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Abstract. Background/Aim: Novel acquired chromosome
aberrations in cancer may provide insights into pathogenetic
mechanisms, be of diagnostic and/or prognostic significance and
pave the way for new modes of therapeutic intervention. Here,
we report a novel chromosome translocation and its molecular
genetic consequences in a pediatric acute myeloid leukemia
(AML) case. Materials and Methods: Cytogenetic, RNA
sequencing, and molecular analyses were performed on the bone
marrow cells of a child with AML. Results: The patient entered
complete hematologic remission after treatment according to the
NOPHO-AML 2004 protocol. A novel t(10;15)(pll;ql5)
translocation was found in leukemic cells at diagnosis resulting
in a fusion of exon 13 of TYRO3 with a sequence from 10pll.
The transcript codes for a putative TYRO3 protein lacking the
tyrosine kinase domain. Conclusion: The t(10;15)(pll;ql5)
translocation in neoplastic bone marrow cells results in
truncated TYRO3. Because the role of the truncated TYRO3
cannot be predicted functional studies are required.

Acute myeloid leukemia (AML) is a heterogeneous
hematologic malignancy characterized by clonal expansion
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of abnormal myeloid precursors and accounts for 15% of all
pediatric leukemias (1, 2). For the classification of AML,
integration of morphology, immunophenotype, cytogenetic
analysis, and molecular genetics are required (3-8).

Because chromosome abnormalities acquired by the
leukemic cells have been shown to be remarkable diagnostic
and prognostic parameters (9-11), the cytogenetic examination
of bone marrow cells is now an indispensable component of
the clinical management of patients with hematological
malignancies, including AML. Sometimes, cytogenetic
information is decisive in the choice of optimal treatment for
AML-patients as illustrated by the finding at diagnosis of the
chromosomal translocation t(15;17)(q24;q11), the hallmark of
acute promyelocytic leukemia (APL), which is treated and
monitored differently from other AML subtypes (12-14).

The detection of acquired chromosomal abnormalities in
leukemic cells, in particular translocations and inversions, has
helped identify breakpoint genes that, when rearranged or
otherwise deregulated, launch or contribute to the leukemogenic
process (15). Numerous pathogenetic or genetic subgroups have
thus been identified (15). Nevertheless, new recurrent or unique
chromosome aberrations (mainly balanced translocations)
corresponding to smaller cytogenetic subgroups continue to be
reported in AML and myelodysplasia (MDS) (16-19). The
subsequent description of additional cases carrying the same
genetic abnormality is far from uncommon. This establishes the
acquired aberration in question as a recurrent change, and may
help determine its prognostic significance, as well as offers the
opportunity to probe further the mechanisms of leukemogenesis
in patients with these rare abnormalities. By way of example,
the t(7;21)(p22;q22), which generates the RUNXI-USP42
fusion gene, was originally found in a 7-year-old boy with
minimally differentiated AML (AML-MO) (20). Today,
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t(7;21)(p22;q22)/RUNX1-USP42 is acknowledged as a rare but
non-random genomic aberration of myeloid malignancies,
where it frequently occurs together with del(5q) (20-25).

We report here a t(10;15)(pl1;ql5) chromosomal
translocation in a case of pediatric AML. The translocation
caused fusion of the TYRO3 gene with a non-genic sequence
from 10p11 leading to the generation of a putative truncated
TYRO3 protein.

Materials and Methods

Ethics statement. The study was approved by the regional ethics
committee (Regional komité for medisinsk forskningsetikk Sgr-@st,
Norge, 2010/1389/REK sgr-gst A). Written informed consent was
obtained. The Ethics Committee’s approval included a review of the
consent procedure. All patient information has been de-identified.

Case history. A seven years eight months old boy presented with
fatigue developed over several weeks and a weight loss of 1.5 kg.
Physical examination revealed hepatosplenomegaly and enlarged
cervical, axillary, and inguinal lymph nodes. Tests showed a white
blood cell count of 127x10%1, a platelet count of 70x10%1, and a
hemoglobin value of 11.2 g/dl.

A bone marrow investigation revealed 60% myeloblasts and an
overall morphological picture corresponding to myelomonocytic
leukemia or AML-M4. Immunophenotyping confirmed the
diagnosis of AML-M4 with myelomonocytic cells representing
93%. Chromosome analysis (see also below) of G-banded bone
marrow preparations revealed a t(10;15)(p11;q15) chromosomal
translocation. There were no signs of extramedullary leukemia
(CNS involvement, myelosarcomas).

The boy was treated according to the NOPHO-AML 2004 protocol
(26) (NOPHO=Nordic Society of Paediatric Haematology and
Oncology) with six chemotherapy courses: AIET (cytarabine-
idarubicin-etoposide-thioguanin), AM (cytarabine-mitoxantrone),
HAIM (high dose cytarabine 1 g-mitoxantrone), HA2E (cytarabine 2
g-etoposide), HA3 (cytarabine 3 g), and HA2E (cytarabine 2 g-
etoposide). After completion of the courses, the patient was randomized
to the non-GO arm (no additional therapy with gentuzumab-
otogamizin). Treatment was uneventful except for expected side effects
such as mucositis and repeated infections due to severe cytopenia.

The patient has been healthy and relapse-free for ten years after
cessation of treatment. There have not been any signs of late effects
at regular follow-ups.

G-banding and karyotyping. Bone marrow cells were
cytogenetically investigated as part of our diagnostic routine by
standard methods (27). Chromosome preparations were made from
metaphase cells of a 24-h culture, G-banded using Leishman’s stain
and karyotyped according to the International System for Human
Cytogenomic Nomenclature (ISCN, 2016) guidelines (28).

Molecular genetic analyses. Total RNA was extracted from bone
marrow at the time of diagnosis using miRNeasy (Qiagen, Hilden,
Germany) and QIAcube (Qiagen). The RNA quality was evaluated
using 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) according to
the manufacturer’s instructions. Three pg of total RNA were sent for
high-throughput paired-end RNA-sequencing at the Norwegian
Sequencing Centre, Ullevdl Hospital, Oslo, Norway. Detailed
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information about these analyses has been given elsewhere (29). A total
of 104 million reads were obtained. FASTQC software was used for
quality control of the raw sequence data. TopHat-Fusion software was
used for the detection of fusion transcripts (30, 31).

One pg of total RNA was reverse-transcribed in a 20 pl reaction
volume using iScript Advanced cDNA synthesis Kit for Reverse
Transcriptase Polymerase Chain Reaction (RT-PCR) according to the
manufacturer’s instructions (Bio-Rad, Hercules, CA, USA). For the
detection of the TYRO3 fusion transcript, the primer combination
TYRO3-1730F1 (5’-GGGCATCAGCGATGAACTAAAGGA-3’) and
10p11R1 (5’-CGAATCCCACCACCAGCATCAC-3’) was used. PCR
amplification was performed on a C-1000 Thermal cycler (Bio-Rad)
with an initial denaturation at 94°C for 30 s followed by 35 cycles at
98°C for 7 s, 68°C for 2 min, and a final extension at 68°C for 5 min.
Three pl of the PCR product were stained with GelRed (Biotium,
Hayward, CA, USA), analyzed by electrophoresis through 1.0%
agarose gel, and photographed. The remaining PCR products were
purified using the QIAquick PCR Purification Kit (Qiagen) and
sequenced at Eurofins GATC Biotech (Cologne, Germany). The basic
local alignment search tool (BLAST) software was used for computer
analysis of sequence data (32). The BLAST alignment tool and the
human genome browser at UCSC were also used to map the
sequences on the Human GRCh37/hg19 assembly (33).

Results

G-Banding analysis of bone marrow cells at diagnosis yielded
the karyotype 46,XY, t(10;15)(p11;q15)[8]/46,XY[2] (Figure
1A). Using the TopHat-Fusion on the raw sequencing data a
fusion was found between exon 13 of the TYRO3 gene from
15q15 (nucleotide 1896 on the sequence with the accession
number NM_006293 .4) and a non-genic sequence mapping to
10pll: GAAGCAAGAGGATGGCTCCTTTGTGAAAGTG
GCTGTGAAGATGCTGAAAG/ATGAAACATGAGCAAAA
ACAGGGAAATGGAGACCTGGAAAAGAGAGGGCA. RT-
PCR with the specific primer combination TYRO3-
1730F1/10p11R1 confirmed the presence of the TYRO3-fusion
transcript (Figure 1B).

Discussion

We present a case of pediatric AML-M4 in which the
leukemic cells had a novel t(10;15)(p11;q15) chromosome
translocation as the sole cytogenetic abnormality. The
molecular analysis of the translocation showed that it
resulted in rearrangement of the TYRO3 gene from 15q15.

TYRO3, together with the genes encoding the AXL
receptor tyrosine kinase (AXL on 19q13.2) and the MER
proto-oncogene tyrosine kinase (MERTK on 2ql3),
constitute the TAM family of receptor tyrosine kinases
(RTK) (34-36). Like all RTK, TYRO3, AXL, and MER are
transmembrane proteins that transduce signals from the
extracellular environment to the cytoplasm and nucleus,
regulating a wide range of normal cellular processes that
include cell survival, growth, differentiation, adhesion, and
motility (34).
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Figure 1. Genetic analyses of the pediatric acute myeloid leukemia. A) Partial karyotype showing (10;15)(p11;q15) chromosomal translocation; B)
Partial sequence chromatogram of the amplified cDNA fragment showing the fusion point of the TYRO3 (exon 13) and a short sequence mapping
on chromosome 10pl11. C) Illustration of the full-length and truncated TYRO3 protein. All domains and amino acids numbers are shown.

Overexpression of TAM family kinases occurs in many
human cancers, including leukemia, glioma, colorectal
carcinoma, breast cancer, gastrointestinal stromal tumor,
hepatocellular carcinoma, melanoma, pancreatic adeno-
carcinoma, and prostate cancer (35, 37-39). Compared to
MERTK and AXL, less is known about TYRO3 (40),
although TYRO3 mutations have been reported in human
malignancies (40, 41). Missense mutations within the kinase
domain have been reported in colon cancer, lung cancer,
melanoma, brain cancer, and AML (34). Premature stop
codon mutations have been described in melanoma and lung
cancer (40, 42, 43). Because functional studies have not
been performed, the significance of these mutations is
currently unknown (40). Furthermore, elevated expression

of TYRO3 has been found in several cancers, including
leukemic cells (40).

The present study is the first to demonstrate rearrangement
and disruption of 7YRO3 in a hematologic malignancy stemming
from the chromosomal translocation t(10;15)(p11;ql5).
Molecular analysis of the translocation showed fusion of 7YRO3
with a non-genic sequence from 10p11, resulting in an abrogated
TYRO3 and a 554 aa putative TYRO3 truncated protein (Figure
1C). This protein would contain the extracellular domain with
the two immunoglobulin domains, the two fibronectin type III
domains, and the transmembrane domain. It will lack the
catalytic domain of the protein tyrosine kinase TYRO3, the
autophosphorylation sites, and the carboxyl-terminal part, which
is required for maintaining TYRO3 stability (44, 45). The precise
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role of TYRO3 truncated protein in the development of leukemia
cannot be predicted without functional studies. However, an
anomaly in signal transduction can be assumed. Alternatively,
loss of a functional TYRO3 allele may contribute to
leukemogenesis.

Chromosomal translocations are common in cancer and
typically generate transforming oncogenes by fusing genes
or by inducing overexpression of one or more genes near
the breakpoints (15). However, translocations resulting in
gene truncations have also been reported (46-51). These
typically replace or delete long 3’-untranslated genomic
regions that contain regulatory sequences such as miRNA-
and AU-rich sequences. Alternatively, they may generate a
premature stop codon in the open reading frames, thus
acting as nonsense mutations and leading to the expression
of C-terminal-truncated forms of the proteins (52-59).

Truncated RUNXI proteins have been found to function
as inhibitors of the normal RUNXI protein, increase
proliferation, and disrupt the cells’ differentiation program
(52-54). In a recent study, truncated RUNX1 protein has also
been found to induce expression of the granulocyte colony-
stimulating factor (G-CSF) receptor on 32D myeloid
leukemia cells (59). Truncated forms of ETV6 have been
shown to have a dominant-negative effect on normal ETV6
function and disrupt both primitive and definitive
hematopoiesis in the zebrafish model (60).

In the Mitelman Database of Chromosome Aberrations
and Gene Fusions in Cancer (61), 89 cases of AML are listed
with breakpoints in the chromosome band 15q15 where
TYRO3 maps. Eight of them were myelomonocytic AMLs,
the same type of AML as the one in the present case. It is
possible that TYRO3 could have been pathogenetically
involved in these leukemias.
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