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Abstract

In most neuronal models, ion concentrations are assumed to be constant, and effects of

concentration variations on ionic reversal potentials, or of ionic diffusion on electrical poten-

tials are not accounted for. Here, we present the electrodiffusive Pinsky-Rinzel (edPR)

model, which we believe is the first multicompartmental neuron model that accounts for

electrodiffusive ion concentration dynamics in a way that ensures a biophysically consistent

relationship between ion concentrations, electrical charge, and electrical potentials in both

the intra- and extracellular space. The edPR model is an expanded version of the two-com-

partment Pinsky-Rinzel (PR) model of a hippocampal CA3 neuron. Unlike the PR model, the

edPR model includes homeostatic mechanisms and ion-specific leakage currents, and

keeps track of all ion concentrations (Na+, K+, Ca2+, and Cl−), electrical potentials, and elec-

trical conductivities in the intra- and extracellular space. The edPR model reproduces the

membrane potential dynamics of the PR model for moderate firing activity. For higher activ-

ity levels, or when homeostatic mechanisms are impaired, the homeostatic mechanisms fail

in maintaining ion concentrations close to baseline, and the edPR model diverges from the

PR model as it accounts for effects of concentration changes on neuronal firing. We envision

that the edPR model will be useful for the field in three main ways. Firstly, as it relaxes com-

monly made modeling assumptions, the edPR model can be used to test the validity of

these assumptions under various firing conditions, as we show here for a few selected

cases. Secondly, the edPR model should supplement the PR model when simulating sce-

narios where ion concentrations are expected to vary over time. Thirdly, being applicable to

conditions with failed homeostasis, the edPR model opens up for simulating a range of path-

ological conditions, such as spreading depression or epilepsy.

Author summary

Neurons generate their electrical signals by letting ions pass through their membranes.

Despite this fact, most models of neurons apply the simplifying assumption that ion con-

centrations remain effectively constant during neural activity. This assumption is often

quite good, as neurons contain a set of homeostatic mechanisms that make sure that ion
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concentrations vary quite little under normal circumstances. However, under some con-

ditions, these mechanisms can fail, and ion concentrations can vary quite dramatically.

Standard models are thus not able to simulate such conditions. Here, we present what to

our knowledge is the first multicompartmental neuron model that accounts for ion con-

centration variations in a way that ensures complete and consistent ion concentration and

charge conservation. In this work, we use the model to explore under which activity con-

ditions the ion concentration variations become important for predicting the neurody-

namics. We expect the model to be of great value for the field of neuroscience, as it can be

used to simulate a range of pathological conditions, such as spreading depression or epi-

lepsy, which are associated with large changes in extracellular ion concentrations.

Introduction

The neuronal action potential (AP) is generated by a transmembrane influx of Na+, which

depolarizes the neuron, followed by an efflux of K+, which repolarizes it. Likewise, all neurody-

namics is fundamentally about the movement of ions, which are the charge carriers in the

brain. Therefore, it might seem peculiar that most models of neuronal activity are based on the

approximation that the concentrations of the main charge carriers (Na+, K+, and Cl−) do not

change over time. This approximation is, for example, incorporated in the celebrated Hodg-

kin-Huxley model [1], and a large number of later models based on a Hodgkin-Huxley type

formalism (see, e.g., [2–7]).

Setting the ion concentrations to not change over time is often a fairly good approximation.

The reason is that the number of ions that need to cross the membrane to charge up the neu-

ron by, say, an AP worth of millivolts, is too small to have any notable impact on ion concen-

trations on either side of the membrane (see, e.g., Box 2.2 in [8]), meaning that concentration

changes on a short time scale can be neglected. On a longer time-scale, the ionic exchange due

to APs (or other neuronal events), is normally reversed by a set of homeostatic mechanisms

such as ion pumps and cotransporters, which work to maintain constant baseline concentra-

tions. In Hodgkin-Huxley type models, the large number of ion pumps, cotransporters and

passive ionic leakages that strive towards maintaining baseline conditions are therefore not

explicitly modeled. Instead, they are simply assumed to do their job and are grouped into a sin-

gle passive and non-specific leakage current Ileak = gleak(ϕm−Eleak), which determines the cell’s

resting potential (for a critical study of this approximation, see [9]).

Another approximation commonly applied by modelers of neurons is that the extracellular

potential is constant and grounded (ϕe = 0) so that the only voltage variable that one needs to

worry about when simulating neurodynamics is the transmembrane potential (ϕm). This

assumption is implicit in the majority of morphologically explicit models of neurons, where

the (spatial) signal propagation in dendrites and axons are computed using the cable equation

(see, e.g., [10–12]). Cable-equation based, multicompartmental neuronal models are widely

used within the field of neuroscience, both for understanding dendritic integration and neuro-

nal response properties at the single neuron level (see, e.g., [3, 4, 6, 7]) and for exploring the

dynamics of large neuronal networks (see e.g., [13–15]). They are even used in the context of

performing forward modeling of extracellular potentials, such as local field potentials (LFP),

the electrocorticogram (ECoG), and electroencephalogram (EEG) (see, e.g., [16–18]), despite

the evident inconsistency involved when first computing neurodynamics under the approxi-

mation that ϕe = 0 (Fig 1A), and then in the next step using this dynamics to predict a nonzero

ϕe (Fig 1B). The approximation is nevertheless useful since ϕe is typically so much smaller than
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ϕm that the (ephaptic) effect of ϕe on neurodynamics can be neglected without severe loss in

accuracy [19].

There are, however, scenarios where the assumptions of constant ion concentrations and a

grounded extracellular space are not justifiable. Notably, large-scale extracellular ion concen-

tration changes are a trademark of several pathological conditions, including epilepsy and

spreading depression [22–25]. In these cases, neurons are unable to maintain their baseline

conditions because they for various reasons are too active and/or their homeostatic mecha-

nisms are too slow. During spreading depression, the extracellular K+ concentration can

change from a baseline value of about 3-5 mM to pathological levels of several tens of mM, and

the increased K+ concentration tends to coincide with a slow, direct-current (DC) like drop in

the extracellular potential, which may be several tens of millivolts in amplitude [25, 26], and

can give rise to large spatial gradients. For example, one experiment saw the extracellular K+-

concentration and ϕe vary by as much as 30 mM and 20 mV, respectively, over the hippocam-

pal depth [26]. Such dramatic gradients in the extracellular environment are likely to have a

strong impact on the dynamical properties of neurons, both through the concentration-depen-

dent changes in ion-channel reversal potentials [27–29] and putatively through a direct ephap-

tic effect from ϕe on the membrane potential.

The construction of accurate neuron models that include ion concentration dynamics (and

conservation) poses two key challenges. Firstly, ion conserving models need a finely adjusted

balance between the homeostatic machinery and all passive and active ion-specific currents so

that all ion concentrations, as well as voltages, vary in a biophysically realistic way over time

when the neuron is active. Secondly, in spatially extended models, ions will not move only

across membranes, but also within the extracellular and intracellular space. Such ionic move-

ment may be propelled both by diffusion and electrical drift. Ionic diffusion can, in principle,

affect the electrical potential (since ions carry charge), and the electrical potential can, in prin-

ciple, affect ion concentration dynamics (since ions drift along potential gradients) [30–32].

Fig 1. Modeling intra- and extracellular dynamics: Standard theory vs. unified framework. (A) The dynamics of the membrane potential (ϕm) and

transmembrane currents of neurons are typically modeled using cable theory. It is then assumed that the extracellular environment is grounded (ϕe =

0). Typically, it is also assumed that ion concentrations both in the intra- and extracellular space are constant, so that also ionic reversal potentials

remain constant. (B) When knowing the transmembrane neuronal currents (as computed in (A)), standard volume conductor theory [20, 21] allows us

to estimate the extracellular potential, which is computed as the sum of neuronal point-current sources weighted by their distance to the recording

location. An underlying assumption is that fluctuations in ϕe (as computed in (B)) are so small that they have no effect on the neurodynamics (as

computed in (A)), i.e., there is no ephaptic coupling. Another underlying assumption (cf. constant ion concentrations) is that extracellular diffusive

currents do not affect electrical potentials. (C) We propose a unified, electrodiffusive framework for intra- and extracellular ion concentration and

voltage dynamics, assuring a consistent relationship between ion concentrations, electrical charge, and electrical potential in all compartments.

https://doi.org/10.1371/journal.pcbi.1007661.g001
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Accurate modeling of such systems thus requires a unified, electrodiffusive framework that

ensures a physically consistent relationship between ion concentrations, charge density, and

electrical potentials.

Intra- or extracellular electrodiffusion is not an issue in single-compartment models, of

which there are quite a few that incorporate ion concentration dynamics in a more or less con-

sistent way [28, 29, 33–47]. Single compartment models are useful in many aspects. However,

in order to represent morphological features of neurons, such as e.g., differential expression of

ion channels in the soma versus dendrites, or account for transport processes in the space

inside or outside neurons, one needs models with more than a single compartment. Among

the several morphologically explicit models that have included homeostatic machinery and

explicitly simulated ion concentration dynamics (see e.g., [27, 48–57]), neither have accounted

for the electrodiffusive coupling between the movement of ions and electrical potentials (see

Results section titled Loss in accuracy when neglecting electrodiffusive effects on concentra-

tion dynamics). Hence, to our knowledge, no morphologically explicit neuron model has so

far been developed that ensures biophysically consistent dynamics in ion concentrations and

electrical potentials during long-time activity, although useful mathematical framework for

constructing such models are available [58–62].

The goal of this work is to propose what we may refer to as “a minimal neuronal model that

has it all”. By “has it all”, we mean that it (1) has a spatial extension, (2) considers both extracel-

lular- and intracellular dynamics, (3) keeps track of all ion concentrations (Na+, K+, Ca2+, and

Cl−) in all compartments, (4) keeps track of all electrical potentials (ϕm, ϕe, and ϕi—the latter

being the intracellular potential) in all compartments, (5) has differential expression of ion

channels in soma versus dendrites, and can fire somatic APs and dendritic calcium spikes, (6)

contains the homeostatic machinery that ensures that it maintains a realistic dynamics in ϕm

and all ion concentrations during long-time activity, and (7) accounts for transmembrane,

intracellular and extracellular ionic movements due to both diffusion and electrical migration,

and thus ensures a consistent relationship between ion concentrations and electrical charge.

Being based on a unified framework for intra- and extracellular dynamics (Fig 1C), the model

thus accounts for possible ephaptic effects from extracellular dynamics, as neglected in stan-

dard feedforward models based on volume conductor theory (Fig 1A and 1B). By “minimal”

we simply mean that we reduce the number of spatial compartments to the minimal, which in

this case is four, i.e., two neuronal compartments (a soma and a dendrite), plus two extracellu-

lar compartments (outside soma and outside dendrite). Technically, the model was con-

structed by adding homeostatic mechanisms and ion concentration dynamics to an existing

model, i.e., the two-compartment Pinsky-Rinzel (PR) model [3], and embedding in it a consis-

tent electrodiffusive framework, i.e., the previously developed Kirchhoff-Nernst-Planck frame-

work [31, 32, 60, 62]. For the remainder of this paper, we refer to our model as the

electrodiffusive Pinsky-Rinzel (edPR) model.

The remainder of this article is organized as follows. First, we present the edPR model and

illustrate the numerous variables that it can simulate. Next, we show that the edPR model can

reproduce the firing properties of the original PR model. By running long-time simulations

(several minutes of biological time) on both models, we identify the firing conditions under

which the two models maintained a similar firing pattern, and under which conditions con-

centration effects became important so that dynamics of the edPR model diverged from the

original PR model over time. Finally, we use the edPR model to explore the validity of some

important assumptions commonly made in the field of computational neuroscience, regarding

the decoupling of electrical and diffusive signals. We believe that the edPR model will be of

great value for the field of neuroscience, partly because it gives a deepened insight into the bal-

ance between neuronal firing and ion homeostasis, partly because it lends itself to explore

PLOS COMPUTATIONAL BIOLOGY An electrodiffusive Pinsky-Rinzel model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007661 April 29, 2020 4 / 36

https://doi.org/10.1371/journal.pcbi.1007661


under which conditions the common modeling assumption of constant ion concentrations is

warranted, and most importantly because it opens for more detailed mechanistic studies of

pathological conditions associated with large changes in ion concentrations, such as epilepsy

and spreading depression [22–25].

Results

An electrodiffusive Pinsky-Rinzel model

The here proposed electrodiffusive Pinsky-Rinzel (edPR) model is inspired by the original

Pinsky-Rinzel (PR) model [3], which is a two-compartment (soma + dendrite) version of a

CA3 hippocampal cell model, initially developed by Traub et al. [2]. In the original PR model,

the somatic compartment contains Na+, and K+ delayed rectifier currents (INa and IK−DR),

while the dendritic compartment contains a voltage-dependent Ca2+ current (ICa), a voltage-

dependent K+ afterhyperpolarization current (IK−AHP), and a Ca2+-dependent K+ current (IK

−C). In addition, both compartments contain passive leakage currents. Despite its small num-

ber of compartments and conductances, the PR model can reproduce a variety of realistic fir-

ing patterns when responding to somatic or dendritic stimuli, including somatic APs and

dendritic calcium spikes.

In the edPR model, we have adopted all mechanisms from the original PR model. In addi-

tion, we have (i) made all ion channels and passive leakage currents ion-specific, (ii) included

3Na+/2K+ pumps (Ipump), K+/Cl− cotransporters (IKCC2), Na+/K+/2Cl− cotransporters

(INKCC1), and Ca2+/2Na+ exchangers (ICa−dec), and (iii) included two extracellular compart-

ments (outside soma + outside dendrite). To compute the dynamics of the edPR, we used an

electrodiffusive KNP-framework for consistently computing the voltage- and ion concentra-

tion dynamics in the intra- and extracellular compartments [60]. The model is summarized in

Fig 2 and described in details in the Methods section.

Key dynamical variables in the electrodiffusive Pinsky-Rinzel model

While the key variable in the original PR model is the membrane potential ϕm, the edPR

model allows us to compute a multitude of variables relevant to neurodynamics. The function-

ality of the edPR model is illustrated in Fig 3, which shows a 60 s simulation where the model

fires at 1 Hz for 10 s. We have plotted a selection of output variables, including the membrane

potentials (Fig 3A and 3B), extracellular potentials (Fig 3C and 3D), the dynamics of all ion

concentrations in all compartments (Fig 3E–3H), concentration effects on ionic reversal

potentials (Fig 3I–3J), concentration effects on the electrical conductivity of the intra- and

extracellular medium (Fig 3K), and ATP consumption (Fig 3L) of the 3Na+/2K+ pumps and

Ca2+/2Na+ exchangers.

Unlike neuronal models based on cable theory, where ϕe is assumed to be zero so that ϕm =

ϕi, the edPR model computes ϕm, ϕi, and ϕe from a consistent framework where ephaptic

effects from ϕe on ϕm are accounted for (Fig 3C). Due to the electrical coupling between the

soma and dendrite, the fluctuations in ϕm were similar in these compartments, and a more

detailed analysis of the AP shapes is found further below. While an action potential essentially

gave a depolarization followed by a repolarization of ϕm, its extracellular signature was essen-

tially a voltage drop (to about -5 mV) followed by a voltage increase (to about +5 mV). This

biphasic response of the extracellular AP signature has been seen in several studies (for an

analysis, see [20, 21]). In experimental recordings, amplitudes in ϕe fluctuations are typically

on the order of 100 μV, which is much smaller than that predicted by the edPR model. The dis-

crepancy is an artifact that is mainly due to the 1D approximation in the edPR model (see
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Discussion). The dendritic extracellular potential (Fig 3D) was by definition zero at all times,

as this compartment was used as the reference point for the potential.

The effect of neuronal firing on the ion concentration dynamics is illustrated in Fig 3E–3H.

Before the stimulus onset, the cell was resting at approximately -68 mV, and ion concentra-

tions remained at baseline values. During AP firing, the ion concentrations varied in a jigsaw-

like fashion in all compartments, except for Ca2+, which returned to baseline between each AP

and showed notable variation only inside/outside the dendrite since the soma contained no

Ca2+ channels. As the extracellular volume was set to be half as big as the intracellular volume,

changes in extracellular ion concentrations were about twice as big as the changes in intracel-

lular ion concentrations. The jigsaw pattern was most pronounced for the K+ and Na+ concen-

trations, as these were the main mediators of the APs (Fig 3E–3H). The pattern reflects a cycle

of (i) incremental steps away from baseline concentrations, which were mediated by the com-

plex of mechanisms active during the APs, followed by (ii) slower decays back towards base-

line, which were mediated by pumps and cotransporters working between the APs. In this

simulation, the decay was incomplete, so that concentrations reached gradually larger peak

Fig 2. edPR model architecture. (A) Two plus two compartments (soma + dendrite), with intracellular space to the

left and extracellular space to the right. Two kinds of fluxes of different ion species k are involved: transmembrane

fluxes (jk,dm, jk,sm) and intra- and extracellular fluxes (jk,i, jk,e). The dynamics of the potential ϕ and ion concentration

dynamics in all compartments were computed using an electrodiffusive framework, ensuring bulk electroneutrality

and a consistent relationship between ion concentrations, electrical charge, and voltages. (B) Active currents were

taken from the original PR model [3]. In the soma, these consisted of Na+ and K+ delayed rectifier currents (INa and

IK-DR). In the dendrite, these consisted of a voltage-dependent Ca2+ current (ICa), a Ca2+-dependent K+ current (IK-C),

and a voltage-dependent K+ afterhyperpolarization current (IK-AHP). Ion specific passive (leakage-) currents and

homeostatic mechanisms were taken from a previous model by Wei et al. [45], and were identical in the soma and

dendrite. These included Na+, K+ and Cl− leak currents, a 3Na+/2K+ pump (Ipump), a K+/Cl− cotransporter (IKCC2), and

a Na+/K+/2Cl− cotransporter (INKCC1). In addition, the soma and dendrite included a Ca2+/2Na+ exchanger (ICa-dec),

providing an intracellular Ca2+ decay similar to that in the PR model.

https://doi.org/10.1371/journal.pcbi.1007661.g002
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values by each consecutive AP. However, as we show later (see Section titled The edPR model

predicts homeostatic failure due to high firing rate), the concentrations did, in this case,

approach a firing-frequency dependent steady state.

When the firing ceased in Fig 3, the pumps and cotransporters could work uninterruptedly

to re-establish the baseline ion concentrations. The resting membrane potential of about -68

Fig 3. Output of the edPR model. A 27 pA step-current injection was applied to the somatic compartment between

t = 10 s and t = 20 s, and the model responded with a firing rate of 1 Hz. (A-B) The membrane potential ϕm of the

soma and the dendrite, respectively. (C-D) The extracellular (index e) potential ϕe of the soma (index s) and the

dendrite (index d), respectively. The dendritic extracellular compartment was chosen as the reference point when

calculating potentials, so ϕde was zero by definition. Since amplitudes in ϕm were so much larger than for ϕe,

intracellular (index i) potentials (ϕi = ϕe+ ϕm) were similar to ϕm, and therefore not shown. (E-H) Ion concentrations

dynamics of all ion species k (Na+, Cl−, K+, Ca2+) in all four compartments shown in terms of their deviance from

baseline concentrations. (I-J) Changes in reversal potentials for all ion species in the soma and the dendrite,

respectively. (K) Change in conductivity of the intra- and extracellular media (σi and σe, respectively). (L)

Accumulative number of ATP molecules consumed by the 3Na+/2K+ pumps and Ca2+/2Na+ exchangers.

https://doi.org/10.1371/journal.pcbi.1007661.g003
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mV, was recovered quite rapidly (ms timescale). After this, the slower recovery process of the

ion concentration was due to an electroneutral exchange of ions between the neuron and the

extracellular space. A full recovery of the baseline concentrations took on the order of 80 s

(confirmed by running a longer simulation than the one shown in Fig 3).

As ion concentrations varied during the simulation, so did the ionic reversal potentials,

E k(Fig 3I–3J). The by far largest change was seen for the Ca2+ reversal potential in the dendrite

(Ek,d), which dropped by as much as -30 mV during an AP, (i.e., from a baseline value of 124

mV to 94 mV). The explanation is that the basal intracellular Ca2+-concentration is extremely

low (100 nM) compared to the concentrations of other ion species (several mM), and therefore

experienced a much larger relative change during the simulation. Among the main charge car-

riers (Na+, Cl−, K+), the lowest concentration is found for K+ in the extracellular space (Table 5

in Methods). For that reason, the second largest change in reversal potential was found for EK,

which increased by about 5 mV (i.e., from a basal value of -84 mV to -79 mV) in both the

soma and dendrite. The changes in ECa and EK had a relatively minor impact on the firing pat-

tern in the shown simulations, as the relative change in the driving force ϕm−Ek was not that

severe.

The conductivities (σ) of the intra- and extracellular bulk solutions depend on the availabil-

ity of free charge carriers, and are in the edPR model functions of the ion concentrations and

their mobility (cf. Eq 19). The changes in σ were minimal during the conditions simulated

here (Fig 3K), i.e., σ varied by a few μS/m over the course of the simulation, while the basal lev-

els were approximately 0.11 S/m and 0.59 S/m for the intra- and extracellular solutions,

respectively.

Finally, the 3Na+/2K+ pump and Ca2+/2Na+ exchanger use energy in the form of ATP to

move ions against their gradients. The 3Na+/2K+ pump exchanges 3 Na+ ions for 2 K+ ions,

and consumes one ATP per cycle [63], while we assumed that the Ca2+/2Na+ exchanger

consumed 1 ATP per cycle (i.e., per Ca2+ exchanged, as in [64]). As the edPR model explic-

itly models these processes, we could compute the ATP (energy) consumption of the

pumps during the simulation. Fig 3L shows the accumulative number of ATP consumed

from the onset of the simulation. The 3Na+/2K+ pump was constantly active, as it combated

leakage currents and worked to maintain the baseline concentration even before stimulus

onset. Before stimulus onset, it consumed ATP at a constant rate (linear curve), which

increased only slightly at t = 10 s when the neuron started to fire (small dent in the curve).

As the neuron did not contain any passive leakage of Ca2+, the Ca2+/2Na+ exchangers were

only active while the neuron was firing. During firing, the Ca2+/2Na+ exchanger combated

the Ca2+ entering through the dendritic Ca2+ channels, and then consumed approximately

the same amount of energy as the 3Na+/2K+ pump (parallel curves). A high metabolic cost

of dendritic Ca2+ spikes has previously been reported also in cortical layer 5 pyramidal neu-

rons [64].

We note that the edPR model had a stable resting state before stimulus onset and that it

returned to this resting state after the stimulus had been turned off. In this resting state, ion

concentrations remained constant, and ϕm was approximately -68 mV. This resting equilib-

rium was due to a balance between the ion-specific leakage channels, pumps, and cotranspor-

ters, which we adopted from previous studies (see Methods). However, the existence of a

homeostatic equilibrium was not highly sensitive to the choice of model parameters. As we

confirmed through a sensitivity analysis, varying membrane parameters (one by one) with

±15% of their default values did not abolish the existence of a stable resting state, but shifted

the resting potential by maximally ±3 mV (Fig 4A) and the resting concentrations by maxi-

mally 5% (Fig 4B–4E).
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Fig 4. Sensitivity analysis. Sensitivity of (A) the somatic membrane potential (ϕsm) and (B-E) ion concentrations

outside the soma to variations of the leak conductances gNa;leak, gK;leak, and gCl;leak, the ATPase pump strength ρ, and the

co-transporter strengths Unkcc1 and Ukcc2. The model was run for 10 s with default parameters. At t = 10 s, selected

parameters were changed, one per simulation, by ±15% of their default value. In all cases, the model approached a new

steady state during the 3 min simulation, which was not dramatically different from the default steady state. The

resting potential was most sensitive to gNa;leak . This was not surprising, as Na+ has the reversal potential (57 mV) that is

furthest away from the resting potential (� -68 mV), making the driving force (ϕm−Ek) largest for Na+. All

concentration variables were most sensitive either to gNa;leak or ρ. For [Ca2+]se and [Cl−]se the sensitivity to these

parameters were indirect, i.e., through their effects on the resting potential and driving forces. (A-E) Results only

shown for somatic compartments, as they were almost identical in the the dendritic compartments. Only extracellular

concentrations were shown, but intracellular concentrations followed the same time coarse and intracellular deviances

from default values were smaller (due to larger intracellular volume fraction). As we showed in Fig 3L, the Ca2+/2Na+

exchanger is not active during rest, and it was therefore not included in the sensitivity analysis.

https://doi.org/10.1371/journal.pcbi.1007661.g004
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The edPR model reproduces the short term firing properties of the original

PR model

A motivation behind basing the electrodiffusive (edPR) model on a previously developed (PR)

model, was that we wanted to use the firing properties of the original PR model as a “ground

truth” when constraining the edPR model. In particular, we wanted the edPR model to qualita-

tively reproduce the interplay between somatic action potentials and dendritic Ca2+ spikes, as

this was an essential feature of the original PR model [3]. In the PR model, this interplay

depended strongly on the coupling strength (coupling conductance) between the soma and

dendrite compartment. A weak coupling resulted in a wobbly ping-pong effect, where a

somatic AP triggered a dendritic Ca2+ spike, which in turn fed back to the soma, giving rise to

secondary oscillations in ϕm (Fig 5A). With a strong (about five times stronger) coupling, the

somatic and dendritic responses became more similar in shape, as expected (Fig 5B).

Since the edPR model contained membrane mechanisms and ephaptic effects not present

in the PR model, selected parameters in the edPR model had to be re-tuned in order to obtain

similar firing as the PR model (see Methods). With the selected parameterization of the edPR

model (see the Parameterizations section), we were able to reproduce the characteristic fea-

tures seen in the PR model for a weak (Fig 5C) and strong (about five times stronger) coupling

between the soma and dendrite (Fig 5D).

The edPR model predicts homeostatic failure due to high firing rate

As previously discussed, the PR model was, as most existing neuronal models, constructed

under the assumption that ion concentration effects are negligible, an assumption that is justi-

fied for short term neurodynamics, and for long term dynamics provided that the activity level

is sufficiently low for the homeostatic mechanisms to maintain concentrations close to base-

line over time. Hence, we expect there to be a scenario (S1) with a moderately low firing rate,

where the PR and edPR models can fire continuously and regularly over a long time exhibiting

similar firing properties, and another scenario (S2) with a higher firing rate, where the PR and

edPR models exhibit similar firing properties initially in the simulation, but where the dynam-

ics of the two models diverge over time due to homeostatic failure accounted for by the edPR

model, but not the PR model (which ad hoc assume perfect homeostasis). Simulations of two

such scenarios are shown in Figs 6 and 7.

To simulate scenario S1, the PR model (Fig 6A and 6B) and edPR model (Fig 6C–6J) were

given a constant input (see figure caption) that gave them a firing rate of 1 Hz. Both models

settled at a regular firing rate, and in neither of them the firing pattern changed over time,

even in simulations of as much as an hour of biological time. For the edPR model, the S1 sce-

nario is the same as that simulated for only a brief period in Fig 3. There, we observed that the

ion concentrations gradually changed during the first seconds after the onset of stimulus (Fig

3E–3H). However, for endured firing, the ion concentrations and reversal potentials settled on

a (new) dynamic steady state (Fig 6E–6J), where they deviated by *1-5 mM from the baseline

concentrations during rest (i.e., for edPR receiving no input). The apparent “thickness” of the

curves (e.g., the red curve for K+ in Fig 6H) is due to concentration fluctuations at the short

time scale of AP firing. However, after each AP, the homeostatic mechanisms managed to re-

establish ionic gradients before the next AP occurred, so that no slow concentration-depen-

dent effect developed in the edPR model at a long time scale.

To simulate scenario S2, the PR model (Fig 7A and 7B) and edPR model (Fig 7C–7J) were

given a constant input (see figure caption) that gave them a firing rate of about 3 Hz. The PR

model, which included no concentration-dependent effects, settled on a regular firing rate that

it could maintain for an arbitrarily long time. Unlike the PR model, the edPR model did not
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settle at a steady state, but had a firing rate of * 3 Hz only for a period of * 5 s after stimulus

onset. During this period, the ion concentrations gradually diverged from the baseline levels

(Fig 7G–7J). The corresponding changes in ionic reversal potentials (Fig 7E and 7F) affected

the neuron’s firing properties and caused its firing rate to gradually increase before it eventu-

ally entered the depolarization block and got stuck at about ϕm = −30mV. The main explana-

tion behind the altered firing pattern was the change in the K+ reversal potential, which, for

example, at 9 s after stimulus onset (t = 19 s) had increased by as much as 20 mV from baseline.

This shift led to a depolarization of the neuron, which explains both the (gradually) increased

firing rate and the (final) depolarization block, i.e., the condition where ϕm could no longer

repolarize to levels below the firing threshold, and AP firing was abolished due to a permanent

Fig 5. Short term dynamics of the PR and edPR models. The original PR model (top row) and the edPR model

(bottom row) exhibit the same spike shape characteristics. (A) Spike shape in PR model for weak coupling (low

coupling conductance) between the soma and the dendrite. (B) Spike shape in PR model for strong coupling (high

intracellular conductivity) between the soma and the dendrite. (C) Spike shape in edPR model for weak coupling

between the soma and the dendrite. (D) Spike shape in edPR model for strong coupling between the soma and the

dendrite. (A-D) A step-stimulus current was turned on at t = 10 s, with stimulus strength being 1.35 μA/cm2 in (A),

0.78 μA/cm2 in (B), 31 pA in (C), and 27 pA in (D). The panels show snapshots of a selected spike. See the

Parameterizations section in Methods for a full description of the parameters used.

https://doi.org/10.1371/journal.pcbi.1007661.g005
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inactivation of active Na+ channels. Neuronal depolarization block is a well-studied phenome-

non, which is often caused by high extracellular K+ concentrations [65].

The homeostatic failure in S2 was due to the edPR model having a too high firing rate for the

ion pumps and cotransporters to maintain ion concentrations close to baseline. The firing rate

of 3 Hz was the limiting case (found by trial and error), i.e., for lower firing rates than this, the

Fig 6. Model comparison for scenario with low frequency firing. Simulations on the PR model and edPR model

when both models are driven by a constant input, giving them a firing rate of about 1 Hz. Simulations covered one

hour (3600 s) of biological time. (A-D) A 10 s sample of the dynamics of the somatic membrane potential ϕsm and

dendritic (free) Ca2+ concentration in the PR model (A-B) and edPR model (C-D). This regular firing pattern was

sustained over the full 3600 s simulation in both models (inset panels). (D) Of the total amount of intracellular Ca2+,

only 1% (as plotted) was assumed to be free (unbuffered). (E-F) Ionic reversal potentials and (G-J) ion concentrations

in the edPR model did not vary on a long time scale. Indices i, e, s, and d indicate intracellular, extracellular, soma, and

dendrite, respectively. (A-J) Stimulus onset was t = 10 s in both models, and stimulus strength was istim = 0.78μA/cm2

in the PR model (A-B) and istim = 27pA in the edPR model (C-J). See the Parameterizations section in Methods for a

full description of the parameters used.

https://doi.org/10.1371/journal.pcbi.1007661.g006
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model could maintain regular firing for an arbitrarily long time. As many neurons can fire at

quite high frequencies, a tolerance level of 3 Hz might seem a bit low, and we here provide some

comments to this. Firstly, we note that the edPR model could fire at 3 Hz (and gradually higher

frequencies) for about 9 s, and could also maintain a higher firing rate than this for a limited

Fig 7. Model comparison for scenario with high frequency firing. Simulations on the PR model and edPR model

when both models are driven by a constant input, giving them a firing rate of about 3 Hz. Simulations covered 200 s of

biological time. (A-D) A 12 s sample of the dynamics of the somatic membrane potential ϕsm and dendritic (free) Ca2+

concentration in the PR model (A-B) and edPR model (C-D). The regular firing pattern in the PR model (A-B) was

sustained over the full 200 s simulation (inset panels), while the edPR model stopped firing and entered depolarization

block around t = 20 s. (D) Of the total amount of intracellular Ca2+, only 1% (as plotted) was assumed to be free

(unbuffered). (E-F) Ionic reversal potentials and (G-J) ion concentrations in the edPR model varied throughout the

simulation, and gradually diverged from baseline conditions. Indices i, e, s, and d indicate intracellular, extracellular,
soma, and dendrite, respectively. Main panels show 12 s samples of the ion concentration dynamics, while insets show

the dynamics over the full 200 s simulations. (A-J) Stimulus onset was t = 10 s in both models, and stimulus strength

was istim = 1.55μA/cm2 in the PR model (A-B) and istim = 48pA in the edPR model (C-J). See the Parameterizations

section in Methods for a full description of the parameters used.

https://doi.org/10.1371/journal.pcbi.1007661.g007
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time. Secondly, the PR model, and thus the edPR model, represented a hippocampal CA3 neu-

ron, which has been found to have an average firing rate of less than 0.5 Hz [66], so that endured

firing of� 3 Hz may be abnormal for these neurons. Thirdly, under biological conditions, glial

cells, and in particular astrocytes, provide additional homeostatic functions [67] that were not

accounted for in the edPR model, and the inclusion of such functions would probably increase

the tolerance level of the neuron. Fourthly, the (3 Hz) tolerance level was a consequence of

modeling choices and could be made higher, e.g., by increasing pump rates or compartment vol-

umes. However, we did not do any model tuning in order to increase the tolerance level, as we,

in light of the above arguments, considered a 3 Hz tolerance level to be acceptable.

The edPR model predicts homeostatic failure due to impaired homeostatic

mechanisms

Above we simulated homeostatic failure occurring because the firing rate became too high for

the homeostatic mechanisms to keep up (S2). Homeostatic failure may also occur due to

impairment of the homeostatic mechanisms, either due to genetic mutations (see, e.g., [68]) or

because the energy supply is reduced, such as after a stroke (see, e.g., [25]). Here, we have used

the edPR model to simulate a version of this, i.e., a third scenario (S3) where the ATP-depen-

dent mechanisms, that is, the 3Na+/2K+ pumps and the Ca2+/2Na+ exchangers, were turned off.

In S3, the neuron received no external input, so that the dynamics of the neuron was solely

due to gradually dissipating transmembrane ion concentration gradients. After an initial tran-

sient, we observed a slow and gradual increase in the membrane potential for about 48 s (Fig

8A). This coincided with a slow and gradual change in the ion concentrations (Fig 8D–8G)

and ionic reversal potentials (Fig 8B and 8C) due to predominantly passive leakage over the

membrane.

At about t = 48 s, the membrane potential reached the firing threshold, at which point the

active channels started to use what was left of the concentration gradients to generate action

potentials and Ca2+ spikes. This resulted in a burst of activity. During this bursts of activity,

the concentration gradients dissipated even faster, since both active and passive channels were

then open. As a consequence, the “resting” membrane potential was further depolarized and

the neuron went into depolarization block [65]. After this, the neuron continued to “leak”

until it settled at a new steady state. The non-zero final equilibrium potential is known as the

Donnan equilibrium or the Gibbs-Donnan equilibrium [69]. The reason why the cell did not

approach an equilibrium with ϕm = 0 and identical ion concentrations on both side of the

membrane, is that the model contained static residual charges, representing negatively charged

macromolecules typically residing in the intracellular environment (see Methods), the sum of

which resulted in a final state with a negatively charged inside. In addition, since the Ca2+

channel inactivated, and since the model had no passive Ca2+ leakage, Ca2+ could end up

being trapped inside/outside the membrane and did not by necessity approach the Donnan

equilibrium, although it was close to it.

As the Ca2+ dynamics in Fig 8G may seem counterintuitive, we here give some additional

explanation of it. During the burst and initial stages of the depolarization block, the dendritic

Ca2+ channels were open. Extracellular Ca2+ then diffused from the soma towards the den-

drite, where it flowed into the neuron. This resulted in a low Ca2+ concentration in both extra-

cellular compartments and a high Ca2+ concentration in the intracellular dendritic

compartment. The reason why the intracellular Ca2+ equilibrated more slowly than the extra-

cellular, was that, by assumption, only 1% of the intracellular Ca2+ concentration was unbuf-

fered and free to diffuse (see Methods), hence, the effective intracellular concentration

gradient was a factor 100 lower than it “appears” in Fig 8G.
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A pattern resembling that in Fig 8A, i.e., a period of silence, followed by a burst of activity,

and then silence again, has been seen in experimental EEG recordings of decapitated rats [70],

where the activity burst was referred to as “the wave of death”, and the phenomenon was

ascribed to the lack of energy supply to homeostatic mechanisms. The simulation in Fig 8A rep-

resents the single-cell correspondence to this death wave. We note that this phenomenon has

been simulated and analyzed thoroughly in a previous modeling study, using a simpler, single

compartmental model with ion conservation [40]. We, therefore, do not analyze it further here.

Loss in accuracy when neglecting electrodiffusive effects on concentration

dynamics

The concentration-dependent effects studied in the previous subsection were predominantly

due to changes in ionic reversal potentials. Effects like this could, therefore, be accounted for

Fig 8. The wave of death. Simulation on the edPR model when the 3Na+/2K+ pumps and the Ca2+/2Na+ exchangers

were turned off. The model received no external stimulus. The simulation covered 10 minutes of biological time. (A) A

60 s sample of the dynamics of the somatic membrane potential ϕsm. Inset shows a close-up of the burst of activity

occurring at about t = 48 s. (B-C) Reversal potentials in the soma (B) and dendrite (C). (D-G) Ion concentrations in all

four compartments. Somatic and dendritic concentrations were almost identical for all ion species except for Ca2+.

Indices i, e, s, and d indicate intracellular, extracellular, soma, and dendrite, respectively. See the Parameterizations

section in Methods for a full description of the parameters used.

https://doi.org/10.1371/journal.pcbi.1007661.g008
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by any model that in some way incorporates ion concentration dynamics [27–29, 33–57], pro-

vided that the ion concentration dynamics is accurately modeled. As we argued in the Intro-

duction, previous multicompartmental neuron models that do incorporate ion concentration

dynamics have not done it in a complete, ion conserving way that ensures a biophysically con-

sistent relationship between ion concentration, electrical charge, and electrical potentials (see,

e.g., [27, 48–57]). To specify, the change in the ion concentration in a given compartment will,

in reality, depend on (i) the transmembrane influx of ions into this compartment, (ii) the diffu-

sion of ions between this compartment and its neighboring compartment(s), and (iii) the elec-

trical drift of ions between this compartment and its neighboring compartment(s). Some of

the cited models account for only (i) [27, 49, 51], others account for (i) and (ii) [48, 50, 52–57],

but neither account for (iii). When (iii) is not accounted for, electrical and diffusive processes

are implicitly treated as independent processes, a simplifying assumption which is also incor-

porated in the reaction-diffusion module [71] in the NEURON simulation environment [72].

In models that apply this assumption, there will therefore be drift currents (along axons and

dendrites) that affect ϕm (through the cable equation), but not the ion concentration dynamics,

although they should, since also the drift currents are mediated by ions.

Here, we use simulations on the edPR model to test the inaccuracy introduced when not

accounting for the effect of drift currents on ion concentration dynamics. We do so by com-

paring how many ions that were transferred from the somatic to the dendritic compartment

through the intracellular (Fig 9A) and extracellular (Fig 9B) space, due to ionic diffusion

(orange curves) versus electrical drift (blue curves), throughout the simulation in Fig 3. We

note that Fig 9 shows the accumulatively moved number of ions (from time zero to t) due to

axial fluxes exclusively. That is, the large number of, for example, Na+ ions transported intra-

cellularly from the dendrite to the soma (negative sign) in Fig 9A1, does not by necessity mean

that Na+ ions were piling up in the soma compartment, as the membrane efflux of Na+ was not

accounted for in the figure.

Although diffusion tended to dominate the intracellular transport of ions on the long time

scale (Fig 9A1–9A4), the transport due to electrical drift was not vanishingly small. For exam-

ple, the number of K+ and Cl− ions transported by electrical drift was at the end of the stimulus

period (t = 20 s) about 35% of the transport due to diffusion for both species. In the extracellu-

lar space, diffusion was the clearly dominant transporter of Na+ and K+ (Fig 9B1 and 9B2),

while diffusion and electrical drift were of comparable magnitude for the other ion species (Fig

9B3–9A4). Of course, these estimates are all specific to the edPR model, as they will depend

strongly on the included ion channels, ion pumps and cotransporters, and on how they are dis-

tributed between the soma and dendrite. In general, however, the simulations in Fig 9 suggest

that electrical drift is likely to have a non-negligible effect on ion concentration dynamics, and

that ignoring this effect will give rise to rather inaccurate estimates.

Finally, we also converted the sum of ionic fluxes in Fig 9 into an effective current, repre-

sented as the number of transported unit charges, e+ (Fig 9A5–9B5). Interestingly, diffusion

and drift contributed almost equally to the axial charge transport in the system. We note, how-

ever, that the movement of charges per time unit is indicated by the slope of the curves, which

was much larger for the drift case (blue curve) than for diffusion (orange curve). The drift

curve had a jigsaw shape, which shows that drift was moving charges back and forth in the sys-

tem, while the diffusion always went in the same direction, explaining why it, despite being

smaller than the drift current, had a comparably large accumulative effect on charge transport.

The temporally averaged picture of charge transport that emerges from Fig 9A5 is that of a

slow current loop where charge is transferred intracellularly from the soma to the dendrite

(Fig 9A5), where it crosses the membrane (outward current), and then is transferred extracel-

lularly back from the dendrite to the soma (Fig 9B5), before crossing the membrane again
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(inward current). This configuration is similar to the slow loop current seen during spatial

buffering by astrocytes (see, e.g. Fig 1 in [67]).

Loss in accuracy when neglecting electrodiffusive effects on voltage

dynamics

In the previous section, we investigated the consequences of neglecting (iii) the contribution of

drift currents on ion concentration dynamics. Here, we investigate the consequences of

neglecting the effect of ionic diffusion (along dendrites) on the electrical potential, focusing on

Fig 9. Axial transport of ions and charge due to drift versus diffusion. (A1-A4) The number of ions transported

intracellularly from soma to dendrite from time zero to t by electrical drift versus ionic diffusion. (B1-B4) The number

of ions transported extracellularly from (outside) soma to (outside) dendrite from time zero to t. (A5) Net charge

transported intracellularly from soma to dendrite, represented as the number of unit charges e+. (B5) Net charge

transported extracellularly from soma to dendrite, represented as the number of unit charges e+. (A-B) The simulation

was the same as in Fig 3. See the Analysis section in Methods for a description of how we did the calculations.

https://doi.org/10.1371/journal.pcbi.1007661.g009
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the extracellular potential ϕe. Forward modeling of extracellular potentials is typically based on

volume conductor (VC) theory [16–18, 20, 21], which assumes that diffusive effects on electri-

cal potentials are negligible. Being based on a unified electrodiffusive KNP framework (Fig 1),

the edPR model accounts for the effects of ionic diffusion on the electrical potentials, and can

thus be used to address the validity of this assumption.

To illustrate the effect of diffusion on ϕe, we may split it into a component ϕVC,e explained

by standard VC-theory, and a component ϕdiff,e representing the additional contribution

caused by diffusive currents (Eq 81). In the simulation in Fig 3, the diffusive contribution was

found to be very small compared to the VC-component (Fig 10). However, while ϕVC,e fluctu-

ated rapidly from negative to positive values during neuronal activity, ϕdiff,e varied on a slower

time scale and had the same directionality throughout the simulation. This is equivalent to

what we saw in Fig 9B5, i.e., that diffusion always moved charge in the same direction. More-

over, if we take the temporal averages of the potentials over the time series in Fig 10A, we find

that they are -0.0023 mV, 0.0037 mV, and -0.0060 mV for ϕe, ϕdiff,e, and ϕVC,e, respectively.

This shows that the average diffusion- and VC-components of the total potential were of the

same order of magnitude. As we also have demonstrated in previous studies, diffusion is thus

likely to be important for the low-frequency components of extracellular potentials [31, 32, 73,

74]. Albeit small, the slowly varying diffusion evoked shifts in ϕe are putatively important for

explaining the direct-current (DC) like shifts and long-time concentration dynamics reported

during, e.g., spreading depression [25, 26].

Discussion

The original Pinsky-Rinzel (PR) is a reduced model of a hippocampal neuron, which repro-

duces the essential somatodendritic firing properties of CA3 neurons despite having only two

compartments [3]. Simplified neuron models like that are useful, partly because their reduced

complexity makes them easier to analyze, and as such, can lead to insight in key neuronal

mechanisms, and partly because they demand less computer power and can be used as mod-

ules in large scale network simulations. Whereas the PR model, as most available neuron mod-

els, assumes that ion concentrations remain constant during the simulated period, the

electrodiffusive Pinsky-Rinzel (edPR) model proposed here models ion concentration

Fig 10. Effect of diffusion on extracellular potential. The extracellular potential ϕe in the edPR model, split (cf. Eq

81) into a component explained by standard VC-theory (ϕVC,e) and a “correction” (ϕdiff,e) when diffusive contributions

are accounted for. (A-B) The simulation was the same as in Fig 3. (B) Close-up of selected AP in (A). See the Analysis

section in Methods for a description of how we calculated ϕVC,e and ϕdiff,e.

https://doi.org/10.1371/journal.pcbi.1007661.g010
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dynamics explicitly. The edPR model may thus be seen as a supplement to the PR model,

which should be applied to simulate conditions where ion concentrations are expected to vary

with time.

In the results section, we showed that the edPR model closely reproduced the firing proper-

ties of the PR model for short term dynamics (Fig 5), and for long term dynamics provided that

the firing rate was sufficiently low for the homeostatic mechanisms to maintain ion concentra-

tions close to baseline (Fig 6). We also showed that if the firing rate became too high (Fig 7), or

if the homeostatic mechanisms were impaired (Fig 8), unsuccessful homeostasis would cause

ion concentrations to gradually shift over time, and lead to slowly developing changes in the fir-

ing properties of the edPR model, changes that were not accounted for by the original PR

model. The edPR model was based on an electrodiffusive framework [60], which ensured a

consistent relationship between ion concentrations, electrical charge, and electrical potential in

four compartments. To our knowledge, the edPR model is the first multicompartmental neuro-

nal model that ensures complete and consistent ion concentration and charge conservation.

Model assumptions

The construction of the edPR model naturally involved making a set of modeling choices, and

the most important of these are discussed here. Firstly, in the construction of the model, we

focused on morphological simplicity, biophysical rigor, and mechanistic understanding, rather

than on replicating any specific biological scenario and incorporating biological details. Sec-

ondly, simultaneous data of variations in all intra- and extracellular concentrations during

neuronal firing are not available, and it might not even be feasible to obtain such data. Conse-

quently, computational modeling based on biophysical constraints may be the best means to

estimate it. The concentration dynamics in the edPR model were thus not directly constrained

to data but constrained so that there was, at all times, an internally consistent relationship

between all ion concentrations and all electrical potentials, ensuring an electroneutral bulk

solution. Thirdly, to include extracellular dynamics to models of neurons or networks of such

is computationally challenging, since the extracellular space, in reality, is an un-confined

three-dimensional continuum, locally affected by populations of nearby neurons and glial

cells. As we wanted to keep things simple and conceptual, we chose to use closed boundary

conditions, i.e., no ions and no charge were allowed to leave or enter the system consisting of

the single (2-compartment) neuron and its local and confined (2-compartment) surrounding

(Fig 2). Tecnically, it would be straightforward to increase the number of compartments (i.e.,

the spatial resolution) in the model.

A consequence of using closed boundary conditions was that the extracellular (like the

intracellular) currents became one-dimensional (from soma to dendrite), while in reality,

extracellular currents pass through a three-dimensional volume conductor. The edPR model

could be made three dimensional if embedded in a bi- or tri-domain model (as discussed

below). However, currently, it is 1D, and the effect of the 1D assumption was essentially an

increase in the total resistance (fewer degrees of freedom) for extracellular currents, which

gave rise to an artificially high amplitude in extracellular AP signatures (Fig 3). We note, how-

ever, that the closed boundary is actually equivalent to assuming periodic boundary condi-

tions, so that the edPR model essentially simulates the hypothetical case of a population of

perfectly synchronized neurons, i.e., one where all neurons are doing exactly the same as the

simulated neuron, so that no spatial variation occurs. Likely, this may give accurate predictions

for ion concentration shifts over time, as these reflect a temporal average of activity, but less

accurate predictions for brief and unique electrical events, such as action potentials, which are

not likely to be elicited in perfect synchrony by a large population [31].
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Fourthly, to faithfully represent a morphologically complex neuron with a reduced number

of compartments is a non-trivial task. Available analytical theory for collapsing branching den-

drites into equivalent cylinders are generally based on certain assumptions about branching

symmetries, and on preserving electrotonic distances [75]. However, it is unlikely that the

length constants of electrodynamics and ion concentration dynamics scale in the same way.

Hence, in the edPR model, the volumes and membrane areas of, and cross-section areas

between, the two neuronal compartments were here introduced as rather arbitrary model

choices, fixed at values that were verified to give agreement between the firing properties of the

edPR model and the PR model.

Outlook

Being applicable to simulate conditions with failed homeostasis, the edPR model opens up for

simulating a range of pathological conditions, such as spreading depression or epilepsy [22–

25], which are associated with large scale shifts in extracellular ion concentrations. A particular

context in which we anticipate the edPR model to be useful is that of simulating spreading

depression. Previous spatial, electrodiffusive, and biophysically consistent models of spreading

depression have targeted the problem at a large-scale tissue-level, using a mean-field approach

[30, 76, 77]. These models were inspired by the bi-domain model [78], which has been success-

fully applied in simulations of cardiac tissue [79, 80]. The bi-domain model is a coarse-grained

model, in which the tissue is considered as a bi-phasic continuum consisting of an intracellular

and extracellular domain. That is, a set of intra- and extracellular variables (i.e., voltages and

ion concentrations), and the ionic exchange between the intra- and extracellular domains, are

defined at each point in space. This simplification allows for large scale simulations of signals

that propagate through tissue but sacrifices morphological detail. In the context of spreading

depression, a shortcoming with this simplification is that the leading edge of the spreading

depression wave in both the hippocampus and cortex is in the layers containing the apical den-

drites [22]. This suggests that the different expression of membrane mechanisms in deeper

(somatic) and higher (dendritic) layers may be crucial for fully understanding the propagation

and genesis of the wave. In this context, the edPR model could enter as a module in a, let us

say, bi-times-two-domain model, where each point in (xy) space contains a set of (i) somatic

intracellular variables, (ii) somatic extracellular variables, (iii) dendritic intracellular variables,

and (iv) dendritic extracellular variables, and thus accounts for the differences between the

higher and lower layers. We should note that the state of the art models of spreading depres-

sion are not bi-domain models but rather tri-domain models, as they also include a glial

domain to account especially for the work done by astrocytes in K+ buffering [30, 76, 77].

Hence, to use the edPR model to expand the current spreading depression models, a natural

first step would be to include a glial (astrocytic) compartment in it, so that it eventually could

be implemented as a tri-times-two-domain model.

Methods

The Kirchoff-Nernst-Planck (KNP) framework

In the following section, we derive the KNP continuity equations for a one-dimensional system

containing two plus two compartments (Fig 2A), with sealed boundary conditions (i.e., no

ions can enter or leave the system). The geometrical parameters used in the edPR model were

as defined in Table 1. Since typical neuronal/extracellular/glial volume fractions in neuronal

tissue are 0.4/0.2/0.4 [82], we let the extracellular space be half as voluminous as the intracellu-

lar neuronal space.
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Two kinds of fluxes are involved: transmembrane fluxes and intra- and extracellular fluxes.

The framework is general to the choice of the transmembrane fluxes. A transmembrane flux of

ion species k (jk,m) represents the sum of all fluxes through all membrane mechanisms that

allow ion k to cross the membrane.

Intracellular flux densities are described by the Nernst-Planck equation:

jk;i ¼ �
Dk

l
2

i

gkð½k�di � ½k�siÞ
Dx

�
DkzkF
l

2

i RT
½k� i

�di � �si

Dx
: ð1Þ

In Eq 1, Dk is the diffusion constant, γk is the fraction of freely moving ions, that is, ions

that are not buffered or taken up by the ER, λi is the tortuosity, which represents the slowing

down of diffusion due to obstacles, γk([k]di−[k]si)/Δx is the axial concentration gradient, zk is

the charge number of ion species k, F is the Faraday constant, R is the gas constant, T is the

absolute temperature, ½k� i is the average concentration, that is, γk([k]di + [k]si)/2, and (ϕdi−ϕsi)/

Δx is the axial potential gradient. Similarly, the extracellular flux densities are described by

jk;e ¼ �
Dk

l
2

e

½k�de � ½k�se
Dx

�
DkzkF
l

2

eRT
½k�e

�de � �se

Dx
: ð2Þ

In Eq 2, we do not include γk, as all ions can move freely in the extracellular space. Diffusion

constants, tortuosities, and intracellular fractions of freely moving ions used in the edPR

model were as in Table 2.

Ion conservation. The KNP framework is based on the constraint of ion conservation. To

keep track of ion concentrations we solve four differential equations for each ion species k:

d½k�si
dt
¼ � jk;sm �

As

Vsi
� jk;i �

Ai

Vsi
; ð3Þ

d½k�di
dt
¼ � jk;dm �

Ad

Vdi
þ jk;i �

Ai

Vdi
; ð4Þ

d½k�se
dt
¼ þjk;sm �

As

Vse
� jk;e �

Ae

Vse
; ð5Þ

Table 1. Geometrical parameters.

Parameter Value

Δx (distance between the two compartments) 667�10−6 m

As (somatic membrane area) 616�10−12 m2 �

Ad (dendritic membrane area) 616�10−12 m2 �

Ai (intracellular cross-section area) α � As
†

Ae (extracellular cross-section area) Ai/2

Vsi (somatic intracellular volume) 1437�10−18 m3 �

Vdi (dendritic intracellular volume) 1437�10−18 m3 �

Vse (somatic extracellular volume) 718.5�10−18 m3 �

Vde (dendritic extracellular volume) 718.5�10−18 m3 �

� The intracellular volumes (Vsi, Vdi) and membrane areas (As, Ad) correspond to spheres with radius 7 μm.
† The parameter α describes the coupling strength of the model and is defined in the Parameterizations section. Its

default value was 2.

https://doi.org/10.1371/journal.pcbi.1007661.t001
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d½k�de
dt
¼ þjk;dm �

Ad

Vde
þ jk;e �

Ae

Vde
: ð6Þ

For each compartment, all flux densities are multiplied by the area they go through and

divided by the volume they enter to calculate the change in ion concentration. If we insert the

Nernst-Planck equation (Eq 1) for the intracellular flux density, the first of these equations

becomes:

d½k�si
dt
¼ � jk;sm �

As

Vsi
þ

AiDk

Vsil
2

iDx
gkð½k�di � ½k�siÞ þ

zkF
RT
½k� ið�di � �siÞ

� �

; ð7Þ

where the voltage variables so far are undefined.

Four constraints to derive ϕ. If we have four ion species (Na+, K+, Cl−, and Ca2+) in four

compartments, we have 20 unknown parameters (16 for [k] and four for ϕ), while Eqs 3–6 for

four ion species give us only 16 equations. To solve this, we need to define additional con-

straints that allow us to express the potentials ϕ in terms of ion concentrations.

As we may define an arbitrary reference point for ϕ, we take

�de ¼ 0; ð8Þ

as our first constraint, i.e., (i) the potential outside the dendrite is defined to be zero.

The second constraint is that (ii) the membrane is a parallel plate capacitor that always sepa-

rates a charge Q on one side from an opposite charge −Q on the other side, giving rise to a volt-

age difference

�m ¼ Q=Cm: ð9Þ

Here, Cm is the total capacitance of the membrane, i.e., Cm = cm Am, where cm is the more com-

monly used capacitance per membrane area. As, by definition, ϕm = ϕi − ϕe, we get:

�dm ¼ �di ¼ Qdi=Cm; ð10Þ

in the dendrite (since ϕde = 0), and

�sm ¼ �si � �se ¼ Qsi=Cm; ð11Þ

in the soma.

The third constraint is that (iii) we assume bulk electroneutrality. This means that the net

charge associated with the ion concentrations in a given compartment by constraint must be

identical to the membrane charge in this compartment. The intracellular dendritic charge is

Table 2. Diffusion constants, tortuosities, and intracellular fractions of freely moving ions.

Parameter Value Reference

DNa (Na+ diffusion constant) 1.33�10−9 m2/s [31, 81]

Dk (K+ diffusion constant) 1.96�10−9 m2/s [31, 81]

DCl (Cl− diffusion constant) 2.03�10−9 m2/s [31, 81]

DCa (Ca2+ diffusion constant) 0.71�10−9 m2/s [31, 81]

λi (intracellular tortuosity) 3.2 [60, 82]

λe (extracellular tortuosity) 1.6 [60, 82]

γNa, γK, γCl (intracellular fractions of free ions) 1

γCa (intracellular fraction of free ions) 0.01

https://doi.org/10.1371/journal.pcbi.1007661.t002
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thus Qdi ¼ F
X

k

zk½k�diVdi. By inserting this into Eq 10, we obtain the final expression for ϕdi:

�di ¼ ðF
X

k

zk½k�diVdiÞ=ðcmAdÞ: ð12Þ

By inserting the equivalent expression for Qsi into Eq 11, we get

�si � �se ¼ Qsi=Cm ¼ ðF
X

k

zk½k�siVsiÞ=ðcmAsÞ: ð13Þ

Here, the extracellular potential is not set to zero, so we need a fourth constraint to determine

ϕsi and ϕse separately.

The fourth and final constraint is that (iv) we must ensure charge anti-symmetry. For the

charge anti-symmetry between the two sides of the capacitive membrane (Qi = −Qe) to be pre-

served in time, we must define our initial conditions so that this is the case at t = 0, and the sys-

tem dynamics so that this stays the case. Hence, the system dynamics must ensure that dQdi/dt
= −dQde/dt and dQsi/dt = −dQse/dt. The membrane currents (in isolation) will always fulfill

this criterion, as any charge that crosses the membrane by definition disappears from one side

of it and pops up at the other. Hence, we thus need to make sure that also the axial currents (in

isolation) fulfill the criterion. The system must thus be constrained so that, if an extracellular

current transports a charge δq into a given extracellular compartment, the intracellular current

must transport the opposite charge −δq into the adjoint intracellular compartment. That is, we

must have that:

Aiii ¼ � Aeie; ð14Þ

where ii and ie are the intra- and extracellular current densities, respectively. To find an expres-

sion for these, we multiply Eqs 1 and 2 by Fzk and sum over all ion species k. The expressions

for the intra- and extracellular current densities then become:

ii ¼ �
F

l
2

iDx

X

k
Dkzkgkð½k�di � ½k�siÞ �

F2

RTl2

iDx

X

k

Dkz
2

k½k�ið�di � �siÞ; ð15Þ

ie ¼ �
F

l
2

eDx

X

k
Dkzkð½k�de � ½k�seÞ �

F2

RTl2

eDx

X

k

Dkz
2

k½k�eð�de � �seÞ: ð16Þ

In Eq 15, the first term is the diffusion current density:

idiff;i ¼ �
F

l
2

iDx

X

k
Dkzkgkð½k�di � ½k�siÞ; ð17Þ

which is defined by the ion concentrations. The second term is the field driven current density

ifield;i ¼ � si
ð�di � �siÞ

Dx
; ð18Þ

where we have identified the conductivity as

si ¼
F2

RTl2

i

X

k
Dkz

2

k½k� i: ð19Þ
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Similarly, Eq 16 can be written in terms of idiff,e, ifield,e, and σe. By combining Eqs 14, 15 and

16, we obtain:

� Aiidiff ;i þ Aisi �
ð�di � �siÞ

Dx
¼ Aeidiff;e � Aese �

ð�de � �seÞ

Dx
: ð20Þ

In Eq 20, ϕdi and ϕde are already known from Eqs 8 and 12, while idiff and σ are expressed in

terms of ion concentrations. We may thus solve Eqs 13 and 20 for the last two voltage variables

ϕse and ϕsi:

�se ¼ �di �
Dx
si
� idiff;i �

AeDx
Aisi

� idiff ;e �
Qsi

cmAs

� �

= 1þ
Aese

Aisi

� �

; ð21Þ

�si ¼
Qsi

cmAs
þ �se: ð22Þ

Membrane mechanics

Leakage channels. In the original PR model, the membrane leak current represents the

combined contribution from all ion species. When using the KNP framework, on the other

hand, where we keep track of all ions separately, the leak current must be ion-specific. We

modeled this as in [45], that is, for each ion species k, we implemented a passive flux density

across the membrane

jk;leak ¼ g k;leakð�m � EkÞ=ðFzkÞ; ð23Þ

where g k;leak is the ion conductance, ϕm is the membrane potential, Ek is the reversal potential,

F is the Faraday constant, and zk is the charge number. The reversal potential is a function of

ion concentrations, and is calculated using the Nernst equation:

Ek ¼
RT
zkF

ln
½k�e
gk½k�i

: ð24Þ

Here, R is the gas constant, T is the absolute temperature, γk is the intracellular fraction of

free ions, and [k]e and [k]i are the concentrations of ion k outside and inside the cell, respec-

tively. We included Na+, K+, and Cl− leak currents in both compartments.

Active ion channels. All active ion channel currents were adopted from the original PR

model [3], as they were described in [8], and converted to ion channel fluxes. The soma com-

partment contained a Na+ flux (jNa) and a K+ delayed rectifier flux (jK−DR), while the dendrite

contained a voltage-dependent Ca2+ flux (jCa), a voltage-dependent K+ AHP flux (jK−AHP), and

a Ca2+-dependent K+ flux (jK−C):

jNa ¼ gNað�sm � ENa;sÞ=ðFzNaÞ; ð25Þ

jK� DR ¼ gDRð�sm � EK;sÞ=ðFzKÞ; ð26Þ

jCa ¼ gCað�dm � ECa;dÞ=ðFzCaÞ; ð27Þ

jK� AHP ¼ gAHPð�dm � EK;dÞ=ðFzKÞ; ð28Þ
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jK� C ¼ gCð�dm � EK;dÞ=ðFzKÞ: ð29Þ

The voltage-dependent conductances were modeled using the Hodkin-Huxley formalism

with differential equations for the gating variables:

dx
dt
¼ axð1 � xÞ � bxx; with x ¼ m; h; n; s; c; q; ð30Þ

dz
dt
¼

z1 � z
tz

: ð31Þ

The conductances and gating variables were given by:

gNa ¼ gNam2
1
h; ð32Þ

gDR ¼ gDRn; ð33Þ

gCa ¼ gCas2z; ð34Þ

gC ¼ gCcwð½Ca
2þ�Þ; ð35Þ

gAHP ¼ gAHPq; ð36Þ

am ¼ �
3:2 � 105 � �1

exp ð� �1=0:004Þ � 1
; with �1 ¼ �m þ 0:0469 ð37Þ

bm ¼
2:8 � 105 � �2

exp ð�2=0:005Þ � 1
; with �2 ¼ �m þ 0:0199 ð38Þ

m1 ¼
am

am þ bm
ð39Þ

ah ¼ 128 exp
� 0:043 � �m

0:018
; ð40Þ

bh ¼
4000

1þ exp ð� �3=0:005Þ
; with �3 ¼ �m þ 0:02 ð41Þ

an ¼ �
1:6 � 104 � �4

exp ð� �4=0:005Þ � 1
; with �4 ¼ �m þ 0:0249 ð42Þ

bn ¼ 250 exp ð� �5=0:04Þ; with �5 ¼ �m þ 0:04 ð43Þ

as ¼
1600

1þ exp ð� 72ð�m � 0:005ÞÞ
; ð44Þ

bs ¼
2 � 104 � �6

exp ð�6=0:005Þ � 1
; with �6 ¼ �m þ 0:0089 ð45Þ
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z1 ¼
1

1þ exp ð�7=0:001Þ
; with �7 ¼ �m þ 0:03 ð46Þ

tz ¼ 1; ð47Þ

ac ¼
52:7 exp

�8

0:011
�

�9

0:027

� �

; if �m � � 0:01 V

2000expð� �9=0:027Þ; otherwise

8
><

>:
ð48Þ

with �8 ¼ �m þ 0:05 and �9 ¼ �m þ 0:0535 ð49Þ

bc ¼

(
2000 exp ð� �9=0:027Þ � ac; if �m � � 0:01 V

0; otherwise
ð50Þ

w ¼ min
gCa½Ca

2þ� � 99:8 � 10� 6

2:5 � 10� 4
; 1

� �

; ð51Þ

aq ¼ min ð2 � 104ðgCa½Ca
2þ� � 99:8 � 10� 6Þ; 10Þ; ð52Þ

bq ¼ 1: ð53Þ

All these equations were taken from [8] (with errata [83]) and converted so that values are

given in SI units: units for rates (α’s, β’s) are 1/s, unit for τz is s, and units for voltages ϕ are V.

The equations were used in their original form, except those related to Ca2+ dynamics, where

we made the following changes: Firstly, as a large fraction of intracellular Ca2+ is buffered or

taken up by the ER, we multiplied [Ca2+] in Eqs 51 and 52 by a factor γCa, which refers to the

fraction of free Ca2+ within the cell, and set this to be 0.01. As [Ca2+] in Eqs 51 and 52 were

multiplied with 0.01, only the free Ca2+ could affect the Ca2+ activated ion channels. We fur-

ther assumed that only the free Ca2+ could move between the intracellular compartments (Eq

1) and affect the Ca2+ reversal potential (Eq 24). Secondly, the original PR model had an

abstract and unitless variable for the intracellular Ca2+ concentration, with a basal concentra-

tion of 0.2, while we defined a (biophysically realistic) baseline concentration of 0.01 mM,

which corresponds to a concentration of free Ca2+ of 100 nM. In Eqs 51 and 52 we therefore

subtracted 99.8�10−6(mol/m3) from the Ca2+ concentration to correct for the shift in baseline.

Thirdly, we modified the voltage-dependent Ca2+ current to include an inactivation variable z
(Eqs 31 and 34). We implemented this inactivation like they did in [84] (Eqs A2-A3), but set

the time constant to 1 s, the half-activation voltage to -30 mV, and the slope of the steady-state

Boltzmann fit to z1 to 0.001. In the original PR model, inactivation was neglected due to the

argument that it was too slow to have an impact on simulation outcomes [2]. However, in our

simulations, we observed that it had a significant impact, and therefore we included it.

Homeostatic mechanisms. To maintain baseline ion concentrations for low frequency

activity we added 3Na+/2K+ pumps, K+/Cl− cotransporters (KCC2), and Na+/K+/2Cl−

PLOS COMPUTATIONAL BIOLOGY An electrodiffusive Pinsky-Rinzel model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007661 April 29, 2020 26 / 36

https://doi.org/10.1371/journal.pcbi.1007661


cotransporters (NKCC1). Their functional forms were taken from [45].

jpump ¼
r

1:0þ exp ðð25 � ½Naþ�iÞ=3Þ
�

1:0

1:0þ exp ð3:5 � ½Kþ�eÞ
; ð54Þ

jkcc2 ¼ Ukcc2 ln
½Kþ�i½Cl

�
�i

½Kþ�e½Cl
�
�e

� �

; ð55Þ

jnkcc1 ¼ Unkcc1f ð½K
þ�eÞ ln

½Kþ�i½Cl
�
�i

½Kþ�e½Cl
�
�e

� �

þ ln
½Naþ�i½Cl

�
�i

½Naþ�e½Cl
�
�e

� �� �

; ð56Þ

f ð½Kþ�eÞ ¼
1

1þ exp ð16 � ½Kþ�eÞ
; ð57Þ

where ρ, Ukcc2, and Unkcc1 are pump and cotransporter strengths. We assumed optimal pump

functionality and set ρ to be the pump strength used in [45] for the fully oxygenated state with

normal bath potassium (ρmax).

Intracellular Ca2+ decay was modeled in a similar fashion as in [3], but to ensure ion con-

servation we modeled it as an electroneutral Ca2+/2Na+ exchanger, exchanging one Ca2+ (out-

ward) for two Na+ (inward). Putatively, this phenomenological model for the decay could

represent the joint effect of several mechanisms in a real system, such as the Ca2+/3Na+

exchanger, a Ca2+ leakage current, SERCA pumps, etc. The decay flux density was defined as:

jCa� dec ¼ UCa� decð½Ca
2þ�i � ½Ca

2þ�i;bÞ �
Vi

Am
ð58Þ

where UCa−dec is the decay rate, and [Ca2+]i,b is the basal Ca2+ concentration, set to 0.01 mM.

Model summary. We summarize the model here for easy reference. In short, we solved

four differential equations for all ion species k:

d½k�si
dt
¼ � jk;sm �

As

Vsi
� jk;i �

Ai

Vsi
; ð59Þ

d½k�di
dt
¼ � jk;dm �

Ad

Vdi
þ jk;i �

Ai

Vdi
; ð60Þ

d½k�se
dt
¼ þjk;sm �

As

Vse
� jk;e �

Ae

Vse
; ð61Þ

d½k�de
dt
¼ þjk;dm �

Ad

Vse
þ jk;e �

Ae

Vde
: ð62Þ
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At each time step, ϕ in all four compartments was derived algebraically:

�de ¼ 0; ð63Þ

�di ¼ Qdi=ðcmAdÞ ð64Þ

�se ¼ �di �
Dx
si
� idiff;i �

AeDx
Aisi

� idiff ;e �
Qsi

cmAs

� �

= 1þ
Aese

Aisi

� �

; ð65Þ

�si ¼
Qsi

cmAs
þ �se: ð66Þ

The total membrane flux densities were as follows:

jNa;sm ¼ jNa þ jNa;leak þ 3jpump þ jnkcc1 � 2jCa� dec; ð67Þ

jK;sm ¼ jK� DR þ jK;leak � 2jpump þ jnkcc1 þ jkcc2; ð68Þ

jCl;sm ¼ jCl;leak þ 2jnkcc1 þ jkcc2; ð69Þ

jCa;sm ¼ jCa� dec; ð70Þ

jNa;dm ¼ jNa;leak þ 3jpump þ jnkcc1 � 2jCa� dec; ð71Þ

jK;dm ¼ jK� AHP þ jK� C þ jK;leak � 2jpump þ jnkcc1 þ jkcc2; ð72Þ

jCl;dm ¼ jCl;leak þ 2jnkcc1 þ jkcc2; ð73Þ

jCa;dm ¼ jCa þ jCa� dec: ð74Þ

Fig 2 summarizes the model. The parameters involved in this model and their values used in

this study are listed in Tables 1–4.

Original Pinsky-Rinzel model

We implemented the original Pinsky-Rinzel equations from Box 8.1 in [8]. The reversal poten-

tial of the leak current, not specified in [8], was set to -68 mV to ensure a resting potential

close to that of the edPR model. We also used this as the initial potentials, that is, ϕsm,0 =

Table 3. Temperature and physical constants.

Parameter Value Reference

T (absolute temperature) 309.14 K [45]�

F (Faraday constant) 9.648�104 C/mol

R (gas constant) 8.314 J/(mol.K)

� The temperature is not explicitly given in [45], but from Eq 3 in [45] we know that RT
F ¼ 26:64 � 10� 3V. By using the

values of R and F listed in Table 3, we get an absolute temperature of 309.14 K, corresponding to a body temperature

of 36˚C.

https://doi.org/10.1371/journal.pcbi.1007661.t003
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−68mV and ϕdm,0 = −68mV. The other initial conditions were n0 = 0.001, h0 = 0.999, s0 =

0.009, c0 = 0.007, q0 = 0.01, and [Ca2+]0 = 0.2, same as in [3].

Simulations

Parameterizations. The parameters listed in Tables 1–4 were used in all the simulations

of the electrodiffusive Pinsky-Rinzel (edPR) model. We tuned the Ca2+ conductance gCa man-

ually to obtain comparable spike shapes between the edPR model and the original PR model,

as well as the fraction of free Ca2+ inside the cell, and the coupling strength between the soma

and the dendrite.

In the edPR model, the coupling strength between the soma and dendrite was proportional

to the ratio Ai/Δx, and all model outputs depended on this ratio, and not on Ai or Δx in isola-

tion. By choice, we adjusted the coupling strength by varying Ai = αAm through adjusting the

parameter α. We could have obtained the equivalent effect by varying Δx instead. The default

value of α was set to 2. All simulations were run using this value, except in Fig 5C where α was

set to 0.43.

In the original PR model, the coupling strength between the soma and dendrite was repre-

sented by a coupling conductance gc, which had a default value of 10.5mS/cm2. In Fig 5A, gc

was set to 2.26mS/cm2.

Initial conditions. The initial conditions for the edPR model were obtained through a

two-step procedure. In the first step, we specified a set of pre-calibration initial values: We set

(i) the initial membrane potential, ϕm,0, to -68 mV, (ii) the concentrations to the pre-calibrated

values in Table 5, and (iii) the gating variables (Table 5) to the same initial values as in [3].

Based on the initial concentration values, we also defined (iv) a set of static intracellular and

extracellular residual charges, representing negatively charged macromolecules present in real

neurons. We represented these as constant concentrations ([X−]i,0 and [X−]e,0) of anions with

charge number zX = −1 (assuming this to be the mean charge number of the real macromole-

cules) and diffusion constants DX = 0 (assuming immobility). The residual charges were intro-

duced to ensure consistency between the initial membrane potential and the charge density

Table 4. Membrane parameters.

Parameter Value Reference

cm 3�10−2 F/m2 [3, 8]

gNa;leak 0.247 S/m2 [45]

gK;leak 0.5 S/m2 [45]

gCl;leak 1.0 S/m2 [45]

gNa 300 S/m2 [3, 8]

gDR 150 S/m2 [3, 8]

gCa 118 S/m2

gAHP 8 S/m2 [3, 8]

gC 150 S/m2 [3, 8]

ρ 1.87�10−6 mol/(m2s) [45]�

Ukcc2 7.0�10−7 mol/(m2s) [45]�

Unkcc1 2.33�10−7 mol/(m2s) [45]�

UCa−dec 75 s−1 [3, 8]

� We multiplied the original values from [45] by a conversion factor 7

3
� 10� 6 m to convert the units from mM/s to

mol/m2s. The conversion factor equals the initial inverse surface area to volume ratio from [45].

https://doi.org/10.1371/journal.pcbi.1007661.t004
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associated with the initial ion concentrations:

½X� �i;0 ¼ zNa½Na
þ�i;0 þ zK½K

þ�i;0 þ zCl½Cl
�
�i;0 þ zCa½Ca

2þ�i;0 � �m;0
cmAm

ViF
; ð75Þ

½X� �e;0 ¼ zNa½Na
þ�e;0 þ zK½K

þ�e;0 þ zCl½Cl
�
�e;0 þ zCa½Ca

2þ�e;0 þ �m;0
cmAm

VeF
: ð76Þ

In the next step, we calibrated the model by running it for 1800 s to obtain the post-cali-

brated values of all the state variables (Table 5). These post-calibrated values were written to

file and used as initial conditions in all simulations shown throughout this paper. For technical

reasons, we did not read the constant residual concentrations, [X−]i,0 and [X−]e,0, to/from file,

but re-calculated them from Eqs 75 and 76 in the beginning of each simulation to minimize

rounding errors and ensure strict electroneutrality. While the pre-calibrated initial conditions

were identical in the somatic and dendritic compartment, the post-calibration values were not

strictly identical, but identical up to the decimal place included in Table 5. Hence, the indicated

values apply for both the soma and dendrite compartments. The post-calibrated values of the

ion concentrations gave us the following reversal potentials: ENa = 57mV, EK = −84mV, ECl =

−79mV, and ECa = 124mV.

The pre-calibration values for the ion concentrations were taken from Table 2.1 in [85],

which lists the ranges of typical intra- and extracellular concentrations in mammalian neurons.

Table 5. Initial conditions.

Variables Pre-calibrated Post-calibrated1

ϕm,0
† -68 mV -67.7 mV

[Na+]i,0 15 mM 16.9 mM

[Na+]e,0 145 mM 141.2 mM

[K+]i,0 140 mM 139.5 mM

[K+]e,0 5 mM 5.9 mM

[Cl−]i,0 4 mM 5.4 mM

[Cl−]e,0 110 mM 107.1 mM

[Ca2+]i,0 0.01 mM� 0.01 mM�

[Ca2+]e,0 1.1 mM 1.1 mM

[X−]i,0
‡ 151.0 mM 151.0 mM

[X−]e,0
‡ 42.2 mM 42.2 mM

n0 0.001 0.0003

h0 0.999 0.999

s0 0.009 0.007

c0 0.007 0.005

q0 0.010 0.011

z0 1.0 1.0

1 Preciser values (with more decimals included) were read to/from file and used in the simulations. (Available at

https://github.com/CINPLA/EDPRmodel_analysis).
† ϕm is not an independent state variable, but at each time point an algebraic function of ion concentrations, as

computed through the KNP formalism.

� Only 1% of the total intracellular Ca2+, that is, a 100 nM, was assumed to be free (unbuffered).
‡ Not state variables, but constants, derived (initially) from Eqs 75 and 76.

https://doi.org/10.1371/journal.pcbi.1007661.t005
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From the ranges given in this table, we selected values that made the edPR model (throughout

the calibration period) reside close to the selected initial membrane potential of -68 mV, a typi-

cal value found for CA3 pyramidal cells in adult rats [86].

Stimulus current. We stimulated the cell by injecting a K+ current istim into the soma.

Previous computational modeling of a cardiac cell has shown that stimulus with K+ causes the

least physiological disruption [33]. To ensure ion conservation, we removed the same amount

of K+ ions from the corresponding extracellular compartment:

d½Kþ�si
dt
þ ¼

istim
FzKVsi

; ð77Þ

d½Kþ�se
dt
� ¼

istim
FzKVse

: ð78Þ

Analysis. Fig 9: To calculate the accumulative transport of ion species k in the intracellular

solution (from time zero to t) due to diffusion, we integrated Ai NA jk,diff, i from time zero to t,

where NA is the Avogadro constant. Similarly, we integrated Ae NA jk,diff,e to calculate the accu-

mulative transport of ions in the extracellular solution due to diffusion. We did the same calcu-

lations with jk,drift to study the accumulative transport of ions due to drift. When knowing the

accumulative transport of each ion species, kakkum, we calculated the total transport of e+ from

their weighted sum:

eþakkum ¼ zNaNa
þ

akkum þ zKK
þ

akkum þ zClCl
�

akkum þ zCaCa
2þ

akkum: ð79Þ

Fig 10: To calculate ϕVC,e and ϕdiff,e, we looked at the extracellular axial current as it is given

in the KNP formalism:

ie ¼ idiff ;e þ ifield;e ¼ idiff;e þ se
�se

Dx
; ð80Þ

where the last equality follows when we insert Eq 18 for the extracellular field-driven current

density ifield,e, and use that ϕde = 0. As in [32], we may split ϕse into two components:

�se ¼ �VC;se þ �diff;se; ð81Þ

where ϕVC,se is the potential as it would be predicted from standard volume conductor (VC)

theory [20, 21], and ϕdiff,se is the additional contribution from diffusion [32]. With this, Eq 80

can be written:

ie ¼ idiff ;e þ se

�VC;se

Dx
þ se

�diff;se

Dx
: ð82Þ

We may split this into two equations if we recognize that

ie ¼ se

�VC;se

Dx
; ð83Þ

is the standard formula used in VC theory, which is based on the assumption that the extracel-

lular current is exclusively due to a drop in the extracellular VC-potential ϕVC,se. The
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remainder of Eq 82 then leaves us with

idiff;e ¼ � se

�diff ;se

Dx
: ð84Þ

Since we already knew ie and idiff,e from simulations with the KNP framework, we used Eqs

83 and 84 to calculate ϕVC,se and ϕdiff,se separately.

Numerical implementation. We implemented the differential equations in Python 3.6

and solved them using the solve_ivp function from SciPy. We used its default Runge-

Kutta method of order 5(4), and set the maximal allowed step size to 10−4. The code is made

available at https://github.com/CINPLA/EDPRmodel and https://github.com/CINPLA/

EDPRmodel_analysis.
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