples in use.

A personal historical account

I started on my Ph.D. work in the fall of the year 2011, and am finishing the thesis now in July
2020, almost 9 years after I started. This is rather uncommon here at the University of Oslo,
as the stipulated length is three years’ full-time work, and one year dedicated to performing
duty work at the University, e.g. teaching. Therefore I think it is worth commenting on both
the reasons for and the consequences of this.

When 1 first started my work in the fall 2011, I was pregnant with my first child, and I
was prescribed a 50% sick leave shortly after I started working that lasted until my maternity
leave. As a consequence, I could not finish the work I was performing at the time, a data-
driven estimate of the dimuon fake background using the co-called Matrix Method. I did
however program the tool that has been in use in the yearly particle physics Masterclasses
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ever since (described in Chapter 8).

I was then on maternity leave until the fall 2012, when I returned partly to work (40%),
partly staying at home with my daughter (60%) until she started day care in the fall 2013. I
never returned to full-time work after that, always keeping it a maximum 80% to be able to
pick up my children in day care before closing time.

In the fall 2015 I was pregnant with my second child, and again partly on sick leave. At
that point in time I had finished my duty work (teaching) at the University and had performed
the qualification work that ensured I became an ATLAS author, and was working on one of
the main results of my thesis work, the minimal Z’ models, as described in Section 6.4.2.
Again I could not complete my work before starting maternity leave. Luckily someone else
in the dilepton working group had also started working on the minimal models, and they
were able to finish the work (mainly adding the systematic uncertainties to the framework)
in time for the publication [1].

I returned to work in the fall 2017. The dilepton working group had at that point decided
to completely change their analysis strategy, from the traditional MC based analysis to a data-
driven analysis. I decided, together with my supervisor, that I would keep on the traditional
path, which also would serve as a cross-check for the new analysis strategy. As I was the only
person working on this analysis, I really started appreciate the collaboration I once had with
the dilepton group, and also how much easier it is to discover bugs and keep up-to-date with
all the ATLAS physics recommendations and tools and programming tweaks when working
in a group.

An obvious consequence of this long history is that my work has stretched out in time,
covering five different ATLAS publications. My work has been abruptly aborted at several
points in time, not enabling me to finish my contributions to the publications. In addition, I
have also had many short and some long absences from work battling periodic chronic ill-
nesses. However, the readers of this thesis are not asked to pity me as I am merely accounting
for historical facts. I submit this thesis with a feeling of great pride and accomplishment, and
am filled with a sense of having contributed to the search for the Final Theory of Nature.






Chapter 1

Knowledge about the Universe — The
Standard Model of particle physics

Our world consists of objects, like the people you know, the trees that reach for the sky
and the ocean that covers most of the Earth’s surface. Objects consist of molecules. The
molecules consist of atoms. Atoms consist of electrons and protons and neutrons. Protons
and neutrons consist of quarks. This is the bottom line, as far as we know. Quarks and elec-
trons are pointlike particles without substructure that cannot be divided further.! In addition
to the particles that make up most of the world we see, there are other, heavier versions of
these in the Universe, as well as some very light, ghostly particles, the neutrinos. All the
particles communicate with each other via one or more of the four fundamental forces — the
strong and the weak force, the electromagnetic force and the gravitational force. Still there
is something missing from our understanding, as we will look briefly into in Chapter 2, and
these missing pieces fuel our search for new particles, new forces and new theories, hoping
to find the Final Theory that describes everything in one beautiful, consistent framework.

1.1 A short introduction to the Standard Model of particle
physics

The standard theory of particle physics, or the Standard Model (SM) for short, is a math-
ematical theory describing all the known fundamental particles in Nature. The theoretical
framework is known as Quantum Field Theory (QFT), combining classical field theory with
special relativity and quantum mechanics. In QFT we think of the Universe as being perme-
ated by various fields, and the ripples in these field as the observed elementary particles.

1.1.1 A very brief history of the Standard Model

The first successful Quantum Field Theory was Quantum ElectroDynamics (QED). It was
developed between the 1920s and the 1940s. It was Paul Dirac who first formulated a quan-
tum theory in the 1920s, describing the interaction between radiation and matter [2].

1Of course, there is no guarantee that these particles are the bottom line. Quark and/or electron substituents
might be discovered in the future.



In 1965 Richard Feynman [3] [4], Sin-Itiro Tomonaga [5] and Julian Schwinger [6] [7]
were awarded the Nobel Prize in physics for their work in this area. QED is the relativistic
QFT of electrodynamics, describing how light (photons) and matter interact.

In the 1950s so many new particles were discovered that the ensemble of them were
referred to as the “particle zoo”. One wondered if they could all be elementary particles. In
1963 George Zweig and Murray Gell-Mann independently proposed the existence of a new
set of elementary particles called “aces” or “quarks” respectively. It was the name “quark”
that caught on and it has been in use ever since. A new quantum number — color — was
proposed by Oscar W. Greenberg in 1964 after the discovery of €27, a particle consisting of
three strange quarks all with parallel spins. At least three colors had to exist because the three
identical quarks of the newly discovered {2~ cannot be in the same quantum state according
to the Pauli exclusion principle stating that two identical fermions cannot occupy the same
quantum state.

The asymptotic freedom of QCD, i.e. the apparent freedom of the quarks and gluons
at very short distances, was discovered in 1973 by David Gross, Frank Wilczek and David
Politzer. They shared the 2004 Nobel Prize in Physics "for the discovery of asymptotic
freedom in the theory of the strong interaction" [8].

In 1959, Sheldon Glashow [9], Abdus Salam and John Clive Ward [10] discovered how
to combine the electromagnetic and weak interactions, called electroweak interactions, in
one framework. Then in 1967 Steven Weinberg [11] and Abdus Salam [12] incorporated
the Brout-Englert-Higgs (BEH) mechanism into this theory, giving mass to the mediators of
the weak force (the W and Z bosons) while keeping the photon massless. The 1979 Nobel
Prize in physics [13] was awarded jointly to Sheldon Lee Glashow, Abdus Salam and Steven
Weinberg "for their contributions to the theory of the unified weak and electromagnetic inter-
action between elementary particles, including, inter alia, the prediction of the weak neutral
current." In 1972 Gerardus "t Hooft and Martinus J. G. Veltman showed that the electroweak
theory was indeed renormalizeable (finite) and consistent [14]. The 1999 Nobel Prize in
Physics was awarded to ’t Hooft and Veltman for "for elucidating the quantum structure of
electroweak interactions in physics" [15].

1.1.2 The particles of the Standard Model
1.1.2.1 Fermions

There are twenty four matter particles — six quarks and six leptons, each with its correspond-
ing antiparticle. The antiparticles have the same properties as their respective particles, ex-
cept with additive quantum numbers (e.g. electric charge and color) reversed. The matter
particles are fermions, with spin Y2, obeying Fermi-Dirac statistics, which means they obey
the Pauli exclusion principle that forbids two identical particles to be in the same state. Pairs
of quarks and leptons are grouped in three generations with increasing mass. Only the first
generation of leptons are stable. The origin of the three generations has been and still is a
mystery. Figure 1.1 offers a schematic illustration of the particles of the Standard Model,
with masses, electric charge, spin and lifetimes included wherever applicable. The five light-
est quarks have no mean life, as they hadronize rather than decay.
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Of the six leptons, three (electron e, muon p, tau 7) have electric charge and thus feel
the electromagnetic force and three (electron neutrino ., muon neutrino v, and tau neutrino
v;) do not. All six leptons interact weakly. The three neutrinos were long suspected to be
massless, but today they are believed to have a very small mass due to the fact that they
oscillate between the three flavors. In the SM the neutrinos are massless [16].

The six quarks — up, down, charm, strange, top, bottom — carry color charge (red, green
or blue) and thus interact via the strong force. They also carry fractional electric charge and
weak isospin, which means they interact electromagnetically and weakly. The quarks are for-
ever’> doomed to be confined in colorless combinations creating what is known as hadrons.
Possible colorless combinations are one of each color or anticolor, or color/anticolor combi-
nations.

1.1.2.2 Gauge bosons

In the Standard Model we find 12 spin 1 gauge bosons that mediate the strong, weak and
electromagnetic forces, as drawn in Figure 1.1. Because they are bosons they do not obey
the Pauli exclusion principle like fermions do, and therefore there is no limit on the number
of bosons that can occupy the same state.

The mediator of the electromagnetic force is called the photon. The photon is massless
and the range of the electromagnetic force is infinite. It is well described by QED.

The three gauge bosons of the weak interactions are called W= and Z°, or simply W
and Z bosons. They are all massive, with masses of approximately 80 and 91 GeV re-
spectively. While the relevant charge in QED is the electric charge, the relevant charge in
weak interactions is the third component of the weak isospin, /3. Only left-handed particles
and right-handed antiparticles carry non-zero weak isospin. W bosons couple only to left-
handed particles and right-handed antiparticles, while the Z boson couples predominantly to
left-handed particles and right-handed antiparticles.

There are eight massless mediators of the strong force, called gluons. They carry color
charge and therefore take part in strong interactions themselves. As a result, the effective
range of the strong interaction is not infinite, it has an effective limit of the order of 1 fm.
No quark or gluon has ever been observed as a free particle. They exist only in colorless
hadrons because the strong coupling constant grows with increasing distance between col-
ored objects, until there is enough energy stored to create new objects which then forms new
colorless hadrons. This is known as color confinement or just confinement, and is illustrated
in Figure 1.2. Curiously, at distances less than about 0.2 fm, when looking inside hadrons or
at very high energies, the gluons and quarks behave as free particles. This is what is known
as asymptotic freedom.

1.1.2.3 Higgs boson

The Brout-Englert-Higgs (BEH) field pervades the Universe, ensuring that quarks, leptons
and W and Z bosons are massive while keeping the photon massless. The more a particle
interacts with this field, the heavier it is.

2This is not quite true. It is true at non-extreme densities and temperatures. Under extreme conditions
asymptotically free quarks and gluons create a quark-gluon plasma (QGP), or quark-gluon soup.



ankired quack

® v?luj&

Figure 1.2: Drawing that illustrates color confinement - from the top: the red and the antired
quark try to get away from each other, then as the energy in the field between them increases
a new quark-antiquark pair is created and two new colorless hadrons are formed.

The Higgs boson is the observable manifestation of the BEH field. It is itself quite
massive, weighing in at 125.18 4+ 0.16 GeV [16]. The Higgs boson is the only scalar (spin
0) particle in the Standard Model. It carries no electric or color charge.

1.2 A short mathematical description of the Standard Model

We now briefly and superficially describe the mathematics behind the SM, starting with the
simplest theory, namely QED, which describes the interaction of photons with matter.> The
reader is assumed familiar with the background for Quantum Field Theory, and we jump
straight into the mathematics of the SM. Note that this section does not aim to be a fully
detailed textbook description, merely a short summary of the most important aspects of the
theory.

1.2.1 Quantum electrodynamics
1.2.1.1 The QED Lagrangian density

The free-fermion Lagrangian density (often referred to as only “the Lagrangian™ for brevity)
Ly is given by

Lo(z) = Lo =P(x) (V"0 — m) P(x), (1.1)

where m is the rest mass of the fermion.

3Unless stated otherwise, this section is based on reference [17].
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The Lagrangian density is invariant under the global phase transformations

U(x) =/ (z) = P(z)e ™ (1.2)

() =9 (z) = P(z)e’,
where « is a real number. This can be shown to ensure that the electromagnetic current

s'(z) = —qip(x)y*1)(x) (1.3)

satisfies 0,5"(z) = 0 and thus is conserved, so that the charge

Q=—q / dPxipf ()1 () (1.4)

is conserved. Invariance of the Lagrangian density under some transformation always im-
plies a conserved quantity, summarized in what is known as Noether’s theorem.

The electromagnetic interaction is introduced by means of minimal substitution,
0, — D, = [0, +iqA,(x)], (1.5)

where ¢ is the electromagnetic charge of the fermion. This transforms the Lagrangian density
to

£ = §(@)(iv" D — m)(x)
— Lo — qd(2)y" () A, (2)
— Lo — s (2) A, ()
=Lo+ L4 (1.6)

The theory has to be invariant under a local gauge transformation of the potentials
A,(z) — A;(:L') =A,(z)+0,f(z), (1.7)

with f(z) as an arbitrary real, differentiable function. The Lagrangian density is invariant
under this transformation if and only if the Dirac fields themselves ¢/(z) and ¢(x) undergo
the local transformations

() = () = Y(z)e @ (1.8)
U(x) =) (2) = P(x)e @)

Any theory that is invariant under such local gauge transformations is said to be a gauge
theory. This set of arguments also works the other way around — we can derive the QED
Lagrangian density in Equation (1.6) from the free-fermion Lagrangian £, density in Equa-
tion (1.1) by demanding that it is invariant under the local gauge transformations (1.8). We
will encounter this in the next section about electroweak interactions.

Ly in Equation (1.6) is the Lagrangian density of the free Dirac field, while £; is in-
terpreted as the interaction Lagrangian density. £, couples the conserved electromagnetic
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current s, () in Equation (1.3) to the electromagnetic potential A, (x) of the electromag-
netic field, and thus describes the interaction between an electrically charged particle and the
electromagnetic field.

Lastly we add to the Lagrangian a term that describes the free electromagnetic field and
obtain the complete QED Lagrangian,

L =(z) (iv"0, — m) Y(z) — %LFW(x)F“”(:c) — qq/?(:c)fy“w(a:)A#(x) (1.9)
= Lo+ L
where
FH(z) = 0" A*(xz) — 0" A (x). (1.10)

is the electromagnetic field tensor, and enters in the redefined L£y. £ is defined as previ-
ously in Equation (1.6).

1.2.1.2 The S-matrix

We are interested in QED in the context of a collider experiment. Using the theory, we
can predict the probabilities a final state particle configuration when knowing the initial
state particle configuration, e.g the beam particles’ 4-momenta and species, and calculate the
differential cross-section of a particle scattering event. The system is in an initial state |i) at
an initial time ¢; = —oo long before the scattering, where the particles are too far apart to
interact. The S-matrix is defined as the time evolution operator that relates the initial state at
time ¢, = —oo to the final state | f) at time ¢y = +o0:

Sli(ti = —o0)) = [f(ty = o0)).

The S-matrix is the solution to the equations of motions for the fields given the initial and
final states. After the collision, the probability density to measure certain particles with
certain momenta, spins, etc. is

[{AISENIE = 1{fISIi)|* = Sy

We skip the exact form of the S-matrix here, but the interested reader is referred to page
101 of reference [17]. The S-matrix can be calculated to an arbitrary order of perturbation
theory.

From the S-matrix expansion we can calculate experimentally observable properties, like
the cross-sections, decay widths and lifetimes. This calculation is quite complicated. Luck-
ily, Richard Feynman discovered a set of rules that lead to the result in an easier way.

1.2.1.3 Feynman rules

In Figure 1.3 we see a Feynman diagram for a basic QED scattering process, including the
basic QED vertex (marked in red) coupling a fermion to a photon. All particle interactions
in QED can be constructed by combining these basic vertices. Feynman discovered that the
results of the complicated calculations involving the S-matrix expansion could be anticipated

11
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by drawing these diagrams and writing down factors corresponding to the different parts of
the diagram. The allowed vertices in a given theory are found by inspecting the interac-
tion Lagrangian density. The exact Feynman rules for QED can be found in Appendix B of
reference [17]. All the information about the dynamics of the process, related to the physi-
cal theory, is contained in the so-called Feynman amplitude M within the S-matrix, whose
absolute square is proportional to the cross-section of the process.

1.2.2 Electroweak interactions

To formulate a theory of weak interactions, we require gauge invariance of the Lagrangian
density. Within the description in this section, fermion and boson masses are all zero. This is
not what we observe in Nature, and in Section 1.2.4 these particles will acquire mass through
the BEH mechanism.

1.2.2.1 Lepton sector

Experiments have shown that the weak charged current mediated by W= acts on left-handed
particles only. This “handedness” is directly related to the chirality of a particle. For massless
particles, the chirality of the particle is the same as the helicity of the particle, where helicity
is the projection of the spin onto the direction of motion.* Because of this fundamental
difference between right- and left-handed fields, we group the left-handed fields in doublets,

Uy () = ( %Eg) (1.11)

“Meaning the helicity is left-handed if the direction of the spin is in the opposite direction of the motion of
the particle.
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and we leave the right-handed fields in singlets ¢;*(x) and 1}} (). The left- and right-handed
lepton fields are obtained by applying the projection operators P, and Pg,

YH(z) =Pry(z), PL=

iﬂR(x) =Prt(z), Pr=

(1 =), (1.12)

with the “fifth v matrix” defined as v5 = #vyy17273. Using the definitions above and ne-
glecting the masses at this point, it can be shown that the free-fermion Lagrangian density in
Equation 1.1 can be written as

Lo=1 [\I/}J(m)'yﬂau\lj%(x) + O (@) O, (@) + &5(3:)7“ uwf;(xﬂ - (1.13)

Summation over all different kind of leptons, [ = e, u, 7, is implied in this equation and in
the following.

We follow the procedure as described in the last section and find a set of global phase
transformations leaving the free-lepton Lagrangian density invariant, finally leading to con-
served currents and quantities.

The Pauli matrices

01 0 —1 1 0
n = (1 0) ) To = (Z O) ) T3 = (0 _1) ) (114)

satisfy the commutation relations [7;, ;] = 2ie; 7, With €;;;, being the antisymmetric tensor.
The global phase transformations

V() = UF(z) = ex™im Pl () (1.15)
Uj (x) = W' (x) = U (w)e 207

leave the term W} (2)#0, ¥F (z) in Equation (1.13) invariant. The right-handed lepton fields
are defined as invariant under any SU(2) transformation. This ensures that the whole free-
lepton Lagrangian density £ is invariant and the corresponding conserved quantities are
called the weak isospin currents,
1-

J(z) = 5\1}}@)%@\1/}(1:), i=1,2,3. (1.16)
Conserved currents imply conserved quantities according to Noether’s theorem, and the three
conserved quantities are called weak isospin charges I}V,

1
vV = /d3fo(g:) = é/dgx\I/lLT(x)Ti\IllL(x), i=1,2,3. (1.17)

Using Equation (1.12) and the Pauli matrices (Equation (1.14)) we can rewrite the two first
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components of the weak isospin currents in Equation (1.16) as

‘]a<x) = &l(x)’ya(l - ’75)#}1/1 ('T)a (118)
T =, (1 = 7)t(x). (1.19)

These are charged currents, coupling the electrically neutral neutrinos to the charged leptons.
The third component of the weak isospin current,
1

Fw) =

SO (entel (@) — SPFE@ Yk, (1.20

is an electrically neutral current, it couples either electrically charged leptons or neutral neu-
trinos. The last term of J4' is equal to the electromagnetic current in Equation (1.3) except
for a constant factor, hinting at an interconnection between electromagnetic and weak inter-
actions. Based on this we define a new current, the weak hypercharge current J,

T(e) = (@) = i (x) = — W)y Uh) — SRt @), a2

We call the conserved quantity corresponding to this conserved current the weak hypercharge
Y = / d*xJY (). (1.22)

From Equation (1.21) we see that the electric charge @, the weak isocharge I3}V and the weak
hypercharge Y are linked via the equation

Y = 1Q—J;V. (1.23)
e

We can now find the weak isospin charge 13" and the weak hypercharge Y of the various
leptons. From Equation (1.11) and the Pauli matrices defined in Equation (1.14) we find that

o)D) o

meaning that the left-handed v; neutrino has weak isospin charge I}V = —|—% and the left-
handed [~ lepton has weak isospin charge I}V = —%. The right-handed lepton fields are
isoscalars which means the right-handed neutrino v; and lepton [~ have weak isospin charge
0. The right-handed antiparticles have weak isospin with the same value, but opposite sign,
while the left-handed antiparticles have weak isospin charge 0. The values of the weak

hypercharge follow from Equation (1.23).

The conservation of weak hypercharge also follows directly from the invariance of the
free-lepton Lagrangian density (1.13) under the global U(1) phase transformations

V(x) = ey (a), (1.25)
U (x) = e (),

()
V()

—
—
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where [ is a real number and Y is the weak hypercharge.
We now require L, to be invariant under local SU(2), and U(1)y transformations. The
local SU(2)y, transformations are

Ul (z) = Ul(2) = ez @) gk () (1.26)
Uy (z) — B (2) = W) (x)e 294

Ut (@) = (@) = Ui (x), (@) — 9y (x) = Py (o)

Ut (a) = O (x) = 4 (@), dy(e) — ) (@) =y ()

where w;(x), j = 1,2, 3 are three arbitrary real differentiable functions of x and g is a real
constant which will be revealed as a coupling constant later. The free-lepton Lagrangian den-
sity in Equation (1.13) is not invariant under these transformations, and we must exchange
the ordinary derivatives 9" W} () by covariant derivatives D*WU} (),

Uy () — DMy (x) = [0" +igr; W} (x) /2] Wy (). (1.27)

Note that we introduce three real gauge fields IW}(), in analogy to the one gauge field A*(x)
introduced in QED, one for each SU(2);, generator. This leaves us with a new expression for
the Lagrangian density

Lo = i [UH(a)y* D, (x) + O ()"0, (@) + 0 ()70, (2)]

We also need the covariant derivatives D*W[(z) to transform in the same way as the fields
Ul(z), ie.
DPUE(z) — 97w (@2 Dyl (g:) (1.28)

This is a complicated matter, but it can be shown that infinitesimal transformations

Wi (z) = W(z) = WY'(z) + W} () (1.29)
= W (z) — Mwi(x) — geiji(2)W)(z), smallw;(z)

are sufficient to consider. We now require local U(1)y invariance. The local phase transfor-
mations are

P(x) = P (z) = eV () (1.30)
Bla) = ¥ (x) = d(a)e VT,

Y is the weak hypercharge defined in Equation (1.22), ¢ is a real number (a coupling con-
stant) to be determined later, and f(z) is an arbitrary real differentiable function. As before
we replace the ordinary derivatives by covariant derivatives,

oMp(x) — D*p(z) = [0" + ig'Y B*(x)] ¢(x), (1.31)
where B*(x) is a real gauge field that transforms like
B*(x) — B"(x) = B*(x) — 0" f(x) (1.32)
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and 1 is any one of the four lepton fields v}, ¥}, ¥;* or ¢%. This ensures local U(1)y

invariance.

We now use the local SU(2)y, and U(1)y transformations at the same time and obtain
the leptonic Lagrangian density’

Lo =i [ @)y Dup (@) + 9 ()" Dt (2) + by (@ Dtp ()] (1.33)
DHUF(z) = [0 + %z’gTjW;‘(w) - %ig’B“(m) Uy (z)
D'y (x) = [0" —ig' B"(2)] " (x)
D"¢5(z) = 8“1[)5;@).
We define the fields W/ (x) to be invariant under local U(1)y transformations and B*(x)

to be invariant under local SU(2);, transformations, and the Lagrangian density £y, is then
invariant under both and is said to be SU(2);, x U(1)y gauge-invariant.

Next, we rewrite the leptonic Lagrangian density (1.33) in terms of the weak isospin
currents defined in Equation (1.16),

L1, = Lo — gJ!' (x)W;u(z) — ¢ Ty (x)Bu(z) = Lo + Ly, (1.34)

where £; represents the interaction of the weak isospin and weak hypercharge currents with
the gauge fields W, (x) and B, (z).

We rewrite £; in terms of the charged leptonic currents J#(z) and J*'(z),

Ju(r) = 2[ 1 (2) — idou(z)] = @Z’l(x)/yu(l —¥5)U, () (1.35)
J;E(x) = 2[J1#(x) + 1J2u<1’>] = &Vz(x)%(l —¥5)¢i(x),

and a new gauge field W, (z) and its adjoint W (),

1
1 .
Wi(z) = 7 Wiy + iWay(2)] .
The first two terms of £; can be written as
2
— 9> @) Wi(a) = —2% [T (2)Wou(2) + JH () Wi (2)] . (1.37)
=1

From Equations (1.37) and (1.35) we get the basic vertices for the charged electroweak in-
teractions, drawn in Figure 1.4(a). The quanta of the two fields W* and W*' are interpreted
as the physical, yet still massless, W+ bosons.

We return to Equation (1.34) and concentrate on the last two terms of L;, rewriting

SWe urge the reader to take care not to be confused here. The notation follows what is done in reference
[17]. The three D,,’s are not defined by themselves, but rather the three combinations of the D,’s and the
spinors are uniquely defined as written.
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Figure 1.4: Basic vertices involving the weak gauge bosons.

W3, (x) and B, (x) as linear combinations of two new Hermitian fields A, (z) and Z,(x),
and also introducing the weak mixing angle 6y (also known as the Weinberg angle),

Wy, (z) = cosOw Z,(x) + sin b A, (x) (1.38)
B, (z) = —sinbw Z,(x) + cos Oy A, (z).

The weak mixing angle is a quantitative measure of the mixture of weak and electromagnetic
interactions. A value fy = 0 totally decouples the two interactions. 6y, must be measured in
experiments. The current and precise measurements yield a value of sin? Oy = 0.23129 [16].

Combining (1.38) with the expression (1.21) we rewrite the two last terms of Equation
(1.34) as

@ Wan(2) — ¢ T (@) Bu(a) (139)
= —ggs“(x) [ — sinbw Z,(z) + cos Oy A, (z)]]

— J{(2)(glcos Ow Z,(z) + sin Oy A, (z)]
— ¢'[—sinbwZ,(z) + cos Oy A, (z)]).

We now demand that A, (z) is the electromagnetic field and that it couples to electric charges
in the usual way, i.e. through the term s*(x)A,(z) in the interaction Lagrangian in Equa-
tion (1.6). Then we see that the term J%'(x)A,(x) must vanish. This means we require
g’ cos By = gsin by, and then ¢’ cos Oy = gsinfy, = e. With this final step we arrive at
the SU(2)1, x U(1)y gauge-invariant interaction Lagrangian density that Sheldon Glashow
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proposed in 1961,
L;=—s"(2)A,(z) — 2% [T (2)Wo(2) + JH ()W (2)]

J [T (z) — ésim2 Ows" ()] Z,(x) (1.40)

cos Oy

We easily recognize the first term from QED, the electromagnetic current is coupled to the
photon field. The second and third term we saw earlier in Equation (1.37). The last two terms
represent weak neutral currents, and we can get the basic vertices for the neutral electroweak
currents. This is illustrated in Figures 1.4(b) and 1.4(c). The quantum of the Z,(x) field is
the physical, yet massless, Z° boson.

1.2.2.2 Quark sector

The description of quarks in electroweak theory very much resembles the one for leptons.
The six left-handed quarks are placed in doublets,

(5, 0, 0,

with weak isospin I}V = —i—% for up-type quarks and I}V = —% for down-type quarks, and the
six right-handed quarks, ug, dg, cg, sg, tg and by, are singlets. However, unlike the leptons,
the three generations of quarks have the ability to transform between the three generations
through charged current interactions mediated by W bosons. The vertex factors involving
quarks in electroweak reactions are equal to the ones involving leptons, except that they
carry an extra factor representing the probability of the quark to transition between different
generations. This probability is given by the Cabibboo-Kobayashi-Maskawa (CKM) mixing
matrix. The current values of these elements are [16],

|Vud| ‘VUS‘ ’Vub’
Verm = | | Vedl  |Ves| |Vl
Vial  Vis| [Vl

0.974341005015  0.22506 4= 0.00050 0.00357 4 0.00015
= | 0.22492 £ 0.0050 0.97351 4 0.00013  0.0411 + 0.0013
0.0087575:00032 0.0403 + 0.0013  0.99915 4 0.00005

The probability for a quark transition from flavor i to flavor j is |V;;[%

Only transitions
between up quarks and down quarks are allowed, i.e. an up (down) quark can never transform
into a different flavor up (down) quark. The largest values are on the diagonal, meaning that
the transitions between the same generation quarks (u«d, c<s, t«b) are more common

than jumping generations (e.g. u«>s or s«t).

1.2.2.3 Vector boson self-interaction

The vector bosons W= and Z° carry a weak charge, and therefore have self-interactions,
meaning they interact also when no leptons or quarks are present. As for the photon fields,
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we need terms that are SU(2)y, x U(1)y invariant. For B*(x) we construct an expression in
analogy with A*(x) in QED, as defined in Equation (1.10),

_}lBuu<$)B#U<$)a B (z) = 0"B"(x) — 0" B"(x)

The case for the W/ (z) fields is more complex. The interested reader is referred to a book
on Quantum Field Theory, e.g. [17], the end result is quoted here:

1 v 1% v 14
—1 G ()G (@), G = F¥(2) + g Wi (x) W (x)
where ¢, is the antisymmetric tensor and
FY = o'W (z) — "Wy (2).

Combining everything, we get

1 1
EB - —ZBHV(ZE)B#V(J?> - ZGz,uV(x>ny(x) (141)
1 y 1 v
= = Bu (@) B (2) = 2 Fp (2) Y (2)
+ g€ Wi (2) Wi (2) H W (2)
1
- Zg%ijkﬁilmwf(x)ka(x)Wl,u(x)Wm,u(x)

The first two terms of Equation (1.41) represent the free gauge fields, while the two last terms
represent self-interaction of the gauge bosons. The basic vertices of this theory are shown in
Figure 1.5. No other combination (such as vy or Z°Z%2°) is allowed within the SM.

d

\f\/-t w i &/Z \/\J+ W’

5/2°
W- W’ W e

Figure 1.5: Additional basic vertices of the electroweak theory, representing the self-
interaction of gauge bosons.

1.2.3 Quantum Chromodynamics

Quarks carry the quantum number color, also known as color charge. The different flavors
of quarks carry different mass, as noted in Figure 1.1, but the three different colors of any
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given quark flavor carry equal mass.
In analogy with QED, we claim that the free-quark Lagrangian density is

Lo =V, (2)(v*i0, — my)¥,(z), (1.42)
with the quarks in color triplets

Y, (7)
Vy(z) = Yy, (z)
Y, ()

The QCD Lagrangian density is invariant under the global SU(3)¢ transformations

Wy(x) = W) = U)Wy () = 2N, () (1.43)
\Ijq(m) - \i’;(ff) = \Ifq(:L’)UT(oz) = \Ilq(x)e_%iaiki

i, © = 1,2,...8 are the eight Gell-Mann matrices that act as the generators of SU(3)¢
and «; are eight real constants and & = («ay, ag, ..., ag). The invariance follows from the
unitarity of the SU(3)¢ transformations UTU = 1, yielding eight conserved currents,

S () = Sy AT (). (1.44)

This color-octet current conserves the color. Quarks carry color charge (red, green, blue),
antiquarks carry anticolor (antired, antigreen, antiblue) and gluons carry a color and an an-
ticolor. A quark can change color for example from blue (b) to red (r) by radiating a gluon
(bT), and the gluon compensates for this by carrying the colors blue and antired, as illustrated
in Figure 1.6. Note that the flavor does not change, e.g. an up quark stays an up quark, only
the charged currents of the weak interactions are flavor-changing.

G (or)
% (%)

% (r)

Figure 1.6: An example of the color-octet current conserving color. An incoming blue quark
radiates a blue+antired gluon and transitions into a red quark. There are 8 gluons in the SM
with different color-anti color combinations that accounts for all possible color transitions.

We now consider local SU(3)¢ transformations

eéz‘gs)\jwj(a:)q]q(x) (145)

\I/q(x)e_%igs)‘jwj (z) ,

Vo(r) — Wy(x)
Uy(x) — Wy(x)

with w;(x), j = 1,2,...,8 are real differentiable functions and g, is a real constant which
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later will be identified as the strong coupling constant. To ensure invariance under these local

SU(3)¢ transformations, we exchange the ordinary derivatives d,, for covariant derivatives

D,,
1

oMV, (x) — D'V, (z) = (8# + iigS/\jA?) U, (x) (1.46)

The eight new real gauge fields A;‘ (x) are called gluon fields. Combining the free-quark
Lagrangian density in Equation (1.42) and the covariant derivatives we get

Ly =Vy(x) (i Dy — mg) = Wo(x) (iv"0, — mg) Vy(x) — goSL ALY = Lo+ L1,  (1.47)

with SZ defined in Equation (1.44). L; generates a three-point quark-gluon vertex, as illus-
trated in Figure 1.7(a).

s
N
Yq
(a) Basic vertex for quark-gluon interac- (b) Basic vertices for gluon self-interaction.

tion.

Figure 1.7: Feynman diagrams of the basic vertices of QCD.

To ensure that the Lagrangian density £, is invariant under the local SU(3)¢ transforma-
tions in Equation (1.45), the transformation of the gluon fields A% (x) are chosen carefully
such that the covariant derivatives D*W,(x) transform in the same way as the fields ¥, (z)

themselves,
DFU(z) — €2'95%%@) DI (1),

As for electroweak interactions this is a complicated matter, but it can be shown [17] that it
suffices to consider infinitesimal transformations given by

Al(z) — A (2) = A (2) — 0"wi(x) — gsfijpw; (2) Al ()

for small w;(z), where f;; are the structure constants defined by the commutation relation
[F;, F;] = ifi,F), with summing over repeated color indices £k = 1,2,..., 8, and F; =
A, i=1,2,...8

In addition to the terms in £, describing quark fields and the interactions between quark
and gluon fields, the complete QCD Lagrangian density contains terms which describe the
gluons in the absence of quarks. These terms also need to be SU(3)c gauge invariant. In
analogy with QED and the term added in Equation (1.9) describing the free electromagnetic
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field, we examine the following expression describing free gluon fields,

1
= (@) E"(2),  FI" = 0"Al(x) - 0" A (). (1.48)
This expression is not SU(3)c gauge invariant. To restore the invariance, the free gluon

fields are replaced by G%" (),
G¥(z) = F"(z) + gsfijkAf(x)AZ(x), (1.49)

obtaining the Lagrangian density for the free gluon fields,

1
Lo = —ZGZ»W(x)Gf”(:E). (1.50)

The full Lagrangian density for the strong interaction is obtained by combining Equations
(1.42) and (1.50),

_ 1
L=V, (x)[iv,D" —mg|¥, () — ZGZ»’W(x)GZHV(x). (1.51)

Rewriting L in Equation (1.50) using Equation (1.49) we obtain

1 v v
Lo == 3 Fp (@) F" (@) + g finAip(2) Aj ()0 A () (1.52)

1 LN AV
= 295 Jign fam Af (2) Aj () Ay () Ao ().

The first term represents eight non-interacting massless gluon fields. The second and third
terms represent self-interactions of the gluon fields, as illustrated in Figure 1.7(b).

1.2.4 The Brout-Englert-Higgs mechanism

In the previous sections all lepton and boson masses were set to zero, while in Nature the
weak gauge bosons W+ and Z° and all the fermions have a non-zero mass. Simply adding
a mass term (e.g. —my2y(x)1y(x) for leptons) spoils the gauge invariance of the theory. The
solution is spontaneous symmetry breaking (SSB) of the SU(2);, x U(1)y invariance while
preserving the U(1) invariance of QED and keeping the photon massless.

In the following we focus on symmetry breaking in the lepton sector of the electroweak
theory. Similar arguments could be made also for quarks.

The Lagrangian density of the electroweak theory is

L=Ly,+Lp

where L, is the leptonic Lagrangian density in Equation (1.33) and Ly is the gauge boson
Lagrangian density in Equation (1.41). We know that the Lagrangian density £ is exactly
invariant under SU(2);, x U(1)y gauge transformations. In the following we introduce the
Brout-Englert-Higgs (BEH) field, that is a scalar field with a non-vanishing vacuum expec-
tation value (VEV) which is not invariant under the gauge transformations. This will result
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in a spontaneous symmetry breaking.

We want to break the SU(2), x U(1)y symmetry, and therefore we introduce a new weak

isospin doublet
_ Pa()
#le) = (¢b(93))

where ¢,(z) and ¢y (z) are scalar fields under Lorentz transformations. This new doublet
transforms the same way as the isospin doublet \IJZL(J:) in Equations (1.26) and (1.30) under
SU(2)1, x U(1)y gauge transformations, i.e. under SU(2);, transformations according to

D(z) — () = 294 P(z) (1.53)
df(z) — d(2) = ®f(2)e 2197 ()

and under U (1)y according to

"(2) = 9 Y@ D () (1.54)
"(z) = ot (z)e Y@

We now add a new term Ly to the Lagrangian density to include the BEH field ®(x) and
its interactions with the gauge boson fields, while retaining the SU(2);, x U(1)y gauge-
invariance,

Ly = [D'0(2)]'[D,® ()] — 2@ (2)®(x) — A[®'(2) P (x)]*. (1.55)
The covariant derivatives are

1
Dt (z) = |0" + §igTjW]”(x) +1ig'Y B*(x)| ®(x).

in analogy with Equation (1.28).

The two last terms of Equation (1.55) define the potential energy density of the field. For
it to be bounded from below, we require A > 0. For p? we choose p? < 0, which gives the
potential its characteristic shape, namely that of a Mexican hat, or the bottom of a bottle, as
illustrated in Figure 1.8. This shape enables a spontaneous symmetry breaking. The energy
density is at a minimum for a constant BEH field

2

0 U2
%), elea—loll 4l = 5 o= y/-5

o) =20 = 7 )

Choosing any one point induces a spontaneous symmetry breaking. We choose

“-(@)-50)

Any other choice of @, is related to this value by a global phase transformation.

In general, the BEH field of the vacuum ground state @ is not SU(2);, x U(1), gauge-
invariant. It must however be invariant under electromagnetic U(1) gauge transformations
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Figure 1.8: The potential energy density V(®) for A > 0. Choosing a value p? > ( generates
a function with one absolute minimum, while ;*> < 0 generates a local maximum and a
whole circle of absolute degenerate minima.

due to the zero photon mass that is indicative of an unbroken symmetry. We assign the weak
hypercharge Y = % to the Higgs field. With this choice we see that the lower component,
with I3 = —%, has electric charge 0 according to Equation (1.23). Looking at the electro-
magnetic U(1) transformation of the BEH field,

O(z) — O'(z) = e {OTEDI@ (),

we see that this ensures that the lower component of the BEH field is invariant.
The upper component, with I3 = % is not invariant under this transformation.

To account for the lepton masses we need another term in the Lagrangian density, £,
a Yukawa interaction of the following form:
Lin = — g [T (2)"(2) @ () + O (2)4y* () Ty (2)] (1.56)
— gu | W@ @)D (@) + DL ()Wl (@)

where g; and g,, are dimensionless coupling constants and CTD(:U) is given by

B(z) = —i[d' (x)m] T = (_@@Q |

The Lagrangian density £y can be shown to be invariant under SU(2);, x U(1)y gauge
transformations.

The total Lagrangian density of the standard electroweak theory for leptonic processes is
summarized as
L=L,+Lg+ Ly+ Liu
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with £;, from (1.33), L from (1.41), Ly from (1.55) and Ly from (1.56):

= (WD) + e D)+ Bn D] 157
{Bu) B (&) = Gy (0)GL (@)
+[DAB()] [D,2(0)] — 2 (2)0() — AP (0) (0]

— g1 [V} @)l (2)0(2) + @ (@)f (@) U} ()]
= g |PH@)UR () B(x) + DL (@)W ()|

In order to facilitate a more practical interpretation of the Lagrangian density, we change
now to the unitary gauge. Any BEH field can be reparametrized in terms of its deviation
from the vacuum field ® in the form

1 om(z) +inp(x)
() = V2 (v +o(x) + ing(x)) (1.58)

with o(x) and n;(z), i = 1,2, 3 as real fields. Written from now on in the unitary gauge, the
BEH field ®(z) can be written as

d(z) = % (v +?7(x)) . (1.59)

The three 7(x) fields are now gone.® The gauge transformation used to transform Equation
(1.58) to (1.59) is a SU(2);,xU(1)y transformation, see equations (1.54) and (1.53). All
other fields also transform according to equations (1.26), (1.29) and (1.30), (1.32). In the
following we assume all fields are expressed in the unitary gauge.

We now transform the Lagrangian density in Equation (1.57) into the unitary gauge. This
is done by writing ¢ () in the unitary gauge and using Equations (1.36) and (1.38) to replace
the fields W' (x) and B*(x) by W*(x), W (z), Z#(x) and A*(z). The actual calculations
are omitted here, only the result is quoted.

Transforming the terms Ly + Ly from Equations (1.33) and (1.41) we get

,CB + ﬁH = — iFM,,(ZE)F“V(I) (160)
1 v
— P () FY () + iy W () W ()
— )2 () + S 2,(0) 27 (2)

1 1
b L (@o),0() - ol
+ L1 + Lun + Lus + constant term,

The unitary gauge is designed for exactly this purpose, to transform away the so-called Golds tone fields,
n;(x), associated with massless Goldstone bosons. No such Goldstone bosons have ever been observed in
Nature. The three fields 7); («) are unphysical (if they had not been, they could not have been simply transformed
away), and the associated Goldstone bosons are often said to be “eaten” by W+ and Z° so that they acquire
their mass.
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with
FWr(z) = 0"WH(z) — "W (x), and Z"(x) = 0" Z"(z) — O* Z¥ (1),

and

1 mw
mw = Zvg, my = s
2 cos By,

2
v = \/—% >0, gsinfy = g cosby = e.

The exact expression for Lpp1 + Lun,; + Lupy and L in Equation (1.62) will not be
discussed further, the interested reader is referred to reference [17].

my, = \/ —2u? (1.61)

We now perform the same transformations for the two last terms, £y, + L1z from Equa-
tions (1.33) and (1.56), also replacing the left- and right-handed lepton fields v/;, and g by
the complete field ¢/ using Equation (1.12),

Ly, + Lo =Pu() (i7" 0y — mi) () + P, () (17" 0, — iy )1y, () (1.62)
+ Lury + L1,

with ] 1
Ly = —Eml@/_)l($)¢l($)0($) - ;mulqv/;vz (z)y, (z)o(z)
and
_ v _ 9w
m; = N my, ok (1.63)

Combining Equations (1.60) and (1.62) we get the complete Lagrangian density of the
(Ieptonic) electroweak theory in the unitary gauge,

L=Ly+ Ly (1.64)

where

Lo =i(2) (i7", — my)i(z) + thy, (2) (i7" 0y — 1, )y, (1.65)
1
— {Ful) (@)

1
2

1 y 1
— 12027 (&) + 5 2, () 24 (2)
1 2

1, 2
+ 5(0"0(2)) (G0 (2)) = gmiyo(a)

(@) B () + miyy Wi (@)W (2)

and
L= Lis1+ Lep1+ Luni + Lus1 + Luw. (1.66)

The second, third and fourth lines of Equation (1.65) respectively represent massless pho-
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tons, W+ bosons of mass my and Z° bosons of mass m . The last line describes the neutral
spin 0 boson of mass my. The interaction Lagrangian density in Equation (1.66) represent
the interaction between particles.

As the observant reader might have noticed, the boson and lepton masses are related to
some of the free parameters of the Standard Model. In fact, the W and Z boson masses can
actually be calculated in terms of three experimentally well known quantities: the fine struc-
ture constant o = % = ﬁ [16], the Fermi coupling constant G = 1.166-107° GeV2[16]
and the weak mixing angle sin? 0y = 0.23129. Combining Equation (1.61) and the fact that

the parameter v can be expressed in terms of the Fermi coupling constant, v = é\[
2

B aT 1 B T 2 (1.67)
WA GVasinby 7 T\ Gy sin20w '

Inserting numbers we get

gives

my = 76.9+0.8GeV, my =87.940.6GeV.

These numbers are based on a tree-level calculation, neglecting higher-order corrections.
The current measured values of the masses of the W and Z bosons are, as listed in Fig-
ure 1.1, 80.379 £ 0.012 GeV and 91.1876 4 0.0021 GeV respectively, making the first-order
calculations exact to within 5%.

1.3 Higher order corrections

In the previous chapters, we reviewed briefly the mathematics behind the Standard Model,
taking into account only the lowest order of perturbation theory. When taking higher orders
into account, we expect corrections of the order of the coupling constant of the theory in
question to the tree-level results. This is known as radiative corrections. However, often the
integrals involved in calculations are divergent. To deal with this, we need to go through
three steps.

The first step is to regularize the theory, i.e. to introduce a parameter called a regulator
or cutoff defining a point in some space which defines the boundary of validity of the theory,
so that it is finite and well-defined.

In the second step, known as renormalization, the properties of the physical particles are
related to those of the bare particles. The bare particles are the non-interacting particles,
different from the actual physical particles that interact.

The third step is to hide the original infinities in the relations between the bare and phys-
ical particles. Both the bare particles themselves and these relations are unobservable.

After performing these three steps, the observable predictions of the theory are now finite
again. This procedure can be carried through to all orders of perturbation theory, which
enables the calculation of extremely precise predictions. The interested reader is encouraged
to read more about this subject in reference [17].
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1.4 Summary

In this chapter, we first saw how the Standard Model was developed through history and
then quickly reviewed the particle content. The majority of the chapter was devoted to a
simplified mathematical description, covering the QED, electroweak interactions, QCD and
the Brout-Englert-Higgs mechanism. In the last section we briefly mentioned the technical
difficulties encountered when taking higher order effects into account, and how to solve this.
In the next chapter, we will discover why the Standard Model is not the Final Theory of

Nature.
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Chapter 2

Beyond the Standard Model — new,
neutral gauge bosons

We have now reached the point where our adventure starts - the continued search for the
Final Theory of Nature. During the last two millennia, brilliant minds have gradually figured
out how reality as we observe it can be described in terms of mathematical models. Techno-
logical advances allow us to make predictions and perform measurements, ultimately leading
to the exclusion of most theories. Still no measurement that contradict the Standard Model’s
predictions has been made!, but there are many examples of phenomena that the SM cannot
explain or describe. Because of this, we know that we need to search for an explanation
beyond the SM. The amount of models that have the possibility of describing Nature is vast,
and the search for the best one is a huge undertaking. Most probably, we have not even yet
thought of the theory that might describe everything, as illustrated in Figure 2.1.
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Figure 2.1: The vast theoretical space.

IThere are examples of measurements that might not fit the SM predictions, but the statistical significance
is not large enough to conclude. More data or better experiments are needed to conclude.
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2.1 Going beyond the Standard Model

We now take a look at a few of the unresolved mysteries that the Standard Model cannot
encompass.

2.1.1 Dark Matter and Dark Energy

Looking out at the universe we see twinkling stars, mighty galaxies and glowing gas, and
it might come as a surprise” to hear that all of this in fact makes up about 15% of the total
amount of matter in the universe, and only about 5% of the total energy content. This is
nothing new. Already in 1884 Sir William Thomson, more fameously known as Lord Kelvin,
said “many of our stars, perhaps a great majority of them, may be dark bodies” [18]. He based
this surprising statement on the fact that he observed a velocity dispersion of stars orbiting
the center of our galaxy. From this he estimated the mass of the galaxy, which he compared
to the mass of visible stars in our galaxy, and concluded that the two were different. The
name ‘“dark matter” came from Henri Poincaré discussing Lord Kelvin’s work and named it
“matiere obscure” in French.

Not much is known about dark matter, but as we have not yet observed it directly we
concluded it does not interact electromagnetically (thus it is dark, no light is emitted). It does
however interact gravitationally. The presence of dark matter in the universe is implied in
several astrophysical observations, including observations in gravitational lensing and galaxy
rotation curves.

In 1998 the Hubble Space Telescope observed very distant supernovae and it was cal-
culated that at the time when these supernovae exploded, the universe was expanding more
slowly than it is today. This came as a surprise to the scientific community, as it was thought
that the universe would either stop expanding and collapse again or never stop expanding,
only slowing the expansion rate down with time. The solution to this problem is known as
dark energy, although one might argue that it is no solution at all since almost nothing is
known about this dark form of energy. From the dark energy’s effect on the expansion rate
of the Universe, we can calculate that about 68% of the Universe’s energy content is dark.
One intriguing theory is that dark energy in fact is a feature of empty space. If this empty
space possesses its own energy, then it is not diluted as space expands. In fact the total energy
content grows with the universe. Another possible explanation is that it is some kind of fluid
or field (named “quintessence”) filling all of space, that affects the expansion of the universe
in another way than that of matter and normal energy. Still no observations have been made
to verify or falsify either explanation.

2.1.2 Matter-antimatter asymmetry

According to theory, equal amounts of matter and antimatter should have been created in the
Big Bang. Matter and antimatter particles are produced in pairs, and when a particle comes
in contact with its antiparticle, they annihilate and create photons. However, from today’s
universe it is obvious that everything we see is made almost entirely of matter. The origin of

2This will probably not come as a surprise to most readers of this thesis.
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this asymmetry is unknown. Calculations indicate that about one matter particle per billion
survived [19]. Physics experiments have shown that the laws of physics seem to treat matter
particles different than antimatter particles, but as of now the violation observed is too small
to account for the observed matter-antimatter asymmetry.

2.1.3 Gravity

The Standard Model of particle physics includes three of the four forces of Nature, skipping
the force of gravity completely. This leaves scientists feeling uneasy, why should the fourth
force be left out? Could gravity in fact be mediated by a particle (the graviton)? Several
searches are performed and nothing has been discovered, but the future might bring news.
As for now, gravity is well described by the theory of general relativity, developed by Albert
Einstein and published in 1915. One of the most prominent problems within theoretical
physics today is how to combine QFT at the microscopic scale with GR at the macroscopic
scale to create a more complete theory.

2.2 Theories beyond the Standard Model

We now take a very brief look at a few of the theories beyond the SM.?

2.2.1 Grand Unified Theory (GUT)

Just like magnetic and electric forces are unified in the electromagnetic force, and just as the
electromagnetic and weak forces are unified in the electroweak force, it is thought that all
the three forces of the Standard Model might be unified at some higher energy [20]. If this
is indeed the case, then at some point in the past, all three forces acted as one force, with a
single coupling constant. When the universe cooled and passed a critical point, the symmetry
was broken. This symmetry breaking resulted in new heavy gauge bosons.

SU(5) is the simplest GUT, proposed by Howard Georgi and Sheldon Glashow in 1974 [21],
containing the SM group as a subgroup. The breaking of SU(5) occurs (as in the SM) when
a scalar field (such as the BEH field) acquires a vacuum expectation value, creating 24 gauge
bosons, doubling the 12 gauge bosons in the SM. The 12 extra gauge bosons violate baryon
and lepton number and carry flavor and color. This enables proton decay with a lifetime
lower than observed lower limits, thus excluding the theory. Many other, more complex
GUTs also exist and are possible candidates for SM extensions.

2.2.2 Supersymmetry

Supersymmetry, or SUSY, introduces a symmetry between fermions and bosons. None of
the SM particles can be superpartners of the others, so this would mean a doubling of the
particle content. An unbroken symmetry would mean that the superpartners had the same
mass and quantum numbers (except for spin) as their partners, but as no superpartners are
observed, the symmetry must be broken at some higher energy.

3This section is based mostly upon reference [20)].
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A prospective benefit of this theory is a naturally occurring cancellation of large higher-
order corrections at high energies, reducing the need for fine-tuning and partially removing
some infinities without the need to define an energy cut-off scale where the model is no
longer valid. Another enticing consequence, is the fact that the running couplings of the
electromagnetic, weak and strong forces seem to meet at a very high energy - without SUSY
they do not.* SUSY also offers a potential candidate for dark matter - if imposing an addi-
tional discrete symmetry called R-parity,® the lightest superparticle is stable.

Even the smallest SUSY extension of the SM - the minimal supersymmetric Standard
Model, or MSSM - has around 120 free parameters,® which makes some physicists uncom-
fortable - the theory solves some problems, but adds a lot of complexity. The parameter
space is highly constrained by searches at the LHC, but SUSY as a concept is not excluded.

2.2.3 Theory of Everything

A Theory of Everything (ToE) is nothing less than the Final Theory of Nature. One candidate
is string theory, where the point particles of the SM are replaced by one-dimensional objects
known as strings that exist in ten spatial dimensions. This theoretical framework reproduces
QFT at low energies. The strings can form closed loops, or they can exist as open strings
with free ends. In the SM, the particles trace out a worldline in space-time, as illustrated in
Feynman diagrams. In string theory, the strings trace out a surface, or worldsheet, in space-
time, as illustrated in Figure 2.2. At low energies, or at distance scales much larger than the
size of a string, the strings look like point particles and the worldsheet diagrams look like
Feynman diagrams. Several Feynman diagrams are incorporated in a worldsheet. The strings
can vibrate, and they have infinitely many vibrational modes, and it is these vibrations that
we observe as the different fundamental particles. In fact, string theory can generate all the
particles in the SM.

wokd cheet

Figure 2.2: The worldsheets in string theory
incorporates several Feymman diagrams, or
worldlines, in QFT.

Since string theory sprang to life in 1968, it has evolved immensely. By the 1990s, several
string theories were found. An unexpected realization was made when it was discovered that
the massive and static membranes (or branes) that acted as places where the open string
could end, actually became dynamic when the string coupling increased. This was followed
by the even more unexpected realization that all the discovered string theories were in fact

“This might also happen in other BSM theories, but the running couplings do not meet at high energy when
extrapolating using only the information contained within the SM.

SEach SM particle has R-parity equal to 1 and each superparticle has R-parity equal to -1.

There are less than 30 free parameters in the SM.
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related to one another via several so-called dualities. This pointed to a more fundamental
theory, in eleven dimensions, which was named M-theory. The theory still evolves today.
A major drawback of the theory is that it offers no testable predictions at an energy we can
access today.

2.3 New neutral gauge bosons

Many theories beyond the Standard Model predict the existence of a new neutral gauge boson
Z'. In this section we explore a selected few of these theories, most of which we will follow
up later.

2.3.0.1 The sequential Standard Model Z{,,

The sequential SM is a non-renormalizable toy model in which the new Z’ boson, Z{g,,, has
the same couplings to fermions as the SM Z boson, but a higher mass [22]. It is often used
as a benchmark model, although not representing any physically possible theory.

2.3.0.2 FEgs-motivated Z' models

In Fs-motivated Grand Unified models, the Fg group can break to the SM in a number of
different ways, predicting two new neutral gauge bosons that can mix in general [1][23]. In
many of them, Ej first breaks to SO(10) x U(1), (see Figure 2.3 for a schematic view),
followed by SO(10) breaking to either SU(4) x SU(2);, x SU(2)g or SU(5) x U(1),.
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Figure 2.3: A schematic view of two possible scenarios in Eg-motivated Z' models.

In the former case we can get the Z; coming from SU(2)g or the Zf;_; coming from the
breaking of SU(4) into SU(3)¢ x U(1)p-_1, both of which could exist at the TeV scale. The
Zyg 1s one example of a left-right symmetric model, restoring the parity symmetry broken
by the weak interactions. These two models also appear in the framework of minimal 7’
models, described in Section 2.3.0.3.
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In the SU(5) case the gauge bosons associated with the U(1),, and U(1),, groups can mix
to create a potentially observable Z’ boson defined by

Z'(0gs) = Zy, cosOp, + 7, sin O,

with g, as the mixing angle that also specifies the Z’ boson’s coupling strength to the
fermions in the SM and also its intrinsic width. While the Zgq,; has a width of approxi-
mately 3% of its mass, the Z{p has a width of 0.5% of its mass while the Z>I< has a width of
1.2% of its mass. The other Z’ bosons within this framework, defined by specific values of
the mixing angle 0, € [—, 7], have widths between the two extremes defined by the 7,
(0g, = 3) and the Z}, (05, = 0) models. Some often-used models are the Zg (width 1.2% of
its mass), Z7 (width 1.1%), Z;, (width 0.6%) and Z} (width 0.6%) [23].

2.3.0.3 Minimal 7’ models

In minimal Z' models, the phenomenology is controlled by three new parameters only — the
7' mass and two effective coupling constants [24] [1]. The width of the the Z’ depends on
the two effective couplings, enabling width effects to be taken into account.

Minimal models extend the Standard Model with an extra U (1) expansion with the small-
est possible number of additional free parameters that still ensure that the theory remains
renormalizable. In general, there are no exotic vectors apart from the Z’ associated with
the additional U (1) group, which commutes with the SM group SU(3)¢ x SU(2);, x U(1)y,
no exotic fermions, apart from the right-handed neutrinos, one for each SM generation, and
lastly, there are no exotic scalars.

The two effective coupling constants are gg;, (the Z’ coupling to the (B — L) current)
and gy (the Z’ coupling to the weak hypercharge Y') [1].” We often define the ratios
=22 gy =2, @.1)
9z 9z
where g is the coupling of the Standard Model Z° boson defined by g, = % with v as
the Higgs boson vacuum expectation value of 246 GeV. It is customary to reparametrize,
using 7/ and 6y, as the independent parameters,

Gpr =7 cosOuvin, gy =7 sin Opin, (2.2)

where 7' measures the strength of the Z’ boson coupling relative to the SM Z° boson cou-
pling, and 6y, is the mixing angle between the generators of the B — L and the weak
hypercharge Y gauge groups. For specific values of the two coupling constants we find sev-
eral known models, including the Z] from the Eg-motivated models and the Z3, in left-right
symmetric models, as illustrated in Table 2.1. For the minimal Z’ models, the width of the
7' depends on v’ and Oy, and the interference with the SM Z° /~ processes are included.

"This is highly technical, and goes beyond the scope of this thesis. However, we decided to add it for com-
pleteness, and for the small additional clarity it provides. Interested readers are referred to references [24] [1].
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Table 2.1: Values for 7' and 6y, corresponding to the three specific Z' bosons: Zp 1, Z;
and Z.,. The Standard Model weak mixing angle is denoted by 6y .

2.4 Summary

In this chapter we have explored some of the many unexplained mysteries in the Universe,
and we also looked at a handful of theories that could add a few more pieces to the puzzle.
In the next chapter, we will see one of the available tools in the hunt for the Final Theory,
namely the Large Hadron Collider at CERN, and more specifically the ATLAS detector,
which is one of the four main particle detectors there.
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Chapter 3

The Large Hadron Collider and the
ATLAS detector

In this chapter we describe the Large Hadron Collider (LHC), with a brief history and a look
at the large LHC complex with its many accelerators. We focus on one of the four largest
experiments, the ATLAS experiment, as it is data from the ATLAS detector that is used in
the dimuon analysis described in Chapters 4 to 7. The last sections in this chapter consider
several important physics-related subjects important at proton-proton collider experiments.

3.1 The LHC

The Large Hadron Collider is a very large complex located mostly underground on the border
between France and Switzerland, near Geneva. In a ring with circumference 27 kilometers,
located up to 175 meters under ground, protons or heavy ions (e.g. lead ions) are accelerated
up to speeds that are very close to the speed of light. This is the world’s largest particle
accelerator, planned and built by the European Organization for Nuclear Research (CERN,
from the French name Conseil Européen pour la Recherche Nucléaire).

3.2 CERN

The CERN convention was signed in 1954 by the 12 founding states,! including Norway.
Currently it has 23 member states, as illustrated in Figure 3.1, and each member state has
duties and privileges and is represented in the council. They all make great contributions
to the operation of CERN’s programs. Some states and organizations that are not members
have an observer status, which means they receive information from the CERN council, but
they are not allowed to take part in the decision-making.

There are over 600 universities and institutes all over the world that use CERN’s facili-
ties. About 2600 people are employed directly by CERN, and about 12500 scientists of 110
nationalities, from institutes in over 70 countries [26] are registered users within the CERN
community.

1Belgium, Denmark, France, the Federal Republic of Germany, Greece, Italy, the Netherlands, Norway,
Sweden, Switzerland, the United Kingdom and Yugoslavia.
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MEMBER STATES
ASSOCIATE MEMBER STATES

Figure 3.1: This map of the world shows the status of the countries in different shades of
blue [25]. The darkest blue represents the member states.

3.3 Building the LHC

The planning stage started already back in the early 1980’s, when the LHC’s predecessor, the
Large Electron Positron Collider (LEP), was under construction. In 1994, CERN’s governing
body, the CERN Council, approved the construction of the LHC. The four main experiments
— ATLAS, CMS, ALICE and LHCb - received official approval in the years between 1996
and 1998. Today there are three smaller experiments attached to the larger ones — TOTEM
(installed next to CMS), LHCf (installed next to ATLAS), and MoEDAL (installed next to
LHCb).

3.4 Main goals

With this gigantic machine we are searching for a more complete understanding of our Uni-
verse. The last undiscovered particle in the Standard Model, the Higgs boson, was discovered
at the LHC in July 2012, thus fulfilling one of the main goals of the LHC. Other main goals
include unravelling the mystery of the nature of dark matter, searching for supersymmetric
particles which may (or may not) help in unifying the four fundamental forces at some high
energy level, finding an explanation for why our Universe is dominated by matter when mat-
ter and antimatter were created in equal amounts during the Big Bang, and examining the
quark-gluon plasma (free quarks and gluons) that filled our Universe at a very early age [27].
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3.5 The LHC complex

The LHC is not perfectly circular — it has eight straight sections and eight arcs as illustrated
in Figure 3.2. ATLAS and CMS, the two high luminosity experiments, are placed opposite
to each other, in the straight sections of octant 1 and 5 respectively. The remaining two of the
four main experiments, ALICE and LHCb, are placed on either side of ATLAS, in octants 2
and 8 respectively. The remaining straight sections have no beam crossings.

Low B (pp)
High Luminosity

Figure 3.2: Schematic layout of the LHC [28] showing the eight straight sections (named
Octant 1 to 8), the four interaction points where the four main experiments are placed and
the injection sites.

The LHC complex is a series of connected particle accelerators, as shown in Figure 3.3.
One after the other they accelerate the beam to the maximum energy before they inject it into
the next one where it is accelerated to even higher energies (or delivered to an experiment),
until finally the beams enter the LHC ring.

3.5.1 Accelerating protons to 6.5 TeV

The source of the protons is a bottle of hydrogen gas. Using an electric field, the hydrogen
atoms are stripped of their electrons, leaving only the protons. The Linac 2 linear accelerator
accelerates the protons to an energy of 50 MeV, and sends them to the Proton Synchrotron
Booster (PSB). There they gain energy until they reach 1.4 GeV and are sent to the Proton
Synchrotron (PS) where they gain a total energy of 25 GeV. The last part of the chain before
entering the LHC ring is the Super Proton Synchrotron (SPS), where the protons are acceler-
ated to 450 GeV. The beams are then transferred to the LHC, where one beam is sent in the
clockwise direction and another beam in the anti-clockwise direction. The total fill time is 4
minutes 20 seconds for each ring. It takes another 20 minutes to reach the maximum energy
of 6.5 TeV for each beam. Under normal conditions the beams can circulate in the LHC ring
up to 10 hours before needing a refill.
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The beams are brought together in four collision points in the ring, with a total collision
energy of maximum 13 TeV. Each of these collision points has a surrounding detector —
ATLAS, CMS, ALICE and LHCb.

CERN's Accelerator Complex

LHC

North Area

SPS

Mo AWAKE
ATLAS
HiRadMat
20 I TT60
L]
AD
™

PS

LINAC 2

LEIR

N -
LINAC3

lons

) ion ) P (antiproton) ) electron > /antiproton conversion

Figure 3.3: A schematic of the large LHC complex showing the many detectors and acceler-
ators, including the LHC ring and the ATLAS detector [29].

3.5.2 LHC magnets

To send the protons on the complicated path as laid out in the previous subsection, keeping
them bunched up and travelling without losing speed, more than 50 types of magnets are
needed. All of these types of magnets are electromagnets.?

The main dipole magnets in the LHC tunnel are superconducting electromagnets, kept at
a temperature of 1.9 K, and generate a 8.3 T magnetic flux density field by sending a 12 kA
current through the superconducting niobium-titanium cables. There are 1232 of these dipole
magnets, each is 15 m long and weighs 35 metric tons. The dipole magnets keep the pro-
tons on their almost-circular path in the LHC tunnel, and because of their construction have
opposite magnetic fields in the two beam pipes sending the proton bunches in the opposite
direction around the ring. To correct for small imperfections in the magnetic field at the
extremities of the dipole magnets, sextupole, octupole and decapole magnets are used. To
keep the protons bunched together, quadropole magnets with four magnetic poles arranged
symmetrically around the beam pipe squeeze the beam vertically and horizontally.

2This section is based on [30] and [31] unless stated otherwise.
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3.5.3 REF cavities

The protons are accelerated from 450 GeV to 6.5 TeV in the LHC ring.? This work is done
by the radiofrequency (RF) cavities. All accelerated charged particles radiate energy, known
as synchrotron radiation, and the RF cavities also need to supply the beams with the energy
they lose to keep the energy at its maximum value for long periods of time.

The RF cavities, 16 in total, are hollow copper structures, with a 1.5 pm thick niobium
layer coating on the inside. The coppers structures are cooled to a temperature of 4.5 K
using liquid helium, causing the niobium to be superconducting. The RF cavities contain
an electromagnetic field, supplied by high-power RF generators known as klystrons. The
electromagnetic field oscillates inside the RF cavity, resulting in standing waves, creating an
electric field along the beams’ direction. The arrival of each proton bunch is timed in such a
way that each bunch sees an accelerating field when passing through a cavity. For each lap
around the LHC ring, every proton gains 485 keV of energy on average.

3.6 A Toroidal LHC ApparatuS

The ATLAS (short for “A Toroidal LHC ApparatuS™) detector is the largest (in volume)
detector ever constructed for particle collisions.* It is 46 meters long and 25 meters high,
and weighs about 7000 metric tons. Figure 3.4 shows a mural of the ATLAS detector, about
one third of its actual size.

Figure 3.4: A huge mural of the ATLAS detector by the American artist Josef Kristofoletti,
about one third [35] of the actual size of ATLAS.

3.6.1 ATLAS coordinate system

Figure 3.5 illustrates the ATLAS coordinate system. The nominal interaction point (IP) is

3This section is based on [30] and [32] unless stated otherwise.
4Unless specifically stated otherwise, all details are from [33] and [34].
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Figure 3.5: Two projections of the ATLAS coordinate system. One in the transverse plane
(a) and one in the longitudinal plane (b).

in the middle of the detector and defines the origin of the coordinate system, the beam pipe
defines the z-axis and the z-y plane is perpendicular to the beam axis. The positive z-axis
points toward the center of the LHC ring, and the positive y-axis points upwards to the sky.

The azimuthal angle ¢ € [—7, 47| is the angle between the positive z-axis and the po-
sition vector projected onto the transverse (x -y) plane. It increases clockwise when looking
in the positive z-direction. The polar angle 6 € [0, 7] is the angle between the positive z-axis
and the position vector projected onto the longitudinal plane.

The pseudorapidity 7 is defined as

=—In|(ta i
77_ n 112 I

and is therefore zero in the transverse plane (z-y) and increases towards positive (negative)
infinity as it approaches the positive (negative) z-axis.
A distance AR e.g. between two particle tracks in the  — ¢ plane is defined as

AR = /(Bn)? + (AP

The transverse momentum pr, the transverse energy E and missing transverse energy K-
are defined in the x-y plane (more on these physical concepts in Sections 3.7.2 and 3.7.3).

3.6.2 The detector — a quick overview

The ATLAS detector is constructed like an onion, with layer upon layer of detector parts,
electronics and read-out systems, in an attempt to detect everything that passes through it.
The interaction point, where the proton beams collide, is in the center.

ATLAS has four main parts — the Inner (tracking) Detector (Section 3.6.4), the calorime-
ters (Section 3.6.5), the Muon Spectrometer (Section 3.6.6) and the magnet system (Section
3.6.7). Figure 3.6 shows the location of the main parts - the SCT tracker, the pixel detector
and the TRT tracker are the three main parts of the inner detector. In Figure 3.7 we see how
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Figure 3.6: A cut-away view of the ATLAS detector showing all the main components.

the ATLAS detector detects all stable® particles, except for the neutrino (and possibly parti-
cles from Beyond the Standard Model theories). The inner detector, closest to the interaction
point, detects the momentum, charge and position of all particles with electric charge. The
solenoid magnet is on the outside of the inner detector, ensuring a near-uniform magnetic
field in whole volume of the ID. Following this are the calorimeters. The electromagnetic
calorimeter (drawn in brown) detects and measures the energy of electrons, positrons and
photons by the creation of electromagnetic showers that are fully contained in the calorime-
ter. The hadronic calorimeter (drawn in blue) works much the same way as the electromag-
netic calorimeter, only with the strong interaction, creating hadronic showers. It detects and
measures the energy of hadrons, like the proton and neutron. The outermost part of ATLAS
is the Muon Spectrometer, that detects and measures the positions and momenta of passing
muons. The muon system is immersed in a magnetic field from the toroidal magnet system.
The neutrino is not detected at all, but its existence can be inferred from the missing energy
(Section 3.7.3 provides a definition).

The main performance goals of the ATLAS detector are listed in Table 3.1. Note that
while the relative energy resolution for the calorimeters improve with increasing particle en-
ergy, the relative transverse momentum resolution worsen with increasing particle transverse
momentum for the ID. This is also true for the MS, as they use conceptually the same idea for
measuring the transverse momentum. The relative muon momentum resolution is described
in more detail in Section 3.6.3.2.

3 A stable particle is in this context defined as a particle that does not decay before leaving the detector.
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Figure 3.7: The various layers of the ATLAS detector and an overview of the detectable
stable particles.

Sub-detector Relative resolution Acceptance
Measurement | Trigger

Inner detector Ope/Pr = 0.05% - p1 & 1% In] <2.5

EM calorimeter op/E =10%/VE © 0.7% In| < 3.2 In| < 2.5

Hadronic calorimeter

barrel and end-cap op/E = 50%/VE & 3% In| < 3.2 In| < 3.2

forward op/E =100%/vVE & 10% 31<n<49|31<n <49

Muon spectrometer | 0, /pr = 10% at pr = 1 TeV | || < 2.7 In| < 2.4

Table 3.1: General performance goals of the ATLAS detector. The units for energy £ and
transverse momentum pr are in GeV. The & symbol denotes addition in quadrature.

3.6.3 Measuring muon properties
3.6.3.1 Electrically charged particles

The direction, momentum and charge of electrically charged particles are measured in the
tracking detectors, the ID and the MS. As mentioned in the previous section, muons are the
only charged SM particles that pass through to the MS in the outermost layer of the ATLAS
detector. To enable the measurement of the electric charge and momentum, the tracking
detector must be immersed in a magnetic field so that the amount of bending of the particle
trajectory can be measured.

In general, a tracking detector consists of many modules which each give a signal (a hit)
when an electrically charged particle passes through it. This allows us to know the position of
the charged particle at a given time. Combining information from the hits in all the modules
traversed by the charged particle, the trajectory of the particle can be reconstructed. This
is called a track. A set of five parameters is used to define the track — the transverse and
longitudinal impact parameters dy and zj (the transverse and longitudinal distances from the
nominal interaction point where the beams collide), the polar € and the azimuthal ¢ angles
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(as defined in Section 3.6.1) and the electric charge divided by the particle momentum ¢/p
[36].
The trajectory of a charged particle in a magnetic field is bent. The motion is governed
by the relativistic equation of motion
d
d—IZ:quva, G.1)
where F is the force on the charged particle with charge ¢ going with velocity v in a plane
perpendicular to the homogeneous magnetic field of magnetic flux density B, and the rela-
ﬁmv. Because the force F is perpendicular to the
1—(2

velocity v, no work is done, and the particle’s energy ' = ymc? remains unchanged, which

tivistic momentum is p = ymv =

means that v is constant. Thus we see that

d
d—lz — yma. (3.2)
Combining Equations (3.1) and (3.2) and taking the magnitude, we get

yma = |qlvB. (3.3)

As the motion is circular, we can insert the centripetal acceleration a = ”7, with r as the
radius of the circle,

v_p

ym—===|q|B, —r P
roor

lq| B’
From this expression we see that the track of a slower particle is bent more than that of a faster
particle. Because of this, the momentum resolution of the ID gets worse with increasing

(3.4)

particle velocities. We revisit the topic of momentum resolution in Section 3.6.3.2.

In the case when the charged particle has a component of its velocity parallel to the
magnetic field,® the particle trajectory will trace out a helix, and the magnitude of the total
momentum in Equation 3.4 should be exchanged by the magnitude of the transverse momen-
tum, p,,

p1 = |q|rB. (3.5)

This expression explains how the transverse momentum of a charged particle can be mea-
sured — knowing the value of B and |g| (it is safe to assume that the charge of the final state
particles in a collider experiment is the elementary charge) and measuring the curvature of
the track r, we get the value of p,. The full momentum vector p of the charged particle can
be reconstructed by looking at the full three-dimensional track.

The bending radius r depends on the momentum of the particle, and high-momenta
charged particles in magnetic fields follow an almost straight trajectory. This makes it dif-
ficult to measure the radius directly. Consider a charged particle passing through a homo-
geneous magnetic field [37][38]. The particle follows a trajectory which is a segment of a
circle as illustrated in Figure 3.8. Using the Pythagorean theorem we get

%We here remind the reader that the magnetic field lines are parallel to the beam axis in the ID and tangential
to a circle in the transverse plane around the beam axis in the MS
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Figure 3.8: The trajectory of \ 8 (sepees)
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2
(r—s)?+ (§> =1 (3.6)

which leads to the following expression for the radius r,

2
Lt

1
5% (3.7)

r =

When only a small segment of the circle is measured (I > s) then the radius r is given by

r=—, [>s, 3.8)
8s

thus by measuring the sagitta s we get a measurement of the p, by using Equation (3.5).

|q| BI?
8s

pr = |q|Br = (3.9

3.6.3.2 Muon momentum resolution

Ideally we would measure the charged particle properties exactly, but in reality we are lim-
ited by the resolution of the detector. As noted in Table 3.1, the MS aims at measuring the
transverse momentum of a 1 TeV track with a resolution of approximately 10%. This trans-
lates into a sagitta along the beam axis of about 500 pm that needs to be measured with a
resolution of approximately 50 pm.

The relative transverse momentum resolution C;LTT can be parameterized in the MS as
follows [39][40] for a given value of 7:

MS
o\p P
(br) _po” o P ® py® - pr, (3.10)
pPr T

with @ denoting the quadratic sum. The first term accounts mainly for fluctuations of the
energy loss in the traversed material (mainly the dense calorimeters, so this is mostly relevant
when the MS measurement is extrapolated in to the ID), the second term mainly for multiple
scattering and local magnetic field inhomogeneities, and the third term mainly for the limited
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position resolution of hit measurements and the misalignment of the MS.
For the ID, the relative resolution parameterization is divided into two |n| ranges, |n| <
1.9 (well within the TRT fiducial volume) and |n| > 1.9,

o
(pr) _ pP@®py pr, nl <19, (3.11)
pr
o(pr) D D 1
= C PP ——s— 1. 3.12
Dr D1 EBpQ than207 ‘77| > 97 ( )
(3.13)

where p!P and plP are the multiple scattering and intrinsic resolution terms, respectively.

The term p' is determined from alignment studies using runs with the toroidal magnetic
field off. The remaining terms are determined using events from Z" and J/¥ decays. The
results are listed in Table 3.2. We see that for muons with low momenta, the p; term domi-
nates the resolution, and the relative momentum resolution is better in the ID than in the MS
for all regions |n| < 2.0. For muons with higher momenta (tens of GeV to hundreds of GeV)
the p, term, which is linear in pr, starts to dominate the resolution. We see that the MS has
a much better momentum resolution compared to the ID for these high-prmuons.

Region p [TeV] | piP [%] p [TeV1]

|17| < 1.05 - 1.554+0.01 | 0.417 £ 0.011
1.05 < |n| < 1.7 | - 2.554+£0.01 | 0.801 £ 0.567
1.7<n <20 |- 3.324+0.02 | 0.985 £ 0.019
20< |n <25 |- 4.86 £ 0.22 | 0.069 £ 0.003
Region S [TeV] | ;™ [%] Py [TeV 1]

In| < 1.05 0.254+£0.01 | 3.27£0.05 | 0.168 £ 0.016
1.05 < g < 1.7 | 0 6.49 + 0.26 | 0.336 + 0.072
1.7<n <20 |0 3.79+0.11 | 0.196 + 0.069
2.0 < |77| < 2.5 0.15+£0.01 | 2.82+£0.58 | 0.469 + 0.028

Table 3.2: Extracted values of the Inner Detector and Muon Spectrometer muon momen-
tum resolution terms from Equations (3.11) and (3.10) [39]. The uncertainties represent the
quadratic sum of the statistical and systematic uncertainties. A dash means the corresponding
parameter is not applicable to the current case.

Whenever two muons from the same decay have similar momentum resolution and an-
gular effects are neglected, the relative mass resolution 7+ is proportional to the relative
Hu
momentum resolution [40],
T _ iaﬂ (3.14)
Muu \/§ pr ’

1 .
a factor 7 better than for a single muon.

3.6.4 The inner detector

The inner detector (ID) is a close-to-hermetic detector that measures the momentum of
charged particles. It is shaped like a cylinder, 6.2 meters long and with a radius of 1.08
meters. Figure 3.9 shows the location of the sub-detectors in the barrel and end-caps. It
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B End-cap semiconductor tracker

Figure 3.9: A cut-away view of the ATLAS inner detector.

consists of three independent sub-detectors — the pixel detector, the semiconductor tracker
(SCT) and the transition radiation tracker (TRT) — constructed as concentric cylinders in
the barrel region and disks perpendicular to the beam axis in the end-cap region. Figure 3.10
shows tracks going through the ID at four different pseudorapidities 7. The charged track
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Figure 3.10: A schematic cross-section of the ATLAS inner detector, displaying the main
parts together with tracks at different pseudorapidities 7). Insertable B-layer not included.

momentum must be above a certain threshold, nominally 0.5 GeV, and within the pseudo-
rapidity range || < 2.5. In addition the ID can identify electrons over a large range of
energies, from 0.5 GeV to 150 GeV, with pseudorapidity within the range |n| < 2.0 (the
TRT) , and reconstruct the primary vertex from the interaction point of the proton-proton
collision and secondary vertices from decayed particles (the Pixel detector).

The whole ID is immersed in an axial, uniform 2T magnetic field, provided by the
solenoid magnet located between the inner detector and the electromagnetic calorimeter
(more details regarding the magnet system is found in Section 3.6.7). The field is homo-
geneous inside the solenoid, and the field is parallel to the beam line. Charged particles will
bend in the transverse plane (¢ is the bending plane).
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3.6.4.1 Pixel detector

Originally there were three cylindrical layers in the barrel region of the pixel detector, at
approximately 5, 9 and 12 cm distance, and six disk layers perpendicular to the beam axis,
three disks in each of the forward and backward directions, as illustrated in Figure 3.11.
A pixel module is about 6 cm long and 2 cm wide with 46080 pixels. In total, the pixel
detector has 1744 pixels detector modules, and thus approximately 80 million pixels (i.e.
readout channels) — 67 million in the barrel and 13 million in the end-cap. The intrinsic
measurement accuracies per module are 10 ym in R-¢ and 115 pm in z in the barrel region,
and 110 ym in R-¢ and 115 pym in R in the end-cap region. The pixel detector covers the
region |n| < 2.5.
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Figure 3.11: Schematic overview of the pixel detector, showing the four different layers and
the pixel disks [41].

The insertable B-layer (IBL) is a more recent addition, installed in May 2014, and is now
the innermost layer of the pixel detector. It was inserted in the gap between the existing
pixel detector and the new, smaller beam pipe. It has 244 modules, with 12 million readout
channels. The intrinsic measurement accuracies are 8 ym in R-¢ and 40 ym in z [42].

Both the pixel detector and the SCT (Section 3.6.4.2) are silicon semiconductor detec-
tors. Semiconductors are materials whose outer shell atomic levels have a distinct energy
band structure and with a large forbidden energy gap (a region without any allowed energy
levels), much greater than for conductors (which have small or no gap), but smaller than for
insulators [43]. On opposite sides of this forbidden gap is the conduction (highest energy
level) band and the valence band. When a charged particle traverses the semiconductor, va-
lence electrons are kicked into the conduction band, leaving positively charged holes behind.
Both the electrons in the conduction band and the holes in the valence band can be the charge
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carriers of an electric current.” When a charged particle, e.g. a muon, passes through the ma-
terial, it can ionize the semiconductor, creating electron-hole pairs. When an electric field is
applied to the semiconductor, the holes and electrons create a current that can be measured.
The average energy required to create electron-hole pairs is about 10 times smaller than for
gas ionization (which is what is used e.g. in the MS, more details about this is located in
Section 3.6.6).

Because of the excellent spatial resolution and 3-dimensional position measurement, the
pixel detector plays a key role in the reconstruction of charged particles and primary and
secondary vertices.

3.6.4.2 SemiConductor Tracker

The SemiConductor Tracker (SCT) is the middle part of the inner detector, located between
the pixel detector and the Transition Radiation Tracker (Section 3.6.4.3). As for the pixel
detector, the modules are placed in concentric cylinders around the beam axis in the barrel
and on disks perpendicular to the beam axis in the end-caps. Particles from a collision
typically traverse the eight strip layers of the SCT (four points in space), which enables the
SCT to measure momentum, impact parameter and vertices.

There are four layers in the barrel region, at radii of 299 mm, 371 mm, 443 mm, and
514 mm from the z-axis, with a total of 2112 silicon modules [44]. The two end-caps are
made up of 9 disks each with a total of 1976 modules located between 835 and 2788 mm
from the interaction point. Figure 3.12 offers a schematic view of the layout of the SCT,
showing the location of the layers.
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Figure 3.12: A schematic view of the layout of the SCT [44]. The radial and longitudinal
coordinates are given in millimeters. The green and blue colors on the modules denotes
sensors from different suppliers.

"The holes are not actually moving. When a hole is present, a neighbouring valence electron might jump
into it, leaving a new hole behind. A series of these events can be seen as an apparent movement of a positive
hole.
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The barrel modules are all equal, with strips that are approximately parallel to the mag-
netic field. Each module consists of two silicon-strip sensors, and two identical silicon-strip
sensors glued back-to-back with the first pair at a small angle (40 mrad). The modules are
mounted in such a way that the plane of the modules are approximately tangential to a cir-
cle around the beam-axis, overlapping by a few millimeters to provide hermetic tiling in
the transverse plane ¢. The endcap disks consist of up to three rings of modules containing
trapezoidal sensors, with the strip direction being radial. The intrinsic accuracies are 16 ym
in R-¢ and 580 pum in z (barrel) and R (end-caps) per module [34]. In total the SCT has
about 6.3 million readout channels

3.6.4.3 Transition Radiation Tracker

The outermost part of the inner detector is called the Transition Radiation Tracker (TRT).
The barrel section is built of individual modules with between 329 and 793 straws each, all
parallel to the beam axis, located at between 56 and 107 cm from the z-axis. Each end-cap
consists of 18 wheels. The 14 nearest to the interaction point are located between 64 and
103 cm from the center, in the z-direction, while the last four wheels extend out from 848 to
2710 cm, with radii between 617 and 1106 mm. In total there are about 50000 straws in the
barrel section and 320000 in the end-caps.

A wire with a diameter of 4 mm is strung in the middle of each straw. When a charged
particle passes through the straws, the Coulomb interaction between the particle and elec-
trons in the gas can free some of the electrons. Holding the outer wall at high negative
voltage, the wire in the middle will act as the anode and the outer wall as the cathode, sepa-
rating the now freed electrons from the ionized gas. If electrons are freed close to the wire,
they will be seen almost immediately. If not, they will have a drift time of at most 40 ns [45].
The drift time is used to infer the distance from the wire. Typically a track will leave 36 hits
in the TRT.

Due to the construction, the TRT only provides R-¢ information. Each straw has an
measurement accuracy of 130 ym. The TRT covers the pseudorapidity range |n| < 2.0.

The TRT also has the ability to distinguish between electrons and hadrons. The straws
are filled with a xenon-gas® (70% Xe, 20% CO,, 10% CF,), and when a relativistic particle
crosses an inhomogeneity e.g. the boundary between the gas filled wire and the area outside,
it has a probability of radiating energy in the form of a photon. The TRT can separate
electrons from charged pions by using the fraction of high threshold (HT) hits’ on the track.
The probability of generating a HT hit depends on the Lorentz y-factor (y = \/1_) of the

1—22
particle. Figure 3.13 shows the HT probability as a function of the y-factor for the barrel
section of the TRT for electrons and muons from J/W¥ and Z° decays. The probability is
small for y-factors under 10® and rapidly increasing between 10° and 10%. Note that the
heavier muons reach the turn-on curve at much higher momentum than the lighter electrons.
When the muon momentum reaches several GeV, the HT probability increases. At particle

80riginally at least. Due to gas leaks, parts of the TRT are now flushed with a gas composed mainly of the
much cheaper argon [46].
°Hits generating a pulse in the electronics above a defined threshold value
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momenta above approximately 100 GeV, the pions emit transition radiation at a comparable
rate to electrons, making them indistinguishable to the TRT [46][33].

T T T T T T T T T

> ny |
= 0.5 .
a C \s=7 TeV ATLAS Preliminary 7
Figure 3.13: The probability for 8§ - Data 2011 .
o 04F 3
electrons and muons from .J/¥ § ~F  nic0625 ]
and Z° decays to emit transi- 2 03k " Date, o from I E
tion radiation that triggers the high % S Simolaton. o from 000 ]
. . . o - NVERi Py~ i
threshold limit as a function of the £ ,F & Data - rom a1 I i
. . ] i Simulation, p* fi + N
~-factor for tracks within the TRT S T Simulaton,j rom A:{& .
barrel region [46]. Data points L 0.1~ o =
are presented as solid symbols and - i —c y-factor ]
simulation as open symbols. OL——nnl vl il il ]
pen 5y 10 107 10° 10* 10°
10 10° 10 10°
Muon momentum [GeV] Electron momentum [GeV]

Figure 3.14 shows the charged pion misidentification probability for the HT fraction
criteria that ensures a 90% electron identification efficiency as a function of |r|. The per-
formance of the detector is better than expected, especially for higher values of |7], as is
easily seen when comparing simulation to data. Overall the misidentification probability is
well below 10%, going as far down as 1% and lower for certain parts of the pseudorapidity
interval. The observed shape is correlated to the number of TRT straws crossed by the track,
which is low in the transition region between the barrel and end-cap at 0.8 < |n| < 1.1 and
at the highest values above |n| < 1.8.
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3.6.5 The calorimeters

There are two main parts of the ATLAS calorimeter system — the electromagnetic calorimeter
(ECAL) and the hadronic calorimeter (HCAL), as illustrated in Figure 3.15. The purpose of
these systems is to measure the energy and direction of photons and electrons (ECAL), and
hadrons (HCAL). They cover the range || < 4.9.
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Figure 3.15: A cut-away view of the ATLAS calorimeters system, showing both the ECAL
(LAr) barrel and end-caps and the HCAL (Tile) barrel and end-caps.

3.6.5.1 LAr electromagnetic calorimeter

When a photon, electron or positron enters the electromagnetic calorimeter, it interacts elec-
tromagnetically with the material in the calorimeter and initiates an electromagnetic shower.
The electron/positron emits bremsstrahlung and the photon pair-produces an electron-positron
pair. Depending on the energy of the incoming particle this happens time and time again,
producing a shower that points in the direction of the original particle. The showering con-
tinues until the electrons/positrons/photons have so little energy left that collision effects
dominate over pair-production. The larger the energy of the incoming particle, the deeper
the shower is.

The electromagnetic calorimeter is a lead-liquid Argon (LAr) calorimeter. The barrel
part of the ECAL extends out to || < 1.475, and the two end-caps cover the range
1.375 < |n| < 3.2. The barrel itself is divided into two identical half-barrels that are sepa-
rated by 4 mm at z = 0. The length of a half-barrel is 3.2 m, and their inner and outer di-
ameters are 2.8 m and 4.0 m respectively. The end-caps are divided into two coaxial wheels,
the inner wheel covering 2.5 < || < 3.2 and the outer wheel covering 1.375 < |n| < 2.5.
The region |n| < 1.8 also has a presampler detector that is used to correct for energy loss by
electrons and photons before reaching the calorimeter (e.g. inner detector, cryostats).

The section |n| < 2.5 is devoted to precision physics. In this region, the calorimeter has
three different segments in depth, as illustrated in Figure 3.16. For the region 1.5 < |n| < 3.2
and in the overlap between the barrel and end-caps, there are two layers. Most of the energy is
deposited in the middle layer, while the back layer catches the tail of the shower, enabling the
reconstruction of the incident particle energy. The first, highly segmented layer in direction
of 7, ensures a precise reconstruction of the particle direction.
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Figure 3.16: Sketch of the ECAL modules, showing the three layers [47]. The parameter
Xy is the radiation length, a characteristic of a material, the mean distance an electron or
positron travels before loosing all but % of its energy by bremsstrahlung [48].

3.6.5.2 Hadronic calorimeter

The hadronic calorimeter works in much the same way as the electromagnetic calorimeter,
only there are hadrons initiating the hadronic showers through the strong interaction. The
HCAL is quite dense to ensure that the entering hadrons come close enough to the nucle-
ons to interact strongly and initiate a hadronic shower. New hadrons, mostly pions, are
created in these collisions and can interact further with the material. However, hadronic
showers are much more complicated than their electromagnetic siblings, as they also have
an electromagnetic component, e.g. electrically neutral pions 7° decay almost exclusively to
diphotons. Also leptons and neutrinos from hadronic decays makes it hard to get a precise
measurement of the energy of the incoming particle.

There are three subdetectors in the hadronic calorimeter: the tile calorimeter, the LAr
hadronic end-cap calorimeter (HEC) and the LAr forward calorimeter (FCal).

The tile calorimeter is situated just outside the ECAL and covers the region up to
In| < 1.7. Itis a sampling calorimeter'” that uses steel as the absorber and plastic scintillating
tiles as the active material. It is divided into a 5.8 m long central barrel and two extended
barrels 2.6 m long with an inner radius of 2.28 m and an outer radius of 4.25 m.

The HEC is a copper-liquid argon sampling calorimeter. It covers the range

1.5 < |n| < 3.2 and consists of two wheels in each end-cap. The wheels have a radius of
2.03 m.

10A sampling calorimeter has layers of passive absorber alternating with active detector layers, in constrast
to homogeneous calorimeters that have a single medium throughout the volume of the detector.
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Lastly, the FCal covers the range 3.1 < || < 4.9, located about 4.7 m from the interac-
tion point.

3.6.6 Muon Spectrometer

The only SM particles that are not stopped in the ATLAS detector, are muons and neutrinos.
Of these, only muons can be detected directly. This is done in the Muon Spectrometer (MS).
Figure 3.17 illustrates the various subdetectors of the MS. This is the outermost part of the
ATLAS detector, and its purpose is to measure the momentum of all electrically charged
particles that exit the calorimeters in the pseudorapidity range |n| < 2.7. In the range |n| <
2.4 it also acts as a hardware-based trigger. The MS can singlehandedly and quite accurately
measure the momentum of particles down to a few GeV and up to several TeV, or it can
combine forces with the ID for an even more accurate measurement of the muon properties.
The relative muon momentum resolution was discussed in Section 3.6.3.2).

Thin-gap chambers (TEC)

Cathode strip chambers (CSC)

Barrel toroid

Resistive-plate
chambers (RPC)

End-cap toroid
Monitored drift tubes (MDT)

Figure 3.17: A cut-away view of the ATLAS Muon Spectrometer [49].

For |n| < 1.4, magnetic bending is provided by the large toroid magnets in the barrel.
The magnetic flux density is about 1 T. Between 1.6 < || < 2.7, magnetic bending is
provided by two smaller end-cap magnets. The magnetic flux density in the end-caps are
about 0.5 T. In the transition region 1.4 < |n| < 1.6 the magnetic field is a combination
of the two. The magnetic field is tangential to a circle in the transverse plane around the
beam axis, thus bending the charged particles (muons) in the longitudinal plane (1 defines
the bending plane).

The muon chambers in the barrel are composed of three concentric cylindrical shells,
with the beam axis on the axis of the cylinder. The radii of these shells are approximately
5 m, 7.5 m and 10 m. In the end-cap regions the muon chambers form large wheels, with
the center of the wheel located on the z-axis about 7.4 m, 10.8 m, 14 m and 21.5 m from the
interaction point. Figure 3.18 shows two different cross-sections of the Muon Spectrometer.

The muon system is composed of four sub-detectors: the Monitored Drift Tube cham-
bers and the Cathode-Strip Chambers are the precision trackers while the Resistive Plate
Chambers and the Thin Gap Chambers are supporting trackers and triggers.
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(a) Cross-section of the muon system in the longitudinal plane, the
plane containing the beam axis. The dashed lines are the trajectories
of muons with infinitely large momenta.
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(b) Cross-section of the muon system in the transverse plane, the
plane perpendicular to the beam axis, showing the three concentric
cylindrical layers with eight small and eight large chambers. [50]

Figure 3.18: Cross-sections of the muon system in the longitudinal (a) and transverse (b)
planes.
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3.6.6.1 The Monitored Drift Tube chambers

The Monitored Drift Tube chambers (MDT) are the main tool for precision momentum mea-
surement. They cover the range |7| < 2.7, except in the innermost end-cap layer where they
cover up to |n| < 2.0. They consist of three to eight layers of drift tubes. The resolution is
80 pm per tube, or approximately 35 pm per chamber.

The MDT chambers are rectangular in the barrel and trapezoidal in the end-caps. The
direction of the tubes in the chambers in the barrel and end-caps are along ¢, i.e. the center
of each tube is tangential to circles around the beam axis. All MDT chambers consist of two
groups of tube layers, so-called multi-layers. In the inner layer of the MDT, each multi-layer
consists of four tube layers, while in the middle and outer layer each multi-layer consists of
three tube layers. Figure 3.19 shows the structure of a MDT chamber in the barrel.
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Figure 3.19: The mechanical structure of a barrel MDT chamber [33].

The tubes are drift tubes, each with a diameter of 29.970 mm, filled with Ar/CO, gas
at a pressure of 3 bar. When a muon passes through a straw, the gas inside is ionized, as
illustrated in Figure 3.20. The freed electrons drift toward the wire (a tungsten-rhenium wire
with diameter 50 pm, held at a potential of 3080 V) in the center of the drift tube and are
registered there.

MTT) is dominated by the term

At high momentum, the relative muon pr resolution
P - pr, as discussed in Section 3.6.3.2, where the term p}™ mainly accounts for the limited
position resolution of the detector parts and the misalignment of the MS. For the MDT,
the design resolution is 80 um for the single-hit spatial resolution, and according to recent
measurements [51] the current resolution approaches the design value for all MDT chambers

in the MS.

3.6.6.2 The Cathode-Strip Chambers

The region |n| > 2.0 is subject to high doses of radiation, and here the first layer of the
MDTs is replaced by the much more radiation hard Cathode-Strip Chambers (CSCs). They
cover the region up to || < 2.7. In addition to being more radiation hard, the CSCs also
have better time resolution than the MDTs.
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Cathode Tube

Figure 3.20: Cross-section of a MDT
tube, showing the ionization of the
gas in the tube when a muon tra-
verses the medium [33].

T
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As can be seen from Figure 3.21, the CSCs have eight small and eight large chambers,
segmented in ¢, in each end-cap. Each chamber has four CSC planes, which allows for four
independent measurements of 7 and ¢ along the particle trajectory. They are located at a
distance of about 7 m from the interaction point, measured along the beam line. Together
with the MDTs and the TGCs (Section 3.6.6.3) they form the “small wheel”, with inner
radius 881 mm and outer radius 2081 mm, corresponding to the range 2.0 < |n| < 2.7.

7 /
Figure 3.21:  Layout of 8 \ ;
a CSC end-cap showing T \
T \

clearly the eight small and
eight large chambers.

The CSCs are multiwire proportional chambers with wires going outward in the radial
direction from the beam line. As illustrated in Figure 3.22, they have plates segmented into
strips as cathodes and wires going orthogonal to the strips as anodes (measuring the precision
coordinate 7 in the bending plane), but also strips going parallel to the wires, measuring the
position in the non-bending (¢) plane [33]. The cathode strips are held at a high negative
voltage compared to the anode wires. When a muon traverses the chamber, it ionizes the gas
mixture (80% Argon, 20% CO,) in the chamber. The liberated electrons and ions drift toward
the nearest anode wire and opposing cathode strip respectively. When the electrons are close
enough to the wire, the electrical field increases rapidly and accelerates the electrons. The
electrons collide with the material in the detector, creating an avalanche of freed electrons
and positive ions. The electrons are collected very quickly (~ 1 ns) while the positive ions
drift towards the cathode [43]. This process induces a signal that can be read out of from the
cathode strips. The n and ¢ coordinates are inferred from the induced-charge distribution.

58



The resolution is 60 pm per CSC plane in the bending direction (1), and 5 mm in the non-
bending direction (¢).

Figure 3.22: Segmentation of a CSC
cathode, showing the cathode strips
that are held at a high negative volt-
age, and the anode wires held at a
high positive voltage.

3.6.6.3 The Resistive Plate Chambers and the Thin Gap Champers

A trigger system is needed to make a quick decision on whether the data from a certain event
should be stored or not. This is done by Resistive Plate Chambers (RPCs) in the barrel region
and Thin Gap Chambers (TGCs) in the end-cap region. The trigger detectors (the L1 muon
trigger, described in Section 3.6.8) provide acceptance in the range |n| < 2.4 and over the
full ¢-range.

The RPCs are in the barrel section of the ATLAS detector and consist of three concentric
cylindrical layers around the beam axis (the three trigger stations) at radii of approximately
S m, 7.5 m and 10 m [52]. Each station consists of two independent layers, each of which
measures both 77 and ¢, giving a total of six measurements for a track going through all three
layers. The chambers in the barrel region are located in between and on the eight coils of
the superconducting toroid magnet (more details can be found in Section 3.6.7). The RPC
is a gaseous parallel electrode-plate detector. Each RPC unit consists of two resistive plates
parallel to each other at a distance of 2 mm, one held at a high voltage and the other at
ground. The passage of a charged particle (i.e. a muon) causes ionization, and an avalanche
of electrons is created in the field between the plates, and the signal is read out.

The TGCs are a type of multiwire proportional chambers that form large wheels in the
end-caps. The middle layer of the MDTs in the end-cap are accompanied by seven layers of
TGCs while the inner layer is accompanied by two layers of TGCs. The inner layer is further
divided radially into two non-overlapping regions: the end-cap and forward. The TGCs also
measure the azimuthal coordinate ¢ in the non-bending plane.

3.6.7 Magnet system

The ATLAS superconducting magnet system consists of one solenoid and three toroids (one
barrel and two end-caps), as shown in Figure 3.23, all held at a temperature of about 4.6 K.
The inner and outer diameters of the solenoid are 2.46 m and 2.56 m, and the length is
5.8 m. Itis aligned on the beam axis and provides a 2 T magnetic flux density in the volume
of the whole inner detector directed along the beam axis.
The overall size of the barrel toroid magnets is 25.3 m in length, and with inner and outer
diameters of 9.4 m and 20.1 m. The toroid magnet produces a toroidal magnetic flux density
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of approximately 0.5 T and 1 T in the central and end-cap regions respectively. The field
is tangential to a circle parallel to the transverse (¢) plane. The eight barrel toroid coils are
interleaved with the end-cap coils.

Figure 3.23: The ATLAS magnet system, showing the central cylinder containing the
solenoid windings and the toroid magnet system coils.

3.6.8 Trigger system

The ATLAS trigger system decides which events to keep for further analysis and which
events to discard. This is a crucial part of the operation, as events containing New Physics,
should it manifest at this energy, could be thrown away.!!

The Run 2 trigger system consists of the hardware-based Level-1 (L1) trigger and the
software-based high level trigger (HLT). The L1-trigger determines Regions-of-Interests
(Rols) in the detector by taking coarse granularity input from the calorimeters and the muon
detector, reducing the event rate from approximately 30 MHz to 100 kHz, leaving the L1
trigger with 2.5 pus to decide to keep or discard each event. Possible signatures of events
to keep are high-pr muons, electrons, photons and jets, or large missing transverse energy
(MET) and large total transverse pr.

Each Rol is sent to the HLT where sophisticated algorithms using the full granularity
detector information reduces the rate from 100 kHz to approximately 1 kHz. The processing
time is about 200 ms per event.

"'This section is mainly based on [53].
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3.7 Relevant physics concepts at the LHC

3.7.1 Luminosity

The instantaneous luminosity is an important parameter for a particle collider, measuring
how many particle collisions there are per square centimeter per second (cm~2s™1),

ning

L=
/s ooy
where n; and ny are the number of particles in bunches 1 and 2 that go in opposite direc-
tions and collide head-on with frequency fg, and o, and o, denote the transverse size of the
beam [48]. Nominal values for these parameters are listed in Table 3.3. The LHC was de-
signed to collide 2808 bunches consisting of 10!! protons each up to 40 million times per sec-

ond at a center of mass energy of 14 TeV, with an instantaneous luminosity of 1034 cm=2s7L.

Parameter | Value Comments

N 2808 Number of bunches

o 16.7 pm Transverse beam size (o, = o0y)
fB 40 MHz Bunch crossing frequency

n 1.15 x 10! | Protons per bunch

Table 3.3: Nominal beam parameters [54].

The time integral of the instantaneous luminosity £, the integrated luminosity [ Ldt, is
a quantity used as a measure of the amount of data collected, in units of inverse barns, a unit
that is reversely proportional to length squared. One barn (1 b) is equal to 10~2® m?.

The event rate R, the number of events per second, dN/dt, for any given process is

proportional to the instantaneous luminosity,

R=— —
dt

oL,

where o is the theoretical process cross-section, given by the Standard Model for ordinary
SM processes, or a BSM theory for BSM interactions. The cross-section is measured in
barns.

The expected number of events N for any given process, e.g.

pp— 2+ X - + X,

Nza/ﬁdt,

with o as the cross-section of the particular process in question.

is given by

3.7.2 Transverse momentum

In the ATLAS coordinate system, as described in Section 3.6.1 and drawn schematically in
Figure 3.5, the beam pipe is parallel to the z-axis. The plane perpendicular to the beam axis,
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the x -y-plane, or ¢-plane, is referred to as the transverse plane. The transverse momentum,
pr, 1s the component of the momentum in the transverse plane