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Highlights 

 
- Machine learning successfully predicts the proximity to failure from strain fields. 
- Dilatational strain predicts the proximity to failure better than shear strain. 
- The 25th-75th percentile values of the strain population best predict failure proximity.  
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Abstract 1 

Predicting the proximity of large-scale dynamic failure is a critical concern in the engineering 2 

and geophysical sciences. Here we use evolving contractive, dilatational, and shear strain 3 

deformation preceding failure in dynamic X-ray tomography experiments to examine which 4 

strain components best predict the proximity to failure. We develop machine learning models 5 

to predict the proximity to failure using time series of three-dimensional local incremental 6 

strain tensor fields acquired in rock deformation experiments under stress conditions of the 7 

upper crust. Three-dimensional scans acquired in situ throughout triaxial compression 8 

experiments provide a distribution of density contrasts from which we estimate the three-9 

dimensional incremental strain that accumulates between each scan acquisition. Training 10 

machine learning models on multiple experiments of six rock types provides suites of feature 11 

importance that indicate the predictive power of each feature. Comparing the average 12 

importance of groups of features that include information about each strain component 13 

quantifies the ability of the contractive, dilatational and shear strain to predict the proximity 14 

of macroscopic failure. A total of 24 models of four machine learning algorithms with six 15 

rock types indicate that 1) the dilatational strain provides the best predictive power of the 16 

strain components, and 2) the intermediate values (25th-75th percentile) of the strain 17 

population provide the best predictive power of the statistics of the strain populations. In 18 

addition, the success of the predictions of models trained on one rock type and tested on other 19 

rock types quantifies the similarities and differences of the precursory strain accumulation 20 

process in the six rock types. These similarities suggest the potential existence of a unified 21 

theory of brittle rock deformation for a range of rock types. 22 
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1. Introduction 26 

Predicting the timing of dynamic catastrophic failures is a fundamental problem for 27 

society and earthquake science. This question could be more straightforward to address if 28 

large faults were planar and surrounded by a purely elastic and homogeneous solid where 29 

strain energy only accumulates in the time between the episodic failures of the large faults. 30 

However, seismic and geodetic observations document that crustal volumes experience 31 

ongoing seismic and aseismic failure on a heterogeneous population of faults with various 32 

sizes, geometries and failure mechanisms (e.g., Scholz, 1990; Ben-Zion, 2008; Hauksson et 33 

al., 2012). 34 

Under triaxial compression conditions, permanent deformation preceding macroscopic 35 

failure manifests by the decreasing slope of the axial strain-stress curve following a nominally 36 

linear phase, along with a corresponding reduction of the effective moduli toward 37 

macroscopic failure, and increasing transverse or radial deformation (e.g., Brace et al., 1966; 38 

Scholz et al., 1973; Lyakhovsky et al., 1997; Hamiel et al., 2004). Distributed dilation within 39 

the rock volume preceding dynamic rupture helps explain the emergence of these and other 40 

precursory signals. 41 

The dilatancy-diffusion model posits that as fractures propagate and open in the presence 42 

of fluids in the crust, the increased pore space allows fluid to diffuse, producing larger ratios 43 

of fluid to solid volume (e.g., Nur, 1974). The increased ratio of fluid (air or liquid) to solid 44 

may reduce the P-wave velocity and decrease the effective elastic modulus, and dilatancy-45 

enhanced fluid flow may change local hydrologic levels. Some field observations are 46 

consistent with these expectations (e.g., Frank, 1965; Whitcomb et al., 1973; Aggarwal et al., 47 

1973; Roeloffs, 1988), but the general validity of these observations remain controversial 48 

(e.g., McEvilly & Johnson, 1974; Bolt, 1977; Haase et al., 1995). Observations of 49 

macroscopic volumetric strain during triaxial compression experiments indicate that rocks 50 
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tend to dilate before macroscopic failure under confining stresses representative of the upper 51 

crust (e.g., Brace et al., 1966). Quantifying the behavior of rocks during the approach to 52 

macroscopic failure is a critical step toward constraining the precursory signals that reveal the 53 

proximity of the next large earthquake. 54 

A key assumption of the earthquake preparation process is that both the dilatational and 55 

shear deformation evolve toward failure, and that both modes of deformation contain 56 

information critical for predicting the timing of rupture. For example, the second invariant of 57 

the strain rate tensor, which includes the volumetric and deviatoric strain tensor components, 58 

is often used as a proxy for long term seismic hazard (e.g., Kreemer et al., 2003). Earthquakes 59 

can rupture in a combination of modes, and so the reported accelerated seismic release rates 60 

before mainshock events (e.g., Mogi, 1969; Papazachos, 1973; Sykes & Jaumé, 1990) may 61 

involve different modes of deformation. However, increased rates of foreshocks surrounding 62 

normal faults, relative to thrust and strike-slip faults (Abercrombie & Mori, 1996), suggests 63 

that extensional deformation may provide less ambiguous signals than shear deformation 64 

before rupture. Similarly, the observed acceleration of the total fracture volume in X-ray 65 

tomography experiments suggests a process consistent with a critical phase transition (Renard 66 

et al., 2018; Kandula et al., 2019), but this tracking of the fracture volume does not provide 67 

information about the evolution of shear deformation. 68 

Time series of 3D incremental strain component fields throughout X-ray tomography 69 

experiments (e.g., Figure 1) suggest that both the dilatational and shear strain components 70 

accelerate toward failure in some experiments of some rock types (e.g., Renard et al., 2019). 71 

The dilatational strain, as measured with the mean of the local incremental strain population, 72 

tends to accelerate in more experiments than the shear strain (Renard et al., 2019; McBeck et 73 

al., 2018, 2019, 2020). The consistency of the dilatational strain evolution suggests that shear 74 

strain may not provide information crucial for predicting the timing of macroscopic failure. In 75 
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this case, effective predictive analyses could concentrate on detecting the precursory signals 76 

indicative of dilatancy. 77 

To determine which strain components are most likely to improve the ability of predicting 78 

the proximity to system-size failure, we analyze the time series of 3D local incremental strain 79 

fields captured in X-ray tomography triaxial compression experiments (e.g., Figure 1). Here, 80 

we characterize the proximity to failure by the ratio between the differential stress at a given 81 

time, and the differential stress at the macroscopic failure of the sample. The incremental 82 

strain fields are calculated throughout twelve in situ dynamic X-ray tomography triaxial 83 

compression deformation experiments on six rock types (Figure 2, Table S1). Machine 84 

learning models then use the statistics of the local contraction, dilation and shear strain 85 

populations to predict the proximity to failure (Table S2). We examine the feature importance 86 

and Shapley Additive Explanation (SHAP) values to determine which strain components and 87 

statistics have the best predictive power of the proximity to macroscopic failure. To assess 88 

differences in the predictive power of these strain components and statistics among different 89 

rock types, we train six unique models on datasets from two experiments on the same rock 90 

type (Table S1). To quantify the similarity of the precursory strain accumulation processes in 91 

these rock types, we test the success of the models with data from the same rock type used to 92 

train the model, and with data from different rock types. High degrees of success between 93 

models trained and tested on different rock types may reflect the similarity of the strain 94 

accumulation process in these rock types. To increase the robustness of the results, we repeat 95 

the analysis using four machine learning approaches, including random forest and gradient 96 

boosting (XGBoost) methods. This suite of analyses indicates that for the six analyzed rock 97 

types, the intermediate values of the dilatational strain populations provide the best predictive 98 

power of the proximity to macroscopic failure. 99 

 100 
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2. Methods 101 

2.1. Experimental design and data 102 

We deform rocks in an X-ray transparent deformation apparatus installed on beamline 103 

ID19 at the European Synchrotron and Radiation Facility. In each experiment, we increase the 104 

axial stress in steps of 0.5-5 MPa under constant confining stress between 5-35 MPa until the 105 

sample fails macroscopically (Table S3). At each stress step, we acquire a 3D X-ray 106 

tomogram at 6.5 µm per voxel-side resolution while the sample is under constant stress 107 

conditions inside the apparatus. Each scan requires about 2 minutes, and the final scan 108 

immediately precedes macroscopic failure of the rock. McBeck et al. (2020) describe in detail 109 

the experimental conditions and method of calculating the strain tensor fields used in the 110 

current analysis, so we only briefly describe these topics here. We calculate the differential 111 

stress, 𝜎" = 𝜎$ − 𝑃', where 𝜎$ is the axial stress and 𝑃' is the confining pressure. The 112 

differential stress at failure is noted 𝜎(. 113 

From the 3D tomograms of the 12 experiments, we perform digital volume correlation 114 

(DVC) in ten intervals of each experiment (e.g., Figure 2), following the approach of McBeck 115 

et al. (2020) with the code TomoWarp2 (Tudisco et al., 2017). Each interval is separated by 116 

approximately equal increments of cumulative macroscopic axial strain. The DVC 117 

calculations provide the 3D displacement fields between each scan acquisition, and thus the 118 

incremental strain tensor components. The positive and negative divergence represents the 119 

dilatational and contractive volumetric strains, respectively, and the magnitude of the angular 120 

velocity of the curl represents the shear strain. 121 

2.2. Feature extraction 122 

We train the models using data from all the experiments with the same rock type, 123 

producing six unique models of each rock type (Table S1). To extract information about the 124 

3D incremental strain field, we subdivide each strain field into a grid of subvolumes that are 125 
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fixed in space from which we report statistics of the strain population. The 27 features of the 126 

data are a combination of one of the three strain components (dilation, contraction, shear 127 

strain), and a measurement of the population of these strain components within the subvolume 128 

(Table S2). Each subvolume in the cubic grid has a side length of 0.5 mm, about four times 129 

the DVC spatial resolution (0.13 mm), and is fixed in space. Therefore, each subvolume 130 

includes about 43 measurements of each of the three strain components. The strain 131 

components include contractive, dilatational and shear strains, as measured with the negative 132 

divergence, positive divergence, and magnitude of curl of the displacement field. The 133 

statistics include the 90th, 75th, 50th, 25th, and 10th percentile, mean, standard deviation and 134 

sum of the strain population, and the number of measurements within a subvolume. For 135 

example, one feature is the 90th percentile of the contraction values within a subvolume of the 136 

strain field. The number of measurements within a subvolume is the total number of strain 137 

values within the subvolume, which tends to increase for dilatational strains and decrease for 138 

contractive strains with loading. This number will be the same for the shear strain values 139 

throughout loading, and equal to about 43. We extract the number of measurements within a 140 

subvolume because previous work shows that the volume of rock that the dilatational and 141 

contractive strains occupy can accelerate toward failure (e.g., Renard et al., 2019), and so 142 

may signal the approach of macroscopic failure. Thus one subvolume produces one sample 143 

for the machine learning models, which contains 27 features. Testing the influence of using a 144 

smaller sub-volume size (0.2 mm) revealed only insignificant differences in the results. 145 

2.3. Machine learning methods 146 

We employ two machine learning methods: random forest classification (e.g., Breiman, 147 

2001) and XGBoost (i.e., extreme gradient boosting) classification (e.g., Chen & Guestrin, 148 

2016). We designed this analysis as a classification problem similar to time-dependent 149 

seismic hazard models that predict the rate of event occurrence (e.g., Tiampo & Shcherbakov, 150 
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2012). We synthesize results from the random forest and XGBoost methods to increase the 151 

robustness of the conclusions. Both methods utilize an ensemble of decision trees as the base 152 

estimator. Text S1 describes differences in the random forest and XGBoost methods. For 153 

each machine learning method, we perform a grid search over the hyperparameter space to 154 

find the appropriate set of hyperparameters for each model (Géron, 2017). 155 

The models predict the proximity to system size failure using the macroscopic differential 156 

stress applied to the rock at the time that the strain field was calculated, and the differential 157 

stress at failure, 𝜎(. We use the differential stress an indicator of the distance until failure 158 

because previous experimental studies have demonstrated that fractures develop in rocks 159 

preceding macroscopic compressive failure as a critical phase transition relative to the 160 

macroscopic 𝜎( (e.g., Renard et al., 2018; Kandula et al., 2019). 161 

We use two different classification schemes for each of the two machine learning 162 

methods, producing four machine learning approaches. We predict either two classes or four 163 

classes of the proximity to failure. For the four prediction classes, we predict whether the rock 164 

is experiencing <25%, 25-50%, 50-75% or >75% of 𝜎(. For the two prediction classes, we 165 

predict whether the rock is experiencing <50%, or >50% of 𝜎(. For example, if the rock is 166 

under 10 MPa differential stress, 𝜎", and fails at 𝜎(=100 MPa, then 𝜎"/𝜎( = 0.10 or 10%, so 167 

this distance to failure is in the first prediction class in both the four- (<25%) and two-class 168 

(<50%) prediction models. This classification approach enables comparing the model 169 

accuracy to the accuracy expected from the random probability of selecting the correct 170 

answer, providing a systematic means of quantifying the prediction success. The accuracy is 171 

the number of correct answers out of the total number of correct and incorrect answers (e.g., 172 

Müller & Guido, 2016). 173 

The time series of incremental strain fields are calculated with approximately equal 174 

increments of macroscopic axial strain, so predicting the proximity to failure using the 175 
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macroscopic differential stress may result in different numbers of outcomes (stress classes) 176 

depending on the non-linearity of the stress-strain relationship. Using more than four classes 177 

results in several experiments having a different number of outcomes (predicted stress 178 

classes). Such differences in the expected random probability between experiments reduces 179 

the likelihood of achieving high transfer accuracies, when models are trained on data from 180 

one rock type and tested with data from another rock type. For this reason, we do not use 181 

more than four prediction classes. 182 

With the 50% partitioning of the experiments into two stress classes, all of the 183 

experiments have two classes of predictions. Consequently, the random probability of 184 

selecting the correct answer is 1/2. With the 25% partitioning of the experiments into four 185 

stress classes, all but two of the experiments have four stress classes. The shale experiments 186 

include longer yielding phases preceding macroscopic failure than the other rock types, so 187 

they only have three stress classes. Consequently, whereas the shale experiments produce a 188 

random probability of 1/3, all the other experiments have four prediction classes with a 189 

random probability of 1/4. We counted the number of outcomes in each class in the testing 190 

datasets to ensure that the expected probabilities are the same as those in the testing datasets. 191 

After counting the number of outcomes in each class, we found that the mean accuracies 192 

across all the classes expected from a random guess in the testing datasets were the same as 193 

those in the training datasets. 194 

To determine which strain components and statistics signal the approach to macroscopic 195 

failure, we examine the suites of feature importance of the trained models. The feature 196 

importance quantifies the average information gain produced by encountering a feature. The 197 

magnitude of improvement in the model prediction associated with a node and its 198 

corresponding information is defined as the node impurity. The decrease in node impurity 199 

weighted by the probability of reaching the node produces the feature importance (e.g., 200 
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Müller & Guido, 2016). Higher feature importance indicates that the feature has more 201 

influence in fitting the data, so we interpret the importance as indicating the relative 202 

predictive power of features. 203 

In addition to the feature importance, we use the Shapley Additive Explanation (SHAP) 204 

values to examine the impact of individual features on the feature space (Lundberg & Lee, 205 

2017). SHAP values indicate the contribution of each feature on the prediction of the average 206 

(i.e., a completely featureless naïve model). They may explain single predictions for single 207 

measurements, and also for the collection of predictions in a data set (i.e., stress classes). 208 

SHAP values for a specific feature S are calculated by comparing results of models that do 209 

and do not include feature S. The approximate effect on all predictions may then be estimated 210 

by finding the mean SHAP value over the samples in the training data. 211 

 212 

3. Results 213 

3.1. Transfer and non-transfer success 214 

First, we examine the success of the models when trained and tested on the same rock 215 

type, and with distinct datasets. In particular, we trained six unique models using 80% of the 216 

data from experiments on the same rock type: sandstone, basalt, monzonite, granite, shale, 217 

and limestone (Figure 3). We then tested the accuracy of the models with the remaining 20% 218 

of the data from each group of experiments (i.e., non-transfer accuracy), and with data from 219 

the other groups of experiments (i.e., transfer accuracy) (Figures 4, S2, S3, S4). We divided 220 

the data into training and testing datasets by random selection. Due to potential auto-221 

correlation between the data in the training and testing datasets, the non-transfer accuracies 222 

may be higher than the transfer accuracies. 223 

The four machine learning approaches include the two schemes of prediction with two 224 

and four classes of prediction, and two algorithms of the random forest and XGBoost 225 
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implementations. The four machine learning approaches and six rock types produce 24 226 

models. The 12 models that predict two classes have a higher range of accuracy (0.76-0.89) 227 

than the 12 models that predict four classes (0.58-0.83), as expected from the random 228 

probability of selecting the correct answers of 0.50 and 0.25 for the two and four class 229 

prediction schemes, respectively (Figure 3). The XGBoost models tend to perform better, in 230 

terms of accuracy, than the random forest models. To determine which part of the strain 231 

accumulation process these models most successfully describe, we extract the non-transfer 232 

precision and recall of each prediction class for the 24 rock type models (Figure S2). In 233 

general, the precision scores indicate that the model predictions are similarly successful 234 

across all the prediction classes. The recall scores indicate that the models are more correct 235 

near the onset of loading. 236 

We next assess the ability of the models to predict the proximity to failure with data from 237 

experiments on rock types different than those used to train the models (i.e., transfer 238 

accuracy). The non-transfer accuracy reflects the success of the model in predicting the 239 

outcome with data from the same rock type. The transfer accuracy reflects the success of the 240 

model in predicting the outcome with data of different rock types. High transfer accuracies 241 

may indicate that the rock type used in the testing dataset fails with similar a strain 242 

accumulation process as the rock type used in the training data. Note that higher non-transfer 243 

accuracies may arise if samples used in the training dataset are moderately-highly correlated 244 

to samples used in the testing dataset. We show below that this caveat has minimal impact on 245 

the model success. 246 

To compare the similarity of the strain accumulation processes in these rock types, we 247 

synthesize the accuracies of the models trained and tested with data from the 36 rock type 248 

pairs in each of the four machine learning approaches. First, we find the accuracy of the 36 249 

rock type pairs for the four machine learning approaches (Figures S3, S4). Then we calculate 250 
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the difference between the accuracy and the random probability of selecting the correct 251 

answer, which is 0.50 and 0.25 for the two and four prediction classes, respectively. Then we 252 

calculate the mean of this score from the four approaches for the 36 combinations of training 253 

and testing rock types (Figure 4). 254 

We expect that certain pairs of rock types will deform with similar strain accumulation 255 

processes. For example, we expect that sandstone and basalt, monzonite and granite, and 256 

shale and limestone will host similar strain accumulation processes because previous work 257 

has observed similar deformation mechanisms operating in these rocks (e.g., Reches & 258 

Lockner, 1994; Menéndez et al., 1996; Lockner, 1998; Katz & Reches, 2004; Zhu et al., 259 

2010). The results are consistent with these expectations for the sandstone and basalt 260 

experiments, and shale and limestone experiments, but not the monzonite and granite 261 

experiments (Figure 4). In particular, the 1) sandstone and basalt, and 2) shale and limestone 262 

datasets have high transfer accuracy, as measured with the mean accuracy above the random 263 

probability, but the 3) monzonite and granite transfer accuracies are relatively lower. Whereas 264 

the difference in the non-transfer and transfer accuracies is 0.10-0.16 for the sandstone and 265 

basalt, and <0.15 for the limestone and shale, this difference is 0.15-0.20 for the monzonite 266 

and granite. Monzonite and granite are low porosity crystalline rocks comprised of quartz and 267 

feldspar, so we would expect them to fail in similar strain accumulation processes. In contrast 268 

to expectations, the transfer accuracy is >0.15 lower than the non-transfer accuracy for these 269 

rocks. The general similarity between the range of non-transfer and transfer accuracies 270 

suggest that the influence of auto-correlation on the non-transfer model performance was 271 

minimal. 272 

3.2. Predictive power of strain components 273 

The importance of the features decays from the most to the least important in all 24 274 

models of the six rock types and four machine learning approaches (Figure S5). The feature 275 
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importance values are measured relative to other features in the model (e.g., Müller & Guido, 276 

2016). However, the similar magnitudes of the feature importance across the models indicate 277 

that we may define thresholds in order to identify the highly important features of each model 278 

to then compare to other models. Consequently, we examine the average importance of 279 

features that have >25%, >50% and >75% importance of the maximum feature importance 280 

(Figure 5). To ensure that the magnitudes of the suites of feature importance of different 281 

models do not influence our results, we also examine the feature importance normalized by 282 

the maximum feature importance of each model. This normalization yields the same 283 

conclusions (described below) as analyzing the importance without normalization. 284 

To assess which strain components (contraction, dilation, and shear strain) provide the 285 

best predictive power of the proximity to macroscopic failure, we examine the importance of 286 

features, grouped by strain component, that are identified as highly important. With the least 287 

restrictive inclusion of features (>25% of the maximum importance) (Figure 5), features that 288 

include information about all of the strain components are identified as important for each 289 

rock type. With the intermediate inclusion of features (>50%), a lower number of rock type 290 

models depend on the contraction and shear strain than with the >25% threshold. With the 291 

most restrictive inclusion of features (>75%), features that include information about the 292 

dilation are considered important for five of six of the rock types. Only the limestone models 293 

rely on information about the contraction, dilation and shear strain to predict failure with this 294 

75% thresholding. 295 

To assess which statistics of the strain populations provide the best predictive power about 296 

the proximity to macroscopic failure, we now examine the average importance of features that 297 

use these statistics. For each threshold of importance (25-75%), features using the sum, mean, 298 

and 25th-75th percentile of the strain population within each sampling subvolume have the 299 

highest importance (Figure 6, Figure S6). Features that use the extreme values of the strain 300 
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population, including the highest (90th percentile) and lowest (10th percentile) extremes, do 301 

not rank as high in importance as the intermediate values. Previous machine learning analyses 302 

have used the variance, or standard deviation, of acoustic emissions to detect approaching 303 

failure in friction experiments (e.g., Rouet‐Leduc et al., 2017; Hulbert et al., 2019). In our 304 

analysis, the standard deviation of the strain components in a subvolume does not provide 305 

significant predictive power of the timing of macroscopic failure (Figure 6, Figure S6). 306 

To test the robustness of the results gleaned from the feature importance, we assess the 307 

predictive power of the features using their Shapley Additive Explanation (SHAP) values 308 

(Lundberg & Lee, 2017). Consistent with the analysis of the suites of feature importance, this 309 

analysis suggests that features that include information about the dilation, and intermediate 310 

and global values of the strain population provide the best predictive power (Figure S7). 311 

To further explore the robustness of the results derived from the feature importance and 312 

SHAP values, we train and test new models that only use features that include information 313 

about the dilation, rather than all three strain components (Figure S8). The accuracies of the 314 

models decrease by 0.01-0.10 when they only rely on the dilation. Both the feature 315 

importance and SHAP values indicate that the statistics that provide the highest predictive 316 

power tend to measure the intermediate values of the dilation population, including the mean, 317 

median, sum, and number of values within a subvolume. 318 

To help understand why the models select these sets of features as important, we examine 319 

the evolution of the magnitude of the strain components throughout three characteristic 320 

experiments (Figure 7). With the highest threshold of importance (>75%), these experiments 321 

depend on features with information about the dilation (sandstone and monzonite), and 322 

contraction (limestone), respectively (Figure 7). These strain components tend to have higher 323 

mean values of the total population at a stress step than the strain components that are not 324 

identified as important. In the sandstone experiment (Figure 7a), the mean of the population 325 
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of dilation values in each DVC calculation exceeds the mean of the shear strain and 326 

contraction after 0.6 normalized macroscopic axial strain. This trend holds for the dilation and 327 

contraction in the monzonite and limestone experiments, respectively, for at least 90% of the 328 

macroscopic axial strain. Interestingly, the trend of the dilation relative to axial strain shows a 329 

clear acceleration toward failure in the sandstone experiment (Figure 7a). However, the mean 330 

values of the strain components identified as important in the other experiments do not 331 

increase toward failure (Figure 7b-c). 332 

We would expect that the strain components that help predict the proximity to 333 

macroscopic failure evolve over increasing differential stress (and axial strain) such that the 334 

strain population at low differential stress would be different from the strain population at 335 

higher differential stress. However, this expected trend is only evident in the sandstone 336 

experiment, at least by tracking the mean of the strain population throughout the rock core. 337 

Although the mean values of the dilation and contraction do not systematically increase in the 338 

monzonite and limestone experiments, the machine learning analyses reveal that these strain 339 

components can help predict the proximity to macroscopic failure. Thus, the machine learning 340 

analyses provide insights into the predictive power of these strain components that are not 341 

evident from this visual inspection of the evolution of the strain components. 342 

 343 

4. Discussion 344 

4.1. Quantifying the similarity of the precursory strain process in rocks 345 

Previous studies characterized the micromechanics of deformation preceding macroscopic 346 

failure for different rock types (e.g., Reches & Lockner, 1994; Menéndez et al., 1996; 347 

Lockner, 1998; Katz & Reches, 2004; Zhu et al., 2010). The deformation mechanisms 348 

developed for different rock types, such as pore collapse and Hertzian fracturing in porous 349 

sedimentary rocks (e.g., Menéndez et al., 1996; Zhu et al., 2010), have not been applied to 350 
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other (e.g., low porosity) rock because the mechanisms generally depend on the 351 

microstructure of the rock. Machine learning analyses such as those employed here can clarify 352 

which rock types, from sandstone to granite, have similar strain accumulation processes 353 

preceding macroscopic failure. The similarity of processes may highlight rock types that share 354 

a dominant deformation mechanism preceding dynamic rupture. 355 

We may expect that 1) sandstone and basalt, 2) monzonite and granite, and 3) shale and 356 

limestone have similar dominant strain accumulation processes. Fontainebleau sandstone and 357 

Mt. Etna basalt are both porous rocks associated with failure mechanisms that include stress 358 

concentrations at the edges of pores and/or grains that promote fracture nucleation, and the 359 

potential of fracture termination at the edges of pores and/or grains (e.g., Stanchits et al., 360 

2006; Zhu et al., 2010). Monzonite and granite are both low porosity crystalline rocks 361 

comprised of similar minerals with lower degrees of local mechanical heterogeneity (i.e., 362 

compressive strength and stiffness) than sedimentary rocks with higher porosity. Shale and 363 

limestone are associated with compactive failure mechanisms, such as pore-collapse and 364 

compaction bands, and accommodating larger magnitudes of inelastic deformation prior to 365 

macroscopic failure (e.g., Railsback, 1993; Baud et al., 2000; McBeck et al., 2018; Huang et 366 

al., 2019). However, both shale and limestone can exhibit macroscopic dilation under triaxial 367 

compression deformation (e.g., Baud et al., 2000). 368 

The high transfer accuracies of the developed machine learning models suggest 369 

fundamental similarities of the strain accumulation process in the examined rock types 370 

(Figure 4). Some trends in the transfer accuracies are expected: the 1) sandstone and basalt, 371 

and 2) shale and limestone models and datasets produce high transfer accuracies (Figure 4). 372 

Some trends in the transfer accuracies are unexpected. For example, the granite and 373 

monzonite models and datasets do not have high transfer accuracy. One explanation of this 374 

difference could be the varying ranges of confining stresses applied to the granite (5-10 MPa) 375 
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and monzonite (25-35 MPa) experiments. Another difference between Westerly granite and 376 

monzonite is their mean grain sizes. The Westerly granite used here has a grain size in the 377 

range 100-200 µm, whereas monzonite has a larger mean grain size of 450 µm (Aben et al., 378 

2016). This difference in grain sizes may cause fractures to be impeded at grain boundaries in 379 

the granite at higher rates than in the monzonite. This higher rate of impedance could result in 380 

more distributed fracture networks in the granite than the monzonite, which may produce 381 

differing degrees of strain localization preceding dynamic failure in the rocks. These varying 382 

degrees of strain localization, in turn, may produce the lower transfer accuracies of models 383 

trained and tested with the local strain data of the monzonite and granite experiments. 384 

The high transfer accuracies, and related similarity of the suites of feature importance, for 385 

the 1) sandstone and basalt, 2) shale and limestone, and 3) monzonite, shale and limestone 386 

datasets suggest that a unified general theory may be able to describe the strain accumulation 387 

process in these groups of rock types. 388 

4.2. Predicting the proximity to failure with the intermediate dilatational strain 389 

The ranking of the predictive importance among the strain components and statistics is 390 

similar for the four machine learning approaches and six rock types (Figures 6, S7, S8). This 391 

consistency provides confidence in the overall conclusion that the intermediate values of the 392 

dilatational strain provide the best predictive power of the strain components and statistics. 393 

We now tentatively extend the observations made from the experimental data to implications 394 

for detecting the earthquake preparation process. Although earthquakes have been idealized as 395 

dominantly frictional phenomena, interseismic strengthening of fault zones and surrounding 396 

crustal volume may increase both the cohesive and frictional strength (e.g., Qiu et al., 2020). 397 

This strengthening may then cause earthquakes to involve the fracture of partially healed fault 398 

zone material and the surrounding crust, and then subsequent relocalization followed by 399 

frictional sliding. Consequently, macroscopic failure under triaxial compression performed in 400 
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these experiments may represent the relocalization deformation stage in a partially healed 401 

cohesive fault zone prior to an earthquake, before frictional slip along a well-defined principal 402 

slip zone begins. 403 

The conclusion that the intermediate values of the local strain have greater predictive 404 

power than the extreme values of the local strain suggests that in order to predict seismic 405 

hazard, it is important to examine data recorded in the volume of crust adjacent to the main 406 

faults that localize the highest magnitudes of strain. Such analyses should consider the 407 

seismicity and deformation in crustal volumes around major faults to estimate the strain value 408 

within the 25th-75th percentile of the population, rather than the extreme values that eventually 409 

localize along the principal slip zones. The conclusion that the dilatational strain provides the 410 

highest predictive power, relative to the contraction and shear strain, for a diverse range of 411 

rock types and four machine learning approaches, suggests that previous methods that track 412 

the influence of dilatancy (e.g., Whitcomb et al., 1973) may be able to constrain the timing of 413 

earthquake rupture (e.g., Figure 8). 414 

 415 

5. Conclusions 416 

Proposed theories of the micromechanical deformation of rock leading to macroscopic 417 

failure tend to depend on the examined rock type (e.g., Katz & Reches, 2004). Developing a 418 

general method that predicts the timing of dynamic rupture for a wide variety of rock types, 419 

from porous sandstone to lower porosity granite, would represent a fundamental advance in 420 

rock physics. Moreover, an improved ability to forecast system-size ruptures would have 421 

significant societal benefits. Our machine learning analyses suggest that groups of rock types 422 

have similar strain accumulation processes preceding macroscopic failure. The similarity of 423 

these processes may highlight a dominant mechanism of deformation preceding system-size 424 

rupture. The models suggest that the precursory strain accumulation process is similar in 1) 425 
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sandstone and basalt, 2) shale and limestone, and 3) monzonite, shale and limestone (Figures 426 

4, S4). These results indicate that a wide range of rock types accumulate precursory strain 427 

with similar expressions before macroscopic failure. 428 

Our suite of machine learning analyses suggests that the intermediate values (25th-75th 429 

percentile) of the local dilatational strain provide the highest predictive power of the 430 

proximity to macroscopic failure for a diverse group of rock types including basalt, granite 431 

and shale under the stress conditions of the upper crust (e.g., Figure 6). This result suggests 432 

that tracking deformational processes that produce dilatancy (i.e., opening fractures), and the 433 

corresponding geophysical signatures such as variations in seismic velocities and density, can 434 

provide accurate estimates of the onset of macroscopic failure without relying on explicit 435 

information about the shear deformation. The results of this work provide incentives to 436 

enhance monitoring efforts focused on effects of dilatancy in crustal volumes around large 437 

faults. 438 
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Figure 1 573 

Characteristic snapshots of the strain fields in 574 

a) sandstone, b) basalt, c) monzonite and d) 575 

limestone under lower and higher differential 576 

stress, 𝜎". The dots show where the value of the 577 

contraction (black), dilation (blue) and shear 578 

strain (red) is greater than the 90th percentile of 579 

the population of the given strain component. 580 

The localization of strain components evolves 581 

from lower to higher 𝜎", suggesting that the 582 

strain fields may indicate the proximity to 583 

macroscopic failure.  584 
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 585 

Figure 2 586 

Loading history and conditions of digital volume correlation calculations for experiments on 587 

sandstone (a), basalt (b), monzonite (c), granite (d), shale (e), and limestone (f). Black dots 588 

show the differential stress and axial strain when each tomogram (i.e., 3D density field) was 589 

acquired. Red lines show the loading conditions of the tomograms used in each digital volume 590 

correlation calculation. In each experiment, macroscopic failure occurs <0.1 MPa after the 591 

maximum differential stress.  592 
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 593 

Figure 3 594 

Accuracy of the six rock type models for the four machine learning approaches, including 595 

predicting two and four classes of the proximity to failure, with the random forest and XGBoost 596 

algorithms. The predictions of two classes have a higher range of accuracy (0.76-0.89) than the 597 

predictions of four classes (0.58-0.83). When compared to the random probability of selecting 598 

the correct answer, the predictions of four classes are more correct than the predictions of two 599 

classes. With two and four classes of predictions, the random probability is 1/2 and 1/4, 600 

respectively, so the accuracy above the random probability is higher for the four class 601 

predictions than the two class predictions. The XGBoost models tend to perform slightly better 602 

than the random forest models.  603 
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 604 

Figure 4 605 

Cumulative accuracy of models when trained and tested on the same and different rock types. 606 

To estimate the mean accuracy above the random probability (shown here with the text in the 607 

boxes), we first calculate the accuracy above the random probability for the four machine 608 

learning approaches (e.g., Figures S3, S4), and then we calculate the mean of this score from 609 

the four approaches for the 36 combinations of training and testing rock types. The rows 610 

indicate the rock type used to train the model. The columns indicate the rock type used to test 611 

the model. The color is the mean accuracy above the random probability normalized by the 612 

maximum value in each row. We expect to find high transfer accuracies for the 1) sandstone 613 

and basalt, 2) monzonite and granite, 3) and limestone and shale. However, we only observe 614 

this trend for 1) and 3). The other unexpected trend is the high transfer accuracies for monzonite, 615 

shale and limestone.  616 
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 617 

Figure 5 618 

Importance of groups of features that include information about the contraction (left), dilation 619 

(center), and shear strain (right), for each rock type model and machine learning approach, for 620 

features with importance >25% (a), >50% (b), and >75% (c) of the maximum importance of 621 

each model. At the lowest threshold (a, 25%), most of the models depend on features with each 622 

of the strain components, but the features with dilation tend to have the highest importance. At 623 

the highest threshold (c, 75%), all of the models except the limestone models depend only on 624 

the dilatation strain. For all of the other rock types and the machine learning approaches, 625 

features with dilation have the highest predictive power of the strain components.  626 
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 627 

Figure 6 628 

Importance of groups of features with each strain component (left) and statistic (right), averaged 629 

over all the rock types for each machine learning approach, for features with importance >25% 630 

(a), >50% (b), and >75% (c) of the maximum importance of each model. With increasingly 631 

important groups of features, dilation increases in average importance, while contraction and 632 

shear strain decrease in average importance. The intermediate values of the populations (25th-633 

75th) tend to have the highest importance of the statistics.  634 
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 635 

Figure 7 636 

Evolution of the magnitude of incremental strain components throughout three experiments: a) 637 

sandstone experiment FBL01, b) monzonite experiment MONZ05, c) limestone experiment 638 

ANS02, shown as the mean of the incremental strain population divided by the incremental 639 

macroscopic axial strain (vertical axis), relative to the normalized macroscopic axial strain 640 

(horizontal axis). The strain components identified as highly important in each rock type model 641 

(dilation for sandstone and monzonite, contraction for limestone) tend to have higher mean 642 

values than the other strain components. Only the dilation in the sandstone experiment (a) 643 

shows a systematic evolution with increasing axial strain, suggesting that this component best 644 

predicts the proximity to failure, as confirmed by the machine learning methods. In contrast, 645 

the dilation in the monzonite (b) and contraction in the limestone (c) experiments do not show 646 

a systematic evolution with distance toward failure, although the machine learning methods 647 

identify these strain components as the best predictors of the proximity to failure.  648 
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 649 

Figure 8 650 

Development of precursory inelastic dilatational strain toward catastrophic rupture. The 651 

intermediate values of the dilatational strain population provide the best predictive power about 652 

the proximity to macroscopic failure in triaxial compression experiments at the conditions of 653 

the upper crust in 24 models with six rock types and four machine learning approaches. 654 


