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Preface
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The root cause of this thesis is Ingrid, who sparked my interest in statistics
and almost five years ago introduced me to changepoint models. She has been
exceedingly supportive throughout and is always enthusiastic, positive and
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for details and for letting me into his office to answer questions whenever needed.
Thanks to Idris and Paul for being open to collaboration, encouraging and
interested, as well as for the regular supervision on Skype. I also thank Kristoffer
Hellton and Morten Stakkeland for letting me play around with the ship sensor
data, Solveig Engebretsen for running my code countless times at any time of
the day, and the remaining co-authors Ola Haug and Magne Aldrin. It was great
fun working with Jonas Moss on the kdensity R package, implementing the 25
year old doctoral work of Ingrid (supervised by Nils). The past three years have
been vastly enriched—both socially and academically—by my fellow students
and colleagues in the statistics group at the Mathematics Department in Oslo,
Big Insight, and the Statscale room in Lancaster. For teaching me basic C++, I
owe Daniel Grose a skiing lesson. Finally, I am grateful to my friends for helping
me recharge my batteries over weekends, to Trude for enduring me during thesis
work and lock-down, and to my family for always supporting what I do.
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Blindern, January 2021
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Chapter 1

Introduction

Both in science and industry, the sizes of data sets are growing. But without
appropriate tools for turning the data into insight, the value of harvesting more
data is severely limited. This has created a surge in demand for statistical
methods capable of handling enormous data sets, both in the sense of offering
reasonable computing time as well as being methodologically sound. That is,
modern statistical methods should not only be consistent, powerful and accurate,
but also computationally scalable.

Apart from consisting of many measurements, big data sets can be extremely
diverse. In long, multivariate time series, the typical assumption of stationarity
frequently does not hold in practice. The problem of detecting if and when
some distributional properties of the data change over time has therefore found
increasing applied interest in recent years. For example, Eckley et al. (2020) use
change detection methodology to remotely detect the location of gas emission
sources utilising data obtained from sensors mounted on an airplane, Gao et al.
(2020) use it for monitoring the surface-temperature of organ transplants, and
Lévy-Leduc and Roueff (2009) search for anomalies in large amounts of network
traffic data. Other areas where detecting changes has become an integral part
include software reliability engineering (Mendiratta et al., 2019), research on
telecommunications networks (Bardwell et al., 2019) and econometrics (Hlávka
et al., 2017).

The motivating application for this thesis is detection of anomalies in
sensor-monitored machinery. In this setting, several sensors are placed on
different locations of a machine, for instance a pump or a motor, to measure the
temperature, pressure or other quantities of interest over time. The machine
is monitored to detect if it is not operating as supposed to, either to optimise
performance or to avoid costly or dangerous failures. This applied problem
translates well to a statistical change detection problem, as a significant change
in the sensor data relative to its normal behaviour often signals that something
is off with the machine. For example, if the hourly mean temperature of a motor
is higher than it normally is, this may indicate that something is wrong with the
cooling system. An idealised example of such temperature monitoring is shown
to the left in Figure 1.1. For illustrational purposes, there are only four sensors
in this example, but in practice, there may be several hundred sensors making
measurements every second. Monitoring the sensor readings by eye is therefore
not feasible. In addition, subtler changes can be detected when combining the
information across all the sensors in a principled way.

A feature of the sensor data encountered in the present thesis we particularly
focus on is cross-correlation—correlation between the sensors at any given time,
due to, e.g., the proximity of the sensors (Figure 1.1, right). Handling and

1



1. Introduction

Figure 1.1: A multivariate times series of simulated temperature recordings from
four imagined sensors on a ship’s motor. Around time-point 400, a part of the
cooling system breaks down. As a result, the temperature recordings of sensor 1
and 2 increase to a consistently higher level; the mean temperature has changed.
The robustly estimated correlations between the sensors are shown in the matrix
to the right. As some sensors are imagined to be relatively close to each other,
the correlation between them is strong and positive. See Paper III and Paper IV
for a similar type of anomaly detection in real data.

understanding the impact of cross-correlation when combining information from
all sensors is important to obtain accurate and trustworthy results. Detecting
changes in the correlation structure itself may also be of interest. Moreover,
cross-correlation has received relatively little attention in the change detection
literature so far, despite its near ubiquitous presence in high-dimensional time
series.

There are two different modes of change detection resulting in different but
related statistical problems. In online change detection, data are collected and
analysed in real-time, and the aim is to control the rate of false alarms, but
detect true changes as quickly as possible. Offline change detection, on the
other hand, concerns the retrospective analysis of a historical data set, with
the aim of accurately estimating the number and locations of changes. In the
sensor-monitoring example, an online method would be used as the real-time
monitoring system of the motor, while an offline method could be used to analyse
and prepare a training data set for the online method.

We study both online and offline change and anomaly detection for cross-
correlated, multivariate time series. Our contributions lie in the intersection of
computation and methodology in the form of novel methods that are scalable to
scenarios with many sensors or other variables. We also apply change detection
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methods to new real world problems. Throughout, the focus is mainly on
frequentist methods and parametric models. However, alternatives outside this
scope will be touched upon along the way in this introduction.

The rest of the thesis is organised as follows: Chapters 2 and 3 provide
background material for putting the papers into context. Chapter 2 starts by
formally defining the change detection problem in the offline setting. General
computational and methodological frameworks are then introduced in the
univariate setting as a stepping stone to the more complex multivariate methods.
Next, the anomaly detection problem is presented as a special case of the change
detection problem. We finish the chapter by pointing to methods and problems
surrounding the scope of the thesis. Chapter 3 partly builds on Chapter 2 to
introduce the online version of change detection in a similar fashion. Summaries
of the four papers then follow in Chapter 4, emphasising their main contributions.
In Chapter 5, I discuss parts of my work in more detail and point to important
venues of future research. The four papers in full length conclude the thesis.

Before we continue, some general remarks on notation is due. For a compact
presentation, we write xs:e := {xs, . . . , xe}, where s < e. Bold types are
used to indicate that an object is a vector rather than a scalar, for example
xs:e := {xs, . . . ,xe}, where xt = (x(1)

t , . . . , x
(p)
t )ᵀ. We also let [n] := {1, . . . , n}

for n ∈ N.
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Chapter 2

Offline change and anomaly
detection
Offline change detection methods take as input a p-variate time series of fixed
length, xt for t = 1, . . . , n, and aim to answer one or a mix of the four problems:

(P1) Is the data stationary or does its distribution change over time?

(P2) If there are changes, how many changes are there?

(P3) Given a number of changes, at what times do they occur?

(P4) Given the times of change, how does the distribution change?

To be precise, consider the following general model for x1, . . . ,xn: Let the
changepoints 1 < τ1 < . . . < τK < n denote K < n unknown time-points where
the data-generating mechanism for xt changes abruptly. As a consequence,
the observations are divided into K + 1 stationary segments with different
distribution functions F0(x), . . . , FK(x). I.e., the data follow a piecewise
stationary distribution given by

xt ∼ Fk for t = τk + 1, . . . , τk+1 and k = 0, . . . ,K, (2.1)

where we define τ0 := 0 and τK+1 := n. In this model, (P1) is the testing problem
of whether K = 0 or K > 0, while (P2)-(P4) are the problems of estimating K,
τ1, . . . , τK and F0, . . . , FK , respectively, preferably combined with measures of
estimation uncertainty. Depending on the problem at hand, the ideal goal is to
construct the most powerful test or the most accurate estimator.

In most of this thesis, we will not consider models quite as general as (2.1).
Firstly, we will mostly work with real-valued vector observations that can be
described by a parametric family of densities f(x|θ), where f is constant, changes
occur in the parameter vector θ. Now the model in (2.1) becomes

xt ∼ f(x|θk) for t = τk + 1, . . . , τk+1 and k = 0, . . . ,K, (2.2)

where θk−1 6= θk for all k. Secondly, we primarily focus on models where the
xt’s are independent in time. Thirdly, as mentioned in the introduction, our
focus lies on frequentist methods. Some Bayesian alternatives are given at the
end of this chapter.

The prototypical setup is to let f be a normal density with mean θ, as
detecting changes in the mean is arguably the most important problem in
practice. Plenty of other setups exist, however, for example changes in variance
(Hsu, 1977; Inclán and Tiao, 1994), covariance matrix (Wang et al., 2018),
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2. Offline change and anomaly detection

parameters of vector autoregressive models (Wang et al., 2020b), Poisson rates
(Henderson and Matthews, 1993), parameters in exponential families (Worsley,
1986). Non-parametric methods for detecting general distributional changes as
in (2.1) also exist (Pettitt, 1979; Csörgő and Horváth, 1988).

This chapter gives a brief overview of important methodological developments
on the described offline change detection problem. There are a number of more
comprehensive reviews in the literature that can be consulted for more details,
for instance Truong et al. (2020), Aminikhanghahi and Cook (2017), Niu et al.
(2016), Jandhyala et al. (2013), Chen and Gupta (2011), as well as in the theses
of e.g. Tickle (2020), Maeng (2019) and Maidstone (2016). We begin by an
introduction to some general ideas and frameworks for change detection in the
univariate setting.

2.1 General ideas and frameworks—univariate data

Due to the literature on change detection being so vast, there are several ways
of categorising all the different change detection methods. Following the review
article of Truong et al. (2020) and the work of Killick et al. (2012), I have chosen
to structure the exposition based on viewing the offline change detection problem
as a problem of optimising a constrained or penalised cost. From this point of
view, an offline change detection method consists of three elements: A cost for
fitting observations to a specific model, C(xs:e) ≥ 0, a penalty or constraint
for the complexity of the model to avoid overfitting, P (τ1:K) ≥ 0, and a search
procedure for solving

min
τ1:K

[
K∑
k=0

C(x(τk+1):τk+1) + P (τ1:K)
]
. (2.3)

The minimising arguments of (2.3) are the changepoint estimates τ̂1:K̂ , where
K̂ is the estimated number of changepoints. In this section we think of the xt’s
as univariate observations to fix ideas, but the general framework (2.3) easily
carries over to the multivariate setting of Section 2.2.

Note that within this framework, (P1) is answered implicitly through the
estimates τ̂1:K̂ ; the null hypothesis of stationarity is accepted if K̂ = 0 and
rejected otherwise. (P2) and (P3) are solved directly, while (P4) is often
answered by construction of the cost function or by a post-processing step given
the estimated segmentation.

The cost function is a measure of how well the observations fit the model—the
lower the cost, the better the fit—and there is an abundance of costs with different
properties available. A prominent example from the changepoint literature is
the log-likelihood cost (e.g. Hinkley (1970), Gombay and Horvath (1994), Eckley
et al. (2011) and Aue and Horváth (2013)), defined by

C(xs:e) = −2 sup
θ

e∑
t=s

log f(xt|θ) (2.4)
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General ideas and frameworks—univariate data

for independent and identically distributed (i.i.d.) observations. Using the
log-likelihood cost results in a penalised maximum likelihood approach to change
detection. As in many other contexts, the maximum likelihood approach results
in estimators with desirable properties, such as consistency of the estimated
changepoints under the true model and certain regularity conditions (He and
Severini, 2010). The maximum likelihood approach to offline change detection
can be traced back to Hinkley (1970), who studied (P3) (estimating the location
of a change) in the case of a single change in the mean of Gaussian data with
known variance. Other examples of costs include quadratic loss (Chen and Gupta,
2011), absolute loss (Bai, 1995), outlier-robust costs (Huber, 2004; Hušková,
2013; Chakar et al., 2017; Fearnhead and Rigaill, 2019) and nonparametric costs
(Zou et al., 2014b). A selection of common costs can be found in Truong et al.
(2020).

The penalty function measures the complexity of a given changepoint model.
It is essential in obtaining an accurate estimate of the number of changes, K, as it
governs how much the cost must be reduced for it to be worth adding an additional
changepoint, thereby increasing the model complexity. Excluding a penalty in
the change detection problem with an unknown number of changes would result
in maximal overfitting as the optimum of (2.3) would be to add a changepoint
at every observation, i.e. τ̂1:K̂ = [n − 1]. The most common penalty function
is linear in the number of changepoints; P (τ1:K) = βK. This penalty includes
standard model selection tools like Akaike’s information criterion (Akaike, 1974)
when β = 2d and the Bayesian or Schwarz’ information criterion (Schwarz, 1978)
when β = d logn, where d is the number of additional parameters in the model
per changepoint added. An example of a non-linear penalty that is tailored to the
change in mean problem is the modified Bayesian information criterion (Zhang
and Siegmund, 2007), given by P (τ1:K) = 3K logn+

∑K
k=0 log

(
(τk+1 − τk)/n

)
.

This penalty favours models with evenly spaced changes. More examples of
penalties will emerge as we go along in this chapter.

When it comes to search methods, there are particularly two popular classes
of algorithms we will treat in more detail. The first approach is based on model
selection and solves (2.3) exactly by a dynamic programming scheme. The second
and oldest approach solves (2.3) approximately by recursively applying tests for
the existence of a single changepoint to narrower and narrower windows of the
data. After presenting these two classes of algorithms, we go on a quick tour of
notable alternatives.

Dynamic programming-based methods Multiple change detection methods
based on dynamic programming define recursions for finding the exact optimum
of (2.3). The optimal partitioning method of Jackson et al. (2005) is a cornerstone
among such algorithms. It can only be used for linear-in-K penalties, but in
return, it finds the optimum in O(n2) time, provided computation of the cost
does not depend on n. This is the case for most costs as long as independence
between observations in different segments is assumed. The key to optimal
partitioning is to define F (t) as the optimal penalised cost for data x1:t. It starts
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2. Offline change and anomaly detection

by F (0) = −β, and then proceeds by computing

F (t) = min
i<t

{
F (i) + C

(
x(i+1):t

)
+ β

}
. (2.5)

The optimal cost is given by F (n).
Although a reduction from exponential to quadratic in n computing time is

remarkable, it is still prohibitive for sufficiently large n. Motivated by this, the
pruned exact linear time (PELT) algorithm of Killick et al. (2012) refines optimal
partitioning by only considering relevant i’s in the minimisation in (2.5) at each
step t. This is made possible by the observation that adding a changepoint
always reduces the cost. Therefore, if at time t2 > t1, the inequality

F (t1) + C(x(t1+1):t2) + β ≥ F (t2) (2.6)

holds, then t1 can never be the most recent changepoint for all t3 > t2. In
other words, t1 can be “pruned” from the set of candidate changepoints after
time t2. The effect of pruning in practice is roughly to automatically discard
times before a true changepoint. Consequently, PELT can scale linearly in n
if the expected number of true changepoints also scales linearly with n, but
it remains quadratic like optimal partitioning in the worst-case scenario of no
changes. Parallelisation can further reduce the computational burden (Tickle
et al., 2020), though at the price of sacrificing exactness of the solution. Even
without parallelisation, the computational savings achieved by PELT is massive
for many practical problems, making it an increasingly popular method. We
also derive a PELT type algorithm in Paper IV.

If only changes in a single parameter is of interest, a very fast alternative
to the inequality type pruning in PELT is so-called functional pruning in the
functional pruning optimal partitioning algorithm of Maidstone et al. (2017).
This type of pruning results in a substantial increase in candidate changepoints
being pruned, irrespective of the true number of changes present. Functional
pruning optimal partitioning can also be used to fit models where parameters
are dependent across segments, as opposed to PELT.

As noted, optimal partitioning, PELT and functional pruning optimal
partitioning can only be used with a linear penalty. If a non-linear penalty
is preferred, the segment neighbourhood algorithm of Auger and Lawrence (1989)
is an alternative. Segment neighbourhood passes through the data recursively
as optimal partitioning, but also conditions on the number of changepoints in a
particular segment. That is, it starts by computing the optimal segmentation
for a single change, before recursively updating the optimal segmentation for
one added change until a user-input maximum number of changes K < n is
reached. Consequently, segment neighbourhood requires O(Kn2) operations to
find the optimum. If K is completely unknown, this means cubic scaling in n,
which limits its use to small data sets. As for optimal partitioning, the speed of
segment neighbourhood can be improved by pruning techniques (Rigaill, 2010;
Maidstone et al., 2017). Using a linear penalty with PELT or functional pruning
optimal partitioning, however, remains a vastly more computationally viable
option for large data sets.
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General ideas and frameworks—univariate data

Binary segmentation-based methods Another large class of multiple change
detection algorithms emerges from the following idea: Let T (τ, x1:n) be a test
statistic for a changepoint at τ in the series of observations x1:n. This could be
any of your favourite tests for a difference in distribution between the sample x1:τ
and x(τ+1):n—a t-test or likelihood ratio test for example. A natural test for the
presence of a single changepoint is then to compute T̂ (x1:n) = maxτ T (τ, x1:n)
and compare it with a threshold b. If T̂ (x1:n) is above b, a change is detected
and estimated to be located at the maximising changepoint, τ̂ . By splitting the
sample at τ̂ , the same procedure can be applied to each of the two segments
x1:τ̂ and x(τ̂+1):n to identify further changes, and so forth on each segment as
long as the test is significant. This is the binary segmentation algorithm and it
“is arguably the most established search method used within the changepoint
literature” (Killick et al., 2012). It is often attributed to Vostrikova (1981), Scott
and Knott (1974) and Edwards and Cavalli-Sforza (1965).

The way binary segmentation approximates the optimisation problem (2.3)
becomes more apparent by considering test statistics of the form

T (τ, x1:n) = C(x1:n)− C(x1:τ )− C(x(τ+1):n). (2.7)

For a log-likelihood cost, (2.7) is the likelihood ratio test. Maximising this test
over τ is the same as finding the single changepoint which provides the greatest
decrease in cost. The threshold b governs how much the cost must be reduced
when adding a changepoint for it to be considered a change, and can thus be
viewed as a linear penalty in the number of changepoints.

There are at least three advantages of using binary segmentation. Firstly,
it is computationally fast, only requiring O(n logn) operations. Secondly, it
is easy to implement and modular. Thirdly, it is conceptually simple as it
essentially reduces the multiple changepoint problem to a single changepoint
problem, which can be further reduced to a (multiple) testing problem. Binary
segmentation has also been shown to be consistent (Venkatraman, 1993) in
scenarios where adjacent changepoints are sufficiently far apart. In total, this
makes binary segmentation applicable to a wide range of old and new change
detection problems. All that is needed is a test statistic for discriminating
between distributional features of interest.

The main disadvantage of binary segmentation is so-called masking, which is
due to its particular approximative nature. A typical example is when changes
occur frequently and two close-by changes cancel each other out in the test for a
single change. Generally, masking refers to change scenarios where at least one
change is missed.

As a result, several tweaked versions of binary segmentation have recently
been proposed to make it robust to a larger range of changepoint configurations.
Circular binary segmentation of Olshen et al. (2004) is an early modification for
detecting changes that switch back and forth between two distributional regimes.
Later, the wild binary segmentation algorithm of Fryzlewicz (2014) has drawn
much attention as it provably provides error-rate-optimal changepoint estimates
(both (P2) and (P3)) in a certain sense (Wang et al., 2018, 2020a). Rather
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2. Offline change and anomaly detection

than deterministically splitting each segment at the optimal single changepoint,
wild binary segmentation draws intervals at random to search for a single
change. Achieving the mentioned optimal rates, however, may require a very
large amount of intervals, hence losing the computational advantage over the
exact search methods, like PELT. Recent further improvements include wild
binary segmentation 2 (Fryzlewicz, 2020), the narrowest-over-threshold method
(Baranowski et al., 2019) and seeded binary segmentation (Kovács et al., 2020).

It should be mentioned that the most popular test statistic to use within
binary segmentation is the cumulative sum (CUSUM) statistic. It can be traced
all the way back to the first articles on change detection by Page (1954, 1955),
who considered the online version of (P1) (testing for the presence of a change)
in the context of industrial quality control. Hinkley (1971) later considered (P3)
(estimating the location of a change) for Page’s CUSUM in the offline setting
with a single change.

In modern offline change detection literature (e.g. Wang and Samworth (2018);
Fryzlewicz (2014); Aue and Horváth (2013)), the CUSUM statistic mostly does
not refer to Page’s CUSUM, but to the statistic

T (τ, x1:n) =
√
τ(n− τ)

n

(
1

n− τ

n∑
t=τ+1

xt −
1
τ

τ∑
t=1

xt

)
. (2.8)

This statistic is equivalent to the positive root of the likelihood ratio statistic for
a single change at τ in the mean of Gaussian data with known variance, and it
serves as a blueprint for many other change detection tests. For example, Inclán
and Tiao (1994) derive a test for a change in the variance by using cumulative
sums of x2

t , and Lee et al. (2003) further extend this idea by switching xt in (2.8)
with an appropriate function g(xt) for detecting a general parameter of interest.
The simple form of CUSUM tests is what drives their popularity, as it facilitates
both quick computation and theoretical analysis. An important result is that a
large class of CUSUMs converge in distribution to a Brownian bridge (e.g. Lee
et al. (2003)), which is helpful for tuning the threshold b in certain scenarios.

Not all CUSUMs fit nicely into the story of costs, penalisation and search
methods. However, some CUSUMs are related to likelihood ratios (Inclán and
Tiao, 1994) and squared error loss. As such, they can be viewed as another
layer of approximation in (2.3) in addition to binary segmentation. Despite
being approximative in general, the theoretical results on the consistency and
optimality of wild or plain binary segmentation mentioned here use CUSUM
type test statistics (Venkatraman, 1993; Wang et al., 2018, 2020a).

Other search methods There is a growing number of search methods and
approaches apart from those we have seen so far based on dynamic programming
and binary segmentation. We now briefly present a selection of these alternatives.

Binary segmentation can be described as a “top-down” search method as it
starts with the entire stretch of data, before splitting it into smaller and smaller
pieces. A natural alternative is therefore a “bottom-up” search method, where
one initially starts with a changepoint at every observation, before merging
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General ideas and frameworks—univariate data

segments until some criterion is met. Such methods are still new to the change
detection field, only recently having been explored by Matteson and James (2014)
and Fryzlewicz (2018). These articles, however, suggest that such methods can
be competitive with binary segmentation type methods, especially in scenarios
with frequent changes.

Another alternative set of methods related to binary segmentation are moving
sum methods, proposed for change detection by Preuss et al. (2015) and Eichinger
and Kirch (2018), building on similar approaches to testing, e.g. Hušková and
Slabý (2001). Moving sum methods, like binary segmentation, are based on
testing for a single changepoint, but do so by sliding a window of a certain
bandwidth across the time series, testing for a change at the window’s midpoint.
Given an appropriate bandwidth, moving sum methods can also be shown to be
consistent for the number and location of changes, and are quick to compute as
well as conceptually simple. Their main drawback is that performance crucially
depends on a well-tuned bandwidth parameter.

Other model selection approaches also exist, where the simultaneous
multiscale changepoint estimator for detecting changes in the mean proposed
by Frick et al. (2014) has recieved much attention. Their take on the change
detection problem is to minimise the number of changepoints over all potential
piecewise constant mean signals within the acceptance region of a multiscale
test. They show that this corresponds to a certain penalised cost, facilitating
quick computation, and prove that the family-wise error rate of the number of
estimated changes is controlled. Moreover, confidence sets for the locations of
the changepoints as well as the piecewise constant mean can also be constructed.
Pein et al. (2017) extend the simultaneous multiscale changepoint estimator to
heterogeneous data, and Li et al. (2016) propose a related method for controlling
the false discovery rate rather than the family-wise error rate, as control of
family-wise error rate often leads to underestimating the number of changes.
Unfortunately, the framework underpinning these multiscale methods only works
for univariate data.

A model selection penalty that is linear in the number of changepoints is
connected to an L0-penalty on the sums of differences of a piecewise constant
mean. Harchaoui and Lévy-Leduc (2010) exploit the link between L0 and L1
penalisation to create a computationally efficient changepoint estimator, similar
to the famous LASSO regression estimator (Tibshirani, 1996). However, the L1-
penalty does not balance type I and type II error optimally for change detection
(Cho and Fryzlewicz, 2011).

The final class of change detection methods based on model selection we
mention is the data-driven penalty selection methods based on “slope heuristics”
of Birgé and Massart (2001, 2007), described in Baudry et al. (2012). These
methods aim to automatise tuning of penalties, which is often a delicate problem
in practice. Their detection performance is good, but they are restricted to small
data sets due to poor computational scaling in the sample size.
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2.2 Multivariate methods

Data recordings are increasingly often multivariate and high-dimensional rather
than univariate in the current “big data” era. This has led to a massive growth
in research on multivariate change detection methods over the past ten years.
Before reviewing a selection of the literature, we highlight some of the additional
challenges connected to multivariate changepoint analysis compared to the
univariate setting.

A naive way of detecting multivariate changes is to apply a univariate method
to each time series and put a changepoint at each time-point the ensemble of
univariate methods detects a change. However, such an approach would suffer
from many false positives due to multiple testing, it does not account for
dependence between the variables, and it is not be able to borrow strength
across signals to detect changes that are small in each variable, but large when
seen as a whole. Moreover, the ensemble of univariate methods might not scale
well computationally as the number of variables, p, grows. These are the main
reasons for taking what we can call a “fully” multivariate changepoint approach.

Now recall the problem formulation in this chapter’s introduction, the
changepoint models (2.1) and (2.2) in particular. The space of possible
distributions per segment, Fk, is now vastly more complex; imagine the possibility
of different marginal distributions per variable and different forms of dependence
between them. Even under a family of parametric models f(x|θ), the number
of choices for f and ways in which θ can change becomes exponentially larger
in p. A specific additional question in the multivariate setting that has been
addressed in the literature (e.g. Jirak (2015) and Fisch et al. (2019b)), and we
pursue in this thesis, is the following:

(P5) Given that there is a change, which of the p variables change?

In the case where θ(i)
k is the k’th segment mean for variable i, for example, the

aim is to estimate the subsets Jk ⊆ [p] of non-zero elements in θk − θk−1 for
k = 1, . . . ,K. Indicating which variables change is important to be able to
diagnose what the cause of a change may be.

Complicating things further, there is a big difference between trying to detect
changes that occur in more or less than c√p variables, for some non-zero constant
c (see e.g. Enikeeva and Harchaoui (2019), Cai et al. (2011) or Jeng et al. (2013)).
If more than or exactly c√p variables change, we are in a dense regime, and if
less than c√p variables change, we are in a sparse regime. The intuition behind
there being two regimes can be explained as follows: In the dense regime, many
variables change such that it is beneficial to aggregate information equally across
all variables in the search of a change. If this type of aggregation is used in the
sparse regime, on the other hand, the noise from the non-changing variables is
more likely to drown out the signal from the few changing variables, making the
detection problem harder. The boundary between the two regimes just happens
to be at c√p in the limit as p→∞ for changes in the mean of i.i.d. Gaussian
observations with known variance. The consequence is that different methods
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are optimal for separating the null hypothesis of no change from sparse and
dense alternatives, respectively. In addition, it is primarily in the sparse regime
it is relevant to ask (P5). It is likely that a boundary between sparse and dense
changes also exists for other types of changes and data distributions, but the
the exact nature of such a general law is an open problem, to the best of my
knowledge.

Changes in the mean As in the univariate setting, changes in the mean vector
is the most well-studied problem. Early contributions all consider tests for a
single, dense change. As we have seen in Section 2.1, all such tests can be
embedded in a binary segmentation type algorithm to detect multiple changes.
Srivastava and Worsley (1986) study the likelihood ratio test for a single change in
the mean of multivariate Gaussian data when the correlation matrix is unknown
but constant. Horváth et al. (1999) later consider a scaled version of the same
statistic, but derives its limiting distribution under a more general model with
temporally m-dependent noise.

A large portion of modern work concentrates on the problem of testing for
a single change, but from a high-dimensional angle. This either means that
p→∞ in theoretical analysis of the method, or that interest lies on methods
that are computationally scalable to potentially very large p. Many such tests
are based on aggregating information across local test statistics per variable,
T (τ, x(1)

1:n), . . . , T (τ, x(p)
1:n), where T (·, ·) often is the CUSUM (2.8), but could in

principle be any test. Early high-dimensional work focused on models assuming
independence between variables i = 1, . . . , p—what we call cross-independence—
and assumed that the change is dense. For example, Bai (2010), Horváth and
Hušková (2012) and Zhang et al. (2010) all propose an L2-aggregation of their
local statistics under these assumptions. The two former allow for temporal
dependence and deal with estimation of a change whose presence is known a
priori, i.e., (P3) assuming that a change has occured somewhere. Zhang et al.
(2010) consider the testing problem (P2) and formulate a model where the change
is allowed to be sparse, but their test statistic does not deal with the potential
sparsity of the change, nor (P5).

Subsequently, the problem of detecting sparse changes in cross-independent
models received increasing attention, as in many practical problems it is clear
that only a few variables are likely to be affected. A typical example is the
detection of DNA copy number variants, where some variants might only be
shared across a few samples. Siegmund et al. (2011) incorporated a prior guess
p0 on the fraction of affected variables. Cho and Fryzlewicz (2015) use a hard-
thresholded L1-aggregation of local CUSUM statistics. Jirak (2015) proposes an
L∞-aggregation, i.e., the maximum of the absolute local CUSUM statistics, and
is the first to study (P5). Enikeeva and Harchaoui (2019) propose a statistic based
on ordered local CUSUM statistic in combination with an L2-aggregated CUSUM
test to obtain optimal rates of convergence for both sparse and dense changes
in independent Gaussian data. Cho (2016) suggests to aggregate the ordered
local CUSUMs by another coordinate-wise CUSUM transformation. Lastly,
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Wang and Samworth (2018) derive an optimal projection (i.e., aggregation) of
CUSUMs, and offer a consistent estimator of this projection direction by a sparse
singular value decomposition on the CUSUM transformed data. Note that Jirak
(2015) and Wang and Samworth (2018) also extend their methods to allow for
cross-dependence.

There are few penalised cost-based methods for the high-dimensional setting.
Two contributions in this direction are Fisch et al. (2019b) and Tickle (2020,
Chapter 4), who derive methods for detecting both sparse and dense changes in
cross-independent data that are easy to adapt to any parametric model for the
marginal distributions.

Most recent high-dimensional literature considering cross-dependent data
focus on dense changes (Westerlund, 2019; Bhattacharjee et al., 2019; Li et al.,
2019; Wang and Shao, 2020). An interesting exception is Maeng (2019, Chapter
5), who also considers temporal dependence, but does not estimate which
variables are affected (problem (P5)). An approach for detecting both sparse
and dense changes in the mean of cross-correlated data that is computationally
scalable and indicates which variables are affected is generally missing in the
literature. We aim to fill this gap by a penalised cost approach in Paper IV.

Changes in the covariance matrix Assessing stability of the covariance
matrix of multivariate observations has gained significant recent interest. One
reason is that many methods for detecting changes in the mean assume that the
covariance matrix is constant over time. The thorough analyst should therefore
assess whether this assumption holds. Changes in the covariance matrix—or,
equivalently, the precision matrix—may also be of independent interest. Kao
et al. (2018), for instance, list several practical problems within finance and
economics where this is the case.

Methods for detecting changes in the covariance matrix were first proposed
for quality control purposes, e.g. the Gaussian likelihood ratio approach of
Sullivan and Woodall (2000) or other control charts (see the review article of Yeh
et al. (2005)). An early maximum likelihood treatment of the multiple changes
in mean and covariance matrix problem is Maboudou-Tchao and Hawkins (2013),
who additionally use the segment neighbourhood algorithm as their search
method. Even though it is not connected to a specific publication, note that
it is relatively straightforward to plug the Gaussian likelihood with unknown
mean and covariance matrix and a linear penalty into the penalised cost (2.3)
and optimise with PELT, for instance.

The CUSUM-based work of Aue et al. (2009) marks the starting point of the
modern, more theoretically oriented line of research on offline covariance change
detection methods. Their method and analysis is impressive as it also considers
temporal dependence. Bai (2010) considers changes in the variances (in addition
to the means), but not in a general covariance matrix. Later, CUSUM-based
methods for covariance changes have been investigated by Cho and Fryzlewicz
(2015), Kao et al. (2018), Wang et al. (2018) and Dette et al. (2020). All these
methods assume that the mean is constant and the change is dense, except the
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very recent work of Dette et al. (2020), where potential sparsity is addressed.

Other recent approaches are proposed by Roy et al. (2017), who consider
changes in sparse Markov random field models, which includes sparse precision
matrices in Gaussian data as a special case, Avanesov and Buzun (2018), who
offer a moving sum-based method applicable both in the offline and online
setting, and Wang et al. (2019), who utilise U-statistics and self-normalisation
to detect changes in both the mean and covariance matrix. Lastly, Grundy et al.
(2020) propose a method for detecting changes in the means and variances of
high-dimensional (Gaussian) data by mapping the data into two dimensions—one
highlighting changes in mean, and the other highlighting changes in the variance.

Research on changes in high-dimensional covariance matrices is still on an
infant stage compared to changes in the mean. The p(p − 1)/2 parameters
involved makes the problem much tougher computationally, and almost all
published work has only considered the scenario of dense changes. In Paper I
and Paper II we investigate how the classical principal component analysis can
be used to alleviate the computational burden. We also consider sparse changes
in the covariance matrix.

Changes in other features In many practical situations it can be hard to know
both the distribution of the data as well as exactly what type of distributional
change is of interest. Hence, deriving nonparametric methods for detecting
changes in multivariate data is a hot topic. Needless to say, this is a hard
problem in general, both theoretically and computationally, but even more so in
high-dimensional settings where the curse of dimensionality kicks in. Be aware
that nonparametric methods can be used for detecting the already discussed
changes in mean and covariance matrix, but is expected to be less powerful
compared to methods specifically made for a particular type of change.

Examples of contemporary multivariate nonparametric change detection
methods are the approach based on hierachical clustering and distance measures
of Matteson and James (2014), the kernel-based methods of Harchaoui and Cappe
(2007), Arlot et al. (2019) and Padilla et al. (2020), the graph-based methods of
Chen and Zhang (2015), Chu and Chen (2019) and Liu and Chen (2020), as well
as Zhang et al. (2017), who use energy statistics and the Kolmogorov-Smirnov
test. Note that all these methods assume that observations are independent in
time, and no distinction is made between sparse and dense changes.

We also remark that detection of changes in the quite general class of vector
autoregressive models is investigated in Kirch et al. (2015), Safikhani and Shojaie
(2020) and Wang et al. (2020b). In addition, Liu et al. (2020) very recently
proposed a framework based on U-statistics and CUSUMs for detecting a change
in any high-dimensional parameter, with power against sparse and dense changes
simultaneously.
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2.3 Changepoint-based anomaly detection

One of the many applications of changepoint models is anomaly detection. That
is, detecting significant deviations from some baseline behaviour of the data.
For example, Olshen et al. (2004) use a changepoint model to detect DNA copy
number variations, which might indicate cancer or other diseases; Fisch et al.
(2019a) detect an exoplanet based on inferring changes in lightcurve data from a
star; and we detect overheating of a ship’s propulsion motor in Paper III.

The general changepoint models (2.1) or (2.2) are only useful for detecting
certain types of anomalies. In the comprehensive review of Chandola et al.
(2009), anomalies are divided into three classes: Global, contextual and collective
(the names of the classes are from Fisch et al. (2019a)). Global and contextual
anomalies are defined as single observations not conforming to either the global
or local pattern of the data. E.g., a temperature measurement of 40◦C in Oslo
is a global anomaly as it would be a highly unusual temperature any time of the
year, whereas a measurement of 10◦C would only be a contextual anomaly during
the winter. Following the terminology of Fisch et al. (2019a,b), we call both
global and contextual anomalies point anomalies as they are both single outlying
observations. Collective anomalies are collections of related observations that
are anomalous only when viewed together. For example, an average temperature
of 13◦C during April in Oslo, compared to the normal of around 10◦C. It is
primarily collective anomalies the general changepoint models are capable of
detecting, while the presence of point anomalies is known to cause trouble in the
form of inaccurate additional changepoints being added (Fearnhead and Rigaill,
2019). In addition, the general changepoint model does not utilise the fact that
there is a common baseline distribution for the data in many anomaly detection
applications.

On the other hand, classical outlier detection techniques and many existing
anomaly detection methods from the machine learning community are not suitable
for detecting collective anomalies (Chandola et al., 2009). These methods are
made with the aim of detecting point anomalies, and often does not consider
the relatedness of observations, for example their time-ordering.

Based on these observations Fisch et al. (2019a,b) develop the penalised cost-
based framework collective and point anomalies (CAPA) for jointly detecting
both point and collective anomalies. The anomaly model first assumes that xt
has a baseline distribution f(x|θ0). Each of the K anomalies are then modelled
by two changepoints; one change from the baseline distribution at time sk, and
one change back at time ek, where {(sk, ek]}Kk=1 form non-overlapping intervals.
Such changepoints are known as epidemic changepoints in the literature (Kirch
et al., 2015). This model can be described by

xt ∼


f(x|θ1) for t = s1 + 1, . . . , e1

...
f(x|θK) for t = sK + 1, . . . , eK
f(x|θ0) otherwise,

(2.9)
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where θk 6= θ0 for k = 1, . . . ,K, sk < ek and sk+1 ≥ ek. In this model, point
anomalies are simply defined as anomalies of length 1, i.e., when sk = ek, while
collective anomalies have length greater than 1; ek − sk ≥ 2. To distinguish
the two cases, let {(sk, ek)}Kk=1 refer to the collective anomalies, while O ⊆ [n]
denotes the set of point anomaly locations. As in the general changepoint model,
the aim is to estimate K, {(sk, ek)}Kk=1 and O, as well as θ1, . . . ,θK . The
baseline parameter θ0 is assumed to be known, but it is estimated robustly from
the data in practice.

Inference on the positions of the anomalies from data is done by using a
PELT type algorithm for efficiently solving

max
K,{(sk,ek)}K

k=1,O

[
K∑
k=1

S(sk, ek) +
∑
t∈O

S′(xt)
]
, (2.10)

subject to ek − sk ≥ 2 and no overlap between the intervals specified by
{(sk, ek)}Kk=1 and O. In (2.10), S(s, e) is the penalised saving for introducing an
anomaly, defined as the cost-based test statistic

S(s, e) := C(x(s+1):e,θ0)−min
θ
C(x(s+1):e,θ)− β, (2.11)

where β is a penalty for adding an anomaly. S′(xt) is the penalised saving for
adding a point anomaly at t, and is defined as S(t− 1, t), but with a separate
penalty β′. Note that maximising the penalised savings in (2.10) is equivalent
to minimising the penalised cost. Also, S(s, e) with the log-likelihood cost
corresponds to the likelihood ratio test of whether x(s+1):e has parameter θ0
or not, with threshold β. Fisch et al. (2019a,b) derive penalties for collective
and point anomalies based on controlling the false positive rate in independent
Gaussian data. In practice, the penalty can be tuned to achieve a desired false
positive rate on a training set consisting exclusively of baseline observations, if
available.

The article of Fisch et al. (2019b) concerns anomaly detection in multivariate
data, where it might be that only a sparse subset Jk ⊆ [p] of variables are
anomalous, as in the general changepoint model. In this case, the penalty in
(2.11) is switched with a penalty function P (|J|) such that the method becomes
powerful for detecting both sparse and dense anomalies. In Paper IV, we extend
their method by allowing explicit modelling of cross-dependence.

It should be noted that several other authors tackle the problem of detecting
epidemic changes, for instance Olshen et al. (2004), Zhang et al. (2010), Kirch
et al. (2015), Aston and Kirch (2018), and Zhao and Yau (2019). Methods from
sparse mixture detection are also suitable for detecting epidemic changes, e.g.
Jeng et al. (2013) who utilise the higher-criticism test of Donoho and Jin (2004).
Yet other methods aim to be robust against outliers (Fearnhead and Rigaill,
2019), or include inference regarding point anomalies (Maeng and Fryzlewicz,
2019).
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2.4 Other approaches and related problems

So far in this chapter, we have covered frequentist methodology for detecting
abrupt changes in piecewise stationary data, where the changes are aligned across
variables in the multivariate setting. We will finish by pointing to important
related work outside this scope.

There are several directions of Bayesian changepoint analysis. One school of
thought formulates the changepoint problem as a hidden Markov model with a
fixed number of states, each state corresponding to a stationary segment between
changes (Chib, 1998). Inference is done by Markov chain Monte Carlo (MCMC)
and if the number of changepoints is unknown, reversible jump MCMC (Green,
1995) can be used to explore the model space. More recently, Ko et al. (2015)
proposed to use a Dirichlet process prior on the transition probabilities of the
hidden Markov model, avoiding the prespecification of the number of states,
and allowing for uncertainty measures both on the number and locations of
changepoints.

Another class of Bayesian changepoint methods uses the product-partition
model, of which prominent examples are Barry and Hartigan (1993) and
Fearnhead (2006). Here, the prior is put on the time between changepoints instead
of the transition probabilities. These approaches seek to avoid the difficulties of
setting up appropriate MCMC algorithms, and rather build models that allow
for quick and exact simulation from the posterior distribution of the number and
locations of changepoints. Bardwell and Fearnhead (2017) recently proposed
such a Bayesian method for detecting possibly sparse anomalous segments. We
will also mention a few examples of related Bayesian online methods at the end
of Chapter 3.

Somewhere between frequentist and Bayesian statistics lie methods for
constructing confidence distributions (Schweder and Hjort, 2016). That is,
distributions over the parameter space that can be used to visualise confidence
intervals at all confidence levels simultaneously. Cunen et al. (2018) propose a
framework for constructing confidence distributions for a single changepoint. As
the literature on obtaining uncertainty measures for changepoints outside the
Bayesian school is scarce, such methods could prove to be valuable.

When it comes to detecting changes in other models than covered here and
changes of different types, the literature is growing. Examples include detecting
changes in the covariates of regression models (Maeng, 2019; Lee et al., 2016;
Leonardi and Bühlmann, 2016), changes in network models (Zhao et al., 2019;
Bhattacharjee et al., 2020), multivariate changes that does not align perfectly in
time between variables (Fisch et al., 2019b; Bardwell et al., 2019; Eckley et al.,
2020), as well as fitting piecewise linear models rather than piecewise constant
ones (Fearnhead et al., 2019; Maeng and Fryzlewicz, 2019).
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Chapter 3

Online change and anomaly
detection

In the online mode of change detection, observations are processed sequentially
as they arrive, as opposed to the offline setting where an entire data set is
collected before analysed retrospectively. Looking back at problems (P1)-(P5)
posed for offline methods, online methods are primarily concerned with updating
inference regarding (P1)—testing whether a change has occured or not—for
every new observation xt given inference based on x1, . . . ,xt−1, potentially for
t → ∞. The aim is to detect that a true change has occured as quickly as
possible, while controlling the rate of false alarms if not. When a change has
been declared, offline methods can be used to answer the remaining questions
(P2)-(P5). Nevertheless, online methods typically also output an estimate of the
most recent changepoint and how the distribution has changed as a byproduct
of testing for the presence of a change.

The vast majority of existing online change detection methods are constructed
for solving some version of the following sequential hypothesis testing problem:

H0 : xt ∼ F0 for t = 1, 2, . . . .
H1 : There is a τ ≥ 0 such that

xt ∼ F0 for t = 1, . . . , τ,
xt ∼ F1 for t = τ + 1, τ + 2, . . . ,

(3.1)

where τ = 0 refers to the alternative hypothesis of all observations stemming
from F1. Note that this is the same model as (2.1) with K ∈ {0, 1} and n→∞.
It is typically assumed that there is a training set of m observations known to
be generated from F0 available. Most commonly, this training set is used to
pre-estimate F0, before considering F0 to be known in the sequential problem
(3.1). Alternatively, F0 is assumed unknown and its estimation brought into
the sequential problem to account for its estimation uncertainty, in which case
the training set is taken as the first m observations in (3.1) and the restriction
τ ≥ m added to H1. F1 can also be modelled as either known or unknown,
depending on the situation. As in the offline chapter, we primarily concentrate
on the parametric problem where Fk has a parametric density f(x|θk), k = 0, 1.

We remark that in the online context, the difference between an anomaly
and a change introduced in Section 2.3 is not as useful due to F0 being thought
of as a baseline distribution in either case. Thus, when we use “changes” in this
chapter, we might just as well have used “anomalies”.

A sequential or online change detection method for solving (3.1) is a stopping
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time N ∈ N ∪ {∞}. All methods we consider are of the form

N = inf{t ≥ 1 : T (x1:t) > bt}, (3.2)

where bt is a threshold function governing whether a test for a change at time t,
T (x1:t), is significant or not.

To specify what is meant by “controlling false alarms” and “quick detection”,
let P τ and Eτ denote probability and expectation under the model (3.1) when
there is a true changepoint at τ . In particular, P∞ and E∞ mean that there
is no changepoint and correspond to probability and expectation under H0. A
typical goal for a sequential method N is to find bt such that the average run
length (ARL) E∞[N ] is controlled at a user-specified level γ, and rank methods
based on their (worst-case) expected detection delay (EDD), given by

Ēτ [N ] := sup
τ
Eτ [N − τ |N > τ ]. (3.3)

The lower EDD or response time, the better. The ARL can be viewed as the
analog to controlling Type I error in the offline setting, while minimising EDD
corresponds to maximising power. It is also a common goal to minimise the
worst-worst-case EDD, due to Lorden (1971), defined as

sup
τ

ess sup
x1,...,xτ

Eτ [(N − τ)+|x1, . . . ,xτ ]. (3.4)

However, it is often overly conservative and difficult to work with analytically,
so the EDD in (3.3) has become more popular. Polunchenko and Tartakovsky
(2012) can be consulted for a discussion on most classical performance measures.

A naive way of constructing a method for the online problem would be to
apply one of the offline methods from Chapter 2 to the entire batch of data for
every new observation. However, doing so results in a highly dependent and
complicated multiple testing task, and as the sample size potentially goes to
infinity, it is not feasible computationally. Thus, in addition to detecting changes
quickly, an algorithm for online change detection should have computational
complexity not depending on the current sample size t when updating inference
from one observation to the next (Chen et al., 2020).

In the rest of this chapter, a brief overview of online change detection
methods is given. The literature on online change detection is far sparser than its
offline counterpart. Nevertheless, useful recent surveys include Aminikhanghahi
and Cook (2017) and Polunchenko and Tartakovsky (2012), and the two books
Siegmund (1985) and Basseville and Nikiforov (1993) give a thorough introduction
to classical sequential methods. Our main focus is on methods that are related
to the work in the papers of this thesis and fit within the online change detection
framework just described. Section 3.1 introduces the most popular classical online
methods in the univariate setting, before the multivariate setting is covered in
Section 3.2. Section 3.3 provides pointers to recent research on related problems
and methods outside the current scope.
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3.1 Classical methods—univariate data

CUSUM methods CUSUM statistics play an equally important role in online
as in offline change detection. As mentioned in Section 2.1, around (2.8), the
CUSUM referred to in the online literature is not the same as in the offline
literature, but they have a lot in common. Most importantly, both can be written
in terms of cumulative sums and arise from likelihood ratio tests. The offline
CUSUM originates from a likelihood ratio test between two unknown means in
Gaussian data with known variance, whereas the online CUSUM of Page (1954)
arises from a likelihood ratio test between two simple hypotheses;

T (x1:t) = max
k<t

t∑
i=k+1

log f(xi|θ1)
f(xi|θ0) , (3.5)

where θ0 and θ1 are fixed pre- and post-change parameters. An online CUSUM
method is then obtain by plugging (3.5) into (3.2), together with a constant
threshold bt = b tuned to achieve an appropriate ARL.

A major contributor to the CUSUM’s popularity is the fact that it can be
written in the following recursive form:

T (x1:t) = St =
(
St−1 + log f(xt|θ1)

f(xt|θ0)

)+
, (3.6)

where S0 = 0 and (·)+ := max(0, ·). This recursion is obtained by viewing the
CUSUM (3.5) as a repeated sequential probability ratio test with lower boundary
0 and upper boundary b (Basseville and Nikiforov, 1993, p. 38). Every time
T (x1:(t−1)) is below 0—i.e., the null hypothesis of no change is accepted—the
test is restarted. In addition, the CUSUM’s simple form facilitates theoretical
analysis. As t → ∞ the CUSUM behaves like a Brownian motion (Siegmund,
1985), which can guide the selection of the threshold b. It has also been proven
that the CUSUM is optimal in terms of minimising the worst-worst-case EDD
(3.4) asymptotically as the ARL γ → 0 (Lorden, 1971), and for every γ > 0
(Moustakides, 1986).

The most problematic aspect of Page’s CUSUM is that it not only assumes
the pre-change distribution to be known, but also the post-change distribution,
which is rarely the case in practice. A number of tweaks to the CUSUM have
therefore been proposed since its initial release, aiming at adapting to unknown
distributions while retaining the simple computational form. In Paper III, we
use the post-change adapting CUSUM of Lorden and Pollak (2008) for detecting
overheating in ship engines. Other examples of CUSUMs adapting to unknown
pre- or post-change parameters are Pollak and Siegmund (1991) and McDonald
(1990).

Generalised likelihood ratio methods An alternative class of online change
detection methods for handling unknown parameters in both the pre- and
post-change distribution are generalised likelihood ratio (GLR) methods. They
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incorporate maximum likelihood estimation of the unknown parameters. Hence,
in the case of known pre-change parameter and unknown post-change parameter,
GLR methods are defined by test statistics of the form

T (x1:t) = max
k<t

sup
θ∈Θ

[
t∑

i=k+1
log f(xi|θ)

f(xi|θ0)

]
, (3.7)

where Θ is a subset of the parameter space (see Basseville and Nikiforov (1993)
or Lai (1995)). In the case of exponential families and composite alternative
hypotheses, such statistics are optimal in the sense of Lorden (1971). Additionally
assuming an unknown pre-change parameter brings us back to a statistic of
the form (2.7) with log-likelihood cost (2.4), maximised over all τ < t for each
new observations xt. Unfortunately, in either case, the maximisation over the
parameter space for each t and k < t implies that plain GLR methods have
computational complexity growing to infinity with the sample size.

Several solutions to alleviate the computational burden of GLR methods
have been proposed, of which some are listed in the introduction of Lai (1995).
The perhaps most widely used solution is to restrict the maximisation over
candidate changepoints k to a set K ⊆ [t− 1], for example a window of length
w; K = {k ≥ 0 : t − w < k < t}. The effect of using a window is that only
changes of a certain minimum size can be detected, with wider windows allowing
for detectability of smaller changes and vice versa. Lai (1995) discusses how
K can be constructed such that a vanishingly small amount of performance is
lost. Such tricks bound the number of operations GLR methods need to update
inference from one observation to the next, but the computational burden remains
significantly larger than for CUSUM methods.

Moreover, note that it is significantly more complicated to evaluate the
distribution of a GLR stopping time (3.2) than one based on a CUSUM. This is
the case even for a change in mean in Gaussian data with known variance and pre-
change mean, although Siegmund and Venkatraman (1995) derive approximations
to the ARL that are quite accurate.

Other methods Several other methods have frequently been used for change
detection, many originating from statistical process control. Two prominent
examples are the Shewart’s chart (Shewhart, 1925) and the exponentially
weighted moving average chart (Hunter, 1986).

An alternative to the GLR statistic for an unknown post-change parameter
is the so-called “mixture” or “weighted” likelihood ratio approach of Pollak and
Siegmund (1975). Rather than maximising over the unknown parameter in (3.7),
the mixture likelihood ratio approach integrates the likelihood ratio with respect
to some probability distribution of the post-change θ.

The final classical method we mention is the Shiryaev-Roberts chart, due to
Shiryaev (1963) and Roberts (1966). The Shiryaev-Roberts chart is a Bayesian
analog to Page’s CUSUM, and is given by exchanging the maximisation with
summation in (3.5). It is a rather popular method as it is provably optimal in a
certain Bayesian sense (see Polunchenko and Tartakovsky (2012, Section 4)).
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3.2 Multivariate methods

We now present some important contributions to online change detection in
multivariate data. As in the offline setting, the point of taking a multivariate
approach is to be able to detect smaller changes more reliably than would be
possible by a set of univariate methods. The distinction between sparse and
dense changes is just as relevant in the online setting, as well as the additional
challenge (P5) of identifying which variables are changing.

Changes in the mean For the prototypical change in mean setting, a major
line of research on multivariate methods considers different ways of aggregating
sequential changepoint tests applied to each univariate time series x(j)

1:t , for
j = 1, . . . , p. Roughly, Tartakovsky et al. (2006), Siegmund and Yakir (2008)
and Mei (2010) propose aggregation-based tests for dense changes, while Xie
and Siegmund (2013), Liu et al. (2017) and Chan (2017) focus on sparse changes.
All these works consider individual tests of either CUSUM, GLR or Shiryaev-
Roberts type, except Liu et al. (2017) who consider aggregation of any individual
test of choice. Chan (2017) proves that his GLR-based method is optimal for
detecting positive mean changes in the worst-worst-case sense of Lorden (1971).
Alternative methods include the higher-criticism-based method of Zou et al.
(2014a), the sketching- and dimension reduction-based method of Cao et al.
(2019), as well as the recently proposed method of Chen et al. (2020), who
combine CUSUMs both over variables and different post-change sizes of the
means.

Changes in the covariance matrix Online detection of changes in the
covariance matrix has yet to receive sufficient attention in the modern literature.
An overview of methods for this problem from statistical process control is
given by Yeh et al. (2005), and Sullivan and Woodall (2000) as well as Hawkins
and Zamba (2009) study the GLR for detecting general changes in the mean
and/or covariance matrix of multivariate normal data. Recent contributions
are the moving sum-based approach of Avanesov and Buzun (2018) and the
CUSUM-based method of Xie et al. (2018) for detecting changes in a spiked
covariance matrix model. To the best of my knowledge, all existing methods are
constructed to be efficient for dense alternatives. Detecting sparse changes in
the covariance matrix is a problem we investigate in Paper II.

Changes in other features For sequentially detecting changes in other
features than the mean or covariance matrix, one strategy is to decide on
a likelihood for the data and construct a multivariate CUSUM or GLR test in
a similar way as described for the univariate case in Section 3.1. Alternatively,
one of the aggregation strategies for changes in the mean can be applied to
any univariate or lower dimensional likelihoods of choice, as suggested by Liu
et al. (2017). Recent nonparametric methods are the kernel-based method of Li
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et al. (2015) and the method based on windowed Kolmogorov-Smirnov tests of
Madrid Padilla et al. (2019).

3.3 Other approaches

Not all the online literature fall nicely within the framework of controlling the
ARL and minimising EDD (3.3). One deficiency of the classical methods is that
the probability of declaring a change goes to one as t goes to infinity, i.e., a
false alarm will eventually be raised. As a remedy, Chu et al. (1996) propose
a different framework enabling control of P∞(T <∞) at a chosen significance
level α under the asymptotic regime of m—the size of the training set—going to
infinity. This approach has gained popularity in recent years, with methodology
applicable in very general data scenarios being put forward by e.g. Aue et al.
(2012), Kirch and Tadjuidje Kamgaing (2015) and Gösmann et al. (2020).

As online methods aim to update inference incrementally as data arrive, a
Bayesian formulation in terms of updating the posterior distribution for every new
observation seems a very natural one. Adams and MacKay (2007) and Fearnhead
and Liu (2007) initialised the line of research on such methods. They utilise the
product partition model as in the offline setting, and put a prior on the length
between successive changepoints. These Bayesian methods are closer in spirit to
offline methods as they aim to estimate the number and locations of changepoints,
but in an online fashion, rather than detecting changes as quickly as possible.
In addition, they have the advantage of providing uncertainty quantification of
all unknown parameters, given the prior. Recent contributions to this class of
methods include Ruggieri and Antonellis (2016), who introduce less informative
priors, the multivariate anomaly detector of Bardwell and Fearnhead (2017) and
the outlier-robust methodology of Knoblauch et al. (2018).
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Chapter 4

Summaries of the papers

4.1 Paper I

Tveten, M. (2019). Which principal components are most sensitive
in the change detection problem? Stat, 8(e252).

Principal component analysis (PCA) is arguably the most common method for
reducing the dimensionality of multivariate data. It has been used for numerous
applications both in statistics and machine learning, and it is therefore no
surprise that it also forms the basis of many multivariate anomaly detection
methods. In this short article, the behaviour of PCA within the change de-
tection problem is investigated through a notion of each pre-change principal
component’s sensitivity to a change.

To be precise, consider the single changepoint setup where xt ∼ N(µ0,Σ0)
for t = 1, . . . , τ , and xt ∼ N(µ1,Σ1) for t = τ + 1, . . . , n. Now let {λj ,vj}pj=1
denote the normalised eigensystem of the pre-change Σ0, ordered decreasingly in
λj . Our objects of interest are the pre-change principal components yj,t = vᵀ

jxt.
Before a change, the distribution of yj,t is p(y) = N(y|0, λj), while after a
change, the distribution of yj is q(y) = N(y|vᵀ

jµ1,v
ᵀ
1Σ1v1), where it is assumed

without loss of generality that µ0 = 0. The sensitivity to a change of the j’th
pre-change principal component is then defined as the Hellinger distance between
its marginal distribution before and after a change, given by H(pj , qj).

The main contribution of this paper is to prove that for bivariate normal
data, the least varying pre-change principal component, y2,t, is the most sensitive
for a range of pre-change covariance matrices Σ0, and changes µ1 and Σ1. Most
notably, y2,t is almost always the most sensitive if only a single parameter of
the original distribution changes, i.e., in cases where one of the means, one of
the variances or the correlation parameter of the original data change. This
result suggests that the least varying pre-change components should be used for
detecting sparse distributional changes in higher dimensional data as well.

4.2 Paper II

Tveten, M. and Glad, I. K. (2019). Online detection of sparse
changes in high-dimensional data streams using tailored projections.
Manuscript.

This article builds on the insights from Paper I to propose a method for
tailoring the choice of pre-change principal components to a specific change
or anomaly detection problem. We call this method tailored PCA (TPCA),
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and it is implemented in the accompanying R package tpca. In addition, we
combine TPCA with an extension of the online change detection scheme of Xie
and Siegmund (2013) to create a method for detecting changes both in the mean
and the covariance matrix of potentially high-dimensional data. As mentioned
in Chapter 3.2, online detection of changes in variance and correlation is an
understudied subject. Note that TPCA can also be used in the offline setting.
It is especially suitable for anomaly detection because of the explicit assumption
of a baseline parameter that the choice of pre-change principal components can
be based upon.

To select pre-change principal components by TPCA, the following ingredients
are needed: A pre-change covariance matrix, Σ0, a divergence measure, a
distribution over the post-change parameter space called the change distribution
and a cutoff value c ∈ [0, 1]. In the paper, we use the Hellinger distance
throughout in agreement with Paper I, but the tpca R-package allows any
measure of divergence to be used. Using the notation of Section 4.1, we aim to
rank the principal components’ sensitivity to changes by

Pj := P
(
argmax

1≤i≤p
H(pi, qi) = j|Σ0

)
(4.1)

for j = 1, . . . , p, where the probability is taken with respect to the change
distribution. In practice, simulations from the change distribution is used to
estimate Pj . TPCA selects the pre-change principal components indexed by

J = min
I⊆{1,...,p}

∑
j∈I

Pj ≥ c. (4.2)

In our simulated test scenarios, J almost always corresponds to a small subset of
the least varying pre-change principal components, often facilitating a dimension
reduction of 80− 98% for c ∈ [0.8, 0.999].

In the simulations for assessing the performance of our TPCA-based online
change detection method, we focus on detecting both sparse and dense changes
in the mean, variance and correlation. If the correlation coefficients in Σ0 is
sufficiently large, we find evidence of our method being able to detect changes
quicker from a small set of principal components than the baseline method of
Xie and Siegmund (2013). I.e., we observe quicker detection and computation
simultaneously. For weaker pre-change cross-correlation, this clear advantage is
not present, but significant dimension reduction is still possible without a great
loss in performance.

At the end of the paper, we illustrate how our method can be used on time-
dependent data by using dynamic PCA in place of the classic PCA, and compare
our method to dynamic PCA as used within stochastic process control. This
illustration is performed on a realistically simulated dataset of the Tennessee
Eastman Process. We find that, in settings where there is no extra validation
set for tuning the detection threshold, our method is superior to the classical
dynamic PCA method.
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4.3 Paper III

Hellton, K. H., Tveten, M., Stakkeland, M., Engebretsen, S., Haug,
O. and Aldrin, M. (2020). Real-time prediction of propulsion motor
overheating using machine learning. Submitted for publication.

In this paper, online change detection methodology is applied to predict
overheating in electrical propulsion motors onboard marine vessels. Technology
that protects the motors from overheating is obviously critical for the safety of
a ship and those on board. The data used in this study contain observations
from four vessels, each with three motors and six temperature sensors at various
locations per motor, over time periods ranging from 80 to 294 days.

Almost all of the data is collected during normal operating conditions, but
there is one known overheating event in one of the vessels’ motors. The main
contribution of this paper is to show that by using mostly basic statistical tools,
the onset of similar overheating events can be detected reliably 60-90 minutes in
advance, and thereby avoided in the future. Parts of the method have already
been implemented as a new thermal protection function on several ships.

First, we construct a simple but general linear model for predicting the
sensor-observed temperatures from other operating variables of the vessel under
normal conditions—power and speed of the motors, for example. Then the six
series of residuals of the actual temperature observations and the predictions
are monitored simultaneously for large, positive changes in the mean by a
combination of an adaptive version of the CUSUM (Lorden and Pollak, 2008)
and the shrinkage-aggregation framework proposed by Liu et al. (2017). If a
sufficiently large, positive change in the residuals’ mean is detected, this is taken
as an initial sign of overheating, and an alarm is raised.

In this application, it is not only important to be able to detect an emerging
overheating event in a timely fashion, but also to keep false alarms to an absolute
minimum. If false alarms are too frequent, the operators of the vessel is likely
to put a piece of tape over the red lamp meant to indicate an impending fault,
which, needless to say, could be catastrophic. Consequently, a methodological
contribution of this article is an automatic tuning procedure for the change
detection algorithm that takes as input the acceptable number of false alarms in
the fault-free training data. This tuning procedure uses information about the
known fault—making it a supervised method—and thus risks to overfit to the
single observed overheating event. A mechanism for balancing early detection
with a countering of overfitting is therefore also built in.

4.4 Paper IV

Tveten, M., Eckley, I. A. and Fearnhead, P. (2020). Scalable change-
point and anomaly detection in cross-correlated data with an applica-
tion to condition monitoring. Invited to submit a revision to Annals
of Applied Statistics.
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We study and propose methods for the offline multiple anomaly and change
detection problems in multivariate data when variables are cross-correlated and
changes occur in an unknown subset of the mean components. In addition,
we demonstrate the anomaly detection method’s usefulness for sensor-based
condition monitoring of an industrial process pump. The paper is accompanied
by the R package capacc, providing efficient implementations of our methods.

The first main methodological contribution of the paper is the derivation
of the penalised cost-based methods CAPA-CC (collective and point anomalies
in cross-correlated data) and CPT-CC (changepoints in cross-correlated data)
for solving each of these problems in a computationally efficient manner. Both
methods are built on a particular approximation of the penalised saving (2.11)
corresponding to a penalised Gaussian likelihood ratio tests for a single anomaly
or change. Encapsulating these tests for a single change or anomaly, CPT-CC
uses a binary segmentation type algorithm to detect multiple changes, while
CAPA-CC uses a PELT type algorithm to detect multiple anomalies.

An approximation of the penalised saving is necessary for a moderately large
p, as the exact maximum likelihood estimator of a subset mean in correlated
data corresponds to a combinatorial optimisation problem, as far as we can see.
The approximation we propose is motivated from the form of the maximum
likelihood estimator and corresponds to what is known as an unconstrained
binary quadratic program. Such binary quadratic programs are of the form

max
u∈{0,1}p

uᵀAu + uᵀb + c, (4.3)

where A is a real, symmetric, (p×p)-dimensional matrix, b is a real, p-dimensional
vector and c is a real scalar. A second major result in the paper, of possibly
independent interest, is a dynamic programming algorithm requiring O(p2r)
operations for obtaining an exact solution to (4.3) when A is r-banded. This
algorithm is inspired by the optimal partitioning algorithm (2.5) in the way of
proceeding recursively through the variables d = 1, . . . , p and conditioning on
the optimal penalised saving for variables 1, . . . , d− 1 at each d.

In our problems, A is banded if the precision matrix Q is banded. As a
consequence, a banded estimate of Q is required for our methods to be scalable.
To obtain an estimate of a desired band we utilise a robust version of the
GLASSO algorithm. An important result from our simulation study is that our
method performs advantageously compared to other methods in terms of power
and estimation accuracy in a range of data settings, also when a truly dense
precision matrix is approximated by a banded estimate.

The simulation study also points to interesting facts about which scenarios
incorporating cross-correlations is favourable in the change or anomaly detection
analysis compared to ignoring it. Surprisingly, if the change is dense and the
changed mean components have similar values, ignoring cross-correlations results
in a more powerful method.
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Chapter 5

Discussion
In Chapters 2 and 3, we introduced the offline and online change detection
problems, respectively, and briefly summarised parts of the statistical literature
on these topics. The literature review is only meant to provide context for
Papers I–IV—summarised in Chapter 4—and is by no means exhaustive. In
this chapter, I discuss the papers critically, pointing to limitations and possible
improvements not already mentioned in the papers. It is therefore advantageous
to read the papers in full length in advance. The chapter is concluded by a
discussion of some open challenges and future directions of the change detection
field in general.

5.1 Discussion of the papers

Paper I In this paper, I used the Hellinger distance between distributions
to define sensitivity to changes partly because it proved simple to work with.
It would have been interesting to obtain similar results using the Kullback-
Leibler divergence, however, as it is more directly linked to properties of change
detection methods. For example, for online methods, Lorden (1971) showed that
the optimal worst-worst-case detection delay (3.4) is governed by

D̄(g, f) := log γ
I(g, f) , (5.1)

asymptotically as γ (the ARL) goes to infinity, where I(g, f) is the Kullback-
Leibler divergence from the pre-change distribution f to the post-change
distribution g;

I(g, k) :=
∫

log g(x)
f(x)g(x)dx. (5.2)

Thus, comparing the Kullback-Leibler divergences I(pj , qj), where pj and qj are
the pre-change and post-change distributions of principal component j as in
Section 4.1, can be directly translated to how much quicker a particular change
can be detected by each principal component. By using the Hellinger distance,
we only get to know the ordering of which principal component will be the most
efficient to monitor.

Paper II Our TPCA method is a tool for testing the usefulness of the knowledge
and concepts from Paper I in practice. Empirically, it seems to work well, but
unfortunately, we have little theory to support it. For instance, it would be
beneficial to get some measure of uncertainty on the selected subset J in
(4.2), and some guidance on the number of Monte Carlo simulations needed to
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approximate the distribution (4.1) well. For our chosen measure for ranking the
axes (4.1)—the probability of a principal component being the most sensitive
with respect to a distribution over changes—this is hard to obtain. Thus, in a
future version of the manuscript, an option is to change the selection criterion
for which principal components to monitor to one that can offer more in terms
of guarantees on performance.

One such alternative selection criterion we have started to explore is based on
the Kullback-Leibler divergence and its connection to the detection delay (5.1).
The idea is to keep enough principal components such that a minimum of c100%
of the information about changes occuring according to a change distribution is
conserved with probability 1−α, for chosen c, α ∈ (0, 1). This can be formalised
as the problem of finding the minimal J such that

P

(∑
j∈J

Ij

/ p∑
j=1

Ij ≥ c
)
≥ 1− α (5.3)

holds, where Ij := I(pj , qj). Through this criterion, we can specify how
much loss in detection speed is permissible at some probability 1 − α, as
D̄ ≥ log γ/(c

∑p
j=1 Ij) with probability 1−α when monitoring the (5.3)-selected

principal components. Moreover, for a multivariate Gaussian change distribution
for the mean, µ ∼ N(θ,Γ), combined with a Kullback-Leibler divergence between
two Gaussians in Ij , the distribution (5.3) for a fixed J is possible to derive
analytically; it can be expressed as the probability distribution of a quadratic
form µᵀAµ, known to be distributed as a linear combination of independent
non-central chi-square random variables. Motivated by the results of the minor
principal components being the most sensitive, an approximate minimisation
over J can be performed by starting from J = {p}, and progressively adding
more and more varying components until the criterion (5.3) is met. Results of
this flavour could be useful as computationally efficient default settings, and to
approximate more complicated change and data distributions.

More generally, we would like to address the choice of change distribution
more thoroughly in the future. In the current manuscript, the change distribution
used throughout represents little prior information, but it might seem quite
arbitrary. As mentioned in the previous paragraph, finding a choice of change
distribution that enables selection of the tailored principal components in a less
brute force manner than Monte Carlo simulation would be highly beneficial.
Such change distributions could then be studied under misspecified scenarios to
assess the value of setting up a more complicated change distribution.

In the simulation study, we have divided results into classes of “low” and
“high” correlation based on the value of the αd parameter in the method of Joe
(2006) for generating random correlation matrices being less than or greater than
1. The motivation for using this method was to obtain a large range of different
correlation matrices. However, it is not that easy to interpret the size of the
correlations in each class. Selecting a few simpler classes of correlation matrices
as test beds, as we did in Paper IV, might therefore provide more informative
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results in terms of how strong the correlation must be for TPCA to perform
better than the mixture procedure of Xie and Siegmund (2013).

Today, there are also more methods it would be relevant to compare
performance with, especially the methods mentioned in the paragraph on
detecting changes in the covariance matrix of Section 3.2.

Paper III The aim of this paper was to propose a method for detecting when a
ship’s motor is about to fail. Specifically, the method had to be able to predict
an observed fault in a historical data set sufficiently early in advance with a
minimal amount of false alarms, be generalisable to other ships and motors,
as well as be simple conceptually and simple to implement on the on-board
system of the ship. The two latter requirements lead us to using simple i.i.d.
Gaussian models for the data, both when constructing the model for the motor
temperature and when monitoring the residuals. These modelling assumptions
were justified because the size of the change in mean signalling the observed
fault was large enough to be detected early with few false alarms, despite the
threshold having to absorb all aspects of the data not captured by the i.i.d.
Gaussian model. The lesson here, from a practical point of view, is that much
can be achieved by a very simple model.

However, other failures may not be equally pronounced as the one in our test
set. In failure cases with smaller changes, more effort must be put on modelling
the data. There are at least three improvements that would make detection
of significantly smaller changes possible, if we disregard the requirement of
implementational and conceptual simplicity. First, as mentioned in the discussion
section of the paper, there is a consistent bias in the temperature residuals for
each sensor. This is due to the model for generating the residuals being based
on the average temperature over the six sensors, such that individual differences
between the sensors are lost. One way of reducing the bias is thus to construct
a temperature model for each sensor by including a training period for each
motor. Note that a part of the bias is already handled by the parameter ρ in the
adaptive CUSUM, but lowering ρ is also of interest to be able to detect smaller
changes. A second improvement is to model the temporal dependence explicitly
in the change detection method. The improvement is likely to be remarkable
as the temperature residuals are very strongly auto-correlated as a consequence
of the motor temperature being a slowly varying process relative to the once
per second sampling rate. Thirdly, the spatial dependence between the sensors
is also strong, so modelling it would further increase detection power (as the
results in Paper IV show).

On the other hand, there will always be behaviour of the temperature sensor
data not captured by even an extremely complex model. From the point of
view of a change detection method, such deviations from the model will often
be interpreted as evidence for a change. Thus, a reformulation of the change
detection problem relevant to this application is to only detect relevant changes.
The ρ-parameter in the adaptive CUSUM in practice filters out too small changes,
but another alternative is to incorporate the relevant size of a change directly in
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the hypothesis testing problem. For a change in mean in univariate data, this
means studying null hypotheses such as

H0 : |µ0 − µ1| ≤ ∆,

where µ0 and µ1 are the pre- and post-change means. Initial work on change
detection problems of this form has already been carried out by Dette and
Gösmann (2018).

Paper IV Much of the discussion of Paper III also applies to the application
of condition monitoring a process pump in Paper IV. Specifically, modelling of
temporal dependence and a more sophisticated model for removing trends in
the data associated with the operational state of the pump is likely to increase
performance. By “operational state”, I mean, for instance, the volume fractions
of the different fluids being pumped, their flow rate, the power of the pump, and
so forth.

An online version of CAPA-CC is needed to be able to monitor the pump in
real-time. In this particular application, the current offline version is primarily
useful for analysing historical data of the pump, either to prepare a training set for
an online method, or to explore when the pump has been running suboptimally
in the past, perhaps discovering previously unknown anomalous segments. Fisch
et al. (2020) recently showed how the univariate CAPA method can be made
sequential, and similar ideas can be used to create an online counterpart of
CAPA-CC.

On the methodological side there are also numerous possibilities for extensions.
In the penalised cost framework of our methods, we use a pointwise minimum
between a linear and a constant penalty on the number of changing variables.
Akin to the optimal partitioning algorithm in (2.5), the restriction to linear
penalties in the sparse regime is what allows for quick computation of the
penalised saving for a fixed changepoint or anomalous segment. There may,
however, be scenarios where a non-linear penalty is preferred, and Fisch et al.
(2019b) show that for intermediately sparse changes—that is, for p−1/2 < |J| ≤
p−3/4—in cross-independent Gaussian data, a third, non-linear penalty regime
is needed for optimal power. It is possible to accommodate for non-linear
penalties in our method by deriving a segment neighbourhood analog to our
optimal partitioning-inspired algorithm for computing the penalised saving. (The
segment neighbourhood algorithm is described at the end of the paragraph on
dynamic programming-based methods in Section 2.1.) By this, I mean that
in addition to sequentially conditioning on the optimal penalised saving until
variable d ≤ p, one can also condition on the number of changing variables,
starting from finding the single variable that increases the penalised saving
the most, before proceeding recursively until a maximum number of changing
variables, J̄ , is reached. Such an algorithm would scale quadratically in p if J̄
grows linearly in p. This is prohibitive for large p, but for moderately sized p, as
in our 5-dimensional pump data example, it may have practical value.

As CAPA-CC and CPT-CC are based on the multivariate Gaussian model,
it is of course relevant to explore other costs, both likelihood-based costs and
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others. It would be interesting to seek more general models where our algorithm
for solving binary quadratic programs can be used to approximate tests for
subset changes, or if it can find use in other tasks involving variable selection.

I am open to suggestions on how to obtain stronger theoretical results on
the quality of the approximate versus the exact penalised saving.

5.2 Open challenges in change detection

We conclude this introduction by discussing some interesting open challenges in
the change detection field.

A major issue with the vast majority of frequentist change detection methods
is that they only provide point estimates of changepoints, without a measure of
confidence in these estimates. The quality of changepoint estimates is mainly
assessed by proving their consistency and deriving convergence rates. As pointed
out by Paul Fearnhead in the discussion on Frick et al. (2014), additional
challenges with confidence intervals for changepoints arise when the the number
of changes are unknown, as is often the case. Should the confidence intervals
be constructed with respect to a fixed number of changepoints? How should
uncertainty on the number of changepoints be incorporated? And how can
confidence intervals for the number of changepoints be constructed? The
confidence intervals of Frick et al. (2014) rely on their method consistently
estimating the number of changepoints, and then asymptotic confidence intervals
for the changepoints are constructed conditional on the estimated number
of changes. Continuing to paraphrase Paul Fearnhead, it is not clear how
to interpret such confidence intervals in many real data settings, as there is
often significant uncertainty regarding the number of changes. The confidence
distribution approach of Cunen et al. (2018) would face similar challenges as
they assume there is maximally a single changepoint. Bayesian methods, on the
other hand, are able to incorporate uncertainty on both the number and location
of changepoints simultaneously, and may be the only option for full uncertainty
quantification. However, such Bayesian inference is of course conditional on the
often subjectively specified prior.

In many applied problems, including both the ship motor and pump
monitoring problems of Paper III and Paper IV, the mean function of the data
is not constant or linear between changepoints, but contains local fluctuations
or trends of a complicated functional form. In our problems, a portion of these
trends can be ascribed to a time-varying context of the machines; the temperature
of the motor naturally increases as the motor’s power increases, for example.
Given the true relationship between the power and the temperature of the motor,
this trend could be removed entirely. In practice, however, relationships of this
sort have to be modelled and estimated, and variables explaining the trend might
not always be recorded. Some trends or local fluctations will, consequently,
often remain, no matter how hard one tries to remove them. Thus, change and
anomaly detection methods that allow the mean function between changepoints
to be smoothly time-varying or stochastic are likely to be useful in practice.

33



5. Discussion

Combine this with modelling of temporal dependence and outlier-robustness, and
the practical usefulness will increase even further. Initial work in this direction
has been carried out by Romano et al. (2020) for univariate data. Multivariate
and online versions are still to be explored.

Online or sequential change detection is still an underexplored problem
compared to the offline problem, despite the origin of change detection being
sequential. The current online field is mainly focused on the speed of detecting
a single change. However, in several applied settings, it is more important
that detection is reliable in terms of avoiding false alarms than quick, so long
as detection is “quick enough”. Consequently, a formulation of the online
change detection problem starting from what is sufficiently quick detection
before minimising the probability of false alarms might be fruitful. Moreover,
constructing online versions of the algorithms for existing offline methods could
be useful for adapting the online field to multiple change scenarios, thereby
bridging the gap between the two settings.
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Principal component analysis (PCA) is often used in anomaly detection and statistical process

control tasks. For bivariate normal data, we prove that the minor projection (the least varying

projection) of the PCA-rotated data is the most sensitive to distributional changes, where

sensitivity is defined as the Hellinger distance between the projections' marginal distributions

before and after a change. In particular, this is almost always the case if only one parameter of the

bivariate normal distribution changes, that is, the change is sparse. Simulations indicate that the

minor projections are the most sensitive for a large range of changes and pre-change settings in

higher dimensions as well, including changes that are very sparse. This motivates using only a few

of the minor projections for detecting sparse distributional changes in high-dimensional data.

KEYWORDS

machine learning, quality control, statistical process control

1 INTRODUCTION

It is popular to use principal component analysis (PCA) for anomaly detection and stochastic process control (SPC). Using PCA in SPC goes back

to the work of Jackson and Morris (1957) and Jackson and Mudholkar (1979), and its various extensions (see Ketelaere et al., 2015 and Rato

et al., 2016, for an overview) have been successfully applied to many real data situations. Within the machine learning literature on anomaly

detection, Mishin et al. (2014) use PCA for temperature monitoring at Johns Hopkins, Harrou et al. (2015) apply PCA-based anomaly detection

to find segments with abnormal rates of patient arrivals at an emergency department, and Camacho et al. (2016) relate PCA-based monitoring in

SPC to modern anomaly detection in statistical networks. PCA has also been studied in the setting of change detection in multivariate functional

data with the aim of detecting faulty profiles in a forging manufacturing process (Wang et al., 2018). Pimentel et al. (2014) provide an extensive

review of novelty detection techniques and applications, and it is pointed to PCA being very useful for detecting outliers in this setting, for a

large range of real world examples, covering industrial monitoring, video surveillance, text mining, sensor networks, and IT security. Moreover,

many authors (Huang et al., 2007; Lakhina et al., 2004; Pimentel et al., 2014) acknowledge that it is most often the residual subspace of PCA that

is most useful for outlier detection. On a similar note, Kuncheva and Faithfull (2014) offer an interesting alternative way to use PCA for change

detection problems.

Most PCA-based methods utilize PCA in the intended way of creating a model based on retaining a small number of the most varying

projections onto eigenvectors of the covariance matrix. As a consequence, the data are split into a model subspace that explains most of the

variance in the data and a residual subspace. It is not self-evident that this is the best way to use PCA as a dimension reduction tool for change

detection, so Kuncheva and Faithfull (2014) pose the question of which projections are the most sensitive to distributional changes in the data.

Sensitivity is measured by a statistical divergence between the marginal distributions of projections before and after a change. They give a brief

two-dimensional theoretical example that motivates monitoring the minor projections (the least varying projections) to detect anomalies that

manifest in the form of sustained changes in the distribution of the data. An important feature of such an approach is that it can potentially be

used to choose a subspace based on criteria linked to change detection, rather than on retaining data variance, hopefully yielding a better change

and anomaly detection methods. The goal of this article is to give a more complete treatment of and extend the bivariate problem of Kuncheva

and Faithfull (2014) in order to better understand the projections' sensitivity to changes under a simple setup and then study how these results

carry over to higher dimensions by simulations.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2019 The Authors. Stat published by John Wiley & Sons, Ltd.
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There are three main differences between our approach and the approach of Kuncheva and Faithfull (2014). First, we express the projections'

sensitivity to changes as functions of the parameters of the original data rather than of the parameters of the projections. The reason for this

choice is that the original data are the object of the main interest, whereas the projections are ancillary. Our approach allows one to change

individual parameters of the original data independently and see how this affects the marginal distributions of the projections as a consequence.

We argue that this is more informative. Second, we study a much larger space of possible changes, including changes in only one parameter at

a time. Such change scenarios where only a few of the dimensions change are called sparse changes, and they are the subject of much current

interest (Chan, 2017; Liu et al., 2017; Wang et al., 2018; Wang & Samworth, 2018; Xie & Siegmund, 2013). Third, we measure sensitivity by the

normal Hellinger distance between the marginal distributions of projections before and after a change, whereas Kuncheva and Faithfull (2014)

use the normal Bhattacharyya distance. See Section 2 for an explanation of this choice.

In short, we find the following. For bivariate data, we prove that if only one of the two components' means changes in any direction, one

component's variance increases, or the correlation between the components changes, the minor projection is the most sensitive. The principal

projection is the most sensitive if one of the components' variance decreases and the correlation is not too close to 1. Lastly, if both means

change, which projection is the most sensitive depends on the relative directions and sizes of change, and when both variances change by an

equal amount, both projections are equally sensitive. Thus, on average (with all change scenarios up to a certain size equally likely), the minor

projection is the most sensitive, mainly due to the sparse change scenarios. Our simulations confirm that the trend of the minor projections being

more sensitive on average also holds for higher dimensions. Moreover, and most importantly, the minor projections seem to be quite sensitive

even to very sparse changes. This knowledge carries large potential for creating more efficient change or anomaly detection methods.

The rest of the article is organized as follows: Section 2 formulates the problem precisely, Section 3 contains the theoretical results about

sensitivity to changes in two dimensions, and in Section 4, we explore sensitivity in higher dimensions by simulations. The proofs are found in

Appendix A.

2 PROBLEM FORMULATION

Consider independent observations xt ∈ RD, t = 1, … , n, and let 𝜅 ∈ {1, … , n − 1} be a change-point. For t ≤ 𝜅, the observations have mean

𝝁0 and covariance matrix Σ0, whereas for t > 𝜅, the data have mean 𝜇1 and covariance matrix Σ1. Assume without loss of generality that the

data are standardized with respect to the pre-change parameters, so that 𝝁0 = 0 and Σ0 is a correlation matrix with correlation parameter 𝜌. For

D = 2, the changed mean is given by 𝝁1 = (𝜇1, 𝜇2)t , and the changed covariance matrix can be expressed in terms of Σ0 and parameter-wise

multiplicative change factors as

Σ1 =

(
a2

11
a11a22a12𝜌

a11a22a12𝜌 a2
22

)
,

where

−1 < 𝜌, a12𝜌 < 1 and 𝜌 ≠ 0. (1)

For example, if a11 = 2, it means that the standard deviation of the first component has doubled compared with what it was originally in Σ0.

Similarly, a12 = 0.5 means that the correlation is half as strong after the change. Note that we exclude the degenerate cases of correlations equal

to −1 and 1.

Next, let {𝜆j, vj}D
j=1

be the normalized eigensystem of Σ0, ordered by 𝜆1 ≥ … ≥ 𝜆D . The orthogonal projections yj,t = vt
j
xt , with progressively

decreasing variances 𝜆j, are our main objects of interest.

The general problem is to find out which of the D projections are the most sensitive to different distributional changes defined by (𝝁1,Σ1), for

each pre-change correlation matrix Σ0. In the bivariate case, (Σ0,𝝁1,Σ1) is fully specified by (𝜌, 𝜇1, 𝜇2, a11, a12, a22). Note that a collection of the

most and least varying yj,t 's is referred to as the principal projections and minor projections, respectively.

We define sensitivity to changes as the normal Hellinger distance between the marginal distribution of a projection before and after a change.

The squared Hellinger distance between two normal distributions p(x) = N(x|𝜉1, 𝜎
2
1
) and q(x) = N(x|𝜉2, 𝜎

2
2
) is given by

H2(p, q) = 1 −

√
2𝜎1𝜎2

𝜎2
1
+ 𝜎2

2

exp

{
−1

4
(𝜉1 − 𝜉2)2

𝜎2
1
+ 𝜎2

2

}
.

The formal definition of sensitivity to changes is contained in Definition 1.

Definition 1. For j = 1, … ,D, let pj and qj denote the marginal pre- and post-change density functions of yj,t , respectively, given by

pj(y) = N(y | vT
j 𝜇𝟎, vT

j Σ0vj) = N(y|0, 𝜆j),

qj(y) = N(y | vT
j 𝜇𝟏, vT

j Σ1vj).

The sensitivity of the jth projection based on Σ0 to the change specified by (𝝁1,Σ1) is defined as H(pj, qj), abbreviated by Hj or Hj(Σ0,𝝁1,Σ1).54
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Our aim in the next section is to determine which pre-change parameters and changes the inequality H2 > H1 holds for when D = 2 in light of

Definition 1.

Remark

(i) Kuncheva and Faithfull (2014) also define sensitivity as a divergence between distributions before and after a change but use the

Bhattacharyya distance. The closely related Hellinger distance was chosen here because it turns out to be simpler to prove the sensitivity

propositions because of Lemma 1 (see Appendix A). It is also an advantageous feature of the Hellinger distance that it is a true metric

and takes values in [0,1]. That it is a true metric implies for instance that a change in variance from 1 to a > 1 is an equally large change

as from 1 to 1∕a for the normal distribution. We find this an appealing feature because it is also a property of the generalized likelihood

ratio test for a change in the mean and/or variance of normal data (see Hawkins & Zamba, 2005, for the corresponding test statistic).

(ii) One of the differences between our approach and the work of Kuncheva and Faithfull (2014) can now be stated more precisely. Our

aim is to study the sensitivity of the yj,t 's as functions of parameters of the original data xt . Kuncheva and Faithfull (2014), on the other

hand, study (additive) changes in the parameters of yt directly; for instance, 𝜆j changing to 𝜆j + a for all j, but without relating this a back

to which Σ1's this change corresponds to.

3 BIVARIATE RESULTS

This section contains all the bivariate results about sensitivity to changes. The detailed proofs are given in Appendix A.

For changes in the mean in two-dimensional data, Proposition 1 gives the condition for determining which projection is the most sensitive, as

well as the results for some special cases.

Proposition 1. Let a11 = a22 = a12 = 1 and 𝜇1, 𝜇2 ∈ R while not both being 0 simultaneously (only the mean changes). H2 > H1 if and only if

(𝜇1 − 𝜇2)2∕(𝜇1 + 𝜇2)2 > (1 − |𝜌|)∕(1 + |𝜌|).
In particular, for all |𝜌| ∈ (0,1),

1. H2 > H1 if one of 𝜇1 and 𝜇2 is 0 whereas the other is not (one mean changes).

2. H2 > H1 if 𝜇1 = −𝜇2 = 𝜇 ≠ 0 (equal changes in opposite directions).

3. H2 < H1 if 𝜇1 = 𝜇2 = 𝜇 ≠ 0 (equal changes in the same direction).

When both variances change by the same amount, Proposition 2 tells us that both projections are equally sensitive no matter what the

pre-change correlation or size of the change is.

Proposition 2. Let 𝜇1 = 𝜇2 = 0, a12 = 1 and a11 = a22 = a ≠ 1 (both variances change equally). For any |𝜌| ∈ (0,1) and a > 0, H2 = H1.

The picture becomes more complicated when only one variance changes (Proposition 3). If the variance increases, the minor projection is

always the most sensitive. On the other hand, if the variance decreases, the principal projection is mostly the most sensitive but not always if the

pre-change correlation is high (greater than
√

3∕2). In total, this gives a slight edge to the minor projection.

Proposition 3. Let 𝜇1 = 𝜇2 = 0, a12 = 1, and either a11 = 1 and a22 = a ≠ 1, or a11 = a and a22 = 1, where a > 0 (one variance changes).

1. For any |𝜌| ∈ (0,1) and a > 1 (variance increase), H2 > H1.

2. When |𝜌| ∈ (0,1) and a ∈ (0,1) (variance decrease), H2 < H1 in most cases. The only exception is if |𝜌| ∈ (
√

3∕2,1) and a ∈ (0,
√

4𝜌2 − 3),
where H2 > H1.

Finally, for a change in correlation, the minor projection is the most sensitive in most cases (Proposition 4). Only if the correlation changes

direction and becomes stronger is the principal projection more sensitive.

Proposition 4. Let 𝜇1 = 𝜇2 = 0, a11 = a22 = 1 and a12 = a ≠ 1 such that (1) holds (the correlation changes). Then H2 > H1 for any |𝜌| ∈ (0,1) and

a > −1.

4 EXPLORING HIGHER DIMENSIONS

In the two-dimensional case, we saw that which projection is the most sensitive depends both on the change (𝝁1,Σ1) and on the pre-change

correlation matrix Σ0. For a higher dimension D, solving inequalities like above for all the parameters in (Σ0,𝝁1,Σ1) quickly becomes tedious and

uninformative. Therefore, we use simulation to obtain Monte Carlo estimates E[Hj(Σ0,𝝁1,Σ1)] instead, where we vary which parameters that

change, the size of the changes, and the sparsity of the change (the number of dimensions that change). Let 𝜌i,d for i ≠ d denote the off-diagonal

elements of Σ0, 𝜇d be the dth element of 𝝁1, and 𝜎d be the dth diagonal element of Σ1. Then our simulation protocol to get such estimates is as

follows: 55
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FIGURE 1 A summary of the sensitivity results obtained by the simulation protocol for D = 20 for D = 100. (a) Monte Carlo estimates of E[Hj]
for uniformly drawn changes in the mean, variance, and (decreases in) correlation, as well as uniformly drawn pre-change correlation matrices
Σ0. (b) Same as (a), but now the average sensitivity is conditional on the sparsity of the change, rather than the type of parameter. (c) 0.05, 0.25,
0.75, and 0.95 percentiles (the dashed lines, from bottom to top) of the distribution of Hj, together with E[Hj] (solid line). Note that the
percentiles are over Σ0,𝝁1, and Σ1 simultaneously

1. Draw a correlation matrix Σ0 uniformly from the space of correlation matrices by the method of Joe (2006) (clusterGeneration::rcorrmatrix

in R).

2. Draw a change sparsity K ∼ Unif{2, … ,D}.

3. Draw a random subset  ⊆ {1, … ,D} of size K.

4. Draw an additive change in mean 𝜇 ∼ Unif(−3,3), and set 𝜇d = 𝜇 for d ∈ , whereas Σ1 = Σ0.

5. Draw a multiplicative change in standard deviation 𝜎 ∼ 1

2
Unif(1∕3,1) + 1

2
Unif(1,3) (equal probability of decrease and increase in standard

deviation) and set 𝜎d = 𝜎 for d ∈ , keeping the remaining parameters constant.

6. Draw a multiplicative change in correlation a ∼ Unif(0,1) and change 𝜌i,d to a𝜌i,d for all i ≠ d ∈ . The other parameters are kept constant.

7. For each of the three change scenarios 4–6, calculate Hj(Σ0,𝝁1,Σ1), j = 1, … ,D.

8. Repeat 2–7 103 times.

9. Repeat 1–8 103 times.

Averaging the simulated Hjs yields estimates of E[Hj], and we can condition on the type of parameter that changes and the change sparsity to

see what the sensitivity is expected to be for different classes of changes. (Note that we only consider decreases in correlation. This is to avoid

getting too many indefinite Σ1's. If indefinite Σ1's still occur, we find the closest positive-definite one by Higham's algorithm (Higham, 2002),

implemented in the Matrix::nearPD-function in R.

Figure 1 shows that the trend of the minor components being the most sensitive continues for D = 20 and D = 100. This holds for changes in

the mean, variance, and correlation (a) as well as all the different change sparsities (b). From the quantile plots (c), however, observe that a lot of

variation is hidden in these averages, meaning that which projection is the most sensitive will depend on the specific Σ0 and change (𝝁1,Σ1), as in

the bivariate case.

5 CONCLUDING REMARKS

We have presented bivariate theory demonstrating that the minor projection of PCA-rotated data is usually the most sensitive to changes,

especially if the change is sparse. Simulations confirm this to be the case on average for higher dimensions as well, but, in general, the sensitivity

strongly varies with the pre-change correlation matrix and the specific change.

In future work, we aim to exploit these insights for creating computationally efficient change detection methods for high-dimensional data.

The most promising and surprising part of our results is that even very sparse changes seem to be quite noticeable in the minor projections. This

is important for change detection in high-dimensional data because a change rarely affects all dimensions or parameters at once. Most often,

only a few parameters among many will change, and therefore, the problem of sparse changes will be the most relevant. One interpretation of56
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the results presented here is that for detecting sparse changes in the mean vector and/or covariance matrix of a high-dimensional data set or of

a sequentially arriving data stream, it is potentially sufficient to search for changes in a few selected minor projections. This might lead to major

improvements, not only computationally but also in terms of detection accuracy or speed. Choosing which minor projections to use for a specific

change detection problem is the subject of ongoing work.

This work is funded by the Norwegian Research Council centre Big Insight, Project 237718. The author would also like to thank Ingrid Glad

for useful input on the presentation of the material.
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APPENDIX A: PROOFS

Before turning to the proofs of the propositions in Section 3, the expressions for the pre- and post-change means and variances of each

projection are needed. The normalized eigenvectors (principal axes) and corresponding eigenvalues (variance in the data along a given principal

axis) of Σ0 are quickly verified to be

𝜆1 = 1 + 𝜌, v1 = 1√
2

(
1
1

)
,

𝜆2 = 1 − 𝜌, v2 = 1√
2

(
−1
1

)
.

(A1)

Note that which principal axis is the dominant one depends on the sign of 𝜌. If 𝜌 is positive, v1 is the dominant one, but v2 is dominant if 𝜌 is

negative.

From the projections in (A1), the parameters of the projections before and after a change can be expressed as functions of the original correlation

matrix and multiplicative change factors. For the principal component, the original and changed variances become as follows, respectively:

o2
1 = 1 + 𝜌,

c2
1 = 1

2
a2

11 + 1
2

a2
22 + a11a22a12𝜌.

(A2)

The expressions for the variances of the minor component are identical up to one switched sign:

o2
2 = 1 − 𝜌,

c2
2 = 1

2
a2

11 + 1
2

a2
22 − a11a22a12𝜌.

(A3)

Observe that if 𝜌 < 0, then o2 and c2 would be equal to o1 and c1 with positive 𝜌, and vice versa. Thus, for 𝜌 ∈ (−1,1), the general expressions

are obtained by replacing 𝜌 with |𝜌|. Lastly, the changed mean components are given by

m1 = 1√
2
(𝜇1 + 𝜇2),

m2 = 1√
2
(𝜇1 − 𝜇2).

(A4)

We first prove Proposition 1 for changes in the mean.

Proof of Proposition 1. Let p1(x) = N(x | 0, o2
1
), q1(x) = N(x | m1, o2

1
), p2(x) = N(x | 0, o2

2
), and q2(x) = N(x | m2, o2

2
), where mi, oi

are as in (A2), (A3), and (A4), with 𝜌 replaced by |𝜌| as noted above. The Hellinger distances between the distributions before and after a

change along each principal axis are given by for j = 1,2

H2
j = H2(pj, qj) = 1 − exp

{
− 1

8o2
j

m2
j

}
.

Then some algebra results in the inequality we needed to prove:

H2 > H1

1
8(1 − |𝜌|) (𝜇1 − 𝜇2)2

2
>

1
8(1 + |𝜌|) (𝜇1 + 𝜇2)2

2

(𝜇1 − 𝜇2)2

(𝜇1 + 𝜇2)2
>

1 − |𝜌|
1 + |𝜌|

From this inequality, the three special cases (i), (ii), and (iii) are immediately given.

In the proofs concerning changes in the covariance matrix, we will make use of the following lemma. It reduces the inequality of Hellinger

distances to a simpler inequality of ratios of variances.58
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Lemma 1. Let p1, q1, p2, q2 be 0-mean normal distribution functions with variances 𝜎2
p1
, 𝜎2

q1
, 𝜎2

p2
, and 𝜎2

q2
, respectively. Furthermore, let

log rj =
||||||log

𝜎2
qj

𝜎2
pj

|||||| , j = 1,2.

Then H(p2, q2) > H(p1, q1) if and only if logr2 > logr1.

Proof. First observe that when the means are 0, then we can write the Hellinger distance between two normal distributions as the following.

H2(p, q) = 1 −

(
2𝜎p𝜎q

𝜎2
p + 𝜎2

q

)1∕2

= 1 −
√

2

(
𝜎p

𝜎q
+

𝜎q

𝜎p

)−1∕2

= 1 −
√

2

(
𝜎2

p

𝜎2
q

+
𝜎2

q

𝜎2
p

+ 2

)−1∕4

.

This gives us the inequality

H(p2, q2) > H(p1, q1)

𝜎2
p2

𝜎2
q2

+
𝜎2

q2

𝜎2
p2

>
𝜎2

p1

𝜎2
q1

+
𝜎2

q1

𝜎2
p1

.

By setting r2 = 𝜎2
p2
∕𝜎2

q2
and r1 = 𝜎2

p1
∕𝜎2

q1
, the inequality can be written as

r2 + r−1
2 > r1 + r−1

1 .

Now assume first that r1, r2 > 1, that is, 𝜎2
pj
> 𝜎2

qj
. Then we see that

r2 + r−1
2 > r1 + r−1

1

r2 − r1 + r1 − r2

r1r2
> 0

(r2 − r1)
(

1 − 1
r1r2

)
> 0.

By the assumption that r1, r2 > 1, this inequality holds if and only if r2 > r1.

Finally, note that by interchanging 𝜎2
pj

and 𝜎2
qj

, the same result is obtained when 𝜎2
qj
≥ 𝜎2

pj
. Thus, to make the result hold in general, we can set

rj = exp

{||||||log
𝜎2

qj

𝜎2
pj

||||||
}

, j = 1,2,

which is an expression for the ratio between variances where the largest of the variances is always in the numerator. Therefore, we get that

log r2 > log r1 is equivalent to H2 > H1.

The rest of this article contains the individual proofs of the remaining propositions in the main body of the text.

Proof of Proposition 2. Let logrj for j = 1,2 be defined as in Lemma 1. When assuming that a12 = 1 and a11 = a22 = a ≠ 1, we get that

log r2 =
|||||log

a2∕2 + a2∕2 − |𝜌|a2

1 − |𝜌| ||||| = | log a2|,
and

log r1 =
|||||log

a2∕2 + a2∕2 + |𝜌|a2

1 + |𝜌| ||||| = | log a2|.
Hence, by arguments along the lines of the proof of Lemma 1, we see that H2 = H1 no matter what |𝜌| or a is.
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Proof of Proposition 3. Using the formulas for the variances of the projections (A2) and (A3), the inequality we have to study according to

Lemma 1 becomes the following: |||||log
a2 − 2a|𝜌| + 1

2(1 − |𝜌|) ||||| >
|||||log

a2 + 2a|𝜌| + 1
2(1 + |𝜌|) ||||||||||log

[
(1 − a)2

2(1 − |𝜌|) + a
]||||| >

|||||log

[
(1 − a)2

2(1 + |𝜌|) + a
]||||| .

(A5)

First, we have to find the sign of the expressions inside the absolute values for each a and |𝜌|. For the left-hand side, we get

(1 − a)2

2(1 − |𝜌|) + a = 1

a = 1 and a = 2|𝜌| − 1.

Thus, for a > 1 and a < 2|𝜌| − 1, the left-hand side is positive, whereas negative in between. For the right-hand side, the expression inside

the absolute value signs are positive for a > 1 and a < −(1 + 2|𝜌|). Because a > 0, however, the relevant root for the right-hand side is only

a = 1. In total, this gives us three regions of (a, |𝜌|)-values to check inequality (A5): a > 1 and |𝜌| ∈ (0,1), a ∈ (2|𝜌|− 1,1) and |𝜌| ∈ (0,1), and

a ∈ (0,2|𝜌| − 1) and |𝜌| ∈ (1∕2,1).

a > 1 and |𝜌| ∈ (0,1):
The absolute value signs can now be dissolved, so that inequality (A5) becomes

(1 − a)2

(1 − |𝜌|) >
(1 − a)2

(1 + |𝜌|) .
Because |𝜌| ∈ (0,1), we see that the inequality holds for any a > 1. Hence, H2 > H1 in this scenario, when the variance increases.

a ∈ (2|𝜌| − 1,1) and |𝜌| ∈ (0,1):
In this case, inequality (A5) becomes

(1 − a)2

(1 − |𝜌|) <
(1 − a)2

(1 + |𝜌|) .
That is, it does not hold for any of the a's or |𝜌|'s within the relevant region. Note that when |𝜌| < 1∕2, a is kept between (0,1).

a ∈ (0,2|𝜌| − 1) and |𝜌| ∈ (1∕2,1):
Now we get the inequality

(1 − a)2

2(1 − |𝜌|) + a >

(
(1 − a)2

2(1 + |𝜌|) + a
)−1

,

which is equivalent to

a4 − a2(4𝜌2 − 2) + 4𝜌2 − 3 > 0. (A6)

The roots of the function on the left-hand side are a = ±1 and a = ±
√

4𝜌2 − 3, but the only relevant root for a ∈ (0,2|𝜌|−1) and |𝜌| ∈ (1∕2,1)
is a0 ∶=

√
4𝜌2 − 3.

Next, for |𝜌| < √
3∕2, the root a0 moves into the complex plane, and the function on the left-hand side of (A6) is always less than 0 for

the relevant a's. That is, H2 < H1 in this case. If |𝜌| > √
3∕2, on the other hand, then (A6) holds for a ∈ (0, a0), but not for a ∈ (a0,2|𝜌| − 1).

Proof of Proposition 4. In this scenario, the inequality to check due to Lemma 1 and expressions (A2) and (A3) is

||||log
1 − a|𝜌|
1 − |𝜌| |||| > ||||log

1 + a|𝜌|
1 + |𝜌| |||| . (A7)

To dissolve the absolute value signs, we first have to see for which values of a and |𝜌| the expressions inside are positive or negative. It is

easily verified that the expression inside the left-hand side absolute value is positive for a < 1, whereas the right-hand side is positive if

a > 1, both being negative otherwise.

First assume that a < 1. Then inequality (A7) becomes

1 − a|𝜌|
1 − |𝜌| >

1 + |𝜌|
1 + a|𝜌|

1 − (a𝜌)2 > 1 − 𝜌2

a2 < 1.60
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Hence, a ∈ (−1,1) yields H2 > H1. On the other hand, if a > 1, we obtain

1 − |𝜌|
1 − a|𝜌| > 1 + a|𝜌|

1 + |𝜌|
a2 > 1,

which is always true. Thus, in total, H2 < H1 only if a < −1.
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