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The Benefits of Fixed Item Parameter Calibration for Parameter Accuracy in Small 

Sample Situations in Large-Scale Assessments 

 

Over the years, international large-scale assessments such as the Programme for 

International Student Assessment (PISA), developed by the Organisation for Economic Co-

operation and Development (OECD), have become integral parts of the field of educational 

science. They are a major source of information for both educational research and practice, and 

have considerable impact on national educational governance (Fischman et al., 2019). Some 

countries, such as Germany or Austria, for instance, established educational standards and 

introduced a nationwide assessment system after the so-called “PISA shock” of its first 

administration, in reference to their students’ unexpectedly low performance compared to those 

from other countries (Ertl, 2006; Waldow, 2009).  

The impact on national educational governance is not without debate. A large body of 

research documents challenges related to, for instance, the sampling design, data quality, and 

appropriateness of the underlying item response theory (IRT) models (Hopfenbeck et al., 

2018). Frey and Hartig (2020) identify five current methodological challenges, such as 

completing the introduction of computerized adaptive testing, that should be addressed to allow 

large-scale assessments to continue to provide highly useful information on educational 

outcomes in the future. Rutkowski (2018) argues that to retain and increase the utility of 

international large-scale assessments for intended stakeholders, it is necessary to increase 

flexibility in design and implementation—in other words, quickly incorporate features that 

represent the most current understanding of assessment frameworks, psychometric models, and 

delivery platform capabilities.  

To accomplish this, most large-scale assessments have field trials where the 

practicability of new features is tested. The number of new features that can be tested, however, 
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is limited by the sample size of these trials. Moreover, since the sample is also used for an 

initial IRT scaling, not all of it can be used for testing new features. Fixed item parameter 

calibration (FIPC; e.g., Kim, 2006), one of several calibration methods useful in situations 

when assessments include both old items (those used in prior assessment rounds or cycles; 

trend items in PISA) and new ones (those implemented for the first time), may be promising 

when sample size is critical. Especially because FIPC, in contrast to other calibration methods, 

allows introducing prior information into the calibration. Consequently, the current study 

investigates if using FIPC reduces the sample required for an accurate initial IRT scaling of 

field-trial assessment data. The smaller the proportion of the sample required, the larger the 

proportion available for testing new features to implement in the main survey. This, in turn, 

contributes to increased flexibility of large-scale assessments in design and implementation.   

Current Practice for PISA’s Main Survey  

PISA is an international large-scale assessment testing the skills and knowledge of 

15-year‐old students in three core domains (Mathematics, Reading, and Science). Its main 

survey is administered every three years, with each rotating as the major domain. In 2015, PISA 

moved from a paper- to a computer-based assessment, and in 2018, a multistage adaptive 

testing design was introduced for the Reading assessment (Yamamoto, Shin, & Khorramdel, 

2018). The target sample size of PISA is 6,300 students per country, obtained with a complex 

two-stage stratified sampling design involving a random sample of schools in the first stage, 

and a random sample of students in the second (Organisation for Economic Co-operation and 

Development [OECD], 2017a; OECD, 2017b).  

The main surveys are administered to students following a balanced incomplete block 

design (BIBD; e.g., Frey et al., 2009). Thus, not all students respond to all items. The advantage 

of the BIBD is that more items can be included in the assessment, providing broader construct 

coverage without increasing the burden for individual students (Gonzalez & Rutkowski, 2010). 
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Since 2015, the IRT scaling of the assessment data has been based on a concurrent calibration 

with country-by-language groups as the grouping variable and the assumption of partial 

invariance. For the scaling of trend items (i.e., items developed and administered in PISA 

assessments prior to 2015), a hybrid model is used that combines the Rasch (Rasch, 1960) and 

partial credit models (PCM; Masters, 1982) with the two-parameter logistic model (2PLM; 

Birnbaum, 1968) and generalized partial credit model (GPCM; Muraki, 1992) for dichotomous 

and polytomous items, respectively (OECD, 2017c). For new items developed for the 2015 

assessment and later, only the 2PLM and GPCM are used. To examine the fit of the hybrid 

model (compared to the Rasch model and PCM), von Davier et al. (2019) conducted a 

recalibration using PISA data from 2000 to 2012. It showed that the more general (hybrid) 

model yielded a better global model-data fit than the Rasch model and PCM, which were 

historically used in PISA before the 2015 assessment. Moreover, this new modeling approach 

also resolved many of the item-level misfit issues that appeared in the Rasch model. 

Differential item functioning (DIF) is treated with a partial invariance approach that 

assumes invariance of item parameter estimates across multiple groups for most items. More 

precisely, international item parameters are estimated for most items (i.e., the same item 

parameters are estimated across all groups), while for a subset of items, country-specific unique 

item parameters are allowed in cases where DIF occurs. This approach allows the 

comparability of item parameter estimates and data across different countries and languages 

while simultaneously accounting for item misfit (for more details, see OECD, 2017c). 

PISA data consist of responses to dichotomous and polytomous trend and new items, 

which can be further divided into multiple-choice and open-ended response items. The latter 

are coded by human raters and a machine-supported coding system, which was introduced for 

short responses (Yamamoto, He, Shin, & von Davier, 2018). In addition to trend items from 

previous PISA assessments, new items are developed between assessments to ensure adequate 
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construct coverage based on changing frameworks. They are developed only for the major 

domain of the respective PISA assessment. For example, for the 2015 main survey, 99 new 

items were developed for Science because it was the major domain. 

Trend items are used for linking multiple PISA assessments and to report trends on a 

common scale across assessments (OECD, 2017c). Prior to PISA 2015, the data in each 

assessment were calibrated separately and subsequently equated. This changed in PISA 2015, 

when a multiple group (concurrent) FIPC replaced the separate calibration approach. First, 

common item parameters across different countries, languages, and assessments were 

estimated with a multiple group concurrent calibration of data from the PISA 2006, 2009, 2012, 

and 2015 cycles. Second, the resulting item parameter estimates have been used to fix the trend 

items in PISA 2018 to link the 2018 assessment to past PISA assessments. The trend item 

parameters are updated in every main survey to account for item-by-country and item-by-

language interactions (note that parameters are only updated in a few cases where necessary). 

This involves examining their fit; in case of misfit, unique (i.e., country-specific) item 

parameters are estimated. The updated estimates are then used to fix the trend items in the 

subsequent field trial (for estimating preliminary item parameters for newly developed items 

on the trend scale to select items for the main survey), and the related main survey (for 

estimating the final item parameters).  

Current Practice for PISA’s Field Trial 

PISA field trials are conducted a year before the respective main surveys (e.g., the field 

trial for the 2015 main survey was conducted in 2014). These field trials have a dual purpose. 

First, they are used to estimate preliminary item parameters and ability estimates in an initial 

IRT scaling. The assessments administered in the field trials typically consist of a larger 

number of new items (OECD, 2017c). Scaling results are used to evaluate the quality of these 

items and to select among them for the main survey. To establish a link to the international 
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scale (i.e., to past assessment cycles), the parameters for trend items are fixed to the estimates 

obtained in the last main survey (OECD, 2017c). The parameters for new items are estimated 

freely but scaled together with trend items on a common scale. In PISA 2015, trend item 

parameters were estimated by a calibration including the 2000–2015 data (von Davier et al., 

2019); in PISA 2018, trend item parameters were fixed to estimates obtained from the PISA 

2015 main survey calibration. 

Second, they are used to evaluate new psychometric and assessment features (related to 

the assessment design, mode of assessment, or nature of the assessed construct) regarding their 

feasibility for the main survey. New psychometric and assessment features, however, need to 

be thoroughly evaluated; to ascertain that a new feature can be implemented successfully in the 

main survey, multiple research studies in the field trial are needed without decreasing the 

comparability of item parameter estimates or harming the measurement of trend over time (both 

are important goals of international large-scale assessments).  

The desire to keep the main survey up to date with developments in the field of 

psychometrics and to meet stakeholders’ needs regarding the comparability of scales and stable 

trend measures places large demands on PISA field trials, since their samples are considerably 

smaller than those of the main surveys. A school-based simple random sample of 25 schools 

with 78 students per school yields a target sample size of 1,950 students per country (OECD, 

2017c). This is problematic, because the underlying IRT models require relatively large sample 

sizes for an accurate item calibration and scaling (the recommended sample size for single-

group models is 𝑁 = 500, de Ayala, 2014; for multigroup models, however, 𝑁 = 500 is 

considered a small sample size, Kim & Kolen, 2019). Moreover, Mazzeo and von Davier 

(2014) show that the country-specific effective sample size of the PISA main survey, after 

taking into account the sampling and booklet design, actually ranges from 𝑛𝑒 = 250 to 𝑛𝑒 =

750 responses per item per country. Consequently, two questions arise. First, how can the field 
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trial incorporate more comprehensive tests of new assessment features without an increased 

sample size? Second, what proportion of the available field-trial sample is critical to retain the 

accuracy of the initial item calibration and scaling of the assessment data in the field trial? As 

stated earlier, FIPC (e.g. Kim, 2006; Kang & Petersen, 2012), one of several calibration 

methods that are useful in situations where assessments consist of old and new items, may be 

promising when sample size is critical. 

Purpose of the Study and Research Questions 

By fixing the parameters of trend items to their previously obtained estimates, FIPC 

introduces prior information into the calibration process. This can be especially helpful for 

improving the accuracy of item parameter estimates in small samples. The utility of this prior 

information and, more specifically, of FIPC for small-sample item calibration in the context of 

international large-scale assessments thus far has not been studied extensively. Recently, Kim 

and Kolen (2019) showed that FIPC applied to multigroup settings performs better than 

Stocking-Lord equating (a separate calibration followed by equating) in recovering the 

underlying ability distributions and parameter estimates of new items. They did not focus, 

however, on the impact of different types of prior information introduced into the calibration. 

Other research on FIPC indicates that it may yield biased model parameters under certain 

conditions. Bias depends on the sample size (Hanson & Béguin, 2002; Kang & Petersen, 2012), 

the number of items with parameters available from previous calibrations (e.g., Arai & 

Mayekawa, 2011; Kim et al., 2018), the amount of cross-national DIF (Sachse et al., 2018), 

and shifts in the latent ability distributions across assessments (e.g., Baldwin et al., 2007; Keller 

et al., 2007). Keller and Keller (2011; 2015), however, showed that FIPC works best for 

complex changes in the latent ability distributions and in cases where the content of the 

assessment changes. Zhao and Hambleton (2017) showed that FIPC was robust against ability 

shifts across two adjacent assessments. Moreover, Paek and Young (2005) and Kim (2006) 
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showed that the performance of FIPC depends on the implementation of the marginal 

maximum likelihood (MML) estimation routine in IRT software packages: Performance of 

FIPC is best when the software uses multiple updates of the prior latent ability distribution 

combined with multiple expectation-maximization (EM) cycles (the MWU-MEM 

implementation; Kim, 2006). Although sample size has been considered in previous studies on 

FIPC (e.g., Hanson & Béguin, 2002; Kang & Petersen, 2012), sample sizes smaller than 𝑁 =

500 have not been examined. Moreover, the performance of FIPC in multigroup settings with 

more than two groups and complex test designs and sampling frames has not been considered. 

Therefore, the purpose of this study is to investigate the impact of FIPC on the accuracy 

of item parameter estimates in small samples using real PISA 2015 Science assessment data. 

More precisely, the purpose is to determine how accurate the estimation of item parameters for 

new items in different sampling conditions is if we can utilize different amounts of prior 

information (i.e. prior information from multiple assessments, prior information from only one 

assessment, and no prior information) by fixing trend item parameters in FIPC. The first and 

second research questions relate to the outcome of FIPC in small samples: When using FIPC 

in increasingly smaller samples, (1) how does the accuracy (in terms of bias and standard error) 

of the parameter estimates of the new Science items (human- and machine-coded) change, and 

(2) how does the fit (in terms of mean deviation and root mean squared deviation) of the trend 

and new Science items (human- and machine-coded) change?  

The third and fourth research questions relate to the input and consequence of FIPC in 

small samples: When using FIPC in increasingly smaller samples, (3) what is the impact of 

fixing the trend Science items to different estimates (i.e., introducing different amounts of prior 

information into the calibration) on the accuracy of the parameters of the new Science items, 

and (4) what is the critical sample size that still provides accurate item parameter estimates?  
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For a complete picture of the performance of FIPC in small samples, one final research 

question relates to the estimation of the country-specific latent trait distributions: (5) what is 

the impact of FIPC on the means and standard deviations of the country-specific latent trait 

distributions? Answers to these questions provide an indication how FIPC contributes to 

PISA’s flexibility; in other words, how much of the current field-trial sample size is required 

for the initial item calibration and scaling, and how much can be used to test new features for 

implementation in the main survey.  

Method 

Data 

This study utilized empirical data from the PISA 2015 main survey, when Science was 

the major domain. For the current study, 10 countries (language group in parentheses) that took 

PISA as computer-based assessment were selected: Australia (English), Denmark (Danish), 

Finland (Finnish), France (French), Germany (German), Italy (Italian), Japan (Japanese), 

Malaysia (Malay), Taipei (Chinese), and the United States (English). These countries were 

chosen due to their diversity in culture as well as languages: both alphabetic-based languages 

(European, such as Danish, English, Finnish, French, German, and Italian) and character-based 

languages (Asian such as Chinese, Japanese, and Malay) are represented. In total, the sample 

consisted of 𝑁 = 76,722 students. This is referred to as the “study sample” in the remainder 

of this paper. 

Procedure 

Design. First, the design consisted of four different sampling conditions. Subsamples 

of size 𝑛 = 125, 250, 500, 1,000 students were drawn from the samples for each selected 

country using a school-based bootstrapping approach (outlined in the following section), 

resulting in datasets of 𝑁 =  1,250, 2,500, 5,000, 10,000 students. Second, three types of 

parameter constraints were used. Each type of parameter constraints introduces a different 
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amount of prior information into the calibration (a multigroup concurrent calibration based on 

the 2PLM and GPCM with partial invariance assumption, i.e. common item parameters across 

countries): 

a. FIPC-PISA (FIPC-P): Trend Science items are fixed to their final estimates obtained 

from the PISA 2015 main survey. Note that by fixing the trend item parameters to the 

2015 main survey estimates, prior information from multiple assessments (PISA 2006 to 

2015) is introduced into the analysis.  

b. FIPC-Study (FIPC-S): Trend Science items are fixed to their estimates obtained from a 

multiple group concurrent calibration with common item parameters across countries 

based on the study sample data (𝑁 = 76,722) in each condition. Note that by fixing the 

trend item parameters to the study sample estimates, prior information from one 

assessment (PISA 2015) is introduced into the analysis. Thus, the amount of prior 

information is smaller compared to FIPC-P, but larger compared to CC-S, where no prior 

information is utilized. 

c. CC-Study (CC-S): Trend and new Science items are freely estimated in each condition; 

that is, not fixed to any values from a previous calibration. Thus, no prior information is 

utilized in the calibration. Trend and new Science items are on the base scale by 

constraining the item parameters to be equal across countries (the partial invariance 

assumption mentioned above). 

Hence, the IRT scaling applied in this study mimics scaling approaches in large-scale 

assessments in general, and PISA in particular, but uses different constraints on the trend items 

as described above. To evaluate the performance of FIPC adequately, sample sizes were chosen 

to be well below the recommended sample size for both the 2PLM and the GPCM, as well as 

below the typical country-specific target sample size of the PISA field trial. Moreover, the 

trend Science item parameter estimates in FIPC-P are based on a larger dataset (i.e., more 
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information is utilized for the parameter estimation) than in FIPC-S. Additionally, FIPC-P 

accounts for DIF by including country-specific unique trend Science item parameter estimates, 

while FIPC-S does not. 

Data sampling. Important goals of the data sampling process were a) retaining the 

hierarchical structure of the PISA 2015 data (students nested in schools) and mimicking the 

sampling approach in the PISA field trial (a simple school-based convenience sample). 

Therefore, a school-based bootstrapping approach was applied to the study sample to sample 

the datasets for the analyses. Thus, 1.6%, 3.2%, 6.5%, and 13.2% of schools, respectively, were 

drawn with replacement from the country-specific school samples. These percentages were 

necessary to obtain the desired subsample sizes of   𝑛 = 125, 250, 500, 1,000. This ensured 

that only whole schools were included in the country-specific subsamples while adequately 

considering the size of the countries’ school samples. For example, from the 177 schools in the 

study sample of the United States, 3.2% were drawn with replacement to obtain a country-

specific subsample size of 𝑛 ~ 500. This was repeated for each of the other nine countries, 

resulting in a dataset of approximately 5,000 students. To ensure that the results were 

generalizable beyond a single random sample, this sampling process was repeated 100 times, 

resulting in 100 datasets of each size 𝑁 ~ 1,250, 2,500, 5,000, 10,000 (400 datasets in total). 

The resampling was done in R (R Core Team, 2018) with a custom function written by the 

authors. The resulting average country-specific sample sizes 𝑛̅, as well as the average sizes of 

the sampled datasets 𝑁̅, are summarized in Table 1. 

Analysis. The bootstrapped datasets consisted of responses to 184 computer-based 

items of the 2015 Science assessment. Eighty-five items were trend Science (i.e., items already 

calibrated in previous PISA assessments), and 99 were new Science (developed for the 2015 

Science assessment). Multigroup IRT models based on the 2PLM and GPCM with country as 

the grouping variable were fitted to each of the 400 datasets. This is the current operational 
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scaling approach used in PISA. Model fitting was done with the software mdltm (von Davier, 

2005). The mdltm software allows the application of the mixture general diagnostic modeling 

framework (MGDM), which includes multigroup IRT models based on the 2PL and GPCM as 

special cases (von Davier, 2010). It provides MML estimates obtained using customary EM 

methods. It was designed to handle large datasets as well as complex test and sampling designs. 

It allows the estimation of a number of different latent variable models, includes different 

constraints for parameter estimation, and provides different model and item fit statistics as well 

as methods for proficiency estimation. In addition, it can handle missing data by design and 

nonresponse, as well as multiple populations and weights to account for complex sampling (for 

a detailed description, see Khorramdel et al., 2019).  

Table 1 

Summary of the Data Sampling Process, Averaged Over 100 Replications 

 Proportion of Schools 

Country  100% 1.6% 3.2% 6.5% 13.2% 

Australia 7,939 123 264 515 1,046 

Denmark 7,760 116 248 503 1,024 

Finland 7,620 140 230 466 996 

France 7,375 127 253 501 1,042 

Germany 7,939 120 246 521 1,022 

Italy 7,878 134 259 508 1,021 

Japan 7,939 120 240 524 1,042 

Malaysia 6,447 118 218 414 835 

Taipei 7,939 110 259 516 1,038 

United States 7,886 131 265 543 1,016 

      

Average Subsample (𝑛̅) 7672.2 123.9 248.2 501.1 1008.2 

Average dataset (𝑁̅) 76,722 1,239 2,482 5,011 10,082 

 

For CC-S, the sum of item difficulties was set to zero, and the mean of the item 

discriminations was set to one so that the distribution of the latent trait was freely estimated in 

relation to the item locations. For both FIPC-P and FIPC-S, these constraints were not needed, 

because fixing the parameter estimates of the trend Science items set the scale for the new 
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Science items. For the latent trait distributions, 41 quadrature points 𝜃𝑡 (ranging from -5 to 5) 

were specified and set equal across countries. Senate weights were used to provide equal 

contributions of the countries to the calibration results and to mimic the usual estimation 

procedure in PISA. Senate weights sum up to the same value for each country. They make the 

population of each country to be, for instance, 𝑁 =  1,950, to ensure an equal contribution for 

each of the countries in the analysis (OECD, 2017d). 

Dependent measures. Bias in item parameter estimates was indicated by 𝐵𝑖𝑎𝑠𝑖 = 𝜉𝑖 −

𝜉𝑖
2015, where 𝜉𝑖 = 𝛼𝑖, 𝛽𝑖 was the difference between the parameter estimates of the new Science 

items resulting from the different constraints on the trend Science items and their corresponding 

estimates obtained from the PISA 2015 Science assessment (von Davier et al., 2019). These 

estimates were chosen as baseline because IRT scaling conducted in 2015 used data from 

multiple previous PISA assessments (from 2006 to 2015) and are considered the most accurate 

to date (OECD, 2017a). For each condition, bias was averaged over replications 𝑟 (𝑟 =

1, … ,100) to obtain summary indices for each item, that is 𝐵𝑖𝑎𝑠𝑖 =
1

𝑟
∑ 𝜉𝑟𝑖 − 𝜉𝑖

2015
𝑟 . To 

identify differences in performance between FIPC-P, FIPC-S, and CC-S differences in the 

estimated marginal mean bias were evaluated with the emmeans R-package (Lenth, 2020). 

Precision of the item parameter estimates was indicated by their average standard 

errors. In each replication, for each parameter type (discrimination, difficulty, and step 

parameters) and item, the associated standard error of the parameter estimate was calculated. 

The resulting standard errors were squared to obtain the error variances for each parameter type 

and item, which were then averaged over replications and items. The average standard errors 

reported in the results were obtained by taking the square root of the averaged error variances. 

To assess the item fit of the new and trend Science items, the mean deviation ( 𝑀𝐷𝑖 =

∫(𝑃0𝑖(𝜃) − 𝑃𝑒𝑖(𝜃)) 𝑓(𝜃)𝑑𝜃), and the root mean square deviation (𝑅𝑀𝑆𝐷𝑖 =

 √∫(𝑃0𝑖(𝜃) − 𝑃𝑒𝑖(𝜃))2 𝑓(𝜃)𝑑𝜃 ; e.g., Buchholz & Hartig, 2019) were calculated as item fit 
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indices or measures. Both are used as item fit measures in the operational PISA analyses and 

are, therefore, utilized in our study as well. 𝑃0𝑖(𝜃) − 𝑃𝑒𝑖(𝜃) describes the deviation of the 

observed item characteristic curve from its expected counterpart for a given ability level 𝜃, and 

𝑓(𝜃) is the density of ability distribution at this ability level. For both MD and RMSD, 

numerical integration of 𝜃 is based on summation over the finite grid of quadrature points 𝜃𝑡 

mentioned above. MD and RMSD quantify the magnitude and direction of deviations in the 

observed data from the estimated item characteristic curves and provide complementary 

information. MD values close to zero indicate there are no discrepancies between the observed 

and estimated item characteristic curves, that is, perfect item fit (Yamamoto, Khorramdel, & 

Shin, 2018). The MD is more sensitive to deviations of observed item difficulties than the 

RMSD. The RMSD is more sensitive to the deviations of both the item difficulties and 

discriminations (OECD, 2017c). While there are no general cutoff values for both MD and 

RMSD, in accordance with common practice in PISA and the Programme for the International 

Assessment of Adult Competencies (OECD, 2017c; Yamamoto et al., 2018), MD values 

between ±0.15 and RMSD values smaller than 0.15 indicated acceptable item fit in the current 

study. All dependent measures were averaged over replications to obtain summary indices for 

each item. Similar to the bias of the item parameter estimates, MD and RMSD values were 

averaged over replications 𝑟 to obtain summary indices for each item, that is, 𝑀𝐷𝑖 =

1

𝑟
∑ 𝑀𝐷𝑟𝑖𝑟 , and 𝑅𝑀𝑆𝐷𝑖 =

1

𝑟
∑ 𝑅𝑀𝑆𝐷𝑟𝑖𝑟 . The means and standard deviations of the country-

specific latent trait distributions resulting from the different calibration methods were also 

averaged over replications, i.e. 𝑀𝐶𝑜𝑢𝑛𝑡𝑟𝑦 =
1

𝑟
∑ 𝑀𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑟𝑟  and 𝑆𝐷𝐶𝑜𝑢𝑛𝑡𝑟𝑦 =

1

𝑟
∑ 𝑆𝐷𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑟𝑟 . 

Results 

Parameter Constraints Crucial for Parameter Recovery 
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This section illustrates the recovery of the parameter estimates of the new Science items 

overall (Figure 1), and broken down into bias in the human- and machine-coded new Science 

items (Figure 2).  

 

Figure 1. Average bias in item discriminations and difficulties of new Science items across 

sample sizes and type of parameter constraints, averaged across replications. Note: The black 

dot is the mean bias; its value is depicted in the boxes below the boxplots. 𝑆𝐸𝑠 of the means 

range from 0.009 to 0.021. 

The emerging pattern of results is characterized as follows. Item discriminations, on the 

one hand, are underestimated in the case of CC-S (no prior information introduced) and FIPC-

S (trend item parameters fixed to their study sample parameter estimates, introducing prior 
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information from one assessment) across all subsample sizes. Underestimation is smaller for 

FIPC-P, which fixed the trend item parameters to their PISA 2015 estimates (introducing prior 

information from multiple PISA assessments). Item difficulties, on the other hand, are 

marginally overestimated for both FIPC alternatives. Compared to the parameter recovery of 

CC-S, overestimation is slightly larger in the case of FIPC-P.  

This general pattern also applies to the parameter recovery of the machine- and human-

coded new Science items (see Figure 2). Compared to the overall results, however, for the 

human-coded new Science items, the underestimation of the item discriminations and the 

overestimation of the item difficulties is more distinct. Bias in the machine-coded new Science 

items is more similar to the overall results. 

Overall, FIPC-P especially exhibits differences from CC-S in terms of parameter 

recovery. FIPC-P has advantages regarding the item discrimination parameters over CC-S, and 

marginal disadvantages regarding the item difficulties. FIPC-S performs similar to CC-S 

regarding both item discrimination and difficulty parameters. This result is confirmed by 

contrasting the estimated marginal mean bias in the item parameter estimates across parameter 

constraints (see the graphical summaries in Figures S1, S2, and S3 in the supporting 

information). Thus, care has to be taken regarding the estimates of the trend items. The prior 

information they introduce are a more crucial factor for item parameter recovery than sample 

size. On average, bias in item parameter estimates does not change markedly across sample 

sizes, even in the smallest sample size.  
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Figure 2. Average bias in item parameter estimates of human and machine-coded new 

Science items across subsamples and type of parameter constraints, averaged over 

replications. Note: The black dot is the mean average bias; its value is depicted in the boxes 

below the boxplots. 𝑆𝐸𝑠 of the means range from 0.009 to 0.026.  
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FIPC Does Not Compensate for Loss in Precision of Item Parameter Estimates 

Figure 3 illustrates the changes in precision of the item parameter estimates for the 

new Science items across sample sizes. Because the standard errors are virtually 

indistinguishable across types of parameter constraints, only results for FIPC-P are shown.  

In general, as the sample size decreases, the standard errors of the item parameter 

estimates increase. This is the case for all types of item parameters (discrimination, difficulty, 

and step parameters). The largest average standard error is consistently associated with the 

smallest subsample sizes (𝑛 = 125): 𝑀𝑆𝐸𝛼
= 0.219  for discrimination, 𝑀𝑆𝐸𝛽

= 0.197  for 

difficulty, and 𝑀𝑆𝐸𝛿
= 0.241 for step parameters. Compared to 𝑛 = 1,000, the average 

standard error is more than twice as large. Performance of FIPC is similar to CC-S except for 

FIPC-P in the case of item discrimination, where the standard errors are slightly higher 

compared to FIPC-S or CC-S.  

 

Figure 3. Average standard errors of the parameter estimates of the new Science items across 

types of parameter constraints and subsample sizes, averaged over replications and items. □ = 

FIPC-P; ○ = FIPC-S; △ = CC-S. 
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This pattern of increasing average standard errors remains the same for machine- and 

human-coded items (see Table S1 in the supporting information).  

Overall, the change in precision of the item parameter estimates in terms of their 

average standard errors is largely independent of the type of parameter constraints. On the one 

hand, neither FIPC-P nor FIPC-S compensate for the loss of precision; on the other, the 

performance of FIPC-S is similar to CC-S across all subsample sizes. 

Item Fit Measures Remain Acceptable Until 𝒏 =  𝟐𝟓𝟎 

Table 2 illustrates changes in RMSD values of the new and trend Science items.  

Table 2 

Average RMSD of Science Items across Types of Parameter Constraints and Subsample Sizes 

 New Science Items  Trend Science Items 

𝑛 FIPC-P FIPC-S CC-S  FIPC-P FIPC-S CC-S 

125 
0.162 

(0.003) 

0.162 

(0.003) 

0.162 

(0.003) 
 

0.196 

(0.003) 

0.206 

(0.003) 

0.201 

(0.003) 

250 
0.126 

(0.003) 

0.126 

(0.003) 

0.126 

(0.003) 
 

0.148 

(0.002) 

0.159 

(0.002) 

0.156 

(0.002) 

500 
0.100 

(0.003) 

0.100 

(0.003) 

0.100 

(0.003) 
 

0.112 

(0.002) 

0.124 

(0.002) 

0.122 

(0.002) 

1,000 
0.083 

(0.003) 

0.083 

(0.003) 

0.083 

(0.003) 
 

0.085 

(0.001) 

0.100 

(0.002) 

0.099 

(0.002) 
Note. 𝑛 = sample size per country; RMSD = root mean square deviation; standard errors in parentheses. 

Acceptable item fit indicated by RMSD values  <  .15.  

The average RMSD of new and trend Science items increases linearly across sample 

sizes. In the case of the new Science items, the average RMSD remains well below the 

threshold of 0.15 until a subsample size of 𝑛 = 250. In the smallest subsample size (𝑛 = 125), 

the average RMSD is closer to the defined threshold. This pattern is similar for machine- and 

human-coded items. For machine-coded items, the average RMSD in subsamples of 𝑛 =  125 

and 𝑛 =  250 is 0.161 (𝑆𝐸 =  0.004) and 0.124 (𝑆𝐸 =  0.004), respectively. For human-

coded items, the average RMSD in subsamples of 𝑛 =  125 and 𝑛 =  250 is 0.164 (𝑆𝐸 =

 0.007) and 0.129 (𝑆𝐸 =  0.006), respectively. For the trend Science items, there is an 



20 
 

 
 

increase in average RMSD compared to the average RMSD of the new Science items. 

Moreover, FIPC-P exhibits a smaller average RMSD than the other calibration methods. 

There are no differences in average MD across subsample sizes or item types. In all 

cases, the average MD is close to zero, indicating no discrepancies in the observed and expected 

item characteristic curves (see Supporting Information, Table S2). 

Overall, item fit indices of new, trend, machine-, and human-coded Science items are 

unacceptable in the smallest subsample size 𝑛 = 125, regardless of type of parameter 

constraints. Both FIPC methods yield item fit indices comparable to CC-S, with a small 

advantage for FIPC-P in terms of the RMSD of the trend Science items. 

Parameter Constraints Are Vital for Recovery of Latent Trait Distributions  

Similar to the bias of the item parameter estimates, the performance of FIPC in terms 

of estimated means and standard deviations of the country-specific latent trait distributions 

depends on the estimates to which the trend Science item parameters are fixed, i.e. the prior 

information introduced into the calibration. For FIPC-P, the following pattern emerges: For 

countries with a low mean ability, the mean of the latent trait distribution is higher compared 

to CC-S. At the same time, the standard deviation is smaller. The differences in the estimated 

means disappear, however, as the mean ability of the respective country increases. For the 

standard deviations the differences remain. In the case of FIPC-S, there are no differences in 

the means and standard deviations of the country-specific latent trait distributions compared to 

CC-S.  Figure 4 illustrates this pattern by reference to four countries with low (Malaysia; 

MYS), medium (Australia; AUS, and United States; USA), and high (Japan; JPN) mean ability.  
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Figure 4. Differences in means and standard deviations of the country-specific latent trait 

distributions between types of parameter constraints (i.e., prior information introduced into the 

calibration) across subsample sizes, averaged across replications. Note: 𝑀𝑠 and 𝑆𝐷𝑠 of normal 

densities. Error bars represent ±2𝑆𝐸.  

Sample size does not play a vital role for the mean of the country-specific latent trait 

distributions. Moreover, the marginal differences in the standard deviations of the country-

specific latent trait distributions across sample sizes do not warrant substantially different 

conclusions about the performance of either FIPC-P or FIPC-S compared to CC-S. 

Discussion and Conclusion 

The purpose of this study was to investigate the impact of FIPC on the accuracy of the 

parameter estimates of new items in small sample situations using real data from the PISA 
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2015 Science assessment. The aim was to provide an indication if and how FIPC contributes 

to PISA’s flexibility, that is, how much of the current field-trial sample size is critical for the 

accuracy of initial item calibration and scaling in the field trial. Therefore, we compared FIPC 

with different parameter constraints (i.e., different amounts of prior information introduced 

into the calibration) to a scaling of the study sample (CC-S) in which both trend and new 

Science item parameters were freely estimated and no prior information was introduced. We 

examined FIPC with two different constraints on the item parameter estimation. First, we fixed 

the item parameter estimates of trend items to their values obtained from the PISA 2015 scaling 

(FIPC-P). Second, we fixed the item parameter estimates of trend items to their values obtained 

from CC-S. The performance of FIPC was assessed by examining the bias and precision of the 

parameter estimates for the new Science items (machine- and human-coded), and the fit indices 

of the trend and new items. Moreover, the means and standard deviations of the country-

specific ability distributions were compared across types of parameter constraints and 

subsample sizes.  

Overall, FIPC-P performs better than CC-S in terms of bias of the item discrimination 

estimates. Parameter recovery is acceptable even with the smallest sample size. Moreover, item 

fit indices of trend and new Science items remain acceptable until 𝑛 = 250. There are no 

differences between parameter constraints in terms of standard errors; the statistical uncertainty 

of the item parameter estimates increases quickly. This is a direct effect of the smaller country-

specific effective sample size resulting from the complex booklet design (Mazzeo & von 

Davier, 2014). Overall, results show an acceptable performance of both FIPC-P and FIPC-S in 

country-specific samples as small as 𝑛 = 250. Except for the standard errors of the parameter 

estimates of the new Science items, performance of FIPC depends primarily on the prior 

information introduced by the parameter constraints. This also applies to the performance of 

FIPC in terms of the country-specific ability distributions. The difference between FIPC-P and 
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CC-S can be explained by the mean discrimination and difficulty estimates of the trend Science 

items obtained in the PISA 2015 assessment. They are slightly increased, and because the trend 

items set the scale for the new Science items, their discriminations and difficulties are increased 

as well. This results in better performance of countries with low initial mean abilities compared 

to FIPC-S and CC-S.  

Overall, the performance indicates that FIPC is applicable to assessments with many 

heterogeneous groups and a complex test design. These results complement Kim and Kolen 

(2019), who showed that FIPC is applicable to situations with two groups and simpler test 

designs.  

The performance of FIPC-P can be explained as follows. First, the number of trend 

items is large. Arai and Mayekawa (2011) and Kim et al. (2018) show that bias in item 

parameter estimates decreases with an increasing number of items with parameter estimates 

available from previous calibrations. Second, the software used for scaling the PISA data, 

mdltm (von Davier, 2005), combines multiple updates of the prior latent ability distribution 

with multiple EM cycles. According to Kim (2006), multiple prior weights updating and 

multiple EM cycles (MWU-MEM) is the recommended configuration of the MML algorithm 

for FIPC. This configuration updates the latent ability distributions and the new item parameter 

estimates continuously until the EM algorithm converges. In the first EM cycle, however, only 

the estimates of the trend Science items are used to estimates the latent ability distributions. 

This sets the base scale for both trend and new Science items. Once the base scale is set, the 

following (multiple) EM cycles use both trend and new Science items to estimate the latent 

ability distributions (Kim, 2019). Third, using FIPC decreases the number of parameters in the 

estimation of the IRT models, thus decreasing the model complexity as well. Fourth, FIPC in 

PISA might also work well because the new and trend items can be placed on a common scale 

without the need for a separate equating step. Thus, large shifts in the latent ability distributions 
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of the content coverage of the constructs are not to be expected. While new items are developed 

to represent changes in the PISA frameworks, they do not measure an entirely different scale, 

but rather new aspects of the same scale (e.g., Science). It should be noted that before new and 

trend items are placed on the same scale in the PISA main survey, the dimensionality of both 

item groups is examined in the field trial and results are cross-validated in the main survey. In 

PISA 2015, it could be shown that new and trend items can be sufficiently described by a 

common or unidimensional IRT scale (OECD, 2017c). 

In summary, there are two main benefits of FIPC over CC-S. First, FIPC directly 

includes linking to the base scale (e.g., the PISA trend scale) by fixing the trend item parameters 

to their previously estimated values. Therefore, FIPC does not require a separate equating step. 

Second, FIPC reduces model complexity (depending on the number of trend items, the number 

of parameters to be estimated decreases considerably). As shown in this study, these benefits 

contribute to a considerable reduction in the required sample size for an accurate scaling of 

large-scale assessment data.  

This benefits the field trial. The field trial is critical for PISA and other international 

and national large-scale assessments as it is the preparation for the main survey (e.g., based on 

the initial field-trial item parameter estimation, items are selected or excluded for the main 

survey design, and different design innovations are examined). The aforementioned critical 

sample size of 𝑛 =  250 students per country implies that approximately 12% of the total 

sample size for each country of PISA’s field trial is required for the intended accuracy of the 

initial IRT scaling of the assessment data. It should be noted that we are not recommending to 

reduce the sample size of the field trial, but to use the existing sample more efficiently. With 

FIPC, a large part of the field-trial sample could be used to test new design features for their 

possible implementation in the PISA main survey without the need to increase the target sample 

size of the field trial while still allowing for accurate item parameter estimates. In this regard, 
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however, it is also important to assure the sample representativeness for each subsample. That 

is, the subsamples used to test different new design features and the subsample used for the 

preliminary field-trial item parameter estimation need to be representative of a country’s 

population. 

Although the utility of FIPC was investigated in the context of PISA, the question of 

how to make most use of the field trial without increasing sample size and costs is important 

for other large-scale assessments as well. Assessments such as Trends in International 

Mathematics and Science Study, Progress in International Reading Literacy Study, and the 

National Assessment of Educational Progress (US) also use field trials to test innovations with 

regard to framework, items, test design, and reported scale. Moreover, the IRT models used in 

these large-scale assessments are similar to, or are the same as in, PISA. Hence, the core results 

of this study generalize beyond PISA to other large-scale assessments as well. 

In conclusion, this study illustrates how to use FIPC in order to maximize the utility of 

the field trial for the flexibility of the main survey. On the one hand, the findings suggest that 

a larger number of tests of potential new features could be examined in the field trial in 

preparation for the main survey without necessarily increasing the sample size. On the other, 

they tell us to what extent to increase the total sample size of the field trial (if necessary) to 

include even more features to be studied in the field trial. These are necessary requirements to 

keep the main survey up to date with current developments in the field of psychometrics and 

to meet stakeholders’ needs while, at the same time, keeping costs reasonable. 
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