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Abstract

We investigate the cosmological implications of a two-component dark matter superfluid
as proposed by Ferreira et al. (2019). Through contact interactions between the axion-
like particles in these components, a late-time potential dominates the energy content of
the universe and leads to vacuum energy-like accelerated expansion. We test this model
in three ways: by evolving the Hubble parameter to very late-times, by comparing the
luminosity distance to type 1a supernova observations, and by comparing theoretical
values of the CMB shift parameter and dark matter density parameter to those from
WMAP.

In terms of the Hubble parameter, we find that it is similar to ΛCDM from the surface
of last scattering until the present when the interaction potential causes a significant
difference. We find that the luminosity distances predicted by the model agree with
supernova distance moduli for z < 1.3 for a certain range of energy gaps between the
two superfluid states. Finally, given accepted CMB shift parameter values, we derive
constraints on the dark matter density parameter Ωm = .255± .035, which agrees with
that from SDSS-II/SNLS results of Ωm = .295± .035.
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Chapter 1

Introduction

The Lambda Cold Dark Matter (ΛCDM) model is currently regarded as the standard
cosmological paradigm: it describes the evolution, matter content, and large-scale struc-
ture of the Universe with remarkable accuracy [1]. It posits that the accelerated expan-
sion of the universe is caused by some dark energy that acts like a cosmological constant
(hence Λ), as well as the existence of a cold (i.e. non-relativistic), pressureless fluid of
weakly interacting particles, termed dark matter (hence CDM ), whose existence has
robust indirect observational evidence [2].

ΛCDM is not without its deficiencies, however. The Standard Model of particle physics
does not predict the existence of anything akin to dark matter and any direct detection
or production remains elusive. There are also several notable small-scale problems with
ΛCDM that have been observed, including: the Baryonic Tully-Fisher relation [3], the
"Too Big to Fail" problem [4], and the cusp/core problem [5] (see [6] for a list of several
others). If dark energy is truly described by a cosmological constant, then there is
a discrepancy between the value as deduced from cosmology and that predicted by
quantum field theory (which by some estimates differs by 120 orders of magnitude),
leading to the cosmological constant problem [7].

In an attempt to remedy discrepancies on small-scales, Milgrom (1983) [8] proposed
replacing particle dark matter with modified Newtonian dynamics (MOND) on galac-
tic scales, such that gravitational acceleration differs from Newtonian predictions. Its
successes are apparent in its agreement with the Baryonic Tully-Fisher Relation and
flat galactic rotation curves. MOND is not effective however on galactic cluster-scales,
where the dynamics can again be described by ΛCDM.

This motivates the introduction of a new model that includes the successes of ΛCDM
on large scales while also preserving MOND on galactic scales. Recent publications
attempting to unify the two have utilized a theory of superfluid dark matter. Ferreira et
al. (2019) in [9] developed a theory of superfluid dark matter (hereafter the Berezhiani-
Ferreira-Khoury or BFK model) that is able to explain the evolution of the Universe
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through the matter dominated epoch to the present, while also accounting for late-
time cosmic acceleration. They posit that dark energy is the potential resulting from
the interaction between two Bose-Einstein condensed dark matter states in galactic
halos. This model effectively unifies the dark sector while also accounting for ΛCDM
observations and MONDian effects.

This thesis is organized as thus: an introduction to the theory of accelerated expansion
resulting from popular (but ultimately insufficient) theories, namely, the cosmological
constant, quintessence, and (briefly) modified gravity (Chapter 2); Chapter 3 provides
an overview of Bose-Einstein condensates and their connection to superfluidity in the
languages of statistical mechanics and field theory/symmetries; with these two chapters,
we are able to discuss the BFK model in-depth both qualitatively and quantitatively
in Chapter 4; and finally in Chapter 5 we perform cosmological and numerical tests on
the BFK model and compare the results to those from ΛCDM.

Therefore, the goal of this work is three-fold: to provide a comprehensive introduction
to dark matter in a superfluid state and its connection to late-time accelerated expan-
sion, to elucidate the intermediary steps in Ferreira et al.’s derivations and qualitative
descriptions, and to test their model with observational data.

A Note on Notation
One should make note of the conventions used throughout this work: we use natural
units where c = ~ = kB = 1, and the metric signature (−, +, +, +). Greek indices
run from zero to three and represent spacetime coordinates, while Latin indices go from
one to three and generally represent spatial coordinates; Einstein summation notation
is implied for repeated indices. We assume a spatially-flat universe (i.e. there is no
curvature).

All code for this project can be found at: [GitHub].

https://github.com/azieg/superfluid-dark-matter-cosmo


Chapter 2

The Dark Energy Problem

Evidence for the accelerated expansion of the Universe is abundant (as evident in su-
pernova observations [10], for example), yet the underlying mechanism remains elusive.
There are two ways in which one may mathematically account for this: given Einstein’s
field equations, either modify the energy content of the universe to include a dark energy
component - popular choices include a cosmological constant and quintessence (among
many others) - or modify the dynamics of spacetime as in modified gravity theories (c.f.
f(R)). This chapter discusses the aforementioned examples with a particular emphasis
on dark energy models.

2.1 The Cosmological Constant

Although originally introduced by Einstein to describe his static universe model, the
inclusion of a constant Λ (the cosmological constant) to the field equations is one way
to produce accelerated expansion in a universe. The Einstein field equations are thus

Gµν + Λgµν = 8πGTµν . (2.1)

Here Gµν is the Einstein tensor while G is the Newtonian gravitational constant. If we
assume that Λ contributes to the total energy density of the universe, then we should
find its contribution to the energy-momentum tensor Tµν . To do this, we first introduce
the notion of the line element: how distance is measured in spacetime

ds2 = gµνdx
µdxν . (2.2)

This says that the infinitesimal distance ds2 between two events with coordinate distance
dxµ is given by the metric tensor.

By assuming the universe is expanding, homogeneous, and isotropic,† we can express
†Assuming a homogeneous and isotropic universe is known as the cosmological principle. Homogeneity
assumes that on sufficiently large scales, matter is evenly distributed. Isotropy is defined such that a
freely-falling observer (one that moves with the average velocity of local galaxies) measures little to
no variation in radiation in any direction.
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the line element with the Friedmann-Lemaître-Robertson-Walker (FRLW) metric

ds2 = −dt2 + a2(t)δijdx
idxj (2.3)

(δij is the Kronecker) so that the metric tensor is

gµν =


−1 0 0 0
0 a2 0 0
0 0 a2 0
0 0 0 a2

 . (2.4)

We choose to describe the matter content as a perfect fluid‡

Tµν = (ρ+ p)UµUν + pgµν (2.5)

Tµν =


ρ 0 0 0
0 p/a2 0 0
0 0 p/a2 0
0 0 0 p/a2

 (2.6)

such that (2.6) is in the frame of an observer locally co-moving with the fluid. The
conservation of Tµν is given by

∇µTµ0 = ∂µT
µ0 + ΓµµσT

σ0 + Γ0
µσT

µσ = 0 (2.7)

= ρ̇+ 3
ȧ

a
(ρ+ p). (2.8)

This is solved using an equation of state

p = wρ (2.9)

so that the solution to (2.8) goes as

ρ ∝ a−3(1+w). (2.10)

From the second Friedmann equation [11]

ä

a
=
−4πG

3
(ρ+ 3p) (2.11)

the condition for acceleration is ä > 0, which implies

ρ+ 3p < 0. (2.12)

A reasonable assumption is to only consider dark matter (pm = 0) and dark energy

ρm + ρΛ + 3pΛ < 0 (2.13)

‡p, ρ, and Uµ are the pressure, density, and four-velocity of the fluid respectively.
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but at late times ρm � ρΛ

ρΛ + 3pΛ < 0

(1 + 3wΛ)ρΛ < 0

⇒ wΛ < −
1

3
(2.14)

where in the second line we used the relation (2.9). Therefore, in order to have an
accelerating universe, the equation of state parameter for dark energy should be less
than negative one third. A natural physical interpretation for the cosmological constant
is the vacuum energy contributions from all Standard Model fields. In quantum field
theory, the vacuum state§ of a quantum field is the field’s lowest energy state in which
no particles inhabit, but is not necessarily zero, either. In general relativity though,
all energy gravitates, so these zero-point energies should be included in Tµν . If we are
indeed considering a vacuum energy, then we must ensure that it is Lorentz invariant.
By requiring this, we find that w = −1 implying

p = −ρ (2.15)

because the energy density must be homogeneous [12]. Now by substituting (2.15) into
(2.5), we get the energy-momentum tensor for Λ

Tµν,Λ = ρΛgµν (2.16)

and by introducing this into the Einstein field equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTmatterµν + 8πGρΛgµν

⇒ ρΛ =
Λ

8πG
. (2.17)

We also find that the scale factor evolves as a ∝ eH0t (compare to aγ ∝ t1/2 and
am ∝ t2/3, the scale factors of radiation and matter, respectively).

Why does it not work?

The most pressing issue with having a cosmological constant that acts like vacuum
energy is an enormous discrepancy between the energy density of the vacuum energy
implied from observation and that from theory. We quote values from [13] for conve-
nience. Energy density is equivalent to a quartic mass scale: ρΛ = M4

vac. One expects
the ratio of the theoretical value to the observed value to be of the order 1, but instead

Mvac, theory

Mvac, obs
=

MPlanck

Mvac, obs
∼ 1018GeV

10−12GeV
∼ 1030. (2.18)

§Also known as the zero-point energy.
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The origin of the oft-quoted O(120)-discrepancy come from raising this to the fourth
power (in reference to the energy density), but O(30) is a bit more "fair". Neverthe-
less, a discrepancy of thirty orders of magnitude is hard (if not impossible) to rectify
and is the source of the cosmological constant problem. The answer as to why the
cosmological constant is so small compared to predictions from the Standard Model is
an elusive and long-standing problem, naturally leading researching to look elsewhere
for an explanation of dark energy. Arguably the simplest alternative is a light scalar
field dubbed quintessence. Using a scalar field to explain dark energy phenomena does
not necessarily preclude a non-zero vacuum energy, but generally in alternatives to the
cosmological constant, Λ = 0. This is because the observed energy density is already
incredibly small and evidently the Standard Model zero-point energies do not contribute
as expected. Also by assuming Λ = 0, analysis is simplified: attempting to attribute
observations to two different sources could result in degeneracies and it would likely be
difficult (impossible) to attribute individual contributions.

2.2 Quintessence

Quintessence models of dark energy are characterized as scalar fields minimally coupled
to gravity with a time-dependent equation of state. One find that certain potentials
cause late-time accelerated expansion. Let us then consider the action S[Φ, gµν ] of a
homogeneous, real, scalar field Φ(t) in a gravitational field with metric gµν and vary it
with respect to the metric

S[Φ(t), gµν ] = Sgravity[gµν(xβ)] + Smatter[Φ(t), gµν ]. (2.19)

The equations of motion follow from the principle of least action

δS

δgµν
=
δSgravity
δgµν

+
δSmatter
δgµν

= 0. (2.20)

From the action, we can derive an expression for the energy-momentum tensor of the
field. This in turn gives expressions for the density and pressure associated with the
field. These two quantities are then used in the calculation of the equation of state and
this is compared to the equation of state for the cosmological constant. The energy-
momentum tensor for the scalar field

Tµν ∼
δSmatter
δgµν

(2.21)

Tµν δg
µν ∼ δSmatter

Tµν δg
µν ∼ δ

∫
d4x
√
−g
(
−1

2
gσγ∂σΦ∂γΦ− V (Φ)

)
=

∫
d4x

{
δ
(√
−g
)(
−1

2
gσγ∂σΦ∂γΦ− V (Φ)

)
+
√
−g δ

(
−1

2
gσγ∂σΦ∂γΦ− V (Φ)

)}
.
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A useful identity helps us progress [14]

δ
√
−g = −1

2

√
−g gµνδgµν : (2.22)

Tµν δg
µν ∼

∫
d4x

{
−1

2

√
−ggµνδgµν

(
−1

2
gσγ∂σΦ∂γΦ− V (Φ)

)
+
√
−g
(
−1

2
δgσγ∂σΦ∂γΦ

)}
= −1

2

∫ √
−gd4x

{
∂µΦ∂νΦ + gµν

(
−1

2
gσγ∂σΦ∂γΦ− V (Φ)

)
︸ ︷︷ ︸

Tµν

}
δgµν .

Then by identifying a factor of −2/
√
−g

⇒ Tµν ≡
−2√
−g

δ

δgµν
Smatter. (2.23)

The density and pressure of the field are found from the trace of the energy-momentum
tensor Tµν = diag(−ρ, p, p, p)

gµαTαν = Tµν = gµα∂αΦ∂νΦ + gµαgαν

(
−1

2
gσγ∂σΦ∂γΦ− V (Φ)

)
ρ = −T 0

0 = −
{
∂0Φ∂0Φ + δ0

0

(
−1

2
gσγ∂σΦ∂γΦ− V (Φ)

)}
= −

{
−∂0Φ∂0Φ +

(
−1

2

(
−∂0Φ∂0Φ + ∂iΦ∂iΦ

)
− V (Φ)

)}
= Φ̇2 −

(
1

2
Φ̇2 − 1

2
(∇Φ)2 − V (Φ)

)
=

1

2
Φ̇2 + V (Φ) ; (2.24)

p = T ii = ∂iΦ∂iΦ + δii

(
−1

2
gσγ∂σΦ∂γΦ− V (Φ)

)
= (∇Φ)2 +

(
1

2
Φ̇2 − (∇Φ)2 − V (Φ)

)
=

1

2
Φ̇2 − V (Φ) . (2.25)

Using the definition for the equation of state w (2.9) as before

w =
p

ρ

=
1
2 Φ̇2 − V (Φ)
1
2 Φ̇2 + V (Φ)

. (2.26)
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Reference back to the second Friedmann equation and substitute in our expressions for
ρ and p

ä

a
=
−4πG

3
[ρ+ 3p]

=
−4πG

3

[
1

2
Φ̇2 + V (Φ) + 3

(
1

2
Φ̇2 − V (Φ)

)]
=
−8πG

3

[
Φ̇2 − V (Φ)

]
; (2.27)

thus ä/a > 0 only when V (Φ) > Φ̇2. If we assume the field is slowly rolling (i.e.
V (Φ)� Φ̇2), then we recover the equation of state for the cosmological constant

w ≈ −V (Φ)

V (Φ)
≈ −1. (2.28)

What is wrong with quintessence?

Currently no scalar field similar to quintessence is predicted by the Standard Model,
forcing one to look at physics beyond the Standard Model. Even then, one is hard-
pressed to find a suitable candidate: since the mass of the field is very small, it leads to
fine-tuning issues. This follows from the fact that the mass of the quintessence field is
proportional to the steepness of its potential: in order to produce an equation of state
of -1, the mass must be very small.

2.3 Alternative Theories of Gravity

The mathematics portion of this section follows a review of f(R) theories in [15]. As
opposed to modifying the matter-energy content of the universe (such as in models of
quintessence), alternative gravity theories (usually modified gravity) modify the geomet-
ric side (Rµν − 1

2Rgµν) of Einstein’s equations. Proponents of modified gravity theories
may argue that our current description of gravity insufficiently describes gravitational
dynamics and leads to phenomena currently labeled as "the dark sector". That is ex-
tensions to gravity can account for dark matter and dark energy. A useful toy model in
this case is a scalar f(R) theory where the Ricci scalar R in the Einstein-Hilbert action

S =
1

16πG

∫
d4x
√
−gR

is replaced by a function of R

S =
1

16πG

∫
d4x
√
−gf(R). (2.29)

Arguably a large problem with modified gravity theories is that aside from a few select
f(R), Einstein’s equations become extremely difficult to work with and solve. While
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mathematical rigor does not itself exclude the idea of modified gravity, one can argue
that it seems unnatural to modified spacetime geometry given the extraordinary corre-
spondence between general relativity and observational evidence. Whatever the case,
this thesis is primary concerned with particle dark matter, so we will leave the above
as simply another avenue down which one can arrive at dark energy phenomena.

This chapter served as an introduction to the idea of dark energy and why past models
are physically insufficient. There are of course more models of dark energy than can be
mentioned here, but it suffices to say that this abundance alone points to the general
disarray and disagreement in dark energy research. As stated in the introduction, we
will cast yet another model for dark matter/dark energy into the foray in the form of
superfluid dark matter. Therefore in the following chapter we introduce the concept of
Bose-Einstein condensates and superfluidity in preparation for discussing the model at
hand.
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Chapter 3

Bose-Einstein Condensation and
Superfluidity

In this chapter we define Bose-Einstein condensates (BEC) and the effects that allow for
their formation - specifically the critical temperature, the thermal de Broglie wavelength,
and Bose-Einstein statistics. From this we can discuss superfluids and their dynamics,
along with the relation between (broken) symmetries and BEC. The principles covered
in this section will later be applied to the dark matter model at hand and its associated
properties and dynamics.

3.1 Condensate Theory

3.1.1 Introduction to Condensates

Let us consider a homogeneous, neutral, gas of bosons (integer-spin particles). We
remind ourselves that fermions constitute atoms, and since we are examining neutral
atoms, the number of protons and electrons must be equal. Thus the specie of an atom
is determined by the number of neutrons: an even number of which describes a boson,
while an odd number describes a fermion.

As an example, consider neutral rubidium-87, a popular vapor in BEC experiments (not
least because it was the first dilute gas to be condensed [16]): it has atomic number 37.
Being electrically neutral, it has an equal number of protons and electrons, and fifty
neutrons, making it a boson. Some other vapors that have been successfully condensed
include lithium-7, potassium-41, and cesium-133. Helium-4 has also been condensed,
but it is a special case because its self-interactions are sufficiently strong to form a
liquid. Aside from atoms, examples of bosons include mesons (pions, kaons, ...) and
the gauge bosons (photons, gluons, and W±/Z0).

A property unique to bosons is their ability to have multiple particles occupying the
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same energy state. Boson wave functions are symmetric under particle exchange

ψ(x1, x2) = +ψ(x2, x1). (3.1)

where x1 and x2 are simply labels containing all the information specifying a unique
single particle state. Therefore, they are not governed by the Pauli-exclusion principle
(unlike fermions) allowing an arbitrary number of them to occupy the same particle
state. In this chapter, we are interested in systems where most of the particles are in
the lowest energy state.

Figure 3.1: The Bose Distribution for various fugacities. ζ = 1 corresponds to Bose-
Einstein condensation.

3.1.2 Bose-Einstein Statistics

Bosons are described by Bose-Einstein statistics. Consider the Bose-Einstein distribu-
tion function

f0(εν) =
1

e(εν−µ)/T − 1
. (3.2)

This gives the expected number of particles in some state ν for an energy ε. µ(T, V, N)
is the chemical potential, T is temperature, V is volume, and N is the total number
of particles. The physical definition of µ is somewhat contested in condensed matter
literature, but for our sake we define it as the change in energy by the addition of one
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particle to the system (See [17] for other definitions and analysis). If we define the
fugacity as

ζ ≡ exp(µ/T ) (3.3)

then

f(ε/T ) =
1

ζ−1eε/T − 1
. (3.4)

This allows us to consider f as a function of energy states ε/T . f is plotted for various
values of ζ in Figure 3.1. The figure shows that by following an isothermal curve
one is able to identify the expected number of particles f(ε/T ) in each energy state
ε/T . Notice, when ζ = 1, that the occupation number of the lowest energy state
(ε/T = 0) asymptotically approaches all of the particles in the system - i.e. the state
is macroscopically occupied. It is this macroscopic occupation that we define as a
Bose-Einstein condensate. Let us also define the temperature at which Bose-Einstein
condensate occurs as the critical temperature Tc. In the next subsection we discuss the
physical processes behind BECs and the role Tc plays.

3.1.3 Mechanisms

In this subsection we consider a Bose gas initially at a high temperature and examine
what happens when it is cooled below the critical temperature. Let this Bose gas be
dilute, electrically neutral, and non-interacting. We start with the thermal de Broglie
wavelength

λT =

√
2π

mT
; (3.5)

it goes as

λT ∝
1

T
. (3.6)

While the system is at a high temperature, λT is small and the gas can be described
classically. As the temperature decreases though, λT increases, and there will be a
temperature at which the wavelength is proportional to the mean interparticle spacing
in the gas. At this point the matter waves of the particles will begin to overlap until the
system can be described by a single wave function and behaves as a single macroscopic
matter wave.

The macroscopic matter wave nature is famously described by the Gross-Pitaevskii
equation. In an interacting Bose gas, when the range of the interaction is much less
than the mean interparticle spacing, the entire system is described by a non-linear
Schrödinger equation

i~
∂ψ(~r, t)

∂t
= − 1

2m
∇2ψ(~r, t) + V (~r)ψ(~r, t) + U0|ψ(~r, t)|2ψ(~r, t) (3.7)
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where V is an external trapping potential. This also assumes that interactions are
infrequent given the dilute number density and the large difference between the inter-
atomic spacing and interaction scales. Therefore, U0 results from an effective interaction
in order to avoid detailed corrections when considering an N -body system. It is of the
form

Ueff(~r − ~r′) = U0δ(~r − ~r′).

Critical Temperature Estimation

This derivation was originally done in [18]. Remarkably, we can estimate the criti-
cal temperature for a non-interacting Bose gas using dimensional analysis. We can first
derive an energy

ε =
~2n2/3

m
, (3.8)

where n is the particle density and m is the particle mass. We find a temperature when
dividing by kB

Tc = C
~2n2/3

mkB
. (3.9)

where C is a numerical factor that results when determining the number of particles in
excited states at Tc. For our purposes, its origin is not of great important as we just want
an order-of-magnitude estimation. By substituting in the values for helium-4, we find a
theoretical critical temperature of 3.13K, which is remarkably close to the experimental
value of 2.17K [19, 20], especially considering helium-4 is strongly self-interacting, not
dilute, and a liquid rather than a gas, at Tc. While this calculation provides agreeable
results, it serves to highlight the important role interactions play in BEC and especially
in superfluidity - we will expound upon this later.

3.1.4 Some Physical Intuition

One may find it beneficial to consider the physical extents of Bose-Einstein condensed
systems. In typical experiments, BEC particle densities range from 1013 to 1015 par-
ticles / cm3 while that of air is 1019 particles / cm3 [18]. Even though Tc ∼ 1K,
experiments often involve temperatures of the order micro- or nanokelvin, and in the
lowest-temperature experiments: picokelvin. Lower temperatures produce purer con-
densates. BEC matter waves exhibit macroscopic phenomena, meaning they can be
visible to the naked eye - a condensate can be about 1mm in size in a laboratory setting
[21].

3.2 Superfluidity

We now turn our discussion to one of the most pertinent properties of BEC: superfluidity.
For a condensate to exhibit superfluidity implies several properties: it flows seemingly
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without viscosity (i.e. without energy dissipation) and it has two sound speeds. We
concentrate on the former.

These phenomena are based off a model of superfluids that requires a so-called two-
fluid description. We will refer to the two components as the normal component and
the superfluid component. The former refers to the particles in an uncondensed state
- that is any particle that has an energy higher than the ground state energy. This
component behaves as a classical fluid. Of note, this component includes not only the
uncondensed particles, but also the collective excitations† of the system. Collective
excitations are not physical particles, but rather they are mathematical tools created to
describe complex dynamics as if the dynamic itself was a particle. This is done in order
to simplify analysis. The collective excitation of our interest is the phonon.‡ Phonons
are defined as quantized sound waves (or density perturbations) - sound waves in a
quantized system.

The second component, the superfluid component, is therefore the remaining particles
in the system - those in the BEC ground state. We say that the normal and superfluid
components are indistinguishable and interpenetrating, meaning that one cannot see
the difference between the two (there are no physical boundaries between them), as
opposed to what one would see with a mixture of two different atoms or molecules.

We remark that all of the entropy in the system is carried by the normal component.
Because we are assuming that the condensed particles are in the ground state, the
entropy

S = ln Ω

is zero (the number of microstates Ω = 1 since we are only considering particles in one
state - the ground state).

3.2.1 The Landau Criterion

This section will discuss the condition that allows a BEC to exhibit superfluidity; this
is referred to as the Landau criterion. Our definition of a superfluid states that it must
flow without viscosity. Therefore, let us find the minimum velocity necessary for an
obstacle moving through the condensate to create an excitation in the BEC. When this
occurs, the BEC is no longer a superfluid because of energy dissipation.

Consider then a BEC moving through a narrow capillary. Let the reference frame first
be in the BEC frame where the fluid is stationary and the capillary is moving to the left
with respect to the BEC. An excitation of the superfluid in this frame has energy ε0. By

†The term collective excitation usually refers to emergent particles in superfluid systems, while quasi-
particles is usually reserved for superconducting systems. But there is no widely agreed upon nomen-
clature, so one may find the terms are used interchangeably in the literature.

‡There exist a plethora of quasi-particles - another that exists in superfluid systems is the roton: the
quantum of rotation that is associated with a vortex.
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a Galilean transformation to the capillary frame (where the capillary is stationary and
the BEC is moving to the right with respect to the capillary), we find that the excitation
has energy εp− ~p ·~v = 0. In this frame the potential produced by the capillary is static
and thus cannot transfer energy to the BEC, so

v =
εp
p
.

But we want the minimum velocity

vc = min
(
εp
p

)
. (3.10)

This is the critical velocity, or the minimum velocity an obstacle needs to create excita-
tions in the condensate and cause it to lose superfluidity. Anything with a velocity less
than vc will pass through the superfluid without friction. A notable property of super-
fluids is that the condensate must be interacting. This is because without a restoring
force, the condensate will simply be destroyed by any object that passes through it.
Seen another way: in the non-interacting case, εp = p2/2m, so by substituting this into
(3.10)

vc = min
( p

2m

)
= 0, (3.11)

i.e. any velocity will cause a loss of superfluidity.

3.3 Condensates in the Language of Symmetries

3.3.1 U(1) Symmetry

This section closely follows the analysis done in [22] and with reference to [23]. Let
U(n) be the n-dimensional unitary group - a group that contains all n × n complex
unitary matrices such that

U(n) = {u ∈ Un(C) : u†u = 1n×n}.

Let T be the circle group
T = {z ∈ C : |z| = 1},

i.e. the group of all complex numbers with absolute value equal to one that form the
unit circle in the complex plane. We identify that T can be parameterized as

z = eiφ.

where φ is the angle of rotation. We also know that eiφ is a 1 × 1 complex matrix
such that eiφ = u because u†u = 11×1. Thus T ∼= U(1) (they are isomorphic) implying
eiφ ∈ U(1) : φ ∈ R1. If the U(1) group acts on a state |ψ〉

U(1) |ψ〉 = eiφ |ψ〉 , (3.12)
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this allows us to identify that U(1) characterizes a phase shift eiφ with phase φ of a
state |ψ〉. We then say that U(1) is a (global) symmetry of the system because it leaves
|ψ〉 invariant under a transformation.

This has important implications in physics: Noether’s theorem states that for every
continuous symmetry of a system, there exists a corresponding conserved charge

Q =

∫
d3xj0(x) (3.13)

for a conserved four-current jµ

∂µj
µ(x) = 0, (3.14)

jµ(x) =
n∑
i=0

∂L
∂(∂µψi)

∆ψi. (3.15)

Consider a free, non-interacting, complex, scalar field ψ(~x, t) described by the La-
grangian

L(ψ, ψ∗, ∂µψ, ∂µψ
∗) = ∂µψ

∗∂µψ −m2|ψ|2. (3.16)

Let us determine what happens when we consider the U(1) symmetry of this field. ψ
transforms as

ψ → eiαψ, ψ∗ → e−iαψ∗. (3.17)

Under an infinitesimal transformation α→ ε� 1 and we can do a power expansion of
(3.17)

ψ → eiεψ ≈ (1 + εi)ψ = ψ + εiψ

ψ∗ → e−iεψ∗ ≈ (1− εi)ψ∗ = ψ∗ − εiψ∗. (3.18)

Since εiφ∗ (−εiψ∗) is small, it can be considered as a variation of ψ (ψ∗)

δψ ≡ εiψ ⇒ eiεψ ≈ ψ + δψ

δψ∗ ≡ εiψ∗ ⇒ e−iεψ∗ ≈ ψ∗ − δψ∗. (3.19)

Now (3.15) can be solved using (3.16) and (3.19)

jµ =
∂L

∂(∂µψ)
∆ψ +

∂L
∂(∂µψ∗)

∆ψ∗

= i(ψ∂µψ∗ − ψ∗∂µψ). (3.20)

The conserved charge is

Q =

∫
d3xj0 =

∫
d3x[i(ψψ̇∗ − ψ∗ψ̇)]. (3.21)
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Now we check that the four-current is conserved

∂µj
µ = i∂µ(ψ∂µψ∗ − ψ∗∂ψ)

= i(ψ∂µ∂
µψ∗ − ψ∗∂µ∂µψ). (3.22)

From the Lagrangian, the equations of motion are

∂µ
∂L

∂(∂µψ)
− ∂L
∂ψ

= 0

⇒ ∂µ∂
µψ∗ −m2ψ∗ = 0

∂µ
∂L

∂(∂µψ∗)
− ∂L
∂ψ∗

= 0

⇒ ∂µ∂
µψ −m2ψ = 0

and we recognize the relationships

∂µ∂
µψ∗ = m2ψ∗

∂µ∂
µψ = m2ψ

which we substitute in (4.12)

∂µj
µ = i(ψm2ψ∗ − ψ∗m2ψ) = 0. (3.23)

Thus there is a conserved current under a U(1) transformation, meaning that in systems
with a U(1) symmetry, there exists a corresponding conserved quantity.

3.3.2 Spontaneous Symmetry Breaking

For certain ground states the symmetries described above are not respected; i.e. when
the symmetry is no longer present in the ground state (while it is in the rest of the sys-
tem) we say that the symmetry is spontaneously broken. Let us consider the implications
of this.

As a natural extension of the Lagrangian above, we include an interaction term such as
∝ λ|ψ|4. The original (non-interacting) Lagrangian in the previous section had a global,
continuous U(1) symmetry eiα where α is a continuous transformation (identified as the
phase). The interaction results in the ground state potential in Figure 3.2. We see that
the potential has a continuous set of states that minimize the potential and break the
symmetry.

Why do we care?

As discussed before, Noether’s theorem states that for every symmetry, there is a con-
served quantity (charge). Therefore, when a symmetry is broken, the charge is no longer
conserved. Goldstone’s theorem states that if a continuous symmetry is spontaneously
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broken, then there exists a massless§ mode - a Nambu-Goldstone boson. In the context
of BECs and superfluids, the Nambu-Goldstone boson¶ corresponds to a quasi-particle:
the phonon.

There are two important take-aways from this chapter. The first is that Bose-Einstein
condensation occurs when the ground state is macroscopically occupied. The second is
how symmetries correspond to conserved quantities (or the resulting Nambu-Goldstone
bosons when those symmetries are broken). Both of these form the basis for the next
chapter where we dive into the concept of superfluid dark matter and its connections
to accelerated expansion phenomenology.

Figure 3.2: The ground state potential that spontaneously breaks the U(1) symmetry
of an interacting complex scalar field. Note how there are infinitely many values for the
field around the minimum of the potential.

§In the literature, massless is synonymous with gapless.
¶Technically in the context of BECs, such bosons are quasi-Nambu-Goldstone bosons.
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Chapter 4

The Berezhiani-Ferreira-Khoury
Model

Because modern cosmology does not have an all-encompassing model for describing
dynamics at all distance scales - from (sub)galactic scales described by MOND to cos-
mological distances accurately described by ΛCDM - as well as very little understanding
about the elusive nature of dark energy, the field is in need of a unifying model. The
Berezhiani-Ferreira-Khoury (BFK) model (as described in [9]) posits that the dark mat-
ter in galactic halos is in a Bose-Einstein condensed state. These superfluid halos are
able to replicate MOND while uncondensed dark matter outside of the halos agrees
with ΛCDM. Additionally, interactions in the halo result in an oscillatory potential
that drives late-time cosmic expansion thereby solving the problem of dark energy and
cosmic expansion, or in another way: it postulates a unifying framework for the "dark
sector" of the Universe and describes dynamics at all distance scales.

Very few of the intermediary calculations presented in this chapter were shown in [9],
so it is a goal of this thesis to make them explicit.

4.1 Two-component Dark Matter Superfluid Overview

Let us assume dark matter particles in our model have a mass of mDM ∼ eV and that
they interact sufficiently strongly to allow them to thermalize in the galactic halo. Given
this mass scale, it is reasonable to assume that the dark matter content of the halo is
dense and cold enough for it to condense into a Bose-Einstein condensate [24].

In the previous chapter we discussed a Bose-Einstein condensed system where one state
is macroscopically occupied. A natural extension of this is to consider a condensed
system with two macroscopically occupied states: a ground state and an excited state.
By populating this with our dark matter particles, these condensed states are superfluids
due to the assumption that they are interacting. The particles in the different energy
states will inevitably scatter off one another and in doing so one particle state will be
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converted to the other. An analogy to this can be found in atomic physics with Rabi
cycles†. In this process, arbitrarily amounts of atoms in one state transition to another
and vice-versa

|1〉
 |2〉 .

Usually this is accomplished by tuning an oscillatory driving field close to the transition
energy of the two states, whereby each oscillation will transport the atoms between the
states[25, 26, 27].

Another consequence of these scattering events is the production of phonons. Phonons
describe density perturbations (e.g. sound waves) in a superfluid system. Since our
model contains two superfluid states, there are two phonon species - one associated
with each state, described by the phases θ1 and θ2 corresponding the ground and excited
states respectively.

In the non-relativistic regime, the phonons are low energy and have long wavelengths.
They mediate a long range interaction of the form

Lint ∝
Ψ∗1Ψ2 + Ψ∗2Ψ1

|Ψ1||Ψ2|
, (4.1)

where Ψi are complex, scalar fields describing the dark matter states. This interaction
in turn produces an oscillatory potential

V (θ2 − θ1 + ∆Et) = M4 cos2

(
θ2 − θ1 + ∆Et

2

)
; (4.2)

this result is derived in the next section. This potential is responsible for late-time
cosmic expansion. Thus just by assuming a dark matter-dominated universe where
dark matter in galactic halos forms a two-component superfluid, dark energy is the
potential produced by the interactions between the phonon species.

4.2 Mathematical Description

4.2.1 The Lagrangian

In this section, we find the Lagrangian describing the two dark matter states with the
interaction term (4.1). A good approximation is to describe the dark matter particles
as two complex scalar fields. The Lagrangian of two non-interacting, complex, scalar
fields is

L0(Ψi, ∂Ψi) = −
2∑
i=1

√
−g
(
|∂Ψi(~x, t)|2 +m2

i |Ψi(~x, t)|2 +
2m4

i

Λ4
i

|Ψi(~x, t)|4
)
. (4.3)

†Also known as Rabi oscillations or less commonly as a Rabi coupling.
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∂ = ∂µ = (−∂t, ∂j) is the four-gradient. Also, (∂Ψ)2 ≡ gµν∂µΨ∂νΨ and g = det(gµν)
and Λi are energy cutoffs - they should not be confused with that in ΛCDM. Using
polar coordinates

Ψ(~x, t) =
ρ(~x, t)√

2
eiΘ(~x, t). (4.4)

Θ(~x, t) is the phonon field for the associated dark matter state; it is explicitly time-
dependent

Θ(~x, t) = mt+ θ(~x, t). (4.5)

θ is the phonon excitation arising from the background mt. Substitute (4.4) into (4.3),
the action is

L0 = −
2∑
i=1

√
−g

{∣∣∣∣∂ ( ρi√
2
eiΘi

)∣∣∣∣2 +m2
i

∣∣∣∣ ρi√2
eiΘi

∣∣∣∣2 +
2m4

i

Λ4
i

∣∣∣∣ ρi√2
eiΘi

∣∣∣∣4
}

= −
2∑
i=1

√
−g
2

{∣∣eiΘi∂ρi + ρi∂e
iΘi
∣∣2 +m2

i

∣∣ρieiΘi∣∣2 +
m4
i

Λ4
i

∣∣ρieiΘi∣∣4} .
Since |Ψ|2 = (Ψ∗Ψ), the first term in the curly braces is

(e−iΘi∂ρi + ρi∂e
−iΘi)(eiΘi∂ρi + ρi∂e

iΘi)

= e−iΘieiΘi(∂ρi)
2 + ρie

−iΘi∂ρi∂e
iΘi + ρie

iΘi∂ρi∂e
−iΘi + ρ2

i ∂e
iΘi∂e−iΘi

= (∂ρi)
2 + ρie

−iΘi∂ρi(i)e
iΘi(∂Θi) + ρie

iΘi∂ρi(−i)e−iΘi(∂Θi)

+ ρ2
i (−i)e−iΘi(∂Θi)(i)e

iΘi(∂Θi)

= (∂ρi)
2 + ρ2

i (∂Θi)
2;

the second term is

m2
i ρ

2
i e
−iΘieiΘi = m2

i ρ
2
i ;

and the final term

m4
i

Λ4
i

[
(ρie

−iΘi)(ρie
iΘi)

]2
=
m4
i

Λ4
i

ρ4
i .

Therefore the action is

L0 = −
2∑
i=1

√
−g
{

1

2
(∂ρi)

2 +
1

2
ρi(∂Θi)

2 +
1

2
m2
i ρ

2
i +

m4
i

2Λ4
i

ρ4
i

}
. (4.6)

In order to find the action for the phonon fields Θi, substitute the densities (to leading
order in derivatives)

ρ2
i =

Λ4
i

2m4
i

(
−(∂Θi)

2 −m2
i

)
(4.7)
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into the action (4.6)

L0 = −
2∑
i=1

√
−g

{
1

2

[
∂

(
Λ4
i

2m4
i

(
−(∂Θi)

2 −m2
i

))]2

+
1

2

Λ4
i

2m4
i

(
−(∂Θi)

2 −m2
i

)
(∂Θi)

2

+
1

2
m2
i

Λ4
i

2m4
i

(
−(∂Θi)

2 −m2
i

)
+
m4
i

2Λ4
i

[
Λ4
i

2m4
i

(
−(∂Θi)

2 −m2
i

)]2
}
.

If we only consider derivatives of first order, then the first term in the curly braces can
be excluded. Also, we recognize a common factor of −Λ4

i /4

L0 =
2∑
i=1

√
−gΛ4

i

4

{
1

m4
i

(
(∂Θi)

2 +m2
i

)
(∂Θi)

2

+m2
i

1

m4
i

(
(∂Θi)

2 +m2
i

)
− 1

2m4
i

(
(∂Θi)

2 +m2
i

)2
}

=
2∑
i=1

√
−gΛ4

i

4


(

(∂Θi)
2 +m2

i

)[
2(∂Θi)

2 + 2m2
i −

(
(∂Θi)

2 +m2
i

)]
2m2

i


=

2∑
i=1

√
−gΛ4

i

8

{
(∂Θi)

4

m4
i

+
2m2

i (∂Θi)
2

m4
i

+ 1

}

=
2∑
i=1

√
−gΛ4

i

8

{
(∂Θi)

2

m2
i

+ 1

}2

. (4.8)

We now choose to work in the non-relativistic limit. This implies that the phonon
excitations go as

θ̇i � mi (4.9)

and the metric goes to the weak-field Newtonian limit

gµν =


−(1 + 2Φ) 0 0 0

0 (1− 2Φ) 0 0
0 0 (1− 2Φ) 0
0 0 0 (1− 2Φ)

 (4.10)
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where Φ = Φ(~x, t) is the gravitational potential. In this limit, (4.8) simplifies

L0 =

2∑
i=1

√
−gΛ4

i

8

{
1

m2
i

(gµν∂µΘi∂νΘi) + 1

}2

=
2∑
i=1

Λ4
i

8

{
1

m2
i

(
g00∂0Θi∂0Θi + gkl∂kΘi∂lΘi

)
+ 1

}2

=
2∑
i=1

Λ4
i

8

{ 1

m2
i

[
(−1 + 2Φ)∂t(mit+ θi)∂t(mit+ θi)

+ (1 + 2Φ)∂k(mit+ θi)∂l(mit+ θi)
]

+ 1
}2

=
2∑
i=1

√
−gΛ4

i

8

{
1

m2
i

[
(−1 + 2Φ)(m2

i + 2θ̇imi + θ̇2
i ) + (1 + 2Φ)(~∇θi)2

]
+ 1

}2

=

2∑
i=1

Λ4
i

8

{ 1

m2
i

[
−m2

i − 2θ̇imi − θ̇2
i + 2Φm2

i + 4Φθ̇imi + 2Φθ̇2
i

+ (~∇θi)2 + 2Φ(~∇θi)2
]

+ 1
}2

=

2∑
i=1

Λ4
i

8

{
−1− 2θ̇i

mi
− θ̇2

i

m2
i

+ 2Φ +
4Φθ̇i
mi

+
2Φθ̇2

i

m2
i

+
(~∇θi)2

m2
i

+
2Φ(~∇θi)2

m2
i

+ 1

}2

=
2∑
i=1

Λ4
i

8

4

m2
i

{
−

[
θ̇i +

θ̇2
i

2mi
− Φmi − 2Φθ̇i −

Φθ̇2
i

mi
− (~∇θi)2

2mi
− Φ(~∇θi)2

mi

]}2

.

Because of the non-relativistic limit and because Φ is small, the non-interacting La-
grangian term approximates to

L0 =

2∑
i=1

Λ4
i

2m2
i

{
θ̇i − Φmi −

(~∇θi)2

2mi

}2

. (4.11)

4.2.2 The Conserved Currents

The conserved currents are

jµi =
∂L

∂(∂µΨi)
∆Ψi +

∂L
∂(∂µΨ∗i )

∆Ψ∗i .

The Lagrangian of a complex scalar field goes as L ∼ |∂Ψ|2, so

jµi =
∂

∂(∂µΨi)

{(
∂νΨ∗i

)(
∂νΨi

)}
∆Ψi +

∂

∂(∂µΨ∗i )

{(
∂νΨ∗i

)(
∂νΨi

)}
∆Ψ∗i

= ∂µΨ∗i∆Ψ + ∂µΨi∆Ψ∗i .
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We can perform an infinitesimal transformation on the wave function such that Ψ →
Ψ + α∆Ψ and α∆Ψ = iαΨ, implying

∆Ψ = iΨ

and

∆Ψ∗ = −iΨ∗.

Therefore

jµi = ∂µΨ∗i iΨi + ∂µΨi (−i) Ψ∗i

= i(Ψi∂
µΨ∗i −Ψ∗i ∂µΨi)

= −i(Ψ∗i ∂µΨi −Ψi∂
µΨ∗i ). (4.12)

Substituting the wave function in polar coordinates (4.4) and its complex conjugate into
(4.12)

jµi = −i
{
ρi√

2
e−iΘi∂µ

[
ρi√

2
eiΘi

]
− ρi√

2
eiΘi∂µ

[
ρi√

2
e−iΘi

]}
= −i

{
ρi
2
e−iΘi

[
eiΘi∂µρi + ρi∂

µeiΘi
]

− ρi
2
eiΘi

[
e−iΘi∂µρi + ρi∂

µe−iΘi
]}

= −i
{
ρi
2

[
eiΘie−iΘi∂µρi + e−iΘiρiie

iΘi∂µΘi

]
− ρi

2

[
eiΘie−iΘi∂µρi + ρie

iΘi(−i)e−iΘi∂µΘi

]}
= −i

{
ρi
2
∂µρi + i

ρ2
i

2
∂µΘi −

ρi
2
∂µρi + i

ρ2
i

2
∂µΘi

}
= −i

{
iρ2
i ∂

µΘi

}
= ρ2

i ∂
µΘi . (4.13)

4.2.3 Including an Interaction Term

The theory would be incomplete without an interaction term; we introduce one as

Lint ∝ −
Ψ∗1Ψ2 + Ψ∗2Ψ1

|Ψ1||Ψ2|
. (4.14)

This term spontaneously breaks the global U(1)×U(1) symmetry to a global U(1) sym-
metry. In the next subsection, we will comment on the implications of this. Substitute
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the polar wave function (4.4) into this interaction term

∝ −
(
ρ1√

2
e−iΘ1

ρ2√
2
eiΘ2 +

ρ2√
2
e−iΘ2

ρ1√
2
eiΘ1

)(∣∣∣∣ ρ1√
2
eiΘ1

∣∣∣∣ ∣∣∣∣ ρ2√
2
eiΘ2

∣∣∣∣)−1

= −

(
ei(Θ2−Θ1) + e−i(−Θ1+Θ2)

2

)(∣∣∣∣∣ei(Θ1+Θ2)

2

∣∣∣∣∣
)−1

=
− cos(Θ2 −Θ1)

|cos(Θ1 + Θ2) + i sin(Θ1 + Θ2)|
.

The magnitude of the denominator is√[
cos(Θ1 + Θ2) + i sin(Θ1 + Θ2)

][
cos(Θ1 + Θ2)− i sin(Θ1 + Θ2)

]
= 1.

Therefore the interaction is proportional to

Lint ∝ − cos(Θ2 −Θ1)

such that there is some constant D

Lint = −D cos(Θ2 −Θ1).

The authors of [9] add a constant (c) to the interaction such that the vacuum energy
vanishes at the potential’s minimum:

Lint = −D cos(Θ2 −Θ1) + c.

By equating D to M4/2 and c = −M4/2 the interaction is

Lint = −M
4

2
cos(Θ2 −Θ1)− M4

2

= −M4

(
cos(Θ2 −Θ1) + 1

2

)
= −M4 cos2

(
Θ2 −Θ1

2

)
= −V (Θ2 −Θ1) , (4.15)

where the last line comes from the cosine half-angle formula. This is simplified using
the equation for the phonon field (4.5)

Θ2 −Θ1 = m2t+ θ2 −m1t− θ1

= θ2 − θ1 + ∆Et (4.16)

where ∆E ≡ m2 −m1 is the energy difference between the two states. Therefore the
full Lagrangian is

L =
2∑
i=1

Λ4
i

2m2
i

{
θ̇i − Φmi −

(~∇θi)2

2mi

}2

− V (θ2 − θ1 + ∆Et) . (4.17)
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4.2.4 Background Evolution

In order to better understand the nature of cosmic expansion in this model, we can derive
the Friedmann equation for this model. The total energy density of the superfluid can
be expressed as

ρ = m1
∂P1

∂X1
+m2

∂P2

∂X2
+ V (∆Et)

=
1

2
(m1 +m2)

(
∂P1

∂X1
+
∂P2

∂X2

)
+

1

2
∆E

(
− ∂P1

∂X1
+
∂P2

∂X2

)
+ V (∆Et). (4.18)

Note that the ∆E term in Equation 4.4 of [9] is written as

∼ 1

2
∆E(P1 ,X1 − P2 ,X2),

which is incorrect; the corrected term is expressed in (4.18). The pressure is the La-
grangian density

P = L = P1(X1) + P2(X2)− V (∆Et). (4.19)

The first Friedmann equation [11] is

H2 =

(
ȧ

a

)2

=
8πG

3
ρ. (4.20)

By definition, the reduced Planck mass M2
pl = 1/8πG so that (4.20) becomes

H2 =
ρ

3M2
pl

and by substituting (4.18), our final equation is

3M2
plH

2 =
1

2
(m1 +m2)

(
∂P1

∂X1
+
∂P2

∂X2

)
+

1

2
∆E

(
− ∂P1

∂X1
+
∂P2

∂X2

)
+ V (∆Et) .

(4.21)

Note again that the mistake mentioned above is propagated into Equations (5.1) - (5.2)
in their definition of ρ−

ρ− ≡
1

2
∆E(P1 ,X1 − P2 ,X2)

and is corrected in the above boxed equation (these do not effect their final expressions
or results). The second Friedmann equation is the time derivative of the first

2HḢ =
ρ̇

3M2
pl

.
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We can use the standard expression for the conservation of energy to get an expression
for ρ̇

ρ̇ = 3H(p+ ρ) = 0

⇒ 2Ḣ = −p+ ρ

M2
pl

.

As before, we substitute in the total energy density ρ, and the pressure P = p

2ḢM2
pl =−

[
P1(X1) + P2(X2)− V (∆Et) +

1

2
(m1 +m2)

(
∂P1

∂X1
+
∂P2

∂X2

)

+
1

2
∆E

(
− ∂P1

∂X1
+
∂P2

∂X2

)
+ V (∆Et)

]
.

We recognize that in the non-relativistic limit m∂P/∂X � P

2ḢM2
pl = −

[
1

2
(m1 +m2)

(
∂P1

∂X1
+
∂P2

∂X2

)
+

1

2
∆E

(
− ∂P1

∂X1
+
∂P2

∂X2

)]
. (4.22)

Finally, by summing the first (4.21) and second equations (4.22), we get an equation
for the evolution of the background cosmology

2Ḣ + 3H2 =
V (∆Et)

M2
pl

. (4.23)

We now have the necessary background to test the BFK model. The analysis begins
with (4.23) as this maps the expansion of the universe with the interaction potential V .



30 The Berezhiani-Ferreira-Khoury Model



Chapter 5

Tests of the BFK Model

We now perform three test of the BFK model. First, we plot the evolution of the Hubble
parameter in both BFK and ΛCDM - both models agree until late times when BFK
begins to oscillate. Next, we calculate the luminosity distance and compare the results
to supernova observations from SDSS-II and SNLS and find statistically significant
energy gaps ∆ε. Finally, we calculate the CMB shift parameter, which also allows us
to constrain Ωm in BFK.

5.1 Evolution of the Hubble Parameter

We start with the Friedmann equation (4.23) as found in the last section

2Ḣ + 3H =
V (∆Et)

M2
pl

(5.1)

with the potential

V (∆Et) = M4 cos2

(
∆Et

2

)
(5.2)

where M2
pl =

√
1/8πG is the reduced Planck mass, ∆E is the energy gap between the

two distinguishable superfluid dark matter states, and M4 = 3H2
0M

2
pl is a scale factor

that sets the amplitude of the potential. Substituting (5.2) into (5.1)

2Ḣ + 3H2 =
M4 cos2

(
∆Et

2

)
M2
pl

2
dH

dt
+ 3H2 = 3H2

0M
2
pl cos2

(
∆Et

2

)
1

M2
pl

= 3H2
0 cos2

(
∆Et

2

)
.
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Now let τ be a dimensionless time parameter such that

τ ≡ H0t (5.3)

⇒ 2H0
dH

dτ
+ 3H2 = 3H2

0 cos2

(
∆Eτ

2H0

)
.

Multiply by 1/H2
0

2

H0

dH

dτ
+ 3

(
H

H0

)2

= 3 cos2

(
∆Eτ

2H0

)
. (5.4)

Let h be a dimensionless Hubble parameter

h ≡ H

H0
(5.5)

⇒ 2
dh

dτ
+ 3h2 = 3 cos2

( τ
10

)
(5.6)

where ∆E/2H0 = .1 at late times (from FIG. 1 of [9]). A plot of (5.6) for τ = .01 to 10
is represented in Figure 5.1. It is in excellent agreement with ΛCDM from early times
to the present (where h ≈ 1 and τ = 1), assuming that the dark energy component of
ΛCDM dominates at late times (ΩΛ = .99, Ωm = .01, Ωb = 0, and Ωr = 0). This test
was also performed by Ferreira et al. and our results also agree with theirs.

Figure 5.1: A comparison between the ΛCDM and BFK models. They are in agreement
until today if ΛCDM is dominated by dark energy at late times. This is a reproduction
of Figure 1 in [9].
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Figure 5.2: A plot of the Hubble parameter in BFK to very late time. It exhibits an
oscillatory behavior due to the cosine in the potential.

By evolving hBFK further in time, it begins to oscillate because of the cosine potential
- see Figure 5.2. From this plot, we can make two inferences. First, hBFK will almost
always be lower than hΛCDM, implying that a ΛCDM universe will become greater in
extent than a BFK universe. Second, a BFK universe will go through ever-shortening
periods of accelerating and decelerating expansion, but it will never contract. Thus,
similar to universe populated with a vacuum energy, a BFK universe will expand forever
after dark energy dominates the energy density.

5.2 Luminosity Distance

We will now test the model with observations, something that was not done in [9]. In
order to consider distance measurements at large redshifts, it is convenient to define the
luminosity distance, dL. This is a relationship between the absolute luminosity, L - the
total energy emitted from a source per second - the proper distance, d - the distance
measured by an observer in locally Cartesian coordinates - and the apparent luminosity,
l - the luminosity of an object measured at a distance d. One can write this relation as

l =
L

4πd2
L

; dL ≡ a(t0)(1 + z)r. (5.7)
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From the definition of dL, one can see that it is dependent on the redshift of the source,
which should be expected if we are considering distant objects. The luminosity distance
reduces to r at very low redshifts, as one would expect, because the expansion of space
at low z has a negligible effect on the luminosity.

Following a brief analysis as given in [11], one finds the equation for the luminosity
distance in a ΛCDM universe

dL(z) =
1 + z

H0

∫ 1

1/(1+z)

dx

x2
√

Ωmx−3 + ΩΛ

(5.8)

or generally as

dL =
1 + z

H0

∫ z

0

dz′

H(z′)/H0
. (5.9)

In order to test the BFK model, we used type Ia supernova (SN Ia) data compiled in
[28] from the Sloan Digital Sky Survey-II (SDSS-II) and the Supernova Legacy Survey
(SNLS). Together they provide measurements on 740 supernovae from z = .01 to z = 1.3
and allow us to compare luminosity distances in different models. Type 1a supernovae
are regarded as "standard candles" in that they produce known and generally uniform
light curves; they are thus predictable and make excellent calibration tools. The authors
provide the supernova data as distance moduli, which can be well approximated in 31
bins (µb). The distance modulus for any cosmological model can be found with

µ = 5 log10(dL/10pc). (5.10)

In calculating dL for ΛCDM, we assume Ωm = .3, ΩΛ = .7, and H0 = 70 and we
integrate (5.8) before multiplied by a factor of 1× 106 Mpc · c to convert to physical
units. Getting the luminosity distance for the BFK model is somewhat more involved.
After solving (5.6) for h(τ), we multiply by H0 to get a Hubble parameter in terms of
cosmic time tc. Then we use the relation

H =
ȧ(tc)

a(tc)
=

1

a

da

dtc
(5.11)

and integrate over tc to get a(tc). Finally, the luminosity distance is

dL(z) =
1 + z

H0

∫ t0

tc

dt

a(t)
. (5.12)

We find that the luminosity distance in BFK is identical to that of ΛCDM as in Figure
5.3.
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Figure 5.3: The binned SN Ia distance modulus plotted with the ΛCDM and best-fit
BFK distance moduli.

Parameter estimation and goodness-of-fit

Since the assumption made about ∆E in (5.6) is only for late times, we reintroduce it
to do analysis in the present; we start with the potential in (5.4)

3 cos

(
∆Eτ

2H0

)2

and as before define a dimensionless energy

∆ε =
∆E

H0
(5.13)

⇒ 2
dh

dτ
+ 3h2 = 3 cos

(
∆ετ

2

)2

. (5.14)

∆ε is now a free parameter in the model, which we will minimize in order to best
fit the SN Ia data. In [28], they provide a χ2 calculation for the goodness-of-fit of a
cosmological model’s luminosity distance DL(z, θ) for some set of parameters θ; in our
case θ = ∆ε:

χ2(∆ε, M) = r†C−1
b r, (5.15)

r = µb −M − 5 logDL(zb, ∆ε). (5.16)
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M is a free normalization parameter that minimizes χ2 for each ∆ε. Cb is a covariance
matrix provided by [28] in Appendix F. Before going further, χ2 tests will be briefly
defined. In a χ2 test, one must specify a null hypothesis H̄0 (we will use over-bars
to avoid confusion with the Hubble constant) and an alternative hypothesis H̄1. H̄0

holds when the difference between the expected and observed values is zero (χ2 = 0).
We say that H̄0 is rejected in favor of H̄1 when the expected and observed values are
significantly different. In our case

H̄0 : For a given ∆ε, the BFK model describes SDSS-II SN Ia observations

and
H̄1 : The BFK model does not describe SN Ia observations.

In determening the statistical significance of a χ2 test, one must also specify two more
values: the degrees of freedom (d.o.f.) and α (a.k.a. the p-value). d.o.f. is simply
one less than the number of categories or bins in an experiment; there are 31 distance
moduli bins in the SDSS data set, so we are working with 31 − 1 = 30 d.o.f. The
standard value for determining statistical significance is α = .05 - there is a 5% chance
that, given a random observation, the null hypothesis is rejected erroneously.

It is then simply a matter of looking up the cut-off χ2 value in a χ2 Table. For example,
we find that χ2 = 33.05 for the mass gap ∆ε = 1.286 with M = .02903. In [29], the
threshold for d.o.f. = 30 and α = .05 is χ2 = 43.773: values higher than this reject
the null hypothesis and are statistically insignificant, while those lower are statistically
significant. A table showing M and χ2 for ΛCDM and the thirty ∆ε values we used is
shown in Appendix A. In our analysis, we find statistically significant ∆ε values in the
range .49 . ∆ε . 1.79. These were determined from an initial range of 0 to 25. the
reasoning for which is explained in the next section. For comparison χ2

ΛCDM = 33.65
with M = 0, which is also statistically significant.

5.3 The CMB Shift Parameter

The shift parameter, R, is related to the position of the first peak in the CMB power
spectrum. It is used in tests of dark energy models where calculating the full CMB
power spectrum would be difficult or impossible - it is likewise easier to calculate one
value from a single integral. It is defined as

R =
√

ΩmH0

∫ zr

0

dz

H(z)
(5.17)

and for ΛCDM is

RΛCDM =
√

ΩmH0

∫ zr

0

dz√
Ωm(1 + z)3 + ΩΛ

(5.18)

assuming that the recombination redshift zr ∼ 1000. We take the accepted value to
be (at 1σ) R = 1.71± .03 from the three-year Wilkinson Microwave Anisotropy Probe
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(WMAP) survey (which we reference from [30]). Using H calculated for ΛCDM in the
luminosity distance integral, RΛCDM = 1.74(7) with the fiducial values Ωm = .3 and
H0 = 100h0 = 70, which accounts for why RΛCDM is somewhat high because we make
no attempt to find the best-fit values of Ωm and H0.

Calculating R in BFK

RBFK is found by integrating over H found from (5.11) in (5.17). In this calculation
we identify three free parameters: ∆ε, Ωm, and h0. Ferreira et al. (2019) assume the
field is slowly rolling, which gives us a constraint on ∆ε

∆E ∼ H0 (5.19)

implying
.01 . ∆ε . 2. (5.20)

Using this range, we create grids of R values where each square is characterized by
a different set of (∆ε, Ωm, h0). By only considering the accepted values of R from
WMAP, then the parameter space in the BFK model is shown in Figure 5.4 - i.e. the
accepted values of R are represented by the red-blue contour for various Ωm and ∆ε.

Figure 5.4: (∆ε, Ωm, h0) parameter space in the BFK model with ∆ε bounds from the
χ2 test (green region bounded by the vertical, dash-dot lines) and Ωm bounds from SN
1a observations (gray, hatched region bounded from below by the solid, horizontal line).
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A couple inferences can be made from this: first, both the Ωm and ∆ε parameters are
extremely degenerative and require further constraints. Second, we find that h0 has a
negligible effect on R, so we simply set it to .70 for the rest of the analysis.

Using the χ2 test from the previous section, the statistically significant values of ∆ε are
.49 . ∆ε . 1.79. This range of values also substantiates the slow-roll claim (5.19) from
[9]. We represent the allowed values from this restraint by the green region in Figure
5.4 bounded by the dash-dot lines. We also include bounds from the SDSS/SNLS study
as the gray, hatched region, bounded from below by the solid, black line. From the
constrained ∆ε and R values, find that Ωm = .255 ± .00950 in a BFK universe, which
is in agreement with Ωm = .295± .034 from SDSS.



Chapter 6

Conclusion

In this thesis we investigated the description of dark matter as two light, interacting,
Bose-Einstein condensed, axion-like, complex, scalar fields, which at late-times produces
a potential through contact interactions that seems to acts like a vacuum energy and
mimics the accelerated expansion of the universe as observed today. Specifically, we
began this analysis by deriving the foundational equations in Ferreira et al.’s original
article, including: the full Lagrangian with the two fields described by their phases, the
conserved currents before the introduction of the interaction potential and the spon-
taneous symmetry breaking U(1) × U(1) → U(1), and the background evolution as
described by the Hubble parameter. The details of these calculations are missing in the
BFK paper.

6.1 Summary of Results

We performed three model tests: the evolution of the Hubble parameter was plotted
to very late times and compared to ΛCDM (Section 5.1); the luminosity distance was
calculated out to a redshift of z = 1.3 for various energy gap values (∆ε) and then com-
pared to ΛCDM predictions and binned SN Ia distance moduli from SDSS-II (Section
5.2); the CMB shift parameter was also found for a large parameter space constituted
of (∆ε, Ωm, h0), and together with the luminosity distance puts constraints on ∆ε and
Ωm (Section 5.3).

We summarize our results here for convenience: from the luminosity distance goodness-
of-fit χ2 test, the statistically significant energy gaps are ∆ε = 1.14 ± .65. Then from
the CMB shift parameter (assuming R = 1.71 ± .03), we can constrain the parameter
space to find Ωm = .255 ± .0095. Remarkably, this agrees with the value of Ωm found
from SDSS-II SN survey: Ωm = .295± .035 [28].

The double-edged sword of the accuracy and agreement of BFK’s parameter space in
regards to observation makes it, at least in our tests, indistinguishable from ΛCDM.
There is no "smoking gun" in this context that distinguishes it from ΛCDM’s already
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broad successes. Between dL, χ2
dL
, and Ωm, BFK and ΛCDM are essentially identical.

One must investigate specific situations where ΛCDM breaks-down to glean any useful
information. This is in no way a strike against BFK: on the contrary, passing these
basic (but absolutely essential) tests gives us confidence to move forward and apply
more rigorous analysis, while assuring us that we might not be wasting our time as we
wade through the veritable swampland of contentious dark energy models. This brings
us then to the next steps in testing and constraining this model.

6.2 Improvements and Future Work

In further analyzing the BFK model, there are two avenues down which one can proceed:
where ΛCDM is deficient as mentioned in Chapter 1, or situations where the physics
is extremely well-studied with stringent observational constraints. An example of the
latter is the CMB: Ferreira et al. provide equations for linear density perturbations, so
in principle it should be possible to calculate the CMB power spectrum. In practice this
may or may not be possible, but the constraint it places on the model are invaluable.

The preliminary BFK model was formulated at zero-temperature - this is an idealized
assumption. By including finite-temperature effects, the ground state energy of the
model would undoubtedly be changed, leading to, among other things, a change in the
energy gap between the two states. This, combined with the allowed values of the shift
parameter, will change the constraints on Ωm.

As mentioned in the BFK paper, in order to have a more complete description of this
model, one should also consider adding gravitational and bayonic terms to the dark
matter Lagrangian

Lgrav = −M2
pl(
~∇Φ)2

Lint = αΛ
θ

Mpl
ρb.

In terms of observational sources, the Euclid mission specifically endeavours to study
the dark sector. Naturally their observations of the expansion rate of the universe
and of weak lensing and baryonic acoustic oscillations will put constraints on dark
energy/matter models. One can also determine the expected particle density in galactic
halos for this model, which would results in an expected collision rate as observed by
dark matter detector, such as the XENON1T experiment.
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Appendix A

χ2 Table

∆ε M χ2

0.010 0.15916 47.298
0.079 0.15916 47.193
0.147 0.15816 46.930
0.216 0.15616 46.511
0.284 0.15315 45.944
0.353 0.14915 45.240
0.422 0.14515 44.413
0.490 0.14014 43.478
0.559 0.13413 42.452
0.628 0.12713 41.357
0.696 0.12012 40.219
0.765 0.11211 39.063
0.833 0.10310 37.917
0.902 0.09309 36.813
0.971 0.08308 35.784
1.039 0.07207 34.865
1.108 0.06106 34.092
1.177 0.04905 33.504
1.245 0.03704 33.140
1.314 0.02402 33.038
1.382 0.01001 33.239
1.451 -0.00400 33.781
1.520 -0.01802 34.702
1.588 -0.03303 36.040
1.657 -0.04805 37.828
1.726 -0.06406 40.098
1.794 -0.07908 42.876
1.863 -0.09510 46.185
1.931 -0.11211 50.044
2.000 -0.12813 54.461

(ΛCDM) 0.00000 33.653

Table A.1: Best-fit M parameters with associated χ2 values for various ∆ε and ΛCDM.
The cut-off χ2 value for p < .05 with 30 d.o.f. is 43.773.
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