
1.  Introduction
Predicting the proximity of future destructive earthquakes is a fundamental goal of science, with significant 
challenges and societal importance. A key aspect of this prediction is identifying the signals that may be 
detectable in situ before catastrophic failure. The dilatancy-diffusion hypothesis predicts that as fractures 
open and propagate in the crust in the presence of fluids, larger ratios of fluid to solid volume develop 
(Nur, 1974). This increased ratio is expected to reduce the P wave and S wave seismic velocities and effective 
elastic moduli, and alter local hydrologic levels. Such variations in geophysical signals have been observed 
prior to some earthquakes (Aggarwal et al., 1973; Frank, 1965; Roeloffs, 1988; Whitcomb et al., 1973). How-
ever, this idea has remained a controversial hypothesis, likely because some earthquakes do not appear to 
have such precursors (Amoruso & Crescentini, 2010; Bolt, 1977; Cicerone et al., 2009; Haase et al., 1995; 
McEvilly & Johnson, 1974).

In recent years, analyses have used machine learning to predict the timing of earthquakes and their lab-
oratory analogs (e.g., Rouet-Leduc et al.,  2017; Corbi et al.,  2019; Hulbert et al.,  2019). However, to our 
knowledge, none have used characteristics of evolving fracture networks to perform such predictions, and 
thus none have identified which of these characteristics may be potential geophysical precursors. Here, we 
aim to identify the deformation phenomena that may signal the proximity of catastrophic failure in rocks. 
We develop machine learning models to predict the proximity to failure in eight triaxial compression ex-
periments on rocks representative of the crystalline continental crust: marble, monzonite, and granite (Ta-
ble S1). In situ synchrotron X-ray tomography triaxial compression experiments (e.g., Renard et al., 2016) 
provide images of 3-D fracture networks at 26–88 differential stress steps approaching dynamic failure in 
these eight experiments (Figures 1, S1, and Table S2). To characterize these evolving fracture networks, 
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we extract a series of 41 metrics, referred to as features in the machine learning community (Tables S3 
and S4). Importantly, we use failure criteria grounded in linear elastic fracture mechanics (Freund, 1998), 
critical phase transition (Bonamy & Bouchaud, 2011; Kandula et al., 2019; Main, 1995; Renard et al., 2018), 
Mohr-Coulomb (Dahlen, 1984), and strain energy density (Du & Aydin, 1993) approaches to select these 
metrics. We then use these features to develop XGBoost regression models (Chen & Guestrin, 2016) that 
predict the normalized differential stress distance to failure,  Δ /d f d f    , where σf is the differ-
ential stress at macroscopic failure and σd is the differential stress when the tomogram was acquired. By 
examining the importance of the features, we identify a subset of features that have the greatest impact on 
predicting the proximity to failure. The relative importance of these features suggests which fracture char-
acteristics best signal the proximity of the next macroscopic failure, and perhaps the next large earthquake. 
Identifying these features provides insight on the ability of existing failure criteria to predict the proximity 
of catastrophic failure.

2.  Methods
2.1.  Experimental Design

We perform eight rock deformation experiments at the X-ray tomography beamline ID19 at the Europe-
an Synchrotron and Radiation Facility (ESRF). The experiments include two on Carrara marble, three on 
monzonite and three on Westerly granite (Table S1). Monzonite and granite have nearly identical ranges of 
material properties, and only differ in their mean grain size: 100–200 μm for granite and 300–400 μm for 
monzonite (e.g., Aben et al., 2016).

In each experiment, we impose a constant confining stress and then increase the axial stress in steps until 
the rock fails macroscopically. After each axial stress step, we acquire a 3-D X-ray tomogram in situ when the 
rock core is under load inside the deformation apparatus (Renard et al., 2016) within 2 min (Figures 1 and 
S1). The imposed confining stresses range from 5 to 35 MPa for each experiment (Table S2). Macroscopic 

MCBECK ET AL.

10.1029/2020GL090255

2 of 9

Figure 1.  Mechanical history and characteristic fracture networks in experiments on marble (a) and granite (b). First 
column: Each black circle shows the loading conditions when an in situ X-ray tomogram was acquired. We predict the 
dimensionless distance from failure, Δd, shown in red on the right axes. 2-D slices in the second-fourth columns show 
the fractures and pores (black) between the solid rock (white) identified via segmentation of the tomograms. Slices 
are oriented parallel to the maximum compression direction (vertical), σ1. Blue volumes in the fifth column show the 
location of identified fractures in the 3-D tomograms, with white or gray indicating the solid rock.



Geophysical Research Letters

failure occurs in a sudden stress drop, typically within <0.5 MPa axial stress increase after the acquisition 
of the final scan.

2.2.  Feature Extraction

The 3-D X-ray tomograms provide 3-D distributions of local density that we segment into voxels dominated 
by air (i.e., pores and fractures), and by solid (steps #1 and #2 in Figure S2). The voxel size is 6.5 μm. To 
assess differences in predicting failure proximity using 2-D and 3-D data, we preprocess the tomogram data 
into these different dimensions (Figure S2, step #3). To extract the 2-D data, we take slices parallel to the 
σ1 direction (vertical) every 10 voxels, and parallel to both of the horizontal dimensions. Then we identify 
potential pores or fractures by finding groups of pixels with eightfold connectivity (2-D) or voxels with 26-
fold connectivity (3-D). These connectivities are both the most conservative for each respective dimension, 
ensuring the highest level of connectivity. Next, we apply a noise threshold to remove identified connect-
ed pixels or voxels below a certain threshold. We then split the 2-D slices into subareas (squares) or 3-D 
volumes into subvolumes (cubes) from which we calculate statistics of the fracture characteristic popula-
tions (i.e., features). The combination of different noise thresholds and subregion sizes produce 21 different 
representations of each experiment (Table S3). We calculate the features using the number of voxels or 
pixels of each identified fracture (fracture volume or area), centroid of the fracture (clustering/localization 
properties), or the eigenvalues and eigenvectors of the covariance matrix of the connected voxels or pixels 
(orientation relative to the σ1 direction, fracture length, fracture aperture, shape anisotropy) (Table S4). We 
also include a random number as feature #41 in order to compare the importance of features to a random 
value. Preexisting failure criteria of linear elastic fracture mechanics guided the selection of the features.

2.3.  Machine Learning Model Design

We develop XGBoost regression models (Chen & Guestrin, 2016) to predict the stress distance to failure, ∆d, 
from the 41 features. We predict the stress distance to failure, rather than the strain distance, because previ-
ous work found that rocks fail in a critical phase transition according to this metric (e.g., Renard et al., 2018, 
2019). We perform a grid search over the hyperparameters to find the best subset of hyperparameters (Lund-
berg & Lee, 2017). We develop models using data from all eight experiments (Table S1). We estimate the 
predictive power of the features using two metrics widely used in the machine learning community: the fea-
ture importance (weight), and Shapely Additive Explanations (mean |SHAP| value) (Lundberg & Lee, 2017; 
Pedregosa et al., 2011). The feature importance quantifies the information gain caused by encountering the 
feature (Müller & Guido, 2016). Similarly, SHAP values quantify the influence of each feature on the model 
prediction (Lundberg & Lee, 2017).

We separate the training (80%) and testing (remaining 20%) data sets with no overlap between these two 
sets. Each sample provided to the models are distinct in time (stress step) and space. We split the samples 
randomly into training and testing data sets such that two samples that occur at the same time, but different 
spaces within the scan, may be separated into the different training and testing data sets. Later, we discuss 
the (insignificant) influence of using a different splitting technique on model performance.

3.  Results
3.1.  Model Success

The ability of the models to predict the proximity to failure depends on the extraction of the features from 
the fracture networks. To characterize the fracture network, we separate (i.e., segment) the 3-D X-ray atten-
uation fields of the rock samples (i.e., tomograms) into fractures or pores and solid rock (Figure 1). These 
tomograms provide micrometer spatial resolution 3-D images of the evolving fracture network, whereas in 
crustal tectonic settings we often only have 2-D observations, such as surficial fault traces or geodetic strain 
rates. To test the impact of this observational limitation on predicting the distance to failure, we generate 
3-D and 2-D data sets from the tomograms from which we extract the fracture network characteristics. By 
comparing the success of models developed with the 2-D and 3-D data, we provide a quantitative compari-
son of using 2-D observations to predict failure of the 3-D system.
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We measure the success of the models by calculating the value of the coefficient of determination, R2, between 
the observed and predicted distances to failure, Δd. The R2 values developed with the 2-D data (R2 = 0.3–0.4) 
are generally lower than those of 3-D data (R2 = 0.4–0.6) (Figure S3), as expected. These R2 values indicate 
that the observed and predicted Δd have weak-moderate positive correlations to each other in the 2-D data 
and moderate-strong positive correlations in the 3-D data. Examination of the R2 scores of the 3-D model 
predictions and observations indicate that these models produce more accurate predictions closer to failure, 
at lower Δd (Figure S4). Varying the method of splitting the data into training and testing data sets does not 
produce significant changes in the R2 scores (Figure S5). For models developed with 3-D data with 3,000 voxel 
noise threshold and 300 voxel subvolume size, the range of the mean ± one standard deviation of the R2 scores 
are 0.5–0.62 when the training and testing data sets are split randomly, and 0.35–0.6 when these data sets are 
split by time (Figure S5). The range in the scores are larger in the models developed with time splitting than 
with random splitting likely because the amount of information provided about the fracture network varies 
with time. As the rocks approach failure, with increasing time, more fractures develop and thus provide more 
samples to the machine learning models. Text S1 describes how varying the noise threshold, which determines 
the minimum size of fractures included in the analysis, and subregion size, which determines the volume or 
area over which features are extracted, influence the model success.

3.2.  Predictive Power of Fracture Characteristics

To help identify the fracture network characteristics that may signal the proximity of the next catastrophic 
failure, and existing failure criteria that may predict this proximity, we examine the importance of the fea-
tures used in the models. We identify the most predictive features for models developed with the 3-D data 
for the set of noise threshold and subregion size that produce the largest R2 values. We do not focus on the 
2-D models here because the largest R2 values for these models are only near 0.4.

All of the features are calculated from statistics of fracture characteristics within a subvolume (Table S4 
and Figure S2). For example, the shape anisotropies of all the fractures in a subvolume are calculated, and 
then the minimum, 25th percentile, 50th percentile, 75th percentile, and maximum values of the anisotropy 
population are reported as features in the input file fed to the models. We extract features with this method 
in order to constrain which statistics of a fracture network population provide the best predictive power. In 
addition, this approach reduces the degree to which atypical fracture characteristics influence the model 
success.

We estimate the predictive power of the features from the models with two metrics widely used in the 
machine learning community: the feature importance (weight) and Shapely Additive Explanations (mean 
|SHAP| value) (Lundberg & Lee, 2017; Pedregosa et al., 2011). To account for the influence of random var-
iations that arise from splitting the data into training and testing data sets, we develop 50 unique models 
for the 3-D data. To compare the importance and mean |SHAP| values of features from these models, we 
derive a cumulative measure of importance. This cumulative R2-weighted normalized mean |SHAP| value 

(or feature importance) for a feature, f, from the 50 models is  
50

2
max

1
/

m
f

m
I R s s




  , where R2 is the R2 score, 

sf is the mean |SHAP| value (or feature importance) for a given feature, smax is the maximum mean |SHAP| 
value (or feature importance) of all the features of the model, and m = 50 indicates the number of models. 
We weight max/fs s  by the R2 of the model so that more accurate models have a greater impact on I.

Figure 2a shows the cumulative importance, I, of all of the features. We consider the features with I > 50% 
of the maximum value for either the mean |SHAP| value or feature importance as the most likely to suc-
cessfully predict the proximity to macroscopic failure. Following this metric, the most predictive features 
include the minimum orientation of the minimum eigenvector of the fracture (i.e., smallest dimension of 
the fracture), the 75th percentile and maximum fracture aperture, the maximum shape anisotropy, and the 
25th percentile of the distances between fracture centroids in a subvolume (Figure 2a). Models developed 
by splitting the training and testing data sets by the time to failure (Figure S5) host the same suite of most 
predictive features as the models shown here, which were developed by randomly splitting the data.

This identification of the most predictive features suggests that the model performance (R2) should not 
decrease significantly upon removal of the remaining 37 features. We test this idea here by developing 50 
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unique models for various combinations of the four most predictive features. Removing 37 features, and 
including the four features identified in Figure 2a decreases the range of the mean ± one standard deviation 
of the R2 of the 50 models from 0.6 to 0.5 (Figure 2b). However, developing models with only one of the four 
features reduces the range of R2 to about 0.1–0.25 (Figure 2b). This trend in R2 with various combinations 
of the identified most predictive features suggests that tracking only one of these features will not produce 
accurate estimates of the proximity to failure. Rather, successful predictions of the proximity to failure likely 
requires tracking all four.

3.3.  Evolution of Predictive Fracture Characteristics

Following the identification of the most predictive features in the 3-D data, we now track the evolution of 
these fracture network characteristics throughout three example experiments on marble, monzonite, and 
granite. We examine the mean ± one standard deviation of the characteristics in all the subregions at each 
stress step (Figure S6). In 3-D, the minimum orientation of the minimum eigenvector, min

1 , evolves from 
generally 30° to 80° from the maximum compression direction, σ1, near the onset of loading to 20–30° when 
Δd < 0.1. When θ1 = 90°, the fracture trends vertical, with its smallest dimension (i.e., eigenvector) perpen-
dicular to σ1 (e.g., Figure S2). Thus, this evolution indicates that the fractures evolve from closer to vertical 
to more inclined relative to σ1, and along the orientation expected to host higher magnitudes of Coulomb 
shear stress, when Δd < 0.1 and thus immediately preceding macroscopic failure.

The maximum fracture aperture in a subregion accelerates from 10 to 20 voxels when Δd > 0.1 to 20–30 vox-
els when Δd < 0.1 and failure is imminent (Figure S6). This evolution indicates that fractures widen preced-
ing macroscopic failure, and the rate of this widening increases near Δd = 0.1. The maximum anisotropy of 
the fractures in a subregion also increases with loading, with a sharp increase near Δd = 0.1. As fractures 

MCBECK ET AL.

10.1029/2020GL090255

5 of 9

Figure 2.  Influence of features on model predictions. (a) Predictive power of features in models developed from 3-D 
data. Green and blue bars show the cumulative R2-weighted normalized mean |SHAP| value and feature importance, I, 
respectively. Triangles and circles highlight the features with I > 75% and 50–75% of the maximum values, indicating 
the most predictive features. Suite of I shown here is from the 3-D models with the highest R2 scores, with the noise 
threshold and subvolume size shown in the upper left corner. (b) Influence of iteratively removing and combining 
features on the success of models. Here, θ1, aperture, aniso., and spacing indicate the minimum θ1, the maximum 
fracture aperture, maximum shape anisotropy, and 25th percentile of the distance between the fracture centroids, 
respectively. Black squares show the mean ± one standard deviation of R2 for 50 models developed with each set of 
features.
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become wider, they also lengthen, increasing their anisotropy. As fractures widen and lengthen, they also 
become more clustered. The fracture populations produce a clear shift in statistical properties from less 
clustered, with greater values of the 25th percentile of the distance between fractures in a subregion, to 
smaller values, again near Δd = 0.1.

4.  Discussion
4.1.  Precursory Signals of the Proximity to Catastrophic Failure

The fracture network characteristics that provide the best predictive power of the stress distance to macro-
scopic failure include: the minimum orientation of the smallest dimension of the fracture (i.e., minimum ei-
genvector), the 25th percentile distance between fractures, the maximum fracture aperture, and maximum 
shape anisotropy of fractures in a subregion (Figure 2a). Testing the influence of removing and combining 
features (Figure 2b) demonstrates that predicting the stress distance to failure will be most successful with 
approaches that track all of these characteristics.

The observed acceleration of the maximum fracture aperture and maximum anisotropy with increasing 
applied differential stress (Figure S6) suggests that tracking these properties may provide robust estimates 
of the distance to macroscopic failure. Moreover, the evolutions of the fracture network characteristics ob-
served in this work are similar to those observed in previous analyses (Cartwright-Taylor et al., 2020), lend-
ing confidence to the reproducibility of these trends. The fracture aperture likely correlates with the rock 
porosity, and thus observed geophysical precursors to some earthquakes (Aggarwal et al., 1973; Frank, 1965; 
Roeloffs, 1988; Whitcomb et al., 1973). The increasing anisotropy may also correlate with rock porosity be-
cause the observed concurrent increase in fracture aperture suggests that the fracture length also increases 
to achieve the increase in anisotropy. The spatial distribution of the fracture network also controls the 
magnitude of porosity. In summary, the fracture clustering, aperture, and anisotropy likely correlate with 
seismic velocity and porosity, and thus previously observed candidate geophysical precursors.

The tested features of the models include two classes: those that require characterizing all of the fractures 
in a region above some noise threshold, and those that require characterizing only the extreme values of a 
population. In crustal fault systems, monitoring seismic wave velocities and attenuation helps characterize 
the influence of all of the fractures in a crustal volume. In surface-based field analyses, characterizing only 
the widest or most anisotropic fractures is relatively easier than characterizing the complete network of 
thousands of fractures. The higher predictive power of features that involve the extreme values of a popula-
tion suggests that crustal analyses that estimate the proximity of the next large earthquake may only need 
to focus on the extreme members of the fracture network population.

The results found here are consistent with the higher predictive power of the intermediate values of the 
dilatational strain identified when predicting the stress distance to failure from 3-D incremental local strain 
fields in 12 X-ray tomography triaxial compression experiments (McBeck et al., 2020). In those experiments, 
the dilatational strain provides greater predictive power than the contractive or shear strain components. 
This higher predictive power is consistent with the higher predictive power of fracture characteristics iden-
tified here (fracture aperture, anisotropy, clustering) that influence the porosity and elastic moduli. Howev-
er, we note that some observations of crustal strain have not detected precursory deformation indicative of 
dilatancy (e.g., Amoruso & Crescentini, 2010), perhaps because lower strain rates suppress dilatancy (e.g., 
Brantut et al., 2013; Ojala et al., 2004).

The extreme values of the fracture aperture, anisotropy, and clustering provide greater predictive power 
than the intermediate values of these populations (Figure 2a). The widest fractures may be expected to host 
the most dilation, following scaling relationships between displacement and damage zone development 
(Savage & Brodsky, 2011). The dependence of prediction on the intermediate values of dilation (McBeck 
et  al.,  2020) suggests that the volume required to predict the distance to failure from local strain fields 
includes the widest fractures as well as the volume of rock surrounding them. The higher success of mod-
els developed with larger subvolume sizes presented here (Figure S3) supports the idea that characteriz-
ing deformation as strain or fractures within the volume of rock surrounding the main faults is critical to 
successfully predicting the proximity of the next large earthquake. Evidence from natural crustal systems 
supports this idea. For example, epicenters of background seismicity in the Eastern California Shear Zone 
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appear to localize toward the rupture zones of large events several years 
before they occur (Ben-Zion & Zaliapin, 2020), highlighting the impor-
tance of analyzing deformation in crustal areas and volumes around 
main faults.

4.2.  Assessing Failure Criteria for Predicting Failure Proximity

This machine learning analysis allows comparing the predictability of 
characteristics used in preexisting failure criteria of geoscience and en-
gineering. Predictions from the Mohr-Coulomb shear failure criterion 
may be difficult to directly compare to those from strain energy densi-
ty fields, but suites of feature importance provide direct comparisons of 
the fracture network characteristics that motivate these failure criteria. 
The highly predictive features identified here (Figure  2a) indicate that 
the following failure criteria provide accurate estimates of the proximity 
to catastrophic failure in the examined laboratory data: (1) strain ener-
gy density or stress/strain concentrations (fracture aperture, shape ani-
sotropy, distance between fractures) (Du & Aydin, 1993; Shi, 1974), (2) 

stress intensity factor formulations (fracture aperture, shape anisotropy, orientation of fractures with re-
spect to the maximum compression direction) (Freund, 1998; Isida, 1971; Raju & Newman, 1979), and (3) 
Mohr-Coulomb shear failure criterion (orientation of fractures) (Dahlen, 1984).

The success of the models depends on how many of the highly predictive features are included in the mod-
els (Figure 2b). In particular, the model success (R2) using the four identified most predictive features is 
about five times that of the success of models developed with only one of these features. This result suggests 
that crustal monitoring efforts should focus on this suite of most predictive features, rather than only one 
of these features.

The results support predicting failure proximity using strain energy density approaches, rather than only 
the stress intensity factor or Mohr-Coulomb failure criterion. Strain energy density approaches will likely 
provide predictions that agree with the other criteria, whereas the other two methods may not identify the 
sites of potential failure indicated by the strain energy density (Figure 3). For example, when fractures are 
more anisotropic and have larger apertures, they may produce higher stress intensity factors and greater 
concentrations of strain energy density at their tips. When fractures are oriented closer to the optimal Cou-
lomb orientation, they may accommodate more slip, which then also increases the strain energy density 
near their tips. In contrast, when two (or more) opening and slipping fractures are sufficiently close to 
perturb each other's stress field, they may locally develop high concentrations of strain energy density. Such 
fractures may not be oriented near the optimal Coulomb orientation, nor have high stress intensity factors. 
Thus, this work supports predicting the stress distance to failure using the strain energy density field.

The proposed success of predicting failure using the strain energy density field agrees with previous analyses 
that predict fault growth by identifying regions with elevated strain energy density (e.g., Du & Aydin, 1993). 
The integration of the strain energy density field quantifies the internal work done in the mechanical defor-
mation of the host rock surrounding faults (Cooke & Madden, 2014). Consequently, the ability of the strain 
energy density field to predict the geometry of fault networks and the proximity to catastrophic failure sup-
ports the idea that energy optimization techniques can provide critical insights into rock deformation and 
crustal tectonic evolution (e.g., Aben et al., 2019; Del Castello & Cooke, 2007; Hardy et al., 1998; Masek & 
Duncan, 1998; McBeck et al., 2017, 2018; McBeck, Cordonnier, et al., 2019).

The features designed following critical phase transition approaches (total fracture volume in a subregion) 
(e.g., Bonamy & Bouchaud, 2011), do not have high predictive power in these models (Text S2 and Fig-
ure S7). In particular, the most predictive features of the models developed with only the marble data in-
clude the total volume of fractures in a subvolume, while the models developed with the other rocks do 
not. This result indicates that rocks with more homogeneous distributions of fractures may fail in a critical 
phase transition, whereas more heterogeneous rocks may not. The differing porosity of the rocks may also 
contribute to this result (e.g., Vasseur et al., 2015, 2017). Cartwright-Taylor et al. (2020) found that higher 
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Figure 3.  Recognizable predictive precursors and their relationship to 
existing brittle failure criteria. Strain energy density approaches tend to 
include the predictions of the Mohr-Coulomb criterion and the stress 
intensity factor, but these two approaches do not explicitly consider the 
spacing between fractures. The most predictive features all contribute 
to the strain energy density field surrounding fracture networks, and 
thus support using this property when predicting the stress distance to 
catastrophic failure.
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porosity rocks fail with behavior similar to second-order or critical phase transitions, whereas lower poros-
ity rocks and analog materials fail with behavior more similar to first-order phase transitions. The lower 
initial porosity of the granite and monzonite may cause these rocks to fail as first-order phase transitions, 
rather than critical phase transitions.

5.  Conclusions
A key question is how insights into predicting the proximity of system-scale failure in laboratory experi-
ments may be extended to predicting the proximity of crustal earthquakes. Indeed, one could divide this 
problem into predicting system-scale failure (the complete rock sample) and local failure (a large earth-
quake on one or several faults). Previous results and the work presented here support the idea that similar 
fracture characteristics may help predict both system-scale and local failure, at least in the laboratory. When 
predicting whether individual fractures will increase or decrease in volume from 3-D data in four of the ex-
periments analyzed here, on marble, granite, and monzonite (McBeck, Kandula, et al., 2019), the identified 
highly predictive features are similar to those identified in the present work. The features that provide reli-
able estimates of whether an individual fracture grows or closes (i.e., local failure), and also the distance to 
failure (i.e., global failure), include the orientation, aperture, shape anisotropy, and statistics of clustering. 
Thus, predicting both local and global failure benefits from fracture characteristics that control the rock 
dilation and the strain energy density field, supporting the idea that energy optimization may help predict 
fault network development and the timing of large earthquakes.

Data Availability Statement
Beamtime was allocated at the European Synchrotron Radiation Facility (Long Term Proposal ES-295). The 
experimental data are available on Norstore (Renard, 2017, 2018)
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